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Popular science summary

Much of the technological progress over the past century has been a result of the continuous
advances in materials research. Much of the focus has been on synthesizing materials with
new or improved physical properties. This engineering of the material’s properties very
often requires an understanding of its atomic structure and composition. It has allowed
researchers to engineer the properties of semiconductor structures in great detail, which is
why they play a critical role in almost every piece of technology that surrounds us in our
daily lives.

Most of us are now used to hearing about the miniaturization of computer chips down to
unbelievably small scales. The trend of miniaturization essentially offers reducing the cost
of the technology, however, it is becoming increasingly challenging. The semiconductor
technologies have reached a state in which single electrical circuit elements in computer
chips can now be a few tens of nanometers in size (less then 1/1000 of a thickness of a
human hair). This is only about 50 times the distance between atoms in solids. Engineering
materials at such a small length scale is conceptually different because then the electrons
that carry current often can not be considered as point like particles anymore.

The ability to manipulate material properties at a nanometer scale also opens up for new
engineering opportunities. Therefore, one of the focuses of nanoscience is to take advantage
of the effects related to the small size of nanostructures. Researchers at NanoLund have
expertise in growing very thin wires (nanowires) with diameters often below 1/10000 of a
millimeter with high quality. Nanowires often have improved material properties and also
allow combining materials that are not possible to combine in bulk without degradation of
their properties. On the one hand this platform is being used to develop nanowire based
high performance transistors, light emitting diodes, photovoltaics and light detectors. On
the other hand nanowires enable the creation of engineered nanostructures with unique
properties for targeted studies of physical phenomena, not possible to do otherwise.

This thesis uses specific kinds of nanostructures, called quantum dots, created into the
nanowires in order to study heat conversion into electricity at a very fundamental level.
One of the highlights of this thesis is an experimental realization of a particular type of
heat engine based on a quantum dot called the particle-exchange heat engine. Such an en-
gine was predicted to enable approaching the ideal thermoelectric conversion efficiency,
the so-called Carnot efficiency limit. The experimental results presented as a part of this
thesis demonstrate heat-to-electric conversion efficiency up to 70  of the Carnot effi-
ciency, which is comparable to the efficiency of the best heat engines. Another highlight
of this thesis is the realization of thermoelectric experiments probing quantum dots in an
exotic state (Kondo regime). This regime can be reached at extremely low temperatures
(below -270°C) and it enables the formation of such states of matter that can electrically
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short the quantum dot as if it was no longer there. The experimental results in this regime
are a direct verification of the somewhat counter-intuitive theory predictions and provide
a basis for future studies.

Over the course of this thesis the nanowire-based quantum dots have enabled successful ex-
perimental implementation of studies that so far had not been realized due to experimental
difficulties. The approaches used in this thesis are expected to be used in future experiments
further exploring the thermoelectric effects at the nanoscale.
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Abstract

This thesis experimentally investigates the possibilities of using quantum effects in semi-
conductor nanostructures for engineering their thermoelectric properties. More specific-
ally, heterostructured InAs/InP nanowires are used to create short InAs quantum dots
(QDs) with electronic state structure resembling that found in atoms. Recently developed
top-heater architecture is used to apply a temperature differential across the QDs. The
nanowire-based QD devices are used for studies of thermoelectric effects at the nanoscale
and for experimental demonstration of particle-exchange heat engines.

This thesis first gives an overview of the most important physical effects governing the be-
havior of quantum dots (QDs). The Master equation approach to model the electronic
transport in QDs is introduced in the sequential electron tunneling approximation. It is
used to illustrative the transport behavior of QDs. The Landauer-Büttiker approach is also
introduced as a reference and the differences with the sequential electron tunneling approx-
imation are discussed. A summary of the most important literature on the thermoelectric
properties of single QDs is given and discussed to provide the context for the experimental
studies in this thesis. Finally, a description of the experimental methods used in this thesis
is given.

There are three studies included in this thesis. The first investigates the nonlinear ther-
moelectric response of a QD with an applied thermal bias. A strongly nonlinear behavior
is observed which can be fully explained by the interplay between different QD electronic
states contributing to thermocurrent in opposing directions. The second study experiment-
ally demonstrates efficient particle-exchange heat engines based on QDs for the first time.
The analysis of the heat engines’ power and efficiency indicate heat-to-electric conversion
efficiencies up to 70 of Carnot efficiency. The third study investigates the thermoelectric
response of QDs in the presence of Kondo correlations. It verifies a previous theoretical
prediction that the sign of the thermoelectric signature in QDs inverts due to the Kondo
correlations.

The experiments presented in this thesis have been successful in filling a gap between theory
and experiments on several fronts. Future experiments could, for example, study Kondo-
correlated QDs in the nonlinear thermoelectric response regime in the presence of magnetic
field, where theory predictions are harder to obtain, or could employ thermoelectric char-
acterization techniques to study entropy of various different QD states.
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1 Introduction

Trends in semiconductor research

Material research and development is in the foundation of technological advancement. A
significant part of the technological progress during the last century has been allowed by
continuously increasing the understanding of electronic properties of semiconductors [1,
Chap. 1-4]. The possibility to engineer semiconducting materials with desired characterist-
ics has opened vast amounts of possibilities for applications. The most prominent example
of this, of course, is the development of semiconductor transistors and integrated circuits
[1, Chap. 3-4] resulting in multi-decade-long miniaturization of computer chips with expo-
nentially increasing computation power [2]. However, the applications of semiconductor
advances are far from being limited to computation. Other applications include: power
and high speed electronics, photovoltaics and opto-electronics. These technologies have
allowed for the modern power grids, radar and wireless communication technologies, solar
cells, high speed optical communication, low power lighting, flat screen displays, digitiz-
ation of photography and video, thermal imaging - the list could go on [1, Chap. 5-10].
Overall, one has to conclude that the impact of fundamental understanding of semicon-
ductors on society has been enormous.

It is important to point out that the continuation of this trend has always relied on the intro-
duction of new solutions for overcoming existing limitations. Therefore, material research
still plays a key role in advancing semiconductor technologies. The miniaturization of mod-
ern transistors [3] is still continuing, however, it is projected that this trend will come to an
end within the coming decade [4]. A paradigm shift is expected in the form of novel ap-
plications for semiconductor devices in the context of the so-called Internet of Things (IoT)
[5]. For this class of applications with many interconnected small scale sensors, transducers
and information processing units increased functionality and lower power consumption are
more desirable than the metrics, like information processing speed or the absolute size.

Here, opportunities provided by bottom-up growth of nanostructures [6] can add on to
the existing processing practices, provide new functionality or, perhaps, even form a basis
for entirely new technologies. A relatively developed platform in this respect has been
the selective growth of semiconductor nanowires [7]. It demonstrates the ability to com-
bine high material quality with high control over composition, both in radial and axial
dimensions [8]. The small size of nanowires also offers solutions for combining highly lat-
tice mismatched materials without introducing crystal defects [9], which is not possible in
bulk. Both of these characteristics in combination allow for great flexibility in the design
of nanoscale devices, which has been exercised in many nanowire-based device concepts.
They include opto-electronic devices like light emitting diodes (LEDs) [10], lasers [11] and
infrared detectors [12], but also photovoltaic cells [13] and high performance transistors [14].
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Such experimental devices have therefore already demonstrated that they can ultimately be
scaled down to a size comparable to the size of modern transistors without losing function-
ality. The possibility of fabricating so many different devices at the nanoscale suggests a
great potential for further integration of various technologies and perhaps could even lead
to entirely new applications.

Engineering thermoelectric effects at the nanoscale

Among various research directions investigating potential nanowire applications for future
solid state devices is engineering nanowire thermoelectronic properties. This thesis makes
direct use of the small size of nanowires and the heterostructuring capabilities available in
them to engineer electron transport characteristics. It allows fine-tuning of the nanowire
properties in ways that benefit thermoelectric performance figures, like power or efficiency,
and are not applicable to bulk thermoelectric materials. From a practical standpoint, en-
gineering of nanomaterials’ thermoelectric properties is of interest for on-chip cooling or
power generation [15]. From a scientific standpoint, investigation of thermoelectric effects
at a nanoscale attempts to clarify which physical mechanisms are responsible for the fun-
damental limits, as well as for the optimal operating conditions, of thermoelectric energy
conversion devices.

Experimentally, the epitaxial growth of nanowires allows integration of different compound
semiconductors with atomically sharp interfaces while ensuring minimal amount of crystal
defects [8]. The ability to heterostructure nanowires in this manner is a powerful engin-
eering tool for electron transport. This thesis uses nanowires in which composition varies
along the nanowire length for obtaining desired electronic transport properties. The spe-
cific structure consists of a pair of thin indium phosphide (InP) segments integrated into
an indium arsenide (InAs) nanowire (see Fig. 1a). The InP segments are relatively poorly
conductive and are used to enclose a short segment of InAs separating a countable number
of conduction electrons from the rest of the nanowire [16, 17]. As a consequence of their
small size, these islands of conduction electrons, also called quantum dots (QDs), possess a
set of energetically very distinct single particle orbital states, similar to those in atoms. It
is precisely this quasi-discrete energy state structure of QDs that makes them good model
systems for studying thermoelectric effects at a nanoscale. In this thesis it has been pos-
sible to make considerable experimental progress in the understanding of thermoelectric
properties of QDs, largely owing to the high quality of InAs/InP nanowires.

The research in this thesis has been directed mainly by two ideas. The first idea driving
the thermoelectric studies of QDs is based on using thermoelectric quantities as a com-
plementary characterization tool to learn more about QDs themselves. The thermoelectric
measurements can provide complementary information about physical mechanisms in the
QD [18, 19] because the nature of thermal bias is different form the nature of electrical
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bias. Prior experimental work on thermoelectric properties of QDs has mostly been aimed
at explaining the qualitative behavior of thermoelectric signatures based on conductance be-
havior of the corresponding QDs. However, quantitative agreement has so far been lacking
[20]. The existing lack of agreement between theory and experiments can be explained as
a result of a combination of experimental limitations in creating suited experimental QD
systems and the consequential lack of experience in modeling of the thermoelectric prop-
erties of realistic QDs. Work in this thesis attempts to fill in this gap between theory and
experiments by making improvements on both sides. Experimental groundwork for this
purpose is largely tested in Paper i and is further used all throughout the studies in Papers ii
and iii.

(c)

(b)

Hot reservoir Cold reservoirEnergy filter

Hot reservoir Cold reservoir

Quantum dot

(a)
InAs InAs InAs

InP InP

Figure 1: (a) Illustration of a heterostructured InAs/InP nanowire. The short segments (in purple) represent InP segments within
InAs nanowire. (b) Schematic view of a quantum dot (QD) created between the InP segments. Electrons on the left
side of the QD are at a higher temperature than electrons on the right. On the hot side the electrons are thermally
excited to higher energies than those on the cold side. An electronic orbital state in the QD is able to conduct electrons
at a selected energy from the hot to the cold side, thus driving a current using the temperature differential. The QD
can serve as an electron energy filter in a solid state particle-exchange heat engine illustrated in (c). (c) Schematic view
of a particle-exchange (PE) heat engine. Two particle reservoirs at different temperatures (red and blue) are exchanging
particles with each other through a particle energy filter (gray).

The second idea is to test a two decade old theoretical prediction of QDs being ideal for
efficient steady state thermal-to-electric energy conversion [21, 22]. The critical property for
efficient thermoelectric conversion possessed by QDs is their ability to transport electrons
at very well defined energies (illustrated in Fig. 1b), therefore behaving as energy filters for

3



electrons. This characteristic of QDs has been predicted to enable the implementation of a
novel type of heat engine, the particle-exchange heat engine [23] (Fig. 1c), which would oper-
ate in a steady state by exchanging electrons at a set energy between two fermionic reservoirs
of different temperatures. Following this layout, the temperature difference could be used
to drive an electric current through the QD against an electrical potential difference. Mostly
because of the lack of agreement between theory and experiments, no definite conclusions
have been made regarding these predictions. Paper ii explores this idea experimentally and
demonstrates extensive agreement between theory and experiment. Throughout this study
the nature of thermoelectric power production in QDs is characterized.

The approaches developed throughout Papers i and ii could be applied to studies of other
transport regimes where properties of QDs are less understood and more challenging to
model theoretically. One of such regimes is the so-called Kondo regime [24, 25] where the
interaction between the QD electrons and electrons in the reservoirs gives rise to quantum
many-body phenomena that result in drastic modification of QDs’ transport properties.
Existing theoretical predictions by Costi and Zlatić [19] on the behavior of thermoelectric
signals in this regime so far have not been fully mapped experimentally, therefore the theory
does not stand on solid ground. Studies in Paper iii are addressing this fact by conducting
thermoelectric experiments on QDs in the Kondo regime. The results demonstrate good
qualitative and qualitative agreement with theoretical predictions and thus constitute an
early validation of the theory in Ref. [19]. The study in Paper iii also opens up the field
for further experimental studies in this regime as it demonstrates that the nanowire-based
QDs seem to be a very good experimental system.

The thesis is constructed in the following way. Section 2 provides a review of basic physical
phenomena that are important for the general theoretical understanding of QDs. These
concepts are used in Section 3 where a simplified theoretical model is introduced to qual-
itatively explain the behavior of QDs in response to electrical and thermal biases. The ap-
plicability limits of simplifications in the model are discussed. Further, Section 4 provides
a short review of the prior work on thermoelectric properties of QDs, focusing mostly on
the experimental achievements. Section 5 reviews the experimental methods and specifics
of devices that have been used for the experimental studies in this thesis. Section 6 gives
a detailed commentary of the main experimental results of Papers i, ii and iii. Section 7
concludes the main body of this thesis by a short summary and outlook.
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2 Background

Quantum dots (QDs) are sometimes called artificial atoms because they possess electronic
state structure similar to those in atoms. Essentially, single particle kinetic (orbital) energy
states in QDs are spread enough in energy not to be seen as a continuum of states at the
given temperature. The energy offset between the orbital states is caused by quantum con-
finement effect (explained in Section 2.3). The aim of this section is to introduce this effect
as well as effects, like charging (in Section 2.1), tunneling (in Section 2.4) and others, that
play an important role in transport properties of single QDs. The principles explained in
this section are further used in Section 3 to motivate the typical assumptions made in the
theoretical description of QDs.

2.1 Electrostatics of small conductors

Electrostatics plays a significant role in determining the electronic properties of small con-
ductors. The fundamental reason for this is that smaller conductors cannot screen the
electric field of their charge as well as bigger conductors can, resulting in higher electric
field energies. This is just another way of saying that smaller conductors have smaller ca-
pacitances. A good example for this is provided by a basic result in electrostatics - a solid
metallic sphere in vacuum placed far away from other conductors. Assuming the sphere
has a radius r and charge Q, its electric potential is ϕ = Q/(4πε0r) = Q/C, where ε0 is
the vacuum permittivity and C is the capacitance of the solid sphere to a surrounding, far
away equipotential surface. This result implies that the field energy of the charged sphere
is W = ϕQ/2 = Q2/(2C), and therefore proportional to ∼ 1/r. Based on this, one can
conclude that charging of small conductors is energetically more costly than of the bigger
ones.

The picture becomes slightly more complicated in case of several conductors, capacitively
coupled to one another. It is commonly accepted that linear response properties of such
a system can be described by a capacitance matrix C, the elements of which are defined
as Cij = dQi/dϕj. Here, Qi is the charge of the conductor i, where as ϕj is the electric
potential of the conductor j. The charge of each of the conductors is related to the electrical
potentials via the following expression

Qi =
∑
j

Cijϕj (1)

There are two important properties of theCmatrix that are of great importance here. First,
it is a symmetric matrix (Cij = Cji), and second, that the sum of all elements in each row and
column is zero

∑
i Cij =

∑
j Cij = 0. The latter implies that the total charge of the system

equals zero, which is a justifiable assumption, and that only the relative potential differences
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between conductors matter, which assumes the existence of a far away equipotential surface
at zero potential [26].

φ2

φ3

φ1

2
3

1q<
0

Figure 2: A schematic view of three uncharged conductors of different sizes and shapes, labeled 1, 2 and 3. Charge q < 0 is
moved from the conductor 2 to 1. As a result of the new charge rearrangement the conductor 2 becomes positively
charged whereas the conductor 1 becomes negatively charged. Resulting electrical potentials of the conductors are
ϕ1, ϕ2 and ϕ3 as indicated in the figure.

Let us now consider a practical example - three uncharged conductors nearby that are of
various sizes and shapes (see Figure 2). Suppose that we take a charge q and move from one
conductor to another. By solving Eq. 1 for a system where (Q1,Q2,Q3) = (−q,+q, 0),
and by applying the properties of C, it is possible to obtain the potentials ϕ1, ϕ2 and ϕ3
that are fully determined by three capacitances C12, C13 and C23.


ϕ1 = qC23/(C13C23 + C12(C13 + C23))

ϕ2 = −qC13/(C13C23 + C12(C13 + C23))

ϕ3 = 0
(2)

QDs are typically the smallest conductors in the circuit, which allows to make considerable
simplifications (this is illustrated in Fig. 2, where the conductor 1 is much smaller than the
other conductors). The argument goes as follows. If the simple conclusion from the solid
sphere case applies to all conductors, the conductor 1 capacitances to the other conduct-
ors, C12 and C13, should be much smaller than the capacitance between the two bigger
conductors C23. The electric potentials can then be approximated by


ϕ1 ≈ q/(C12 + C13)

ϕ2 ≈ −q(C13/C23)/(C12 + C13)

ϕ3 = 0
(3)

The Eq. 3 represents an important result as the assumption C13/C23 ≪ 1 implies that
| ϕ1 | must be much bigger than | ϕ2 |. The importance of it is in the fact that the total
field energy W is then dominated by ϕ1 and therefore the charge −q on the conductor 1
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W =
1
2

∑
i

Qiϕi ≈ −1
2
qϕ1 (4)

In our example, considering conductors 1 and 2 as two capacitor plates (charged by±q) and
using the corresponding potential difference between the conductors ϕ2−ϕ1, one can also
calculate the corresponding two-terminal capacitance of the effective capacitor between the
two conductors.

q
ϕ2 − ϕ1

= − C12 + C13

1 − C13/C23
≈ −C12 − C13 = CΣ (5)

The Eq. 5 shows that in the limit of C13/C23 ≪ 1 the two-terminal capacitance can be
approximated by the sum of the small conductor capacitances to the other conductors
(note that in Eq. 1 the non-diagonal capacitance coefficients are defined as negative num-
bers). What it tells us is that, first, in certain limits the electrostatics can be dominated by
the properties of the smallest conductor, and second, that the corresponding capacitance
of charging the small conductor is affected by the presence of uncharged objects nearby.
Using CΣ to describe the electrostatic properties of QD-like devices is a commonly used
approximation [27]. The overall result is that the total electrostatic energy U for charging
a small uncharged conductor by Q becomes

U =
Q2

2CΣ
(6)

The existence of U has implications on current through small conductors like QDs. In
macroscopic conductors applying an arbitrary small electric potential difference (electric
bias) results in a current proportional to its conductance according to Ohm’s law. However,
if every electron entering the small conductor requires a significant potential energy U, the
current will simply be blocked from flowing through it unless a sufficient energy is supplied
to electrons from the applied electrical potential difference. This effect is widely known in
mesoscopic physics as Coulomb blockade [28] and is the basis for single electron transistors
[29]. The magnitude of U for QDs studied in this thesis is a few meV, therefore U plays an
important role in their conductance and thermoelectric properties at low temperature.
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Figure 3: An illustration of an electron being moved from the left conductor to the right conductor (constituting a current) via
a small conductor in between. The electron requires potential energy U to charge up the small conductor during the
intermediate state.

2.2 Electrons in solids

Single electron in a solid

The development of quantum theory [30] at the first half of the 20t century revolutionized
physics and allowed for deep insights in the wave nature of matter. The wave properties
of non-relativistic particles are described by the Schrödinger equation [31]. It is a wave
equation with solutions that are generally complex wave functions of coordinate and time.
Each of the wave functions correspond to a state that a particle can occupy. The solid state
theory applies this wave description to electrons in solids [32]. The difficulty arises because
it is ultimately the large number of atomic nuclei and electrons interacting with each other
that determine the electronic properties of a solid. Solving such a problem exactly for a
macroscopically sized object is currently impossible, therefore, some approximations have
to be made. The purpose of this section is to discuss approximations that motivate the use
of single particle picture in solids, which is used throughout this thesis.

The first step towards understanding electronic structure of solids uses symmetry argu-
ments. It is based on the fact that atoms in crystalline materials are bound at periodically
located lattice sites which makes the crystal translationally symmetric. It forms basis for
an assumption that an electron in a translationally symmetric electrical potential landscape
is a good first approximation for a solid. In such a case, the solutions to the Schrödinger
equation for spinless electrons are particular wave functions called Bloch waves [33]. These
wave functions can be written as e−ikruk(r) where k is the so-called wave vector specifying
the momentum of an electron and r is the real space position vector indicating its coordin-
ate. The exponential part e−ikr represents a plane wave in three dimensions whereas uk(r)
is a function that generally varies periodically with the periodicity of the crystal lattice.

Solving the Schrödinger equation for a periodic electrical potential gives a few insights.
First, the electron energies corresponding to Bloch states fall into energy zones called bands
[33]. So not all electron energies are possible, as for an electron in free space. Second,
the dispersion relation of an electron E(k) along either of the axes is modified such that
~2(∂2E/∂k2)−1 = m∗ ̸= m, wherem is the free electron mass. This means that an electron
in a periodic potential behaves as if it had a mass m∗, different from the free electron mass
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m. This introduces the concept of an effective mass.

The emergence of the energy bands and the effective mass solely from the symmetry argu-
ments is a very nice result in solid state theory. In fact, despite an electron in a periodic
potential being a simple approximation, its conclusions can be conveniently used to explain
differences between conductors, semiconductors and insulators. However, the initial ap-
proximation of a single electron in a periodic potential is not fully justified since electrons
along with nuclei in a solid form an interacting many-body system. Therefore, there has
to be an underlying argument of why the single particle picture is somewhat valid to start
with in order to accept the explanation as a valid one.

It turns out that the effects of interactions on the behavior of a single particle can, up to
some degree, be accounted for while still remaining in the single particle picture. The formal
procedure for doing it is given by the many-body Green’s function description of solid state
theory [34]. It is done via the introduction of a concept of self-energy that essentially
integrates the effects of interactions as a correction into a single particle propagator [35]. In
a simplistic picture the self-energy accounts for the back-action of the other electrons and
nuclei on the electron itself. In essence, the procedure approximates a single interacting
particle by a single non-interacting quasi-particle with different properties, among which
also a different mass (the effective mass). In this way the Green’s function theory justifies
the single particle picture which is why the concept is so widely used.

The single particle picture is also extensively used in this thesis in the description of QDs.
Although it is not explicitly reminded throughout the text, it is important to acknowledge
that the electrons discussed in this thesis are quasi-particles and therefore they have differ-
ent properties in different materials. This is also used to the advantage of this work. For
example, InAs (of which the QDs studied here are made) has a relatively low effective mass,
which is useful for enhancing the quantum confinement effect in the QDs (discussed more
in Section 2.3). The electrons in InAs also react relatively strongly to the application of
magnetic field, which has made magnetic field dependence studies more convenient. The
theory description of the QDs (given in Section 3) does not explicitly concern the origin
of the quasi-particle properties of electrons, but rather uses them as input parameters in a
simplistic theoretical description of QDs.

Electrons in heterostructures

An interface between two different crystalline materials is called a hetero-junction. In
this context, a single solid made of different crystalline materials interfacing each other
is called a heterostructure. Such materials do not possess a global translational symmetry
and therefore cannot be described the same way as spatially uniform crystals. Even in
the single particle picture no general form of solutions to the Schrödinger equation exist.
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The so-called envelope function approximation (EFA) [32] is used to counter this issue.
It formally assumes that a heterostructure can be modeled by a perturbative potential en-
ergy eϕ = Vϕ(r) that is added on top of the translationally symmetric potential energy
V0 considered in the Bloch’s theorem. Further, it conventionally assumes 1) that Vϕ(r)
varies slowly with respect to the periodicity of the crystal lattice a, 2) that the wave vector
components are small (k ≪ π/a), and 3) that the magnitude of the perturbative poten-
tial is small with respect to separation of energy bands. Given these conditions and the
effective mass approximation (discussed in this context in Ref. [36]), one can write down
an equation that is formally valid for a slowly varying (envelope) function F(r) [37]

−~2

2
∇
[

1
m∗(r)

∇F(r)
]
= [E− Ec(r)] F(r) (7)

Matrial 1 Matrial 2Junction

V0+ Vφ

m*

V0

Ec

(a)

(b)

(c)

Matrial 1 Matrial 2Junction

V0+ Vφ

m*

V0

Ec

(d)

(e)

(f)

Smooth junction Abrupt junction

Figure 4: (a-c) Smooth heterojunction. (d-f) Atomically abrupt heterojunction. (a), (d) Illustrations of a crystal lattice made up of
two types of unit cells (pink and dark green) corresponding to two materials (1 and 2) forming the hetero-junctions.
In (a) the far out regions of the lattice have homogeneous composition whereas the interface (junction) region has
a mixed composition. In (d) there is an atomically sharp change of the composition between the materials. (b), (e)
illustrate model electric potentials for an electron in the lattice across the corresponding hetero-junctions in (a) and (d).
The translationally symmetric potential V0 is complemented by a potential Vϕ that is varying slowly in (b) and abruptly
in (e). (c), (f) illustrate an example how the effective mass m∗ could vary across the corresponding hetero-junctions
in (a) and (d). In (c) the change in m∗ is gradual whereas in (f) the change of m∗ is abrupt. Note that generally the
relative effective mass change does not relate to the sign of Vϕ change.

where ~ is the reduced Plank’s constant, ∇ is the operator nabla, E is the total energy and
Ec(r) = V0 +Vϕ(r) is the potential energy of the electronic states. Ec(r) models the band
edge energy as it is the lowest energy an electron can have in a band. Note that here the
effective mass m∗(r) in the Eq. 7 is also a function of coordinate. Under the assumptions
described above, the function F(r) is an approximate substitute for the plane wave part in
the Bloch wave function. The full wave function is thus approximated by F(r)uk(r).
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What is convenient about the form of Eq. 7 is that it reduces the many-body problem in
a heterostructure down to a single electron picture in an effective potential that is set by
the varying band edge energy. Such a convenience has made the EFA a widely used trick.
It was even used as an approximation for atomically abrupt hetero-junctions in quantum
well structures and superlattices [38], where the effective mass has an abrupt change, even
though doing so was beyond the known applicability limits of EFA at the time. Further
development of a more exact formulation of EFA [36, 39] has allowed to extend the ap-
plicability of the method to abrupt interfaces and to evaluate the magnitude of corrections
needed. It has been argued [37] that Eq. 7 under similar criteria is valid for finding envelope
functions also for atomically abrupt hetero-junctions (see section 2.1 in Ref. [37] for details).
In a general case, however, (like for energies much above the band edge), the accuracy of
the Eq. 7 can not be guarantied. Then, the full form of envelope function equations along
with generalized boundary conditions should be used [36, 39].

The general form of EFA equations is normally discussed only in specialized literature [36,
37, 39] and is not used often. One reason for this is of course that the equations are more
complicated, therefore less convenient to use. But also the general form EFA equations
no longer has form of the Schrödinger equation, which makes it much less educational.
Here too, mostly for the convenience, but also conforming with the literature examples,
the further discussion assumes that the applicability conditions of the Eq. 7 are met. This
might not be fully justified for the case discussed in Section 2.3 which considers InAs/InP
heterostructure with atomically sharp interfaces (thus modeling the QDs used in the ex-
periments). Nevertheless, since no drastic differences are expected, using Eq. 7 serves the
purpose just as well, i.e. it gives a simple picture to use when thinking about electrons in
heterostructures and illustrates how the behavior of electrons change when the dimensions
of the heterostructure segments are changed.

2.3 Quantum confinement effect

When a solid becomes comparable in size to the electron (de Broglie) wavelength its elec-
tronic properties start to be strongly influenced by its finite size. The electrons are said to
be confined by the finite size of the solid because leaving it requires additional energy. This
additional energy can be classically seen as a potential barrier for electrons. The purpose of
this section is to briefly look at this, so-called, quantum confinement effect by reviewing the
results of rather simple text-book problems in quantum mechanics - particle in an infinite
and a finite potential well. These problems are formulated within the single particle picture
(see Section 2.2) and their correspondence to the InAs/InP nanowire-based QDs used in
the experimental studies relies on the envelope wave function approximation.
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Infinitely deep well

When considering an infinitely deep potential well the electrical potential energy profile
Vϕ is considered infinite outside the well and zero inside it. An additional assumption is
made that the potential barriers are also infinitely sharp. Such an assumption, of course,
is not physical since an infinitely sharp electrical potential barrier implies an infinity large
electric field, however, these conditions can be used to conveniently introduce the physical
principles and to provide order of magnitude estimates for electron energies.

r

L

R

z(a) (b)

Figure 5: (a) Illustration of a cylinder with length L along the cylinder axis (z-axis) and radius R along the radial axis (r-axis).
Electrical potential for an electron Vϕ = eϕ is considered to be 0 inside the cylinder and infinite outside of it (e > 0 is
the elementary charge). (b) Graphical representation of the electric potential Vϕ as a function z and r. The plot area
that is toned gray represents the area below the curves Vϕ(z) and Vϕ(r).

Since the QDs in the InAs/InP nanowires are cylindrical (disc like) objects, it is instruc-
tional to consider an infinite cylindrical potential well (see Fig. 5) with length L and radius
R. Finding the possible electronic states in the cylinder is done by solving the envelope
function equation Eq. 7 in cylindrical coordinates

− ~2

2m∗ΔFn,l,m = (En,l,m − Vϕ)Fn,l,m (8)

were Δ is the Laplace operator in cylindrical coordinates and En,l,m is the energy of the elec-
tron states. The Eq. 8 has a simplified form because within the volume of the cylinder the
effective mass m∗ is assumed to be constant. The problem itself is an eigenvalue problem in
three dimensions, therefore the spectrum of solutions is specified by three integer numbers
n, l,m (quantum numbers). The infinite cylindrical potential well requires Fn,l,m to be zero
at the cylinder boundaries

Fn,l,m(z = 0, r) = Fn,l,m(z = L, r) = Fn,l,m(z, r = R) = 0 (9)

The mathematical form of Fn,l,m contains special functions called the Bessel functions of
first kind [40]. However, the precise form of these functions is not of interest here. What
we are interested in instead is the eigenvalues En,l,m, which have the following form [41]
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En,l,m =
~2

2m∗

[(πn
L

)2
+
(αl,m

R

)2
]

(10)

The quantum number n is a positive integer, whereas αl,m is the l-th root of the Bessel
function Jm(r) with m being a non-negative integer. The values of αl,m are tabulated, for
example in Ref. [42]. Overall, Eq. 10 defines a set of electron kinetic energies given the
effective mass m∗ and the dimensions of the cylinder. By picking values for parameters m∗,
L and R such that they roughly correspond to the experimental conditions, we can obtain
representative values for En,l,m = EN (here N is the energy level number) for various sizes
of the cylinder.

R=L=20 nm

R=L=40 nm

R=L=30 nm

R=L=20 nm

R=L=40 nm

R=L=30 nm

(a) (b)

Figure 6: (a) Energy EN as a function of the level number N, calculated using Eq. 10. (b) Energy state spacing ΔEN as a function
of the level number N corresponding to the EN data in (a). In (a) and (b) the three different presented cases use
parameters values R = L = 20 nm (green), R = L = 30 nm (blue) and R = L = 40 nm (red). An approximate
effective mass of electrons in InAs is m∗ = 0.023me, where me is the free electron mass.

Both the energy EN and energy spacing ΔEN = EN+1 − EN are plotted in the Fig. 6. One
can see that values of EN scale inversely with size of the cylinder. An implied consequence
of this is that the bigger is the cylinder, the more energetically dense the EN spectrum
is. Overall, ΔEN is very sensitive to the exact dimensions of the cylinder and is irregular.
ΔEN tends to decrease gradually with N, which is consistent with the density of states in
3-dimensional materials.

An infinite cylindrical potential well is, of course, just and approximation, therefore values
of ΔEN are not expected to be in exact agreement with experimental reality. However,
both the order of magnitude and the irregularity of ΔEN are consistent with experimental
observations [43]. In many ways a small piece of solid, as considered here, can be seen as
an artificial atom because the conduction electrons, considered as non-interacting quasi-
particles, occupy energetically very distinct single particle orbital states. This illustrates how
the physics of atoms, can be captured in much bigger objects, like InAs QDs studied in
this thesis.
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Finite well

When considering a finite potential well instead of an infinite one, the infinite potential
energy Vϕ outside the well is replaced by a finite value. For simplicity, here the problem is
reviewed in one dimension (coordinate x) which also means that the values of ΔEN cannot
be directly compared with the results in Fig. 6. This is because the states in a 1-dimensional
well are numbered only by one quantum number n = N and the additional states corres-
ponding to the variations of the other quantum numbers do not show up in the analyses.
Nevertheless, the conclusions obtained here are rather general and relevant for the discus-
sion in the following Section 2.4.

−~2

2
∇
[

1
m∗(x)

∇FN(x)
]
= [EN − Vϕ(x)] FN(x) (11)

The problem of a particle in a finite potential well has analytical solutions, however, the
energies EN have to be found numerically [44]. Equation 11 has to be solved with different
boundary conditions where, instead of setting FN = 0 at the edge of the well, one has to
ensure continuity of FN(x) and [1/m∗(x)] ∂FN(x)/∂x across hetero-junctions thus ensur-
ing the continuity of the probability current [38]. Note that this implies ∂FN(x)/∂x not
being continuous across those junctions at which m∗(x) changes abruptly.

100 eV 10 eV 1 eV 0.1 eV

Figure 7: The lowest eigenvalues EN in finite potential wells of different depth. The width of the wells is L = 20 nm, whereas
the depth of the wells varies from 100 to 0.1 eV, as indicated above the plots. Continuous lines in red indicate the
shape of the well. Dashed lines of red indicate the values of EN in the corresponding wells. The calculations use
effective mass m∗

W = 0.023me inside the well and m∗
B = 0.080me outside the well (corresponding to InAs and InP

respectively).

Figure 7 considers a 20 nm wide quantum well with different depths. Energies of the lowest
electronic states in the well are indicated by dashed lines crossing the well. It is apparent
that the energies EN shift slightly as the height of the barriers is changed. The number of
states also shrinks with the well becoming more shallow. To explain this we examine Fig. 8
where the envelope wave functions of the two lowest states (F1 and F2) are sketched. It
can be seen that in a deep well the functions FN are essentially contained within the well,
whereas when the well becomes more shallow they start to extend into the barrier regions.
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100 eV 10 eV 1 eV 0.1 eV

Figure 8: The two lowest eigenvalues EN in finite potential wells of different depth along with the corresponding shape of the
envelope wave functions. The width of the wells is L = 20 nm, whereas the depth of the wells varies from 100 to 0.1
eV, as indicated above the plots. Continuous lines in red indicate the shape of the well. Dashed lines of red indicate
the values of EN in the corresponding wells. The blue and green lines represent the envelope wave functions F1(x) and
F2(x). The function values are scaled for plotting and offset by the corresponding state energies EN. The calculations
use effective mass m∗

W = 0.023me inside the well and m∗
B = 0.080me outside the well (corresponding to InAs and InP

respectively).

What this tells us is that, by lowering the barrier height, the electrons effectively become
less confined and therefore energies EN go down. For energies above the barrier there are
no bound states and therefore no localized envelope wave functions exist. The fact that
functions FN extend into the barrier regions is interpreted as a finite probability of finding
the electron within the volume of space where its kinetic energy classically would not allow
it to be. The implications of this fact are discussed in the following Section 2.4.

2.4 Tunneling

The Section 2.3 demonstrates that for potential wells of finite height and thickness the
envelope wave functions of the electrons always somewhat penetrate the barrier. This small,
but finite, probability for the electrons being into the classically forbidden barrier regions
implies that there is a finite probability for them to reach the other side of finite barriers.
This process of bypassing a potential barrier is called tunneling. The following introduces
the so-called weak tunneling (weak tunnel-coupling) which assumes that the finite potential
barrier thicknesses are thick enough not to affect the energies EN too much. Also, the
tunneling process is assumed to be elastic, meaning that the energy of the tunneling electron
is preserved. These conditions are convenient, because they allow approaching the problem
pertubatively and provide a rather straight forward way to estimate the tunnel rate Γ.

Here the problem is approached in line with Bardeen’s theory for tunneling [45]. Two
independent wells that are characterized by electric potentials Vϕ1(x) and Vϕ2(x) are in-
troduced (see Figs. 9a and b). The solutions to these separate problems can be used to
estimate tunnel rate Γ, similarly as done in Ref. [32]. The first well is chosen such that it
hosts only one bound state with energy E1. The tails of the corresponding envelope wave
function F1 are stretching into the barrier region, similarly as shown the previous section
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(in Fig. 8). The other well is much longer and positioned at a slightly different location. It
hosts many more states with energies εN because the electrons are not confined as much in
the longer well as in the shorter one. Figure 9b shows how an envelope wave function χN
of a state with energy εN ≈ E1 stretches into the barrier region in a similar fashion as F1 in
the shorter well.

Vφ1(x)

F1(x)

Vφ2(x)

N(x)

E1

εN

E1 εN

χN(x)
F1(x)

(a)

(b)

(c)

Figure 9: (a) An electronic state in a finite well, as given by the electrical potential V1(x). The length of the well is L = 20 nm
and the depth of the well is Vb = 20 meV. One bound state with energy E1 ≈ 6.8 meV is present in the well. The
state is characterized by an envelope wave function F1 (scaled for plotting and offset from zero by E1). (b) One of the
electronic states in a finite well with a greater length L = 2000 nm, as given by potential V2(x). The depth of the well
is Vb = 20 meV. A state at energy εN ≈ E1 is characterized by an envelope wave function χN (scaled for plotting and
offset from zero by E1). (c) A double well potential as given by V1 + V2 − Vb. The same functions F1 and χN, as in (a)
and (b), are plotted on top of each other. The functions F1 and χN are not normalized with respect to each other. In
(a), (b) and (c) the calculations use effective mass m∗

W = 0.023me inside the well and m∗
B = 0.080me outside the well

(corresponding to InAs and InP respectively).

So both wells considered independently have certain analytical envelope wave function
solutions F1 and χN with numerically calculable state energies, however, these functions
do not form exact basis for solutions when both wells are present at the same time (as
shown in Fig. 9c). The problem is approached perturbatively by assuming that F1 and χN
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are approximate solutions to the double well profile when the electron is, respectively, either
in the left or the right well. In this approximation, the tunnel rate Γ can be expressed [46]
as

Γ =
2π
~

∑
N

| M1N |2 δ(E1 − εN) (12)

where δ is the Kronecker delta function (with a physical dimension of 0-dimensional dens-
ity of states [J−1]) and M1N are tunneling matrix elements which measure the strength of
the tunnel-coupling across the barrier. Bardeen’s theory [45] in 1-dimension approximates
M1N by the following expression

M1N =
~2

2m∗
B

(
F1

∂χ∗
N

∂x
− χ∗

N
∂F1

∂x

)
x=x0

(13)

where x = x0 is a point somewhere within the barrier region (not too close to either of the
wells [47]) and the functions F1 and χN are normalized such that

∫∞
−∞| F1 |2dx = 1 and∫∞

−∞|χN |2dx = 1. The form of Eq. 13 has similarities to the probability current given in
any basic quantum mechanics textbook. One can see that in order for the M1N to be non-
zero, the functions F1 and χN have to have finite values and derivatives within the barrier
region. Given the exponential decay of these functions in the barriers, the overall tunnel
rate Γ is exponentially sensitive to the thickness of the barrier. It is, however, important to
remember that this approximation relies on F1 and χN each being close to zero at the other
well, so the approximation is not expected to be valid for arbitrarily thin barriers where it
would predict arbitrarily large Γ. The sum in the Eq. 12 indicates that the tunnel rate Γ
increases with the number of states on the right well at energy εN = E1 because all of them
represent viable alternatives for tunneling into (or from).

In the limit where the states are packed densely enough so that they can be considered as a
continuum of states, the functions χN are expected to be similar enough to give the same
matrix element M1N = M, so Eq. 12 can be simplified to

Γ =
2π
~

| M |2 ρ(E1) (14)

where ρ is density of states. This general form of the expressions for Γ (Eqs. 12 and 14) is
also known as Fermi’s golden rule and is typically applied for calculating current through
tunnel-junctions in the weak coupling limit [48].

The above explanation considers one dimension, but the same general conclusions are valid
for three dimensions too because the form of Eq. 12 does not change. What changes in three
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dimensions is the form of the matrix element M1N that is evaluated as a surface integral.
Essentially the 3-dimensional envelope wave functions have to be integrated across a full
cross-section of the tunnel-junction instead of calculating the value of Eq. 13 at a single
point. However, it does not change the exponential sensitivity of Γ in the weak tunnel-
ing limit, as the value of the tunneling matrix element at each cross-section point is still
exponentially sensitive to the barrier thickness.

In the experimental practice the tunnel rate Γ, however, is not calculated. Normally it is
far easier to use theoretical models to extract the value of Γ from the experiment. The
theoretical framework laid out in this section thus have a more illustrative purpose. It
allows us to understand the basic principles and gives an idea of how Γ would depend on
the dimensions of the tunnel-junction.

2.5 Electron spins

Even though spin is a widely known property of elementary particles, its presence in non-
relativistic quantum mechanics is somewhat empirical. The spin property (possession of an
intrinsic angular momentum) of elementary particles is only explained by the relativistic
description of quantum mechanics [49] indicating that the concept is intrinsically related to
principles of relativity [50]. The inclusion of spin effects in the non-relativistic description
(used throughout this thesis) can be motivated by reviewing the non-relativistic limit of
the Dirac equation [51] for a particle in electromagnetic fields and identifying the relevant
terms for the Schrödinger equation.

In external magnetic field the spin property gives rise to the Zeeman effect [52] because the
magnetic moment associated with the spin interacts with the field. Free electrons, similar
to protons and neutrons, have a spin quantum number 1/2 and therefore have two possible
spin angular momentum projections Sz = ±~/2 associated with the magnetic moment
projections µSz ≈ ±e~/(2me) = ±µB. This leads to a potential energy contribution
ΔEZeeman ≈ ±µBB called the Zeeman energy.

In the context of this thesis the electron spin is important because in the absence of magnetic
field the spin introduces a degeneracy of electronic orbital states. In other words, each of
the orbital quantum states, as described by the envelope wave functions, can be occupied
by electrons of either spin projection. In combination with Coulomb blockade, the spin
degeneracy plays an important role in QDs, as it increases the conductance maximum and
shifts it in energy (see Section 3). The energetics of the corresponding QD state filling is
explained in the following Section 2.6.
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2.6 Energetics of state filling

The two contributing effects already discussed in Sections 2.1 and 2.3, namely, the charging
and confinement effects, seem to produce a similar outcome in QDs - they both lead to
a discretization of the electronic state energy spectrum. The net effect is that the electro-
chemical potential (which is the total energy needed to add an electron) of a QD increases
rapidly with the number of electrons added. However, the two effects are of unrelated
origin. On the one hand, adding an electron increases the electrostatic energy of the QD,
which is the potential energy component of the electrochemical potential. On the other
hand, the confinement effect restricts the kinetic energy of the added electron to a set of
quantized values, which is the kinetic energy contribution to the electrochemical potential.
The two effects also have a different dependency on the QD size. Whereas the charging
effects scale with 1/CΣ and therefore roughly inversely with the size of the QD, the con-
finement effects scale roughly inversely to the square of the QD size. In practice, this means
that the confinement is expected to be dominant for small enough QDs and less important
for bigger ones.

It seems obvious that the potential and kinetic energy contributions should add up in a
total energy ϵtot (electrochemical potential), as is explained in Refs. [28, 53]. However, it
might not be straight forward to envision how it would affect the state filling of a QD.
Figure 10 attempts to clarify this graphically. Suppose we start out with a QD that has no
net charge and the available kinetic energies, as set by the quantum confinement effect,
are specified by a spectrum of spin-degenerate single electron orbital states energies {εi}
(see Fig. 10a). Adding an electron, say in the lowest orbital, requires kinetic energy ε1.
However, because adding the electron to the QD will also charge it up, there is going to be
an additional potential energy cost of UQ=−e − UQ=0 = ΔU1 = e2/(2CΣ), according to
the Eq. 6. So the total energy ϵtot is going to equal ε1 + e2/(2CΣ). Now suppose we add
another electron in the same orbital state with the opposite spin. The new electron requires
the same kinetic energy ε1 as the previous one, however, because adding it increases the
charge of the QD from −e to −2e, the increase of the electrostatic energy will become
UQ=−2e − UQ=−e = ΔU2 = 3e2/(2CΣ). This means that adding the second electron
in the same orbital requires a total energy ϵtot of ε1 + 3e2/(2CΣ). Generalizing this line
of thinking one can show that the energy for adding the n-th electron in the i-th orbital
requires energy ϵtot [53]

ϵtot = εi +
e2

CΣ

(
n− 1

2

)
(15)

Note that the difference in the total energies between adding the first and second elec-
tron in the same orbital state is e2/CΣ, which is also often referred to as the charging en-
ergy [28], and, according to this description, it should hold for double-filling any of the
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Figure 10: Electrochemical potential spectrum for zero, one and two electrons on a QD. The single particle orbitals are char-
acterized by a spectrum for their kinetic energies {εi}. The newly added electrons are indicated in red. (a) con-
siders a scenario where two electrons are sequentially added into the lowest orbital with kinetic energy ε1. The
corresponding total energies ϵtot needed to add each of those electrons are ε1 + ΔU1 = ε1 + e2/(2CΣ) and
ε1 +ΔU2 = ε1 + 3e2/(2CΣ). (b) considers a scenario where two electrons are sequentially added into two different
orbitals with kinetic energies ε2 and ε3. The corresponding total energies ϵtot needed to add each of those electrons
are ε2 + ΔU1 = ε2 + e2/(2CΣ) and ε3 + ΔU2 = ε3 + 3e2/(2CΣ).

spin-degenerate orbital states (note that in this context the term charging energy refers to
the electrostatic part of the additional energy needed rather than to the amount of en-
ergy needed to charge up a neutral object with the capacitance CΣ). Generally, however,
adding an electron may require occupying an energetically higher orbital state, in which
case the additional energy cost required would also have an additional kinetic energy com-
ponent corresponding to the given orbital state. The overall difference in the total ener-
gies (electrochemical potentials) between adding sequential electrons in orbitals x and y is
εy − εx + e2/CΣ, also sometimes called the addition energy [53].

The principles described using the example of adding two electrons in the lowest orbital
ε1 are also valid for other situations. Suppose the first electron is added in the orbital with
energy ε2 but the second one is added in the orbital with energy ε3 (see Fig. 10b). The
total electrostatic energy increase is expected to be the same regardless of which orbital the
electrons occupy, but the kinetic energy component of the electrochemical potential will
change according to the orbital energies.

It is worth noting that the expression for U, as given by the Eq. 6, assumes that the capacit-
ance CΣ does not vary with the number of electrons added. This is a valid assumption for
small metallic objects, in which the high density of conduction electrons enables effective
screening of the electric field inside them. However, it is not generally true for semicon-
ducting QDs, within which the electric field is not fully screened. As a result the total field
energy of a charged semiconductor QD is generally bigger, which translates into a smal-
ler capacitance CΣ. Adding additional charges to a semiconducting object can effectively
make it more metallic and therefore change its capacitance. In such a case the energy in-
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creases due to charging cannot be calculated according to the Eq. 6 which considers only
the geometric capacitance of the QD.

2.7 Electron reservoirs

Because free electrons are spin-1/2 particles, they are fermions obeying Pauli’s exclusion
principle. This allows a system of non-interacting electrons at thermodynamic (chemical
and thermal) equilibrium to be characterized by the Fermi-Dirac distribution [54]

f(ϵ) =
1

e(ϵ−µ)/(kT) + 1
. (16)

In terms of thermodynamic variables, electrochemical potential µ and absolute temperature
T, the function f(ϵ) represents the probability of a state at energy ϵ being occupied (k is the
Boltzmann constant). It predicts that the low energy states are going to be fully occupied
(f = 1) whereas the high energy states will be unoccupied (f = 0). The transition between
occupied and unoccupied states takes place around µ with the majority of change within a
range of ∼ µ ± 2kT.

Figure 11: The value of the Fermi-Dirac distribution f as a function of energy (ϵ − µ) relative to the typical thermal activation
energy kT. The distribution has a value of f = 0.5 at ϵ = µ at all temperatures T. The dashed lines indicate the
values of f at ϵ − µ = ±2kT.

These ideas from statistical mechanics can also be directly applied to solid state theory
because in solids the effective mass approximation allows us to treat electrons as non-
interacting quasi-particles. All the possible ways that many electrons can occupy the avail-
able single particle quantum states in a solid can be viewed as a grand canonical ensemble
with a fixed state structure and fixed µ and T. Consequently, under thermodynamic equi-
librium electrons in solids can also be assumed to occupy states according to the Fermi-
Dirac statistics.

Since QDs have a small number of strongly interacting conduction electrons it is unprac-
tical to talk about thermal equilibrium. However, the contact leads, that the QD is coupled
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to, are normally much bigger, possess higher densities of conduction electrons and also have
bigger heat capacities. What this means is that transferring any relevant amount of energy
or particles from the QD to the contact leads affects neither their µ nor T. Therefore the
contact leads can be seen as relatively good fermion reservoirs close to thermal equilibrium
and the Fermi-Dirac statistics can be an appropriate approximation. In fact, this a typical
assumption in modeling transport through QDs and is also used in following Section 3.
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3 Theoretical description of transport through quantum dots

The previous section (Section 2) reviewed some of the basics in solid state physics and elec-
trostatics relevant to QDs. The spectrum of relevant phenomena is very rich and therefore
the theoretical description is constructed based on many considerations. The aim of this
section is to use the physical understanding from Section 2 as a basis for the introduction
of QD models. Initially, a circuit model of a QD is introduced. Then attention is turned
to the Master equation approach for modeling steady state transport through QDs in se-
quential electron tunneling approximation (SETA). This approach is relatively pedagogical
and provides with a qualitatively accurate description of QDs. In addition, the Landauer-
Büttiker approach is introduced as a reference.

The SETA was used to explain the results in Paper i. The studies in Papers ii and iii, however,
use a more sophisticated version of the Master equation approach because the SETA fails
to capture all of the relevant transport contributions at the given experimental conditions.
The Landauer-Büttiker approach can model some of the features that the SETA does not
capture, therefore its predictions are used as an illustrative example for developing a more
complete picture of transport in QDs.

3.1 Circuit model

A single QD in a measurement circuit is normally considered to be electrostatically coupled
to both contact leads and to a gate electrode. This is modeled by the absolute values of the
coupling capacitances CL, CR and CG (see Fig. 12) [29, 55]. Following the reasoning in
Section 2.1, the overall capacitance of the QD can be expressed as a sum of all capacitances
CL + CR + CG = CΣ [29, 55]. In addition, the QD is also tunnel-coupled to the two
contact leads for two-terminal current-voltage characterization. The tunnel-junctions are
characterized by their tunnel rates ΓL and ΓR (explained in Section 2.4). The contact leads
can be seen as electron reservoirs with set temperatures, TL and TR, and electrochemical
potentials, µL and µR. When the two contact leads have different electrochemical potentials
Δµ = µL − µR ̸= 0, the QD is said to be electrically biased. Similarly, if the temperatures
of the two contact leads are different ΔT = TL − TR ̸= 0, the QD is said to be thermally
biased.

In order to understand the properties of such a circuit, let us first assume that tunneling
between the QD and the contact leads is not possible. In such a case the QD is electrostat-
ically floating and its electrical potential ϕQD is set by the three potentials VL, VR and VG
according to the following expression.

23



Gate

Contact lead QD

μRμL

TL TR

CL CR
CG

ΓR

VG

ΓL

Contact lead

Figure 12: Graphical illustration of a QD (in white), contact leads (in blue), a gate electrode (in gray) and the effective electrical
circuit elements connecting them. The QD is characterized by its electrochemical potential spectrum {ϵtot}i,n, whereas
the metallic contact leads are characterized by their temperatures (TL and TR) and electrochemical potentials (µL =
−eVL and µR = −eVR). The gate electrode is characterized by its electrical potential VG. The QD is tunnel-coupled
to the contact leads with tunnel rates ΓL and ΓR (indicated by circuit elements in green) and electrostatically coupled
to the contact leads with capacitances CL and CR (indicated by circuit elements in purple). Additionally, the QD is
electrostatically coupled to the gate electrode with capacitance CG.

ϕQD =
QQD

CΣ
=

1
CΣ

∑
i=L,R,G

CiVi =
∑

i=L,R,G

αiVi (17)

Here QQD is the charge induced (displaced) by the field between the all leads/electrodes
and the QD (note that in Eq. 17 the net charge of the QD is assumed to be zero). The
application of positive potentials Vi therefore lead to an increase of the QD potential ϕQD.
The capacitance ratios Ci/CΣ = αi are sometimes called the lever arms because they de-
scribe the relative sensitivity of ϕQD to each Vi. The change of ϕQD in response to the
lead/electrode potentials is a gating effect, because it allows us to modify the electron poten-
tial energies on the QD by means of an external electrical potential - exactly what the gate
electrode is intended to do. The gating effect is accounted for by considering an additional
term −eϕQD in the expression for ϵtot so that

ϵtot = εi +
e2

CΣ

(
n− 1

2

)
− e

∑
j=L,R,G

αjVj. (18)

Note that although the expression for ϵtot depends on all three potentials, in practice the
potentials VL and VR are kept at relatively low values and all gating is done by varying VG.

When the tunneling between the gated QD and the contact leads is enabled, the QD will
exchange electrons with the contact leads in a way that minimizes the total energy of the
QD-lead system. The transfer of each electron will modify the electrostatic energy of the
QD according to the rules described in Section 2.6. In short, the application of a positive
gate potential VG > 0 will lower the total energy of the states ϵtot enabling electrons to
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tunnel into the QD from the contact leads. Whenever an additional electron enters the
QD, it also increases the potential energy of the QD. Visa versa, whenever a negative gate
potential VG < 0 is applied, the total state energies ϵtot rise. This encourages electrons to
tunnel out of the QD to the contact leads where they can have lower total energy, lowing
the potential energy of the QD in the process.

3.2 Master equation approach

The main idea behind the Master equation approach to transport through QDs is to de-
termine the probabilities of a QD being in various configurations (electron arrangements
in orbital states). These probabilities depend on all parameters - the temperatures TL,R, the
tunnel rates ΓL,R, the electrochemical potentials of the contact leads µL,R and the potential
of the gate electrode VG. The probability distribution among configurations can then be
used to calculate charge and heat currents through the QD.

A convenient starting point for steady state description of QDs is the so-called sequential
electron tunneling approximation (SETA). This approximation is assumed to be valid for
weakly tunnel-coupled QDs that obey the condition (ΓL + ΓR) ≪ kT/h, where h is the
Plank’s constant and T is the temperature of the contact leads [18, 28, 55]. As the name
suggests, in this approximation only the sequential tunneling processes are considered and
effects like co-tunneling and charge fluctuations [56, 57, 58] are neglected. This means that
electrons on the QD are assumed to have set energies and the energy broadening due to the
finite lifetime of electrons on the QD (according to the Heisenberg uncertainty principle
[30]) is assumed to be unimportant. The success of this description is that it treats the
charging and confinement effects exactly. Furthermore, the calculations of current through
a QD are relatively simple because they rely on the evaluation of simple analytical algebraic
expressions and their summation.

First, a relatively detailed summary of the theory for a simplified case is given. It reviews the
main ideas behind the calculation of charge current (and also heat current) via electrically-
and thermally-biased QDs occupied by one electron. The mathematical expressions in
this case are relatively simple and therefore are easier to analyze. Further, the theoretical
framework is generalized for the case of arbitrarily many single particle states on a QD.
Similar expressions for the calculation of charge and heat current are given. Representative
calculations for the case of two spin-degenerate orbital states are carried out in order to
demonstrate the main differences from the singly occupied QD case. This is also a type
of calculation that is used in Paper i to explain the thermoelectric behavior of a QD with
a single spin-degenerate orbital. Finally, this section is concluded by a short discussion
concerning higher order tunneling processes that are neglected in the SETA. Such processes
have been considered in calculations presented in Paper ii, for example, where the efficiency
of QD heat engines is studied.
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Single occupied spin-degenerate orbital

The simplest case that captures most of the relevant phenomena is the case of a spin-
degenerate orbital state on the QD with a total energy of ϵ1 (see Fig. 13). It is considered
in one electron limit, which is equivalent to an assumption that the charging energy, for
adding another electron, is much bigger than the typical thermal activation energy kT in
the contact leads. In such a case there are only three different possible QD configura-
tions - one with no electrons on the QD and two with a single electron on the QD (one
for each spin state). The time-average probabilities of the QD being in these configur-
ations are labeled P0, P1u and P1d correspondingly. The sum of all probabilities has to
be unity P0 + P1u + P1d = 1 because the QD is assumed to definitely be in one of the
three configurations. The probability of a single electron occupancy is given by a sum
P1 = P1u + P1d = 1 − P0.
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Figure 13: Schematic view of a QD with a spin-degenerate orbital in three different configurations - (a) with no electrons on the
QD, (b) with a single spin up electron with energy ϵtot = ϵ1 on the QD, and (c) with a single spin down electron with
energy ϵtot = ϵ1 on the QD. The probabilities of the QD being in the corresponding configurations are labeled by P0,
P1u and P1d. In (a), (b) and (c) the orbital state energy of the QD is represented by a black line in the center of the
figures. The Fermi-Dirac distribution of the electronic state population in the contact leads is represented by the gray
sectors on both sides of the QD. Both contact leads are characterized by their temperatures TL,R and electrochemical
potentials µL,R.

In a steady state it is assumed that the time-average probabilities of the QD being in either of
the configurations are constant in time. Calculation of the probabilities requires consider-
ation of the transition rates between the different possible QD configurations. An electron
tunneling in or out of the QD changes its configuration, so the time-average probability
of any given configuration being occupied should be proportional to the sum of transition
rates from all other possible QD configurations to the given one. The probabilities P0 and
P1 can thus be expressed as
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P0 =
W1→0

W1→0 +W0→1
P1 =

W0→1

W1→0 +W0→1
(19)

where W1→0 is the total transition rate for an electron to tunnel out of a singly occupied
QD, and W0→1 is the total transition rate for an electron (of either spin) to tunnel into
an empty QD. The denominator is given by the sum of both transition rates as it ensures
the normalization of probabilities. The rates themselves depend not only on tunnel rates
via both tunnel-junctions ΓL,R but also on the population of the electronic states in the
contact leads fL,R, as given by the values of Fermi-Dirac distributions at energy ϵ1.

W1→0 = ΓL(1 − fL) + ΓR(1 − fR) W0→1 = 2(ΓLfL + ΓRfR) (20)

Both transition rates W1→0 and W0→1 are sums of contributions from both contact leads,
which is indicated by the indices L and R. Each term in the sums is proportional to the
tunnel rate of the corresponding tunnel-junction. In addition, since tunneling out of the
QD requires a free electronic state at energy ϵ1 in a contact lead, the transition rate for
electron tunneling out through either of the tunnel-junctions is also proportional to (1− f )
in the corresponding contact lead. Similarly, because tunneling into the QD requires an
electron from a contact lead at energy ϵ1, the transition rate for electrons tunneling in
through either of the tunnel-junctions is also proportional to f in the corresponding contact
lead. The factor of 2 in W0→1 originates from the spin-degeneracy of the orbital state.

Charge current

The probabilities P0 and P1 can be used to calculate current I through the QD. Because
this description already ensures current conservation, it is enough to determine the current
only across one of the tunnel-junctions (in this case the left junction)

IL→R = eΓL[(1 − fL)P1 − 2fLP0] (21)

Here, the positive I direction (opposite to the electron flow direction) is defined from left to
right. The current is proportional to the value of elementary charge and the tunnel rate of
the left tunnel-junction. The two contributing terms, containing (1− fL) and fL, represent
current contributions in the opposite directions. Each of the terms can be understood
as a multiplication of two probabilities; the process of an electron tunneling out requires
an electron in the QD (with probability P1) and an empty state in the left contact lead
(with probability (1 − fL)), whereas the opposing process requires an electron in the left
contact lead (with probability fL) and an empty state in the QD (with probability P0). The
probabilities are multiplied to find out the resulting probabilities for the tunneling in either
of the directions.
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In order to simplify Eq. 21 the expressions for P0 and P1 (Eq. 19 and 20) are plugged into
Eq. 21. After the simplification one can arrive at the following expression

I =
2eΓLΓR(fR − fL)

ΓR(1 + fR) + ΓL(1 + fL)
. (22)

Equation 22 clearly demonstrates that the current I is ultimately always driven by the dif-
ference in the contact lead electronic state occupancy (fR − fL) at the energy ϵ1 (the total
energy required to occupy the spin-degenerate orbital state of the QD). In order to under-
stand how a non-zero (fR − fL) occurs, one has to look at how fR and fL depend on their
parameters TL,R and µL,R.

fL(ϵ1) =
1

e(ϵ1−µL)/(kTL) + 1
fR(ϵ1) =

1
e(ϵ1−µR)/(kTR) + 1

(23)

So, with a fixed ϵ1 there are essentially two ways to drive the current I: either by applying
an electrical bias to the QD, so that V = VL − VR = −(µL − µR)/e, or, by applying a
thermal bias to the QD, so that ΔT = TR − TL. The expression for ϵ1 is the same in both
fL and fR and has the following form

ϵ1 = ε1 + ϵ0 +
e2

CΣ

(
n− 1

2

)
n=1
− e

∑
j=L,R,G

αjVj (24)

Here n = 1 because we consider only one electron on the QD. The parameter ϵ0 is intro-
duced to set a potential energy reference level. It formally allows us to make the simplifying
assumption ϵ0 = −ΔU1 = −e2/(2CΣ), which does nothing more than offsets the refer-
ence energy. Therefore, for the one electron case Eq. 24 can be simplified to

ϵ1 = ε1 − e
∑
j=L,R,G

αjVj (25)

Equations 22, 23, 24 provide analytic expressions for calculating I. We can use them to look
at what they predict in some special cases. A good starting point is a commonly used linear
response coefficient for characterizing QD - the differential conductivity g = dI/dV as a
function of VG. It is possible to derive an analytic expression for g at zero electrical and
thermal biases, g0. However, because it contains trigonometric functions, there is more
than one way to write it down. Here, a particular form is chosen because it illustrates the
properties of g0 in a convenient way
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g|V=ΔT=0 = g0 =
2e2Γ̃

kT
[
3 + 2

√
2 cosh

(
eαGVG
kT + ln 2

2

)] (26)

where Γ̃ = ΓLΓR/(ΓL+ΓR). The onlyVG dependency is in the hyperbolic cosine function,
which itself is an even function with its minimum at (2eαGVG + kT ln 2) = 0. Being
in the denominator, the hyperbolic cosine yields a symmetric peak of g0 around a gate
potential value VG0 = −kT ln 2/(2eαG). This analytic result implies that peak position
energy is expected to shift linearly with T, which is an interesting feature of QDs with
spin-degenerate states. The peak value g0(VG0) = gmax reaches

gmax =
2(3 − 2

√
2)e2Γ̃

kT
(27)

where the value of the numerical constant 2(3 − 2
√

2) ≈ 0.3431 [28]. A few examples
of g(VG) at different temperatures T are shown in Fig. 14a. The peak value gmax scales
inversely with T, whereas the width at half maximum of the peak increases with T as
ΔVG = 2kT arccosh

(
2 + 3

√
2/4

)
/(eαG). In effect, increasing temperature makes the

conduction peak lower and less sharp, which is a consequence of the thermal excitation of
electrons in the contact leads (thermal smearing). This is why carrying out measurements
at lower T makes it easier to distinguish the conductance peaks.

What Eq. 26 also shows is that g0 scales with Γ̃. However, because we have considered
the SETA, valid for (ΓL + ΓR) ≪ kT/h, as done in Ref. [28], it generally bounds the
applicability of this result to low gmax values because the tunnel rates ΓL and ΓR are limited.
Even in the best case, when the tunnel rates are the same (ΓL = ΓR), this condition implies
that the values of gmax must satisfy gmax ≪ (3 − 2

√
2) e2/h ≈ 0.17 e2/h. If the tunnel

rates are not the same (ΓL ̸= ΓR), the applicability of Eq. 26 is bound to even lower gmax
values, which is limiting for modeling QDs in realistic experimental conditions. Here it is
important to note that sometimes a more flexible condition (ΓL + ΓR) ≪ kT/~ (with ~
instead of h) is also used, which yields the condition gmax ≪ e2/h instead. This is also why
gmax/(e2/h) is often used as a simple measure of the strength of the tunnel-coupling and a
measure of whether the SETA is applicable.

Another characteristic of QDs is their unique thermoelectric response. As an example for
this Fig. 14c shows the differential current dI in response to an infinitesimal thermal bias
d(ΔT ) = δT, as a function of the gate potential VG. Using the same Eqs. 22, 23, 24 it is
possible to arrive at a simplified expression for dI/δT.
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Figure 14: Calculated (a) conductivity g0, (b) Seebeck coefficient S = dVth/δT, and (c) dI/δT of a QD with a single spin-
degenerate orbital state as a function of the gate potential VG (given by Eq. 22). In (a) the vertical dashed lines
indicate the gate potential value of the peak conductivity that appears at VG0 = −kT ln 2/(2eαG). In (c) the vertical
dashed lines indicate the gate potential value of the two peaks in dI/δT that appear at VG1,2 = B1,2kT/(2eαG). The
calculation parameter values are ΓL = ΓR = 500 MHz, µL = µR = ε1 = 0 meV, ΔT = 0, αL = αR = 0.495,
αG = 0.01. Four curves differ by the temperature of the contact leads T = TL = TR, which are 0.1 (black), 0.2
(blue), 0.4 (red) and 0.8 K (orange).

dI
δT

∣∣∣∣
V=ΔT=0

=
2e2Γ̃αGVG

kT2
[
3 + 2

√
2 cosh

(
eαGVG
kT + ln 2

2

)] = g0 ·
αGVG

T
= g0 · S (28)

As can be seen, the entire expression can be conveniently expressed in terms of g0. The ad-
ditional multiplier αGVG/T plays the role of the Seebeck coefficient S. The mathematical
form of S is a well known result for QDs in the SETA [18]. As a linear response coeffi-
cient it measures the amount of thermovoltage dVth in response to an infinitesimal thermal
bias δT. It has a linear dependency on VG and crosses zero at VG = 0 where (according
to assumptions made above) ϵ1 aligns with the electrochemical potentials µL = µR (see
Fig. 14b).

One can see in Fig. 14c that the two extrema of dI/δT = g0S are of different amplitude. This
is a direct consequence of the shift of the g0 peak due to the degeneracy whereas S remains
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an odd function with respect to VG = 0. It can also be seen from the Eq. 28 that the two
extrema scale inversely with T, similar to gmax. The peak dI/δT values reach A1,2 · e Γ̃/T
at VG1,2 = B1,2 ·kT/(eαG) where the numerical constants are given by A1 ≈ −0.3847,
A2 ≈ 0.2466, B1 ≈ −1.715 and B2 ≈ 1.429.

The two linear response coefficients g0 and S can be combined in a figure g0S2/4 =
(dI/δT) · (dVth/δT)/4 = dPth/(δT)2/4 that is called the power factor [59]. In this case
it describes the QD’s ability to produce thermoelectric power Pth per (ΔT )2 in the linear
response regime where the filling factor is 1/4. The resulting g0S2/4 has two positive peaks
of different magnitude that reach maximal values A3,4 · k Γ̃/T at VG3,4 = B3,4 ·kT/(eαG)
where the numerical constants are given by A3 ≈ 0.2037, A4 ≈ 0.1148, B3 ≈ −2.533
and B4 ≈ 2.317.

T = 0.1 K

T = 0.4 K

T = 0.2 K

T = 0.8 K

Figure 15: Calculated g0S2/4 of a QD with a single spin-degenerate orbital state as a function of the gate potential VG. The
vertical dashed lines indicate the gate potential value of the peaks at VG3,4 = B3,4kT/(2eαG). The parameter values
are the same as in Fig. 14: ΓL = ΓR = 500 MHz, µL = µR = ε1 = 0 meV, ΔT = 0, αL = αR = 0.495, αG = 0.01.
Four curves differ by the temperature of the contact leads T = TL = TR, which are 0.1 (black), 0.2 (blue), 0.4 (red)
and 0.8 K (orange).

However, it is important to remember that both g0 and S are linear response coefficients
and therefore cannot describe a QD fully. The transport through QDs at low enough T
can easily be driven into a nonlinear regime, therefore the full Eq. 22 generally has to be
used. So, the quantities g0 and S are order of magnitude predictions for I and Vth, given V
and ΔT respectively. They, therefore, mainly serve a pedagogical purpose of illustrating the
qualitative behavior of QDs under electrical and thermal biases.

Energy conversion

Within the framework of this section passing a current I through an electrically biased QD
(V ̸= 0) always relates to energy conversion from electrostatic energy to thermal energy,
or visa versa. This is because an electron that has traversed a biased QD has received some
thermal energy from one contact lead and has deposited a different amount of thermal
energy at the other contact lead. The heat power that leaves the left contact lead through
the QD is equal to the thermal energy (ϵ1 − µL) of each leaving electron multiplied by the
frequency I/e they pass the QD
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JL = −(ϵ1 − µL)
I
e
. (29)

Similarly the heat power that the right contact lead receives through the QD is

JR = −(ϵ1 − µR)
I
e
. (30)

The minus signs in the Eqs. 29 and 30 refer to the fact that the current direction is opposite
to the electron flow direction. The overall converted power is the difference between JR and
JL

P = JR − JL = (µR − µL)
I
e
= VI. (31)

When P > 0, more heat is being deposited at the right contact lead than being subtracted
from the left. The additional heat comes from the electrostatic energy being dissipated.
Conversely, when P < 0, heat is being converted into electrostatic energy and thermo-
electric power generation takes place. An example of an electrically and thermally biased
QD is shown in Fig. 16. It shows that when ΔT = 0, electrostatic energy is only con-
verted into heat irrespective of the energy ϵ1 controlled by VG. However, when ΔT ̸= 0,
heat-to-electrostatic energy conversion appears for a range of VG.

TL = 0.1 K

TL = 0.3 K
TL = 0.2 K

TL = 0.5 K

μL

μR

T� TR

ϵ

ϵ

(a) (b)

	 	

ΓL ΓR

V	>	0

Figure 16: (a) Power conversion P = IV in a single spin-degenerate orbital state of a QD as a function of the gate potential
VG. Negative conversion (P < 0) indicates heat-to-electrostatic energy conversion. The parameter values are V = 20
µV, ΓL = ΓR = 500 MHz, ε1 = 0 meV, TR = 0.1 K, αL = αR = 0.495, αG = 0.01. Four curves differ by the
temperature of the left contact lead TL and are 0.1 (black), 0.2 (blue), 0.3 (red) and 0.5 K (orange). (b) Schematics of a
QD corresponding to the conditions indicated by a dot in (a). TL is higher than TR, which is indicated by the different
shapes for Fermi-Dirac distributions (colored in red and blue correspondingly). Electrical bias V > 0, however, the
resulting current I < 0 due to the thermal bias ΔT ̸= 0. Note that the positive current direction is defined opposite
to the electron flow direction, therefore the current, indicated in the schematics, is negative.

In the generation mode the efficiency η can be determined as a ratio between the generated
power Pth = −P = −IV and the heat power leaving the hot contact lead. For the case
sketched in Fig. 16, where TL > TR, the efficiency reads
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η =
Pth
JL

=
eV

ϵ1 − µL
. (32)

The power generation persists while I runs against the electrical bias V. According to the
Eq. 22 this remains the case while fL(ϵ1) > fR(ϵ1). Using the explicit forms of fL and
fR one can show that this condition is in fact equivalent to a condition eV/(ϵ1 − µL) <
ΔT/TL = ηC, where ηC is the Carnot efficiency. In other words, the fact that thermoelectric
conversion efficiency is η < ηC naturally comes out of the Eq. 22 and the properties of
the Fermi-Dirac distributions. At the point when the given condition is violated I inverts
direction and the QD enters the dissipation mode. This is precisely the limit experimentally
investigated in Paper ii. The results show, however, that effects beyond sequential tunneling
increase the heat current and somewhat reduce the achievable η.

Multiple orbitals

A QD with Nsps single particle states can be in 2Nsps different configurations, therefore the
expressions for charge and heat currents quickly become long sums that are not convenient
to write out explicitly. The probability of occupying each configuration can be represented
by an element Pj in a vector P that is 2Nsps elements in length [28, 55]. All the possible QD
configurations that are different by one electron tunneling in or out are coupled. Similarly
as for the singly occupied QD case, the coupling between different configurations i and f
is described by transition rates Wi→f = Wfi. In this case the transition rates make up a
matrix W. The elements of the matrix W that correspond to the transitions between the
uncoupled configurations are zero. In steady state the probabilities are found by solving a
homogeneous linear equation system [55]

W·P = 0 (33)

along with the normalization condition
∑

m Pm = 1. In a general form the transition rate
matrix elements Wfi can be written as either

W in
f i = Γ

Lin

f i fL(ξf i) + Γ
Rin

f i fR(ξf i) (34)

or

W out
f i = Γ

Lout

f i [1 − fL(ξf i)] + Γ
Rout

f i [1 − fR(ξf i)] (35)
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depending on whether the configurations i and f are coupled by an electron tunneling
into or out of the QD. Note that the matrices Γin and Γout for either of the tunnel-
junctions are transposed to each other because the role of the initial and final configurations
is then inverted. Tunnel rates for transitions between the coupled configurations ΓL,R

f i (for
tunneling in and out) are chosen constants ΓL,R, whereas the tunnel rates between the
uncoupled configurations are manually set to 0. In fact, it holds true for all variations of i
and f that no two elements W in

f i and W out
f i have finite values at the same time, therefore the

full matrix can also be obtained by summing the two elements

Wf i = W in
f i +W out

f i (36)

The energy at which the Fermi-Dirac distributions of the elements Wf i must be evaluated
is labeled ξf i and have the following form

ξf i = ϵ0 + εf i +
e2

CΣ

(
nf i −

1
2

)
− e

∑
j=L,R,G

αjVj (37)

where εf i is the kinetic energy of the tunneling electron (in or out) and nf i is the number of
electrons on the QD, inducing the electron that tunnels (in or out). The constant ϵ0 (just
as done for the single spin-degenerate orbital case) sets the potential energy reference level
and is chosen as ϵ0 = −ΔU1 = −e2/(2CΣ) to simplify Eq. 37 to

ξf i = εf i +
e2

CΣ
nf i − e

∑
j=L,R,G

αjVj (38)

Also similarly as it was introduced for a single spin-degenerate orbital in Eq. 21, the current
can be found by summing up all relevant current contributions in both directions

IL→R = e
∑
i,f

Pf {Γ
Lout

f i [1 − fL(ξf i)]− Γ
Lin

f i fL(ξf i)} (39)

At the same time, the heat power leaving the left contact lead through the QD is

JL = −
∑
i,f

(ξf i − µL)Pf {Γ
Lout

f i [1 − fL(ξf i)]− Γ
Lin

f i fL(ξf i)} (40)

and the heat power that the right contact lead is receiving through the QD is
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JR = −
∑
i,f

(ξf i − µR)Pf {Γ
Lout

f i [1 − fL(ξf i)]− Γ
Lin

f i fL(ξf i)}. (41)

Overall, there are a number of additional effects that come into play when one considers
a larger spectrum of possible QD states. In order to illustrate this, the following considers
two spin-degenerate orbital states (total number states Nsps = 4) which allow the QD to
be in 16 different configurations. Figure 17a demonstrates current I through the QD as
a function of both, the gate potential VG and the electrical bias V. The most important
feature of this graph is the emergence of rhombus-shaped regions in the (VG,V ) plane
around V = 0 where current is blocked (I = 0). Plots of this type are sometimes referred
to as charge stability diagrams. The regions with blocked current are known as Coulomb
diamonds [60] which emerge a result of finite addition energies for adding electrons on the
QD, as explained in Section 2.6.

By increasing V beyond the diamond edges, I increases in a step-wise manner. This can
be best seen in Fig. 17b, which plots the differential conductance g = dI/dV instead. The
steps in I show up as lines of non-zero differential conductance (conduction lines). The
various lines can be interpreted using a set of illustrations given in Fig. 17c. Illustration A
corresponds to an unbiased condition where µL = µR (V = 0). The lowest orbital state is
occupied by a single electron, but no conduction is possible because all states at the same
energy in the contact leads are occupied. Increasing V (symmetrically) eventually leads to a
situation shown by illustration B, where µL approaches the energy of the occupied orbital
state. This is the condition at which the conduction starts, as empty states in the left contact
lead become available for tunneling out of the QD. The subsequent empty state left in the
QD can then be filled by another electron tunneling in from the right contact lead, and so
forth. The scenario described in illustration B continues until increasing V lets µR approach
another, energetically higher, orbital state of the QD, corresponding to illustration C. At
that point, in addition to electron transport through the energetically lower orbital state,
there is now another alternative - when the lowest state is emptied, another electron from
the right contact lead has an additional option of entering the higher (excited) orbital state
instead. This additional transport channel increases the overall current through the QD
and thus leads to another step in I. Continuing to increase V would eventually provide the
right contact lead electrons with enough energy to load a second electron on the QD, which
would further increase the number of QD configurations participating in the transport.
Overall, the rule for conduction at low enough T is that V has to be big enough such that
there is at least one available orbital state within an energy window between electrochemical
potentials µL and µR.

The corresponding linear response coefficients g0, dI/δT and S as functions ofVG are shown
in Fig. 18. First, Fig. 18a shows a set of conduction peaks in g0(VG). At low T they resemble
four independent peaks, each looking like the peak in Fig. 14a. The difference is that se-
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Figure 17: Calculated current I in (a) and differential conductance g = dI/dV in (b) through a QD with two spin-degenerate
orbital states as a function of the gate potential VG and the electrical bias V. Calculation parameter values are
e2/CΣ = 1 meV, ε1 = 0 meV, ε2 = 0.5 meV, ΓL = ΓR = 500 MHz, T = TL = TR = 0.1 K, αL = αR = 0.495,
αG = 0.01. (c) Three illustrations A, B and C demonstrating three different electrical bias conditions of a single
occupied QD. Temperature T of the contact leads are assumed to be low enough such that electrons can be assumed
to fill up the states in the contact leads up to the electrochemical potentials µL and µR. The illustration A corresponds
to an unbiased QD (µL = µR) with one electron occupying ε1. No current can flow because electronic states in the
contact leads at energy ε1 are occupied. The illustration B corresponds to a biased QD (V = −(µL − µR)/e > 0)
where µL approaches ε1 and the electron can be evacuated from the QD to the left contact lead and the current
flow is enabled. The illustration C corresponds to a biased QD where µR approaches ε2 which enables the QD to
pass a current using also the higher orbital. Note that the energy needed for the second electron to enter the QD,
(ε1 + e2/CΣ, is not within the sketched energy range.

quential peaks shift in opposite directions. This altering behavior results from degeneracy
and is a manifestation of the electron-hole symmetry for filling up the spin-degenerate or-
bital states. At higher T, however, the behavior of g0 peaks is modified due to the fact that
the thermally excited electrons in the contact leads have enough energy to enable transport
via several QD configurations, not just one. It manifests in the fact that g0 remains non-
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negligible also in between the conduction peaks. The peak values and the magnitude of the
peak shifts are also affected in a non-trivial way depending on the addition energies.

Figure 18b shows the corresponding results for dI/δT. Similarly as for g0, the low T be-
havior of dI/δT demonstrates four independent wiggles (like in Fig. 14c) with negligible
magnitude in between them. The asymmetric height of the positive and negative extrema
exchange roles from one wiggle to the next, which is consistent with the altering directions
of the g0 peak shifts. At higher T the magnitude of dI/δT never settles at zero in between
the wiggles and the magnitude of the wiggle extrema is also affected in a nontrivial way
depending on the addition energies.

(b)

(c)

T = 0.1 K

T = 0.4 K
T = 0.2 K

T = 0.8 K

T = 0.1 K

T = 0.4 K
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Figure 18: Calculated g0 in (a), dI/δT in (b) and S in (c) of a QD with two spin-degenerate orbital states as a function of the gate
potential VG. Calculation parameter values are e2/CΣ = 1 meV, ε1 = 0 meV, ε2 = 0.5 meV, ΓL = ΓR = 500 MHz,
αL = αR = 0.495, αG = 0.01. Four curves differ by the temperature of the contact leads T = TL = TR, which are
0.1 (black), 0.2 (blue), 0.4 (red) and 0.8 K (orange).

In a way, the most interesting behavior can be seen in the VG dependence of S, which is
shown in Fig. 18c. Again, at low T the behavior of S(VG) that shown in Fig. 14b; i.e. S
scales linearly withVG and crosses zero when the electron energy aligns with electrochemical
potentials µL and µR. However, unlike for the case of g0 and dI/δT, the low T behavior
of S also shows something that is not captured when considering a singly occupied QD,
namely, there are abrupt jumps in S in between the linear parts. The abruptness of these
jumps are shown to converge to a saw-tooth behavior when approaching the limit of T = 0
[18]. Also the opposite is true, an increasing T smoothens out the jumps. In the two spin-
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degenerate orbital model, that we consider as an example here, the jumps that invert the
sign of S relate to transitions between different QD configurations with different numbers
of electrons. The jumps that do not invert sign involve the same number of electrons on
the QD and relate to transitions to excited state configurations. It is also important to
note that the linear increase of S stretching away from the considered VG region predicts
an infinitely increasing S. This is a result of the finite size of the QD configuration space
as there are no other orbital states above and below the energies of the two orbitals that are
considered. However, detecting this increasing S fully in practice would be impossible, as
it would require a rapidly increasing impedance of a voltmeter, due to the impedance of
the QD itself rising rapidly away from the orbital state energies.

Further increase of T leads to more and more QD configurations contributing to transport
at the same time. For comparison, the equivalent plots for linear response coefficients g0,
dI/δT and S as functions of VG at higher T are shown in Fig. 19. In case of g0 the peaks
start to merge together, whereas dI/δT and S gradually lose their characteristic oscillatory
behavior with the corresponding zero crossings. This also illustrates that low enough tem-
perature T ≪ e2/(kCΣ) is important for QDs in order to resolve transport contributions
of individual QD configurations.
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Figure 19: Calculated g0 in (a), dI/δT in (b) and S in (c) of a QD with two spin-degenerate orbital states as a function of the gate
potential VG. Calculation parameter values are e2/CΣ = 1 meV, ε1 = 0 meV, ε2 = 0.5 meV, ΓL = ΓR = 500 MHz,
αL = αR = 0.495, αG = 0.01. Four curves differ by the temperature of the contact leads T = TL = TR, which are
0.4 (red), 0.8 (orange), 1.6 (light green) and 3.2 K (dark green).
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Comment on second order tunneling effects

Hopefully the discussion above has demonstrated that the Master equation approach to
transport through QDs in the SETA provides a straight forward way to account for charging
effects even in the presence of multiple orbital states. The spectrum of effects that can
be explained by this approach is large, however, it neglects all effects related to coherent
many-electron tunneling processes of which the most known are co-tunneling and charge
fluctuations [56, 57, 58]. They allow for violation of energy conservation at short time
scales in line with the Heisenberg uncertainty principle [30]. Such effects are responsible,
for example, for an effective energy broadening of the orbital state energy and non-zero
conductance within the Coulomb blockade regime.

Reference [57] demonstrates that including the second order tunneling processes in the
Master equation approach yields non-trivial effects in charge and heat transport. They in-
clude conductance within the Coulomb diamonds, that agrees with experimental observa-
tions [56, 61], and negative differential heat conductance, that so far has not been observed
experimentally. Unfortunately, the additional terms needed to account for the second or-
der tunneling processes make the calculations significantly more complex - calculation time
increases by roughly two orders of magnitude. Therefore giving exact calculation examples
is beyond the scope of the current section.

Such calculations considering second order tunneling effects are applied in Paper ii where
the power and efficiency of QD heat engines is studied. The understanding developed in
this study allows us to argue that the second order tunneling effects have a relatively small
effect on the maximal power that a QD heat engine can produce. However, the effect on the
efficiency is significantly more apparent. The effective energy broadening of the QD state
essentially allows heat flow through the QD even without the presence of charge current.
This means that the proportionality relation between the heat and charge flow, given for
example by Eqs. 29 and 30, no longer holds. This has the consequence of reducing the
maximum achievable thermal-to-electric conversion efficiency, because the second order
tunneling processes increase the heat flow in the denominator of Eq. 32.

3.3 Landauer-Büttiker approach

The Landauer-Büttiker (LB) approach is a widely used technique for simulating transport
in junctions that can be considered as non-interacting (at least effectively) [62]. It assumes
that all electron scattering is elastic and that the electron transport is phase coherent. When
applied to QDs, it considers a QD as a coherent and non-interacting scatterer in one di-
mension that can either transmit or reflect incident electrons. The biggest drawback of this
method is that it cannot fully model the Coulomb blockade in QDs, as the Master equa-
tion approach can, because it considers interactions only within a mean field approxima-
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tion. Consequently, its application to QDs, that undergo strong Coulomb blockade, has
limitations. However, it can provide valuable insights that complement the SETA picture
as it easily allows us to model transport through QDs in cases where the tunnel-coupling
is not weak and the transport through the QD is no longer limited to very narrow energy
windows.

The conventional expression for calculating current at finite T and V is given by the Land-
auer formula [62]

I =
e
h

∫ ∞

−∞
τ(ϵ)[fR(ϵ)− fL(ϵ)]dϵ (42)

where τ(ϵ) is an energy dependent transmission function that is assumed to fully charac-
terize the scatterer. In the low T limit Eq. 42 reproduces the current through a perfect
1-dimensional conduction channel I = (e2/h)V if a constant transmission function τ = 1
is assumed (note that the absence of a factor of 2 in Eq. 42 is intentional to consider only
one spin species). More generally Green’s function theory can be used to calculate the form
of τ(ϵ) in interacting systems like QDs [63]. However, a conventional approximation for
τ(ϵ) in Coulomb-blockaded QDs is a Lorentz function [64, 65]

τ(ϵ) = hΓ̃ · 1
π
· γ

γ2 + (ϵ− ξ)2
(43)

where γ = ~(ΓL + ΓR)/2 and ξ is the energy of the orbital state

ξ = ε1 − e
∑

j=L,R,G

αjVj (44)

The function in Eq. 43 defines a Lorentzian with a full width at half maximum (FWHM)
equal to ~(ΓL + ΓR). When integrated over all energies ϵ, it returns a pre-factor hΓ̃ =
hΓLΓR/(ΓL + ΓR). In case of ΓL = ΓR, the value of τ(ϵ = ξ) peaks at 1. Using such
Lorentz transmission probability in Eq. 42 yields results consistent with the Master equation
approach for a single non-degenerate orbital. For example, in the high bias limit ~(ΓL +
ΓR), kT ≪ eV it predicts the same maximal current Imax = eΓ̃.

One of the conveniences of using the LB approach is that it provides a relatively straight
forward way to calculate the linear response parameters g0 and S. They are given by the
following expressions [66, 67]

g0 =
e2

h

∫ ∞

−∞
τ(ϵ)

[
− ∂f
∂ϵ

]
dϵ (45)
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and

S = −k
e

∫∞
−∞τ(ϵ)

[
− ∂f

∂ϵ

]
ϵ−µ
kT dϵ∫∞

−∞τ(ϵ)
[
− ∂f

∂ϵ

]
dϵ

(46)

where f is the Fermi-Dirac distribution at the contact leads with T = TL = TR and µ =
µL = µR. The differential current response dI to an infinitesimal thermal bias d(ΔT ) = δT
can be obtained by multiplying the two linear response coefficients

dI
δT

= g0 · S (47)

Figure 20 demonstrates calculation results for g0, S and dI/δT using same parameters as in
Fig. 14 in the previous Section 3.2. Overall, results might seem similar, however, there are
a few details that distinguish these calculation results from the ones obtained in the SETA.
First, when looking at g0 in Fig. 20a, the peak values gmax are lower due to the fact that
the spin-degeneracy of the orbital state at ε1 is not considered properly. The gmax is not
predicted to scale precisely with 1/T and no peak shift with increasing T can be seen.

Even bigger differences can be seen in thermoelectric signatures, particularly in S. Fig-
ure 20b shows that the LB approach does not predict S to scale linearly with the gate po-
tential VG, as the SETA in the Master equation approach. For the lower T cases within the
plotted VG range one instead can observe saturation and eventual decay of S, similarly as
seen in experiments [68, 69]. Furthermore, as a combined consequence of the behavior of
g0 and S, the response of dI/δT is also modified accordingly - the two maxima of dI/δT
are lower, have the same amplitude and decay with T in a slightly different manner (see
Fig. 20c).

The reason for the differences in results between the Master equation approach in SETA
and the LB approach is partly, of course, a consequence of the failure of the LB approach
to accurately account for charging effects and the degeneracy, however there is more to it.
The additional differences also originate from the fact that the transport through the QD
in the LB approach is not limited to a very well defined energy, but to a range of energies
as specified by τ instead. In fact, as demonstrated with Fig. 21, by decreasing the width of
τ (i.e. decreasing ~(ΓL + ΓR)), the range in which S scales linearly is extended and the
agreement with the SETA is improved. However, the full linear behavior of S can only be
reproduced when ~(ΓL +ΓR) becomes many orders of magnitude smaller than kT (rather
than just much smaller than kT, as conventionally assumed). This points to additional
physics introduced by the broadening of the orbital state energy, which ends up strongly
modifying the behavior of S in QDs.
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Figure 20: Calculated g0 in (a), S in (b) and dI/δT in (c) as a function of the gate potential VG using the Landauer-Büttiker
approach. The dashed lines in (b) represent the corresponding S obtained using the SETA in Fig. 14. The calculation
parameter values are also the same as in Fig. 14: ε = 0 meV, ΓL = ΓR = 500 MHz, αL = αR = 0.495, αG = 0.01.
Four curves differ by the temperature of the contact leads T = TL = TR, which are 0.1 (black), 0.2 (blue), 0.4 (red)
and 0.8 K (orange).
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Figure 21: Calculated S as a function of the gate potential VG using the Landauer-Büttiker approach. Calculation parameter
values: ε = 0 meV, T = TL = TR = 0.1K, αL = αR = 0.495, αG = 0.01. Four curves differ by the ΓL = ΓR =
500, 50, 5 and 0.5 MHz. The corresponding values kT/[~(ΓL + ΓR)] ≈ 13, 130, 1300 and 13000.

The fact that experimental observations [68, 69] are in agreement with these predictions
indicates that the SETA in the Master equation approach neglects important contributions
to transport close to the open circuit conditions which are at least partly captured by the
LB approach.
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3.4 Summary

This section has introduced a circuit model of single QDs and two approaches for model-
ing their conductance and thermoelectric properties. The Master equation approach in the
single electron tunneling approximation (SETA) is able to accurately account for charging
and degeneracy effects and therefore can be used to qualitatively model QDs with many
relevant orbital states. However, because it considers that only electrons with an exact en-
ergy of the orbital state can occupy the QD, it, neglects the effective broadening of orbital
state energies due to electron finite lifetime on the QD. Further, the SETA can not account
for the existence of a finite conductance within the Coulomb blockaded regions due coher-
ent two electron scattering processes. This is where the Landauer-Büttiker (LB) approach
serves a pedagogical purpose. It treats a QD as a coherent and an effectively non-interacting
scatterer and can model the effects of broadening of the orbital state energy with simple
calculations. It illustrates an important result - the Seebeck coefficient S of a QD continues
to be sensitive to the broadening of the QD’s transmission function even well within the
traditionally assumed applicability limits of the SETA. Since such a behavior is consistent
with experimental observations, it suggests that the SETA might not be optimal for model-
ing thermoelectric behavior of QDs, at least not when they are operated close to the open
circuit configuration. However, because the LB approach does not accurately account for
charging effects, it has difficulties modeling orbital state degeneracy and excited states.

A more accurate way to model QDs is to include second order tunneling processes into
the Master equation calculations [57, 58]. This approach is used in Paper ii where accurate
evaluation of charge and heat currents through QDs close to open circuit conditions were
needed. It is also applied in Paper iii to estimate temperatures of the QD contact leads,
as the tunnel-coupling was too strong to use the SETA. Unlike when only considering
sequential tunneling, this method is experimentally found to model the thermoelectric
behavior of QDs in the regime (ΓL+ΓR) ≪ kT/h rather well at all circuit configurations.
Unfortunately, the calculation difficulty is increased and the calculation time is roughly a
hundred times bigger than when using the SETA. This is why going beyond the SETA is
sometimes unnecessary, as, for example, in Paper i where conditions closer to the short
circuit conditions are used and the essential physics can be captured without the second
order tunneling effects.

43



4 Prior work

The research on thermoelectric properties of single QDs has mostly been pursuing one of
two directions. One of them has been using thermoelectric properties in the characteriza-
tion of QDs complementing the conventional conductance characterization. This direction
has dominated the experimental part of the field. The other focus of studies has been using
QDs as efficient heat engines. This direction has so far been dominated by theoretical stud-
ies whereas experimental verifications have been lacking. This section aims at summarizing
the key theoretical and experimental advances over the past three decades distinguishing
between the two research focuses. It is partly based on a recent review [20] by the author
and coworkers, which focuses more on experimental behavior of thermovoltage (Seebeck
coefficient) and its comparison to theory. The current section expands the review in the
direction of QD heat engines.

4.1 Development of quantum dot thermoelectric devices

Coulomb blockade phenomena have been known to increase the low temperature resistance
of conductors of limited cross sectional area since the early 1950s [70]. By the end of 1980s
the nanofabrication techniques had developed far enough to enable systematic studies of
single electron devices [71, 72]. Famous examples are metallic single-electron transistors
[29], in which charging effects are used to study regimes in which electrons transit devices
one at a time. However, because the Fermi wavelength of electrons in metals is at a scale
of interatomic distances, confinement effects did not play an important role in metallic
devices.

In contrast to metals, the Fermi wavelength in semiconductors can be at a scale of several
tens of nanometers which means that for small enough devices quantum confinement ef-
fects can no longer be neglected. The implementation of modulation-doped semiconductor
heterostructures [73] enabled controlled fabrication of high mobility 2-dimensional elec-
tron gases (2DEGs), the development of which progressed rapidly throughout the 1980s.
The 2DEGs could be created at the interfaces of two semiconductors, typically GaAs and
AlGaAs [74], and could be shaped electrostatically by using top gates [75]. The 2DEGs
allowed for convenient fabrication of resonant tunneling structures [76, 77] at the scale
comparable to the Fermi wavelength. This gave access to the quantum confinement effect
needed to realize QD thermoelectric devices [78, 79].

Even up till now, the majority of thermoelectric studies done on single QDs have been
using 2DEG devices. However, a growing number of studies investigate thermoelectric
effects in synthesized quasi 1-dimensional structures [69, 80]. Examples include carbon
nanotubes [81] and semiconductor nanowires [7], and even in single molecules [82]. The
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advantage of using such structures for fundamental studies is that the tunnel-junctions and
the electronic state structure of small physical objects can often be defined more accurately
than it is allowed by the electrostatic gates in 2DEG devices.

4.2 Thermal biasing and thermometry

In addition to the requirements of the conventional electrical characterization, mesoscopic
thermoelectric experiments also require means of applying and characterizing temperature
differences ΔT across sub-micrometer-sized objects. This means that both the heating and
thermometry have to be local at these length scales [20]. This section aims at giving a
summary of the most commonly used techniques.

Thermal biasing

A thermal bias of single QDs is achieved when the two QD contact leads are at differ-
ent electronic temperatures. This is conventionally realized by dissipation of Joule heat
that couples asymmetrically to the two contact leads. The Joule heat itself originates from
passing an electric heating current IH through a resistive element. Conceptually, there have
been three different approaches that have so far been used in thermoelectric experiments on
QDs. Figure 22 schematically illustrates the differences between the different approaches.

QD QD QD

(a) (b) (c)

QD QD QD

Top

views

Side

views

Contact heating Side heating Top heating

Substrate Substrate Substrate

Figure 22: Schematic illustrations of different QD thermal biasing approaches. The gray rectangle in the center represents a QD
between two contact leads. The contact lead that is indicated in pink is warmer than the other. The arrows represent
heating currents IH that dissipate Joule heat. (a) Contact heating: the Joule heat is dissipated by passing IH directly
through the contact lead. (b) Side heating: the Joule heat is dissipated in a dedicated heater lead that is located close
to the contact lead, but does not make an electrical connection with it. The heat is thermally conducted through
a substrate (in green). (c) Top heating: the heater lead is placed on top of the contact lead while being insulated
from it by a thin layer of insulator. The heat is conducted to the contact lead via the thermal conduction through the
insulator.

The most popular and historically the first thermal biasing approach that was implemented
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in the experiments [78] heats one of the QD contact leads by passing a heating current
directly through it (contact heating, see Fig. 22a). The advantages of this method are that
it is local and convenient from a fabrication point of view. This approach is of particular
importance at temperatures significantly lower than 100 mK or so, where electron-phonon
coupling is weak. It allows realizing experiments in which heat transport is purely domin-
ated by electrons [83]. The greatest disadvantage of this method is that harder to integrate
it with measurements of thermocurrent Ith or thermovoltage Vth [69, 84]. Essentially, the
heater current IH introduces electrical potential variations along the length of the contact
lead. These potential variations, if not carefully taken care of, can compromise the thermo-
electric measurements by introducing unwanted electrical biases across the QD. Such an
effect is very inconvenient from the point of view of conducting an experiment, because
compensating for this takes a significant part of the experimental effort and introduces
additional experimental uncertainties.

An alternative approach is to introduce a dedicated (side) heater lead that is placed in the
proximity of the contact lead instead (see Fig. 22b) [80, 85]. Such an arrangement relies on
thermal conduction through the substrate for the heat delivery to the contact lead. Because
the heater lead is electrically disconnected from the electrical biasing circuit of the QD, no
electrical potential balancing across the QD is needed and ΔT can therefore be freely tuned
without much additional experimental effort. The disadvantage of such a method is that
only a part of the heat is reaching the contact lead electrons and most of it only heats up the
setup. As a result, more heating is needed to ensure a given ΔT and the overall temperature
rise makes it difficult to achieve high ΔT/T.

An approach that attempts to combine the advantages of the two previously described
approaches while minimizing the disadvantages is the so-called top-heating approach [86]
(see Fig. 22c). The heater lead is still a part of an electrical circuit separate from the electrical
biasing circuit, but is placed as close as possible to the contact lead - on top of it. The contact
and heater leads are insulated by a thin layer of insulating material. Such an approach still
allows easy tuning of ΔT while minimizing the overall heating of the substrate. The biggest
disadvantage of this approach is that it uses a two step (rather than one step) lithographic
process which effectively doubles the fabrication time and reduces the device fabrication
yield. However, it is because of its advantages that this approach is used for fabrication of
QD thermoelectric devices in this thesis.

Thermometry

Thermometry in QD thermoelectric experiments is particularly challenging. On the one
hand, the measurement of the QD contact lead temperatures has to be sufficiently local
in order to represent the actual temperatures that a QD experiences on both sides rather
than a convolution of temperatures at the device area. On the other hand, the accuracy in
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temperature has to be significantly better than ΔT itself or otherwise it cannot be determ-
ined. Experimentally it is difficult to perform a local temperature estimation of the contact
leads at the tunnel-junctions. However, the fact that the temperature of the contact leads
is relatively even allows using their properties to determine ΔT.

Some experiments with 2DEGs thermoelectric devices have used quantum point contacts
(QPCs) [87] for thermometry purposes [88, 89]. While using this method, a QPC is placed
between a heated reservoir of a QD and another reservoir at a known reference temperature.
The resulting thermovoltage that builds up due to the temperature difference across the
QPC is then used to calibrate the temperature of the heated reservoir. Other experiments on
2DEGs thermoelectric devices have used Shubnikov–de Haas (SdH) resistance oscillations
in order to estimate contact lead temperatures [90, 91].

For devices that are not 2DEG-based, a convenient choice has been estimation of reservoir
temperatures based on the resistance of the contact lead segments. Such an approach has
been used for thermoelectric studies of a QD implemented in a carbon nanotube [80, 85]
and is widely used in thermoelectric studies of nanowires [59, 92]. However, the accuracy
of this method becomes reduced at temperatures below 10 or 20 K where the resistance of
metallic contact lead segments generally lose their temperature dependence due to impurity
dominated scattering [93].

The method applied in this thesis uses the QD thermoelectric response itself to determine
temperatures. The advantage of this method is that it probes the very same temperatures
that the QD experiences. It has previously been applied for estimation of ΔT in nanowire
QDs in Refs. [68, 69, 84, 94]. One has to point out though that the accuracy of such a
method is directly linked to the applicability of the underlying theory to each particular QD
regime. For this purpose, Papers ii and iii use a Master equation approach that accounts for
the first and second order tunneling processes [57, 58]. The disadvantage here can be that
accurate calculations can require relatively much computational resources and that only a
subset of experimentally fabricated QDs can be modeled well by simple models.

4.3 Lineshape of the thermovoltage

State of the field

A part of this thesis work has been to identify and summarize the opened problems in
the field of QD thermoelectrics. One of the early conclusions was that the lineshape of
S(VG) in single QDs has so far not been confirmed to comply with the early theoretical
prediction by Beenakker and Staring [18]. Instead, the Landauer-Büttiker approach, des-
pite its disadvantages as summarized in Section 3.4, has been more successful in explaining
the experimental results [20]. This is likely due to the failure of the SETA to accurately

47



describe thermally biased QDs close to open circuit conditions because transport contribu-
tions beyond sequential tunneling turn out to be important then. These conclusions served
as a motivation for using a Master equation approach that considers transport mechanisms
beyond sequential tunneling for the analyses in Papers ii and iii. The following provides
a review of the most important work in the direction of understanding the lineshape of
thermovoltage.

Review of studies

Pioneering theoretical work on quantum confinement effects in Coulomb-blockaded devices
was done by Beenakker at the beginning of the 1990s [18, 28]. These works discussed the
periodicity and amplitude of g0 and S for QDs in the SETA and are the basis for the the-
oretical description of QDs, laid out in Section 3.2. Some of the main conclusions of this
work therefore have already been illustrated in Figs. 18 and 19. The Seebeck coefficient S,
as a function of gate potential VG was predicted to invert sign two times within a period
of a single Coulomb oscillation in g0, one close to the g0 peak and one in between the
peaks. The overall lineshape of S(VG) was predicted to resemble a saw-tooth shape with a
certain amplitude. QD excited states were predicted to show up in S as additional wiggles
on top of the saw-tooth shape. This is in contrast to the linear conductance g0 in which
no signatures of the excited states were expected. The qualitative difference between g0 and
S illustrated the fact that S, as a sensing tool, provides complementary information to g0
about the energetics of the QD state spectrum without entering the nonlinear response
regime.

Soon thereafter two experiments were published investigating the lineshape of S(VG) in
QDs [78, 97]. The work by Staring et al. [78] measured thermovoltage Vth as a function
of VG and observed the predicted periodicity, however they were unable to accurately de-
termine the applied thermal bias ΔT, so the exact magnitude of S was not determined.
This work also pioneered Vth measurements in the nonlinear ΔT ≫ T regime, however,
it is not clear how to interpret the data given that the measurements where carried out
using lock-in techniques that rely on linear response assumptions. The work by Dzurak
et al. [97] also reported results on thermovoltage Vth as a function of VG that showed the
predicted periodicity corresponding to the conduction peaks. However, since the QD was
tunnel-coupled strongly, the theory developed for QDs in the SETA was not applied. The
results were shown to be in agreement with the Mott relation for the Seebeck coefficient
[98] instead. This left the magnitude of S in the SETA being unverified.

A few years later Dzurak et al. [79] published another, more extensive study of S on a
QD, covering a wider VG range and including more than 10 consecutive S oscillations. The
lineshape of Vth(VG) = SΔT was clearly demonstrated to oscillate in agreement with the
period of the conduction peaks. It also demonstrated for the first time that the effects of
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QD excited states can indeed be visible in the lineshape of S. However, another important
conclusion was that the observed amplitude S was roughly two orders of magnitude smaller
than predicted by the SETA. The deviation was attributed to the none negligible effects
of higher order tunneling effects. The experimental Vth(VG) data was found to be in a
much better agreement with the Landauer-Büttiker approach for calculating S and used a
transmission function that was fitted to conductance data. Similar findings were published
by Small et al. [80, 85] who systematically investigated the amplitude of S(VG) oscillations
as a function of T in a carbon nanotube QD. While the observed oscillations were irregular
in shape and therefore no exact lineshape comparison could be made, their root-mean-
square (RMS) amplitude of S was found to be systematically much lower than predicted
by the SETA, nevertheless still scaled proportionally to 1/T up to T = 30 K.

The question of how higher order tunneling processes affect S of QD-like devices from a
theoretical perspective were first investigated by Turek and Matveev [99], published in 2002.
They considered a single electron transistor at low temperatures where co-tunneling could
not be neglected. Their findings showed that co-tunneling indeed modifies the lineshape
of S and significantly reduces its oscillation amplitude. Similar findings where published in
Ref. [100] a couple of years later. Experimentally, the effect of co-tunneling on the lineshape
of S was studied by Scheibner et al. [68] who observed the predicted lineshape change of
S as a function of T. However, despite the fact that co-tunneling (as given by Ref. [99])
could explain most of the deviations between the experimentally observed amplitude of S
and the amplitude predicted by the SETA [18], the quantitative agreement was lacking.

One of the best qualitative agreements with theoretical predictions for the lineshape of S
was demonstrated in semiconductor nanowire QDs by Svensson et al. [69] in 2012. A sim-
ilar lineshape evolution with T as in Ref. [68] was observed. The experimental data was
compared to calculations of S using the Landauer-Büttiker approach and, after accounting
for the impedances in the measurement circuit, the results were shown to be in good qual-
itative agreement and showed only about two times smaller S amplitude than predicted by
the Landauer-Büttiker approach.

A review on QD experiments would not be complete without mentioning the strong coup-
ling regime ((ΓL +ΓR) > kT/h). This regime in single QDs has mostly been investigated
with interest in the Kondo effect [25]. Under strong coupling conditions the second or-
der tunneling effects can become dominant [101] and QDs can undergo drastic changes in
the behavior of g0 [102]. In case of the Kondo effect the configurations of the QD that
possess a finite spin value strongly interact with the electrons in the contact leads forming
a many-body state. In simple terms this means that the single electron orbital picture of
QDs introduced in Section 3.2 is not valid anymore. The Kondo effect has been widely
studied in single QDs in several experimental systems [103, 104, 105, 106]. However, very
few thermoelectric experiments have been done in this regime [89, 107, 108]. The exist-
ing experimental results neither fully confirm, nor disprove the theoretical predictions by
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Costi and Zlatić [19] who predict rather sophisticated behavior of thermoelectric effect in
Kondo correlated QDs. The most interesting pending prediction is a polarity inversion of
the thermoelectric response when entering the Kondo regime. It has been suggested that
the Kondo effect could also lead to strongly nonlinear effects in the thermoelectric response
of QDs [109]. This has been mentioned as one of the possible explanations for the oth-
erwise fully unexplained nonlinear behavior of thermovoltage and thermocurrent in some
experiments [84].

4.4 Studies of quantum dots as heat engines

In 1996 Mahan and Sofo [21] predicted that in the linear response the most appropriate
density of states for efficient thermoelectric conversion is a Dirac delta function. In such
a hypothetical conductor electron transport can only occur at a certain energy while trans-
port at all other energies is blocked. In the following decade the idea of such idealistic
electron energy filtration was further investigated by Humphrey et al. [22, 23, 110]. First,
they pointed out that such an ideal electron energy filtration implemented between two
fermionic baths at different temperatures in general should allow approaching the revers-
ible operation limit of thermoelectric conversion [22]. Second, it was suggested that this
idea could be realized in practice by using QDs that possess very well defined electronic
state structure [22]. And third, it was argued that engines of this type are in fact a different
class of heat engines which do not operate by following a cyclical path in the state space
of thermodynamic variables [23]. Instead they operate in a steady state and state variables
cannot be defined in the same way as conventionally done in the context of heat engines.
Therefore a concept of particle-exchange heat engines was introduced [23].

More recent theoretical work has also investigated the thermoelectric conversion efficiency
of QDs at their maximum power production capacity. Both the Master equation ap-
proach [111] and the Landauer-Büttiker approach [65] have been used. In both cases it was
found that the efficiency at maximum power in QDs should be very close to the Curzon-
Ahlborn efficiency [112, 113], which is more widely known as an approximate efficiency limit
of heat engines of various scales operated at maximum power [114]. Experimentally, how-
ever, it has been challenging to examine these theory predictions. The biggest problem has
been the ability to reliably evaluate the heat flows through single QD heat engines. Earlier
experimental work in this direction was done by E. Hoffmann who investigated ways of
using QDs themselves as thermometers [94] and performed early experiments on thermo-
electrically produced power [115]. However, because of the insufficient agreement between
theory and experiments, detailed analyses of power and efficiency was not possible. This
thesis makes additional steps to improve experiments and theoretical models to carry out
the full analyses, which is presented in Paper ii and discussed in Section 6.2.
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5 Experimental methods

5.1 Nanowire quantum dots

This thesis has made use of heterostructured bottom-up grown InAs/InP nanowires. The
possibility of incorporating the intermediate bandgap material InP (Eg ≈ 1.35 eV) within
nanowires of the low bandgap material InAs (Eg ≈ 0.35 eV) with nearly atomically sharp
interfaces yield excellent experimental systemd for QDs. The heterostructured InAs/InP
nanowires used in this thesis are grown using a growth technique called chemical beam
epitaxy (CBE) [116]. CBE combines the sources from the more commonly used metal-
organic vapor phase epitaxy (MOVPE) with the molecular beam epitaxy (MBE) technique
(injecting metal-organic molecules as beams onto the growth substrate).

The growth of semiconductor nanowires is most often catalyzed (or seeded) by gold nano-
particles [117]. At elevated temperatures the seed nanoparticles melt and the growth species
from the gas phase preferably condense on it forming an alloy. The growth occurs when
the alloy becomes supersaturated with growth species and the crystal material self-organizes
into a solid (precipitates) at the edge of the seed particle.

The growth process of InAs/InP nanowires is briefly illustrated in Fig. 23 and a more detailed
description of nanowire growth with CBE can be found in Ref. [118]. In short, the growth
requires three sources providing In, As and P. Trimethyl indium (TMIn) is used as a source
of In atoms. When injected onto the growth substrate TMIn decomposes releasing In
atoms that can diffuse on the surface and form alloys with the gold particles. At the same
time, Tertiarybutyl arsine (TBAs) is used as a source of As during growth of InAs whereas
tertiarybutyl phosphine (TBP) is used as a source of P during growth of InP. However,
unlike for In atoms, due to the very limited surface diffusion length of As and P atoms [119]
only incident TBAs and TBP molecules onto the seed particle contribute to the growth of
the nanowire. InAs/InP heterostructures are created by switching between TBAs and TBP
during the growth process. More details on similar growths of InAs/InP wires on the same
growth machine are given in Ref. [120].

The studies carried out in this thesis used nanowires from a specific growth (see Appendix A
for the technical details of the growth). Figure 24 shows a scanning electron microscope
(SEM) image of the growth substrate after the growth and a high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) image of a sample wire from
the same growth. The as-grown nanowires, mostly made of InAs, contain two thin and
closely spaced InP segments forming tunnel-junctions to the InAs QD. As a consequence
of the growth routine, another, longer InP segment is incorporated within the InAs, which
has not been used in the experiments. The purpose of this longer InP segment prior the
growth of the QD is to prepare the seed particle for the growth of the thin InP segments.

51



TMIn + TBAs TMIn + TBAs TMIn + TBP TMIn + TBAs

(a) (b) (c) (d)

In
As
P

Figure 23: Illustration of InAs/InP nanowire growth process. (a) Nucleation: a gold seed particle is deposited on the growth
substrate. TMIn and TBAs are supplied in the growth chamber providing In and As atoms that alloy with the gold
seed particle. The growth of the InAs nanowire starts when the gold particle is supersaturated with In and As atoms.
Then the InAs crystal precipitates at the interface between the seed particle and the growth substrate. (b) InAs
growth: Continued supply of TMIn and TBAs in the growth chamber provides In and As atoms for continued growth
of InAs. In atoms can defuse on the surface of the substrate and the nanowire side facets reaching the gold particles
whereas only the As atoms released from the TBAs molecules incident to the gold particle contribute to the growth.
(c) Switching to InP growth: The TBAs supply is cut and TBP is supplied in the chamber instead. In atoms can diffuse
towards the gold particle whereas only the P atoms released from the TBP molecules incident to the gold particle
contribute to the growth. (d) Switching back to InAs growth: The TBP supply is cut and TBAs is supplied in the
chamber again. The InAs growth follows the description in (a) and (b).

The resulting heterostructure dimensions were analyzed using HAADF-STEM images.

Because of the high bandgap offset between InAs and InP, the conduction band offset is
of the order of 0.5 eV. This is a significant feature of InAs/InP nanowire QDs with respect
to other QD systems because it results in tunable tunnel-rates across InP tunnel-junctions
and enables experiments in a wide energy range. In addition, because the tunnel-junctions
are defined structurally, not by electrostatic gates, they are more electrostatically stable.

5.2 Devices

The nanowire devices are fabricated onto n-doped Si substrates covered by thermally grown
100 nm thick SiO2. The oxide isolates the substrate from the fabricated structures on top
allowing it to be used as a global back gate. Figure 25a shows 10 device fields of 12 gold
contact pads that are pre-pattered onto the substrate oxide. The function of the contact
pads is to enable easier wire bonding from an external point. Figure 25b shows that contact
pads in each field have extensions leading towards the write field at the center where devices
are fabricated. Figure 25c shows closer example of a write field. It features a coordinate grid
that is used to map nanowires’ positions once they are deposited onto the substrate. The
grid is made of small dots separated 2.5 µm from each other and covers 100 by 100 µm area
that partly overlaps with the tips of the contact pad extensions. The coordinate grid also
contains a set of significant markers unique to particular coordinate points that allow easier
mapping of the nanowire positions.

SEM images of deposited nanowires are used to map the nanowire positions within the
write field using the coordinate grid (see Fig. 26a). A software is used to custom design

52



100 nm

~0.5 eV

InAs InAs InAs

InP InP

Ec

Figure 24: (a) Scanning electron microscope (SEM) image of the growth substrate after the growth. The nanowires have grown
from the aerosol deposited gold seed particles. (b) high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) image of a nanowire from the growth in (a). The gold seed particle is visible (bright) on
the left of the nanowire. The nanowire is continued by an InAs segment leading to a QD which is defined by the two
short InP segments. The QD between the thin InP segments is made of InAs. On the other side of the QD there is
another InAs segment, then a longer InP plug and the remaining InAs segment. From analyses of 11 nanowires the
typical wire diameter was determined to be around 60 nm, the two thin InP segments were 2 - 8 nm and the QDs
where 16 - 19 nm. The length of InAs segments leading to the QD were 290 - 440 nm of the seed particle side and
190 - 320 nm on the other. Left inset: a close up HAADF-STEM image of the QD section of another nanowire from
the same growth. Right inset: an illustration of the conduction band alignment across the QD segment length. The
band offset is of the order of 0.5 eV. The growth of the nanowires and SEM imaging was done by Sofia Fahlvik (prev.
Svensson) and the STEM analyses was done by Sebastian Lehmann.

the layout of the device contact leads (see Fig. 26b). The contact leads are designed to
make contact to the contact pad extensions therefore allowing devices to be contacted via
the bigger contact pads. Description of fabrication steps can found in Appendix B. An
example of a finished device within the write field can be seen in Fig. 27.

In order to interface the devices with measurement setups the processed substrates are glued
onto ceramic carriers with a conductive paste (see Fig. 28). The design of the carriers allows
us to make bonds between the contact pads on the substrate and the side pads on the carrier
that are connected to the carrier pins. In this way the bonded device has direct electrical
connections to the pins of the carrier allowing it to be placed in an electrical measurement
setup for electrical characterization.
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Figure 25: (a) Optical microscope image of a blank chip with 10 device fields arranged in a 2 by 5 array. The contact pad layout
features 12 contact pads for each of the fields (design by Claes Thelander). (b) Scanning electron microscope (SEM)
image of the contact pad extensions towards a write field. (c) SEM image of a write field featuring a coordinate grid.

5.3 Measurement setups

Resolving the physics of QDs in electrical measurements requires sufficiently low temper-
atures such that the typical thermal excitation energy kT is smaller than the charging energy
e2/CΣ. In order to resolve transport through a single QD orbital state, kT also has to be
below the typical orbital state energy offset resulting from the quantum confinement effect.
The typical energy scale for these quantities in the nanowire QDs is of the order of 1 meV,
which means that the required temperature range falls below 10 K (kT ≈ 0.862 meV).

A dilution refrigerator (Triton 200) with electron temperature below 100 mK was used for
cooling devices in all studies (Papers i, ii and iii). During thermoelectric measurements
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Figure 26: Designing of the contact leads to the nanowires. (a) scanning electron microscope (SEM) image of a nanowire
deposited on a substrate within the write field. A significant corner mark, is used to determine the exact position of
the nanowire within the write field. Inset: a close-up SEM image of the same nanowire. The InP plug is visible as a
slightly darker section of the nanowire. (b) Screenshot of a finished two layer design in the Raith150 software. The
layer in blue is a nanowire contact lead design and the layer in red is the heater lead design. The additional array of
dots along with the significant corner mark is a guide to the eye.

(a) (b)

200 �m 40 �m

1 �m

Figure 27: Sample images of a finished device. (a) Optical microscope image of the contact pads and their extensions towards
a device area with a finished device. Black wires coming in from the sides of the image are wire bonds to the contact
pads. (b) Scanning electron microscope (SEM) image of the device area of a finished device. The device leads stretch
out to the contact pad extensions and make contact to them. Inset: close-up SEM image of the contacted nanowire.
The heater leads overlay the contact leads in a top-heater architecture.

the actual device temperatures were higher due to the parasitic heating effects caused by the
heater current. The typical temperature range was from a few 100 mK to several K. The
dilution refrigerator was also equipped with a vector magnet able to apply magnetic field
up to 1 T in all directions and up to 9 T along a specific axis of the system. This was used
in the study of Paper iii where magnetic field dependence of thermoelectric signatures was
investigated. For most of the measurements the electrical lines in the refrigeration system
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Figure 28: (a) Image of a blank 14-pin ceramic chip carrier. It features a gold coated pad in the center for hosting the substrate
and 14 side pads that are electrically linked to one of the carrier pins each. (b) Optical microscope image of a wire
bonded substrate onto the chip carrier. Fine wires link the contact pads on the substrate to the side pads on the
carrier. In this example two devices in total are bonded for electrical characterization.

leading down to the cooled device were filtered at the 3.5 K cooling stage by RC and 7 stage
pi filters with a combined cut-off frequency of 0.3 kHz. The study in Paper iii also used an
additional filtering stage at the sample holder with a higher cut-off frequency.

Most relevant electrical measurements were done in DC mode. Yokogawa 7651 DC voltage
sources with RC low-pass output filters (≈ 100 Hz cutoff) were used for gating and elec-
trical biasing of the QD as well as for applying the heating current. The current through
QDs was detected using either of the low noise current pre-amplifiers SR570 or Femto
DLPCA-200 which were read out by HP 34401a multimeters. The electrical measurements
were controlled and programmed via an in-house developed Labview interface.
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6 Summary of research results

6.1 Paper i: Nonlinear thermoelectric transport through quantum dots

Background

Already the very first experimental study on the thermoelectric behavior of QDs (by Staring
et al. [78]) probed the nonlinear ΔT regime. The experiments used a method for detection
of thermoelectric response that has since been commonly applied to thermoelectric studies
of QDs [68, 69, 84, 89, 121]. The method is based on applying AC heating current IH
for thermal biasing. In that case the heating power scales with I2H and the corresponding
variation of ΔT takes place at double the frequency of the IH. Knowing this frequency
therefore allows one to detect the thermoelectric response using a lock-in amplifier.

In this way Staring et al. [78] measured the peak-to-peak amplitude of Vth(VG) oscillations
as the amplitude of IH was increased. They found thatVth saturated, decayed and eventually
inverted the sign. No explicit explanation for this behavior was provided. Similar results
for Vth and Ith as a function of IH were found in a more recent study by Svensson et al. [84]
where strong nonlinearities along with sign reversals were also detected. No conventional
QD model could explain these results without introducing additional fitting parameters,
like temperature dependent transmission function of the QD. It was hypothesized that the
origin of such a behavior could be related to the Kondo effect, similarly as predicted by
Ref. [19]. However, no conventional signatures of the Kondo effect, like zero-bias anomaly
[122], were shown in conductance data.

Current work

The purpose of the study in Paper i was to further investigate the nonlinear thermoelectric
response in QDs. The experimental devices featured a number of improvements with re-
spect to the previous experiments [84]. First, the heterostructured InAs/InP nanowire QDs
provided strong enough charging and quantum confinement effects such that e2/CΣ ≈
Δε ≈ 4 meV (or ≈ 46 K in kT). This meant that the transport contributions of QD
excited states could be neglected up to relatively high temperatures. This enabled to study
the behavior of a single spin-degenerate orbital in a relatively wide ΔT range. Second, the
experimental device featured top-heater geometry [86] (see Fig.29). This allowed applying
relatively big ΔT without affecting the electrical bias across the QD. Judging from the re-
sponse of the device, the achieved ΔT was of the order of 10 K across the 20 nm long QD.
However, this came at the cost of also increasing the cold contact lead temperature.

Prior experiments on nonlinear thermoelectric behavior of QDs [78, 84] have used the AC
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heating method to improve the signal-to-noise ratio of the small thermoelectric signals.
However, this is not optimal for studies of nonlinear effects because the signal at two times
the frequency of the IH then only contains a part of the thermoelectric response. This makes
quantitative analyses very difficult because signals from all relevant harmonics should be
accounted for to deconstruct the true nonlinear Vth or Ith response as a function of ΔT. An
alternative is to measure the thermoelectric response to DC heating current that requires
significantly better signal-to-noise ratios. Partly because of the optimized application of
ΔT, the study in Paper i managed to obtain a strong enough thermoelectric response to
reliably use DC detection Ith. In such a manner the nonlinear Ith dependence on ΔT could
be studied without any additional data processing. The detection of Ith instead of Vth was
chosen because it is affected considerably less by small voltage drifts and possible leakage
currents.

(a) (b)

Figure 29: Scanning electron microscope (SEM) images of the device investigate in Paper i. Two metallic leads make contact to
the nanowire on both sides of the QD. Additional heater leads run on top of the contact leads for thermal biasing.
The device got damaged during the unloading procedure from the low-temperature measurement setup. (a) and (b)
are different by the SEM magnification.

The experimental results were compared to a Master equation based model in the SETA.
It is worth mentioning that the model also accounted for a resistive load in series with the
QD which modeled the 1 MΩ input impedance of the current preamplifier. In practice this
meant that the potential difference across the QD has to be found self-consistently, because
any finite thermocurrent Ith, being generated solely from ΔT, then also induces a reverse
voltage bias across the QD due to the resistance in series. Even though considering the load
was not critical to the explanation of the nonlinear effects, the practice of including it in
calculations turned out to be very important for studies in Paper ii.

Results

The measurements showed a very strongly nonlinear Ith dependence on IH. Typically, when
beginning to increase IH, a super-linear increase of Ith was seen (see Fig. 30a). Continued
increase of IH, however, yielded a saturation and a decay of Ith. This nonlinear behavior was
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shown to vary somewhat depending on the gate potential VG. The physical explanation for
the nonlinear behavior could be found by modeling the transport through a single spin-
degenerate orbital using the SETA. The experimental results were qualitatively explained
by an interplay between different QD configurations (with zero, one or two electrons) con-
tributing to Ith differently at different temperatures. This is illustrated in Fig. 30b which
shows that at lower ΔT only one electron configurations mediate the charge transport, con-
tributing to Ith in one direction. However, when continuing to increase ΔT (and also T)
the two electron configuration enables a counter flow of charge that reduces Ith (similarly
as discussed in Ref. [123]). The modeling could also explain the behavior of Ith noise amp-
litude that also showed dependency on IH and VG. Although it was not included in Paper i,
the behavior of noise amplitude was consistent with how sensitive Ith was to variations in
VG at different temperature and gating conditions.

(a)

(b)

A B C

Figure 30: (a) Measured thermocurrent Ith as a function of heating current IH for several gate voltages VG. (b) Illustrations of
a QD at different thermal biases ΔT. A shows a thermal bias that is insufficient to yield Ith. B shows a thermal bias
that enables Ith via a single electron configurations of the QD. C shows a thermal bias that is big enough to allow
single and double electron configurations, which for the sketched case yields a reduction of Ith due to counted flow
of electrons. Note that the red arrows indicate Ith direction, opposite to the electron flow direction.

Realization of such an experiment showed for the first time that a nonlinear thermoelectric
response of QD can in certain cases be fully explained. It also established the top-heater
geometry as a useful tool for small scale thermoelectric experiments. When compared to
theory, the QD’s thermoelectric response to IH suggested that ΔT significantly exceeding
10 K could be realized across the roughly 20 nm long QD.
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6.2 Paper ii: Quantum dots as efficient heat engines

Background

The idea of using the sharply energy dependent density of states of low-dimensional con-
ductors for enhancing thermoelectric conversion efficiency has been around for more than
two decades [124, 125]. In line with this thinking Mahan and Sofo [21] identified delta-
function as the ideal density of states for efficient thermal-to-electric energy conversion.
This idea was expanded upon by Humphrey et al. [22] who suggested that QDs could be
used for implementation of solid state heat engines that in principle could approach the
reversible operation (the Carnot efficiency limit). A point was consequently risen that such
QD heat engines would be principally different from the conventional cyclical heat engines
because they would operate in a steady state, therefore a concept of particle-exchange heat
engine was introduced [23].

Despite the experimental progress on QD thermoelectric devices (discussed in Section 4),
in particular experimental efforts by Hoffmann et al. [94, 115], such a QD heat engine had
not been successfully realized. Among experimental challenges were difficulties to reliably
estimate heat flows through a single QD as well as difficulties applying and characterizing
thermal bias. An approach that was initiated by Hoffmann used the QD thermoelectric
response for characterizing ΔT and evaluating the electronic heat flow based on theoretical
modeling. However, given that the quantitative agreement between theory and experiments
had so far been lacking [20], no definite conclusions were reached on whether this approach
is sufficiently accurate and which theory is most appropriate to use.

Current work

The study in Paper ii investigated the performance of thermally biased QDs as heat engines
by making use of the methodology and device design used in Paper i. Again, the quality
of the InAs/InP nanowire QDs played a critical. They provided with electrostatically stable
QDs that were tunnel-coupled to contact leads weakly enough (~Γ of a few tens of µeV)
while at the same time possessing strong enough charging and confinement energies (of
a few meV). Such energy scales enable operation of a single-orbital QD in the quantum
regime (~Γ ≪ kT ≪ Δε, e2/CΣ) at temperatures below 5 K - a requirement for efficient
operation of QD heat engines.

Also similarly as in Paper i, the experimental devices used the top-heating architecture [86]
(Fig. 31) that allowed studies of QDs outside of linear thermal bias regimes, while providing
easy means of tuning the thermal bias. The device architecture yielded thermal biases up
to such ΔT/T, where the value of the Carnot efficiency parameter was relatively sizable
ηC ≈ 0.4. In this regime the thermoelectric performance is not necessarily predictable
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by the linear response parameters, S and g0. Therefore an important part of the studies
in Paper ii was to directly measure the thermoelectrically produced power Pth of the QDs
heat engines. The power was determined solely from measurements of Ith using a variable
load R in series with the QD that simulated a consumer of the thermoelectrically produced
power Pth = I2thR.

(a) (b)

2 m

2 m

Figure 31: (a) and (b) are scanning electron microscope (SEM) images of QD devices used for studies of QD heat engines. Devices
feature top-heater architecture where heater leads run on top of the leads contacting the nanowires. In each device
only one of four contact leads was used on each side of the QD. The device in (b) got damaged during the unloading
procedure from the measurement setup.

Another important advancement during these studies was the application of a more ac-
curate theory approach that until then had not been used for modeling thermoelectric
experiments on QDs. This work was done in collaboration with in-house theoreticians M.
Josefsson and M. Leijnse who ran calculations. The theoretical description used to model
the experimental results was based on a Master equation approach that goes beyond the
SETA [57, 58]. It considers all terms in the expansion of the tunnel-Hamiltonian up to
quadratic dependency on tunnel-rates. This approach fully accounted for nonlinear effects
and electron-electron interactions on the QD as well as modeled co-tunneling and charge
fluctuations. Consideration of these effects were most important when approaching open
circuit conditions (high R conditions) because this is where the non-sequential tunneling
effects become increasingly more important.

An important purpose of the theory was to perform thermometry on QDs. The theory
was fit to the measured Ith(VG) allowing us to extract temperatures of the contact leads as
the only two fit parameters. The fits showed consistency over a wide range of parameters
VG, R and ΔT, therefore indicating that the theory captured all of the important physics
of the QD heat engines. Obtaining the temperature data allowed for a calculation of the
associated electronic heat flows through the QDs, corresponding to the measured Ith at the
given load conditions. The information about the electronic heat flows was then used to
estimate the thermal-to-electric conversion efficiency.
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Results

Experimental results in Paper ii demonstrate that the QDs’ ability to produce thermoelec-
tric power Pth depends strongly on the magnitude of the load resistance R. When plotted
as a function of R, the power Pth shows a distinct peak, which suggests that load matching
is important also in QD heat engines (see Fig. 32a). The precise values of the power optim-
izing loads are hard to determine as they depend on tunnel rates and temperatures of the
reservoirs in a complex way. However, what can be seen by comparing different devices at
various temperature is that the power optimizing load seem to increase with temperatures
and decrease with tunnel rates.

Access to the QD reservoir temperatures in this study allowed estimation of the electronic
heat flow leaving the hot reservoir JQ through the QD at various operation conditions.
JQ can be interpreted as the amount of heat power consumed during the operation of
the heat engine, therefore the thermal-to-electric conversion efficiency can be calculated as
η = Pth/JQ. An interesting self consistent conclusion of the efficiency analysis was that the
efficiency close to the maximum obtainable Pth was close to the so-called Curzon-Ahlborn
efficiency ηCA = 1 −

√
TC/TH [126], which is a widely known efficiency figure for heat

engine operation at maximal power [127].
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Figure 32: Results on one of the PE heat engines studied in Paper ii. (a) Data points are the measured power Pth plotted as a
function of load resistance R for two different thermal bias conditions, which are color coded in the figure. The solid
lines are theory predictions for the estimated parameters: tunnel ratesΓL = ΓR = Γ = 8.9GHz and temperatures of
the hot and cold reservoirs TH and TC. (b) Data points represent the measured power Pth and the estimated efficiency
η = Pth/JQ plotted parametrically as a function of load resistance R for two different thermal bias conditions (color
coded the same way as in (a)). The solid lines are theory predictions for the estimated parameters, same as in (a).

An interesting behavior of maximum efficiency in the presence of higher order tunneling
effects was observed (see Fig. 32b). Because these processes allow for heat transport through
QDs also in absence of current (when Pth = 0), they reduce the efficiency at the vanishing
power production, where the SETA predicts the efficiency to approach ηC. It results in
the maximal efficiency ηmax being reached at a finite Pth instead. In the main experimental
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device efficiency ηmax ≈ 0.7ηC was achieved at roughly one half of the maximal Pth.

The experiments in Paper ii thus demonstrate a full power and efficiency analysis of QD
heat engines for the first time. Although the electronic heat flow was only estimated by
using theory, instead of being measured, the bare fact that the theoretical framework de-
scribes the experimental results so well can be taken as a strong indication that second order
tunneling effects are very important in the thermoelectric transport through QDs, even in
the quantum regime (~Γ ≪ kT ≪ Δε, e2/CΣ). The results of Paper ii suggest that co-
tunneling and fluctuations are playing a limiting role in the thermal-to-electrical efficiency
in QDs at high efficiency modes of operation, preventing the heat engines from achieving
ηC. This is an intriguing observation given that these transport processes are only allowed
due to Heisenberg uncertainty principle (due to wave characteristics of electrons) which
is a fundamental principle of quantum mechanics. It makes one wonder up to which ex-
tent the Heisenberg uncertainty principle fundamentally limits the ability to reach ηC in
particle-exchange heat engines.
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6.3 Paper iii: Thermoelectric transport throughKondo-correlated quantumdots

Background

The spin-1/2 Kondo effect [25] in QDs can be observed at low temperatures where kT ≪
~Γ < Δε, e2/CΣ [103, 122, 128, 129]. These requirements make it challenging to reach the
Kondo regime experimentally for a number of reasons. First, increasing the parameters Δε
and e2/CΣ require reducing the size of a QD, therefore these parameters normally have
finite experimentally achievable values. Second, the finite values of Δε and e2/CΣ put
rather strict conditions on T, that ideally has to be as low as possible, so that the much
larger ~Γ can still be smaller than Δε and e2/CΣ.

Additional difficulties arise while running thermoelectric measurements in the Kondo re-
gime. First, during such experiments T is often risen many times above the base temperat-
ure of the cryostat because of thermal biasing. In practice this means that the Kondo effect
has to be strong enough to be seen at temperature significantly above the typical cryostat
base temperatures. Second, unlike for thermoelectric experiments on QDs in the weak
coupling regime (presented by Papers i and ii), those done in the Kondo regime cannot
make use of the same theory based thermometry approach because the Master equation
approach is not valid in the strong coupling regime. Given these considerations, it is not
surprising that there have been only a very limited number of experimental studies on
Kondo-correlated QDs [89, 107, 108].

On the theory side there have been a number of works [19, 109, 130, 131, 132, 133, 134, 135, 136]
that investigate the Kondo regime, none of which so far have had a solid experimental
verification. One of the most noteworthy studies by Costi & Zlatić [19] investigates the
linear response behavior of Kondo correlated QDs as a function of T. According to their
calculations the onset of Kondo correlations at low T should be accompanied by a sign
inversion of Vth (and therefore also of Ith). Some signatures of this behavior have been
previously seen by Thierschmann et al. [108] in 2DEG systems, however, the results have
been inconclusive.

Current work

The experimental work in Paper iii aims to fill this gap between theory and experiments.
InAs/InP nanowire QDs were used to implement Δε and e2/CΣ of the order of a few meV,
while ensuring a strong tunnel coupling (~Γ ∼ 1 meV). Such metrics allowed the spin-
1/2 Kondo correlations to exist up to 1 K in temperature. This high characteristic Kondo
temperatures, TK, were important for the experiments as they provided enough flexibility
in T range to apply a sufficiently big ΔT while remaining in the Kondo regime. This in
turn increased Ith and enabled its reliable detection using DC measurements methods.
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(a) (b)

Figure 33: Scanning electron microscope (SEM) images of two devices used to study Kondo-correlated QDs. Devices feature the
top-heater architecture where heater leads run on top of the leads contacting the nanowires. In each device only
one of four contact leads was used on each side of the QD.

Thanks to the architecture of the top-heaters [86] the temperature control of devices during
thermoelectric measurements could be realized using the heaters alone. This is because
application of heating current IH through a heater lead not only elevates the temperature
of the contact lead beneath, but also elevates it to a lesser degree in the other contact lead.
In the studied devices the application of the ΔT in this manner ensured elevation of T with
an estimated ratio ΔT/T ≈ 1/3. Controlling the device temperature in this way enabled
thermoelectric experiments at device temperatures up to several K while minimally affecting
the cryostat temperature as measured by the built in temperature sensor.

The study in Paper iii also used theory fits to experimental data to estimate the temper-
atures of the contact leads, in the same way as done in Paper ii. However, because the
corresponding theory is not applicable in the Kondo regime, a QD had to be tuned to a
regime where the tunnel-coupling is weaker. This was achieved by applying a more negat-
ive gating potential VG and depleting the QD. Unfortunately, only one out of three QDs
showed transport behavior that was suited for thermometry (weak enough tunnel coupling
and large enough quantum confinement effect). However, since all devices were identical
by design, the thermometry results were assumed to provide good temperature estimates
for all devices.

The work in Paper iii also investigated the behavior of the thermoelectric signals in pres-
ence of a magnetic field. The relatively big g-factors of InAs nanowire QDs allowed to
realize large enough Zeeman splitting to destroy Kondo correlations. Thanks to this, the
transition from a Kondo correlated state to a normal state could be also studied using the
thermoelectric signals.
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Results

The results in Paper iii show that the thermoelectric signature of QDs is indeed altered in
the presence of the Kondo correlations as predicted by Costi & Zlatić in Ref. [19]. The
measured thermocurrent Ith changes direction within the Kondo region (indicated in the
Fig. 34a) as the temperature T is lowered. As a result of the Ith inversion within the Kondo
region, the curves lose two zero-crossings. The systematic observation of this behavior
constitutes a verification of the Kondo-related sign reversal of the thermoelectric signal
predicted in Ref. [19]. Furthermore, the temperature values at which the sign reversals
were detected in all three devices were also found to be consistent with the calculation
results in Ref. [19].
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Figure 34: Thermocurrent Ith as a function of gate voltage VG at different temperatures T, measured on the device shown in
Fig. 33. The Ith is normalized by the thermal bias ΔT. (a) and (b) are different by the value of the magnetic field
B, which is indicated in the figures. The color plot insets show the charge stability diagram at the corresponding
magnetic field values.

In addition to the Ith measurements at zero magnetic field, identical measurements were
repeated in the presence of a finite field B. As can be seen in the stability diagrams in
Fig. 34, the magnetic field is found to Zeeman split, and eventually destroy, the Kondo
resonance. A strong magnetic field effectively turns Kondo-correlated QDs into QDs with
non-degenerate spin states. As a result, the corresponding Ith signal shows the conventional
number of zero-crossings and no qualitative changes in Ith(VG) with temperature T can be
observed. Unexpectedly, the measurements indicate that Zeeman energies ΔEZeeman above
kTK are needed to destroy the Kondo related Ith inversion.

The experimental work in Paper iii shows that InAs/InP nanowire QDs can be used to carry
out state of the art thermoelectric experiments on Kondo correlated QDs. The nanowire
QDs used in the thermoelectric devices with the top-heater geometry enable convenient
studies of thermoelectric effects in Kondo correlated QDs, also in the presence of mag-
netic field. This means that more studies of thermal bias and magnetic field dependencies
on Kondo-correlated QDs are likely to be realized in similar experimental systems. Such
studies could be used to further test the applicability limits of theoretical models and their
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approximations in the Kondo regime.
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7 Summary and outlook

This thesis presents experimental work on thermoelectric properties of QDs. The hetero-
structured InAs/InP nanowire-based QDs enable thermoelectric studies in both the weak
and the strong coupling regimes thanks to the high band-gap offset between InAs and InP
(about 0.5 eV). Aside from the material system, a very important role in this thesis is played
by the top-heater architecture, that enables the application of significant ΔT across the short
QD segments, therefore increasing the thermoelectric signal levels.

The thermocurrent measurements suggest that ΔT in a range of several tens of K is possible
to apply across the roughly 20 nm long QDs at cryogenic temperatures. Unfortunately,
in the current design devices typically achieve only ΔT/T ≈ 1/3, meaning that there
is significant heating of the cold QD reservoir. It would be of interest to minimize this
parasitic heating effect thus increasing the maximal explorable range of ΔT/T. This is likely
to require more detailed studies of the nature of heat flow from the device heater into
the substrate in order to understand how the temperature gradients are shaped. Enabling
higher ΔT/T would allow going deeper into the nonlinear ΔT response regime. This would
be of particular importance for regimes in which theory predictions are generally harder to
obtain, such as for the Kondo regime.

The detailed studies of QD heat engines presented in this thesis have shown that they in-
deed can be operated with heat-to-electric conversion efficiencies comparable to the best
cyclic heat engines. The magnitude of the electronic heat flow through the QDs in these
studies is evaluated using Master equation calculations that account for all first and second
order tunneling processes [57] because none of the known methods for measuring so small
heat flows are applicable to this QD system. The interest of realizing analogous heat flow
measurements experimentally would be to verify the predictions of Ref. [57]. The calcula-
tions show that certain phenomena observable in heat transport should be absent in charge
transport. More specifically, they predict the existence of negative differential heat con-
ductivity at the edges and within the Coulomb blockaded regions.

The possibility of realizing thermoelectric experiments in the strong coupling regime, where
Kondo correlations can be observed, opens up a range of possible studies with minor ex-
perimental modifications. This could include thermoelectric measurements on two level
QDs [134] or more detailed studies in the presence of magnetic fields. Perhaps the most
intriguing experimental conditions would be possible if ΔT/T could be further increased.
High ΔT would allow one to conduct transport measurements with one of the QD reser-
voirs at a temperature within the Kondo regime and the other reservoir at a much higher
temperature (similarly as discussed in Ref. [109]).

More generally, thermoelectric measurements have recently been demonstrated to enable
the determination of entropy of electronic states in QDs with a simple orbital state struc-
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ture [137]. It is foreseeable that similar measurements to those presented in this thesis could
be used to learn more about QDs with more complex electronic state structures or about
QDs in the Kondo regime.
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Appendices

A Growth details of nanowires 0251

All experimental studies presented in Papers i, ii and iii use nanowires from the same growth
(grown by Sofia Fahlvik [prev. Svensson]). Aerosol deposited gold seed particles of 50 nm
nominal size where used. The growth substrate was baked at 320°C for 25 min for decom-
position of contaminants on the substrate surface. The growth of InAs was carried out at
approximately 390°C (measued by an infra-red sensor in the growth system) providing pre-
cursor pressures 0.15 mbar and 1.5 mbar for TMIn and TBAs, respectively. For the growth
of InP segments 1.0 mbar pressure of TBP was provided instead of TBAs.

B Device fabrication details

Prior to device fabrication the substrates are cleaned in acetone in an ultrasonic bath for
a few minutes. Acetone helps to dissolve organic contaminants on the substrate whereas
the ultrasound helps to shake off any left over dust from scribing of the substrate. The
fabrication starts with a deposition of the nanowires within the write field area. Once the
wires are deposited, their positions are mapped and the devices are designed, the fabrication
process is followed by a standard electron beam lithography (EBL) process for fabrication
of contact leads to InAs nanowires.

A resist PMMA 950 A5 is spin-coated onto the substrate at 5000 rpm for 60 s and then
baked for 5 min at 180°C. Typically used parameters for the EBL exposure are 20 keV
acceleration of electrons in the electron beam with a typical resist exposure dose of 260
µC/cm2. The exposed pattern is developed in a developer for PMMA (MIBK:IPA 1:3)
for 45 s. In order to to get rid of any residual resist within the developed pattern, the
development is complemented by an oxygen plasma ash at 5 mbar oxygen pressure for 30 s.
Prior to the evaporation of contact lead metals, the nanowire segments, that are opened for
contacting, are passivated in a bath of dilute ammonium polysulfide (NH4)2Sx for removal
of native oxide. The ammonium polysulfide is dilute in water approximately 1:130 and the
passivation takes place for 2 min at 40°C. Immediately after the passivation, the sample
is placed in a vacuum chamber of the evaporator. Thermal evaporation of metals is used
for deposition of contact leads. Typically, the composition of contact leads is 25 nm of Ni
(for making a better contact to the InAs nanowire) with 75 nm of Au on top. After the
evaporation, a lift-off of the resist is carried out in acetone. The remaining resist residues
are ashed away using a complementary oxygen plasma ash for 30 s at 5 mbar pressure.

After fabrication of the contact leads, the next step is the fabrication of the top-heaters.
The nanowires along with the contact leads are covered in approximately 10 nm of hafnium
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Figure 35: Illustration of a fabrication process. The fabrication stats with a Si/SiO2 substrate (light blue) with gold contact pads
(yellow) on top. (a) The resist (dark blue) is spin-coated on the substrate. (b) A pattern in the resist is exposed to
an electron beam. (c) The exposed pattern in the resist is developed. (d) The developed pattern is metallized. (e)
The resist is lifted off leaving the metallized pattern on the substrate. (f) An oxide is deposited covering the pattern
and the contact pads. (g) Openings in the oxide are opened by milling with a focused Ga ion beam. (h) The resist is
spin-coated on the substrate again (i) A new pattern in the resist is exposed to an electron beam. (j) The new pattern
in the resist is developed. (k) The new pattern is metallized. (l) The resist is lifted of leaving a second layer of pattern
on the substrate that insulated form the first layer and making a contact to certain contact pads.

oxide (HfO2) using atomic layer deposition (ALD). This is done to electrically insulate the
contact leads from the heater leads. In order to open a hole in HfO2 for contacting the
bonding pad extensions, the oxide is milled by a focused Ga ion beam. The following steps
repeat the EBL process from the contact lead fabrication, just applied to the fabrication of
the heater leads. The only differences being that no passivation is done and the thickness
of the evaporated Au leads is 100 nm.
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� Nonlinear thermocurrent in a semiconductor quantum dot.
� Excellent agreement with a Master equation based theoretical model.
� Measurements enabled by novel heater architecture for efficient thermal biasing.
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a b s t r a c t

Quantum dots are useful model systems for studying quantum thermoelectric behavior because of their
highly energy-dependent electron transport properties, which are tunable by electrostatic gating. As a
result of this strong energy dependence, the thermoelectric response of quantum dots is expected to be
nonlinear with respect to an applied thermal bias. However, until now this effect has been challenging to
observe because, first, it is experimentally difficult to apply a sufficiently large thermal bias at the na-
noscale and, second, it is difficult to distinguish thermal bias effects from purely temperature-dependent
effects due to overall heating of a device. Here we take advantage of a novel thermal biasing technique
and demonstrate a nonlinear thermoelectric response in a quantum dot which is defined in a hetero-
structured semiconductor nanowire. We also show that a theoretical model based on the Master
equations fully explains the observed nonlinear thermoelectric response given the energy-dependent
transport properties of the quantum dot.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Quantum dots (QDs) are known for their tunable and strongly
energy-dependent electron transport properties, which result in a
nonlinear response to an applied electrical bias VSD. Nonlinear
conductance due to the Coulomb blockade [1] is perhaps the most
well known example of such nonlinear behavior. It is also well
established that the energy-dependent electron transport prop-
erties of QDs strongly influence their thermoelectric behavior
[2,3], which has made them attractive model systems for funda-
mental studies of quantum thermoelectric effects [4–10]. Non-
linear response to an applied thermal bias ΔT, in particular, has
been theoretically investigated in various mesoscopic systems,
including resonant tunneling structures [11,12], multi-terminal
quantum conductors [12–14] and Kondo-correlated devices

[15,16]. For QDs, one can expect that the quasi-discrete resonance
energy spectrum of a QD alone should lead to nonlinear thermo-
electric response [17,18]. This behavior was explored in detail by
Sierra and Sanchez who predicted a strongly nonlinear regime
behavior in QDs when ΔT is about an order of magnitude larger
than the background temperature T0 [19].

In experiments, a nonlinear thermovoltage as a function of
thermal bias ΔT has been observed in semiconductor QDs [3,20,21]
and in molecular junctions [22]. Most recent studies using a tun-
able thermal bias have shown a strongly nonlinear thermovoltage
and thermocurrent in semiconductor nanowire QDs that could not
be fully explained by the energy-dependence of the QD resonance
energy spectrum alone, and was attributed to a renormalization of
resonance energies as a function of heating [18].

The key experimental challenge in the observation of nonlinear
thermoelectric behavior in QDs is the ability to apply a tunable and
large enough thermal bias ΔT across a nanoscale object without
significant overall heating of the device. The latter can prevent the
ability to perform low-temperature experiments, and makes it
difficult to distinguish temperature-dependent transport effects
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from the true nonlinear response to the thermal bias ΔT. Here, we
report measurements of a strongly nonlinear thermocurrent as a
function of ΔT across a QD that is defined by two InP segments
within an InAs nanowire. To a large extent the measurements
presented here were enabled by a recently developed heater ar-
chitecture that allows local and electrically non-invasive thermal
biasing of a nanowire [23]. This architecture enables tuning of ΔT
over a wide range by applying a relatively small heating power,
thus minimizing the parasitic heating effects. We also use theo-
retical calculations based on Master equations to demonstrate that
the experimentally measured thermocurrent can be fully under-
stood from the QD resonance energy spectrum, and is consistent
with the previously presented theory in Ref. [19].

2. Experiment

2.1. Device fabrication

The device consists of a heterostructured InAs/InP nanowire
with a 60 nm diameter (see Fig. 1a) that was grown by chemical
beam epitaxy seeded by a gold particle [24,25]. Based on trans-
mission electron microscopy (TEM) analyses of 11 nanowires from

the same growth, the InAs/InP nanowire (starting from the seed
particle) consists of a 350770 nm InAs segment, followed by a
1771.5 nm long InAs QD defined by two, 473 nm thick, InP
segments, and a second InAs segment of 265760 nm in length.
The remaining nanowire, which is not used in the device, consists
of a 25 nm InP plug incorporated for growth reasons and another
InAs segment.

The nanowire is contacted to metallic source and drain con-
tacts, as illustrated in Fig. 1b. Electrically isolated metallic top-
heaters pass over the source and drain contacts enabling local
dissipation of Joule heat directly on top of the contacts; ensuring
heat transfer to the nanowire. Only the heater on top of the source
contact was used in the experiments presented here. The device
fabrication followed the process developed by Gluschke et al. [23].
In brief, electron-beam lithography (EBL) was used to define a pair
of source and drain contacts centered around the QD and sepa-
rated by 300 nm. A dilute sulfur passivation is performed before
source and drain contacts are deposited on the nanowire [26]. A
10 nm thick layer of HfO2 was deposited via atomic layer deposi-
tion to insulate the metallic contacts from the overlying heaters,
which were aligned and exposed in a second EBL step. Both the
contacts and the heaters were deposited thermally with a metal
stack of 25 nm Ni and 75 nm Au for the contacts and 25 nm Ni and
125 nm Au for the heaters. The heater layer was thicker to ensure
continuity as the heater steps onto the contact region. The entire
device rests on 100 nm of thermally grown SiO2, allowing the
underlying doped Si substrate to be used as a global back gate.

2.2. Electrical characterization

Measurements were conducted in a cryostat in which the es-
timated electron temperature in the device, T0, was below 1 K
without heating. Bias spectroscopy of the device was carried out
using a Stanford Research SRS-830 lock-in amplifier. The voltage
from the oscillation output was reduced using a 1:20,000 voltage
divider circuit to provide a stable AC source–drain bias amplitude
dV V k T e25 /SD B 0= μ ≪ (kB – Boltzmann constant, e – elementary
charge). To measure the differential conductance g dI dV/ SD= as a
function of a DC source–drain bias VSD, the differential current
amplitude, dI, was measured in response to dVSD, while adding the
AC and DC source–drain bias components in a summing box.

To measure Coulomb oscillations (Fig. 2a), a source–drain cur-
rent, ISD, was measured in DC mode using Yokogawa 7651 voltage
source to bias the source lead at 100 mV and a SR570 current
preamplifier with 1 MΩ input impedance.

The set-up used for thermoelectric characterization of the QD
nanowire device is shown in Fig. 1b. A thermal bias, ΔT, was ap-
plied by running a current IH through the heater on top of the
source contact using a Yokogawa 7651 DC voltage source. The
dissipated Joule heat mostly heats the underlying source contact,
but is expected to also create a fractional temperature rise in the
drain contact [23]. The resulting thermocurrent through the QD
nanowire device, Ith, was amplified via the SR570 current
preamplifier.

2.3. Experimental results and discussion

The QD's stability diagram, measured as a function of the
source–drain voltage, VSD, and a back-gate voltage, VG, is shown in
Fig. 1c. The dark diamond-like regions represent bias conditions at
which the conductivity is suppressed due to Coulomb blockade.
From the bias spectroscopy data we estimate a charging energy EC
of 4.070.2 meV, which is a measure of electron–electron interac-
tion strength in the QD. We also determine the value of the cou-
pling constant 0.042 0.04Gα = ± , which characterizes the capacitive
coupling strength between the QD and the back-gate electrode.

Fig. 1. (a) Transmission electron microscope image of a nanowire nominally
identical to the one used in our thermoelectric device. (b) Device schematic with
circuitry diagram for the Ith measurement setup. The source and drain contacts in
yellow, top-heaters in orange, InAs/InP nanowire in green, quantum dot in light
green. The heater over the drain lead is unused. (c) Stability diagram of the InAs
quantum dot. Magnitude of differential conductivity, dI dV g/ SD = , in log10-scale as
a function of back-gate bias, VG, and source–drain bias, VSD. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 2b shows Ith as a function of VG. The data confirms that our
device's thermoelectric response is typical for QDs [2,18,27],
where Ith goes to zero and changes direction at those VG values
where the Coulomb peaks in Fig. 2a are centered. The locations of
these thermocurrent zeros do not depend on the heating current,
as can be seen in Fig. 2c, which shows Ith as a function of VG and IH.
This independence of the Ith zeros from IH is in contrast to previous
studies [18], where the nonlinear behavior of Ith was strongly in-
fluenced by a heating dependent renormalization (shift) of the
resonance energies of the QD. The stability of the resonances in
the present study is attributed to the benefits of the top-heater
architecture where a higher ΔT can be applied with much less
overall background heating of the device [23].

The core observation of our experiments is the strongly non-
linear behavior of the thermocurrent as a function of ΔT. This
nonlinearity is clearly apparent in Fig. 2d where several back-gate
voltage traces, taken from the data in the Fig. 2c, are plotted as a
function of IH.

Several key features can be identified in the observed nonlinear
behavior of Ith, all of which can be understood in terms of the QD's
resonance energy spectrum at different thermal biases. In the
following we base our discussion on Ref. [19] and use phenom-
enological sketches of a QD resonance spectrum and Fermi-Dirac
distributions in the leads to illustrate how the increase in ΔT can
lead to nonlinear effects (Fig. 3). The currents Iε1 and Iε2 in Fig. 3b
combine to give the overall thermocurrent Ith through the QD.

First, we observe that the IH at which Ith starts to rapidly in-
crease depends on VG (Fig. 2d). As shown in sketch A in Fig. 3a, this
behavior can be understood based on the energy of the QD re-
sonances, ε1 and ε2. Until the temperature on the hot side reaches
a certain value, there is no net current because the electronic
states at energies ε1 and ε2 in both leads are equally occupied-

Fig. 2. (a) Coulomb oscillations in source–drain current ISD as a function of back-gate voltage VG, with the source potential set to 100 μV. (b) Thermocurrent, Ith, as a function
of back-gate bias for different heater currents I 0, 0.35, 0.70, 1.06, 1.41, 3.17 mAH = ( ). (c) Thermocurrent (color) as a function of back-gate voltage, VG, and heating
current IH. Arrows along the top correspond to VG values for traces in (d) as indicated by their color. (d) Thermocurrent as a function of heating current IH for different VG

values 0.165, 0.154, 0.141, 0.131, 0.115, 0.101, 0.085 V( − − − − − − − ) taken from data in (c). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. (a) Schematic representation of electron distribution in source (red) and
drain (blue) leads when the thermal bias is (A) k T E/ 0.02B H CΔ = , (B) k T E/ 0.1B H CΔ =
and (C) k T E/ 0.3B H CΔ = . Current direction through resonances of a quantum dot is
indicated with arrows. Electron energy increases up the vertical axis. (b) Simulated
thermocurrent as a function of thermal bias for the back-gate voltage
e V E/ 0.24G G Cα = (black). Brown curves are thermocurrent contributions through
each resonance of the quantum dot. See Fig. 4 for simulation parameters and
Section 3.2 for a detailed description. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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either completely full or completely empty. This is reflected in
point A in Fig. 3b.

The second interesting experimental feature in Fig. 2d is the
nonlinear increase of Ith, as a function of thermal bias. Sketch B in
Fig. 3a illustrates how increased heating on the source side leads
to a misbalance of the electronic state occupancy in the leads at ε1.
This misbalance leads to a net current as indicated by an arrow in
the sketch and by point B in Fig. 3b. Thus, the origin of the non-
linear increase in Ith is the nonlinear change of the electronic state
occupancy in the leads due to heating.

Finally, Ith tends to decrease at higher IH. Ref. [19] predicts such
behavior due to an increasing backflow of electrons at large thermal
bias values T T/ 100(Δ ≥ ). We believe that the same is true for Ith in
our experiment, except we expect that we also parasitically heat the
drain lead when aiming for high ΔT. Sketch C in Fig. 3a illustrates that
the major current contribution, Iε1, is still provided by the electron
transport through ε1, however, the thermally excited electrons on the
source side also leak back through ε2, thus contributing to the de-
crease in Ith. We note that any decrease of the current through ε1 in
the sketch is, in fact, caused by the overall increase in temperature;
e.g. slight heating of the drain. However, the backflow of electrons
through ε2 is caused purely by the thermal bias.

3. Theory

3.1. Model description

We model electron transport through the InAs/InP nanowire by
considering a QD which is tunnel-coupled to two electron re-
servoirs (source and drain leads). Following the experimental
setup showed in Fig. 1b the QD is considered in series with a re-
sistive load R to model the input impedance of the current pre-
amplifier. The source and drain leads are characterized by their
electrochemical potentials, u E eVS F S= − and u E eVD F D= − , where
EF is Fermi energy, and their temperatures, TS and TD. Electrons in
the leads are assumed to occupy states according to the Fermi-
Dirac distribution f E E u k T1 exp /r r B r

1( ) = { + [( − ) ( )]}− and the
density of states in the leads is assumed to be a constant. The QD is
capacitively coupled to the leads with capacitances CS and CD, and
to the global back-gate with a capacitance CG, giving rise to a
charging energy E e C C C/C S D G

2= ( + + ). In order to model re-
sonance energies we consider a QD in which adding the Nth

electron changes its state from i to f and that has an electro-
chemical potential of the form

N E e V1 .fi fi C
r G S D

r r
, ,

∑μ ϵ α= + ( − ) −
=

Here fiϵ is energy of the single-electron orbital in which the
electron is added and C C C C/r r S D Gα = ( + + ) are dimensionless
coupling constants. We label the probability of the fth state to be
occupied pf. Steady-state probabilities for each state occupancy can
be represented by a vector P and are found using the Master
equation for a stationary case

WP 0.=

Here W is a matrix with elements Wfi given by
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where S in,Γ , D in,Γ , S out,Γ and D out,Γ are matrices containing tunnel
rates for single electron tunneling in or out of the QD, involving
source or drain leads. Here non-diagonal matrix elements Wfi

express physical rates at which the QD changes its state from i to f.
Probability normalization requires that the sum of all occupancy
probabilities pf must be 1.

The current ISD through the QD is then found by adding up
current contributions from all possible QD states given the calcu-
lated steady state occupancies pf

I e p f f1 .SD
i f

f fi
S in

S fi fi
S out

S fi
,

, ,∑ μ μ= − {Γ ( ) − Γ [ − ( )]}

In order to calculate the current ISD through the circuit with the
QD and the load R in series, a bias value on the drain side VD is
calculated self-consistently using the Ohms law V I RD SD= .

For the purpose of comparing with our experimental results it
is sufficient to consider a QD with only one single electron orbital,
in which N can take values 0, 1 or 2. Including electron spin this
gives four possible QD states i, f¼{ 0, ↑, ↓, ↑↓ }. In this case, the
phenomenological resonance energies ε1 and ε2 discussed in the
experimental section (Fig. 3) thus correspond to the electro-
chemical potentials 0 1μ ε=σ and 2μ ε=σ↑↓ , with σ=↑, ↓. For quali-
tative comparison with experiment we consider the tunnel-bar-
riers to be identical and characterized by a constant tunnel rate Γ.

3.2. Simulation results

We now calculate the thermocurrent as a function of tempera-
ture in source and drain leads. Since in our experiment the source
lead is heated, we label the source temperature T T T TS H H0= = + Δ
and the drain temperature T T T TD C C0= = + Δ . In simulations the
base temperature T0 is chosen such that k T E/ 0.01B C0 = , which is
close to the experimental value. Because in the experiments the
drain lead is also expected to be somewhat heated we assume

T T /3C HΔ = Δ . The ratio between ΔTH and ΔTC is chosen to obtain a
qualitative agreement with the experimental data, but the precise
value is not important for the discussed physics.

In Fig. 4 we sum up our thermocurrent simulation results.
Thermocurrent as a function of the back-gate voltage for different
thermal bias values is shown in Fig. 4a (compare with the corre-
sponding experimental data in Fig. 2b). Similarly, we plot the si-
mulated thermocurrent as a function of the thermal bias for dif-
ferent back-gate voltage values in Fig. 4b. The dimensionless range
of thermal bias shown is chosen based on the similarity to Fig. 2d.
Finally, the color plot in Fig. 4c is produced using the ranges of the
electrochemical potential and the thermal bias used in Fig. 4a and b,
and closely matches the experimental result shown in Fig. 2c.

According to our simulations, the source–drain bias VSD that
develops across the QD due to the series load at peak thermo-
currents is estimated to be below 70.04 E e/C and therefore does
not significantly influence the behavior of the thermocurrent. Note
that it is very challenging to measure the temperature in the leads
leading up to the QD directly and this was not attempted in the
experiment. However, given the qualitative agreement between
the experimental thermocurrent data in Fig. 2 and the simulated
thermocurrent in Fig. 4, one can conclude that the relation be-
tween IH and ΔT must be close to linear. Moreover, the agreement
also suggests that 1 mA of IH gives rise to a thermal bias ΔT of
several Kelvin between the source and drain leads.

4. Conclusions

In summary, we have reported measurements of a strongly
nonlinear thermocurrent in a QD. By comparing our measurements
to simulation results, we show that the nonlinear behavior can be
fully explained in terms of the QD's energy-dependent transport
properties [19]. This is in contrast to earlier experiments [18] where
this behavior was masked by effects that can also be explained by
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the overall heating of the device. Our results were enabled by use of
a novel heating technique [23] that allows the application of very
large ΔT across a nanoscale device with minimal overall heating of
the sample space, even at low temperatures. The ability demon-
strated here opens a wide range of quantum thermoelectric ex-
periments in mesoscopic systems.
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Cyclical heat engines are a paradigm of classical thermo-
dynamics, but are impractical for miniaturization because 
they rely on moving parts. A more recent concept is parti-
cle-exchange (PE) heat engines, which uses energy filtering 
to control a thermally driven particle flow between two heat 
reservoirs1,2. As they do not require moving parts and can be 
realized in solid-state materials, they are suitable for low-
power applications and miniaturization. It was predicted that 
PE engines could reach the same thermodynamically ideal 
efficiency limits as those accessible to cyclical engines3–6, but 
this prediction has not been verified experimentally. Here, 
we demonstrate a PE heat engine based on a quantum dot 
(QD) embedded into a semiconductor nanowire. We directly 
measure the engine’s steady-state electric power output and 
combine it with the calculated electronic heat flow to deter-
mine the electronic efficiency η. We find that at the maximum 
power conditions, η is in agreement with the Curzon–Ahlborn 
efficiency6–9 and that the overall maximum η is in excess of 
70% of the Carnot efficiency while maintaining a finite power 
output. Our results demonstrate that thermoelectric power 
conversion can, in principle, be achieved close to the thermo-
dynamic limits, with direct relevance for future hot-carrier 
photovoltaics10, on-chip coolers or energy harvesters for 
quantum technologies.

Traditional closed-cycle heat engines are based on an enclosed 
working medium that exchanges heat, but not particles, with hot 
and cold thermal reservoirs at temperatures TH and TC, respec-
tively. The engines’ thermal efficiency is bounded by the funda-
mental Carnot limit ηC =  (TH–TC)/TH (ref. 11). In practice, however, 
the goal is usually to optimize the efficiency at a maximum power: 
that is, to operate near the lower Curzon–Ahlborn efficiency 
η = − ∕T T1CA C H  (ref. 7). The best Stirling engines, for example, 
reach thermal efficiencies slightly above 0.5ηC (ref. 12), comparable 
to the ηCA (Supplementary Section A).

A drawback of cyclical engines is that they require moving parts, 
which severely limits low-power applications, for example, in sen-
sors or wearables. By contrast, PE heat engines2 require no moving 
elements as they operate by exchanging particles (for example, pho-
tons1 or electrons4) between two heat reservoirs. Theory predicts 
that PE heat engines can be operated near ηC provided that, first, 
the energy at which particles are exchanged between reservoirs is 
limited to an energy band much narrower than kTH (refs 3,5,13) and, 
second, that said energy is adjusted such that the particle transfer 
produces no entropy1–4,8. These conditions describe an ideal solid-
state thermoelectric system3,5.

One way to achieve the required energy filtering in the solid 
state is to use a QD that is tunnel-coupled to two electron reser-
voirs5,14. Single-electron orbital states that act as energetically sharp 
transmission channels (resonances) for electrons at energy ε0 can 
be used as energy filters. According to theory, by adjusting ε0 one 
can operate the system either near ηC (refs 4,14) or near ηCA (ref. 15). 
Experimentally, there has been significant progress in the study of 
the thermoelectric properties of QDs16,17 and QD-based solid-state 
cooling devices18. However, predictions about the achievable effi-
ciencies in PE heat engines have not been experimentally inves-
tigated before as it is a challenge to fulfil all the requirements for 
quantitative tests simultaneously: an accurate reservoir thermom-
etry, tunable and electrically non-invasive reservoir heating and a 
QD that approximates an ideal energy filter.

In this work we explore whether it is possible to reach ηC and 
ηCA in PE heat engines based on QDs formed by thin InP seg-
ments embedded into InAs nanowires (Fig. 1a), as proposed pre-
viously14. This system offers small and electrostatically stable QDs 
defined with atomic precision19 and makes use of well-established 
device-fabrication techniques. The energy width of the resonance 
is determined by the tunnel rates Γ across the InP segments, and an 
electrostatic gate can be used to control the resonance energy.

The operation principle of our PE heat engine is illustrated in 
Fig. 1b. The resonance energy ε0 is positioned relative to the chemi-
cal potentials of the electron reservoirs, μC and μH, such that elec-
tronic state occupancy at ε0 is higher in the hot (red) reservoir than 
in the cold (blue) reservoir. In this configuration, the temperature 
difference ∆ T =  (TH – TC) can drive an electric current I against an 
electrical potential difference V = (μC – μH)/e (ref. 4). In the limit 
ℏΓ →  0, electrons are transferred only at ε0. Each transferred elec-
tron then produces electric work (eV) at the cost of removing heat 
QH =  ε0 – μH from the hot reservoir and depositing QC =  ε0 – μC in the 
cold reservoir. For finite Γ, this coupling between charge and heat is 
no longer exact because of a finite resonance width and effects such 
as co-tunnelling20, thus resulting in an increased heat flow. Also, the 
existence of a well-defined resonance energy ε0 requires the single-
particle level spacing to be much larger than kTH to avoid transport 
through the excited states of the QD.

In the presence of a load R in series with the QD (Fig. 1c) and 
zero external bias Vext, the circuit self-consistently satisfies the relation 
V =  –IthR, where Ith = I(Vext =  0) is the thermocurrent. The thermoelec-
trically produced power in the steady state is Pth =  –IthV = Ith

2R and the 
electronic efficiency is η =  Pth/JQ, where JQ is the electronic heat flow 
that leaves the hot reservoir through the QD. We emphasize that Pth 
and η depend on R, which can thus be used to optimize either Pth or η.

A quantum-dot heat engine operating close  
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Martin Josefsson   1,2, Artis Svilans1,2, Adam M. Burke   1, Eric A. Hoffmann1, Sofia Fahlvik1,  
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Our experimental device consisted of an InAs/InP nanowire 
QD in contact with metallic leads, as shown in Fig. 1d. We used 
top heaters21 for the effective thermal biasing of the QD. The dif-
ferential conductance dI/dVext =  G of the QD as a function of  
VG and Vext shows that the QD had a well-defined resonance located at  
VG ≈  0.13 V, as indicated by the intersecting G lines at Vext =  0 V (Fig. 2a).  
This resonance was separated from others by the QD’s charging 
energy of 4.9 meV, which is much larger than kTH = 0.17 meV at 
the highest electronic temperature used in the experiment, T = 2 K. 
No transport via excited states is evident (Fig. 2a). All the results 
discussed in the following were obtained using only this resonance 
as the energy filter. Data from additional devices are presented in 
Supplementary Section B.

To estimate the engine’s efficiency, we calculated the heat flow JQ 
based on experimentally determined parameters. This task required 
a theoretical description that includes full non-linear effects, large 
electron–electron interactions (Coulomb blockade) and goes 
beyond the sequential-tunnelling approximation generally used for 
small Γ. Our theoretical approach used the real-time diagrammatic 
(RTD) technique to expand the Liouville equation for the density 
matrix in Γ and solved the generalized master equations22–24 that 
resulted for a single spin-degenerate energy level. We included all 
contributions to the current up to order Γ2, which includes co-tun-
nelling, level broadening and energy renormalization processes. We 

accounted for R by solving the self-consistent equation for V across 
the QD (Supplementary Section C).

Our analysis of the PE heat-engine performance was based pri-
marily on current measurements that allowed for the accurate deter-
mination of Γ, TH and TC (Fig. 2b–d). We determined Γ by fitting 
the RTD theory to the measured peak in G(Vext =  0) as a function of 
VG with ∆ T =  0 (Fig. 2b). In total, four independent measurements 
were performed at elevated temperatures of around 0.5 and 1.0 K to 
ensure that kT » ℏΓ, a required condition for the validity of our the-
ory. We assumed equal tunnelling rates across both InP segments, 
which yielded Γ values in the range 8.3–9.3 GHz (Supplementary 
Sections D and E give details). For further analysis, we used the 
average value Γ =  8.9 GHz (ℏΓ =  5.9 μ eV).

We determined TH and TC by measuring Ith(VG) as a response to 
an applied heater bias Vheat (Fig. 2c). The amplitude of Ith is sensitive 
to TH and TC, and characteristically reverses direction at the reso-
nance (VG ≈  0.13 V)17. Using TH and TC as free parameters, we found 
excellent fits of the RTD theory (black lines in Fig. 2c) to the exper-
imental data points, and observed an approximately linear increase 
of TH and TC with Vheat (Fig. 2d) (Supplementary Section D).  
Note that the positive and negative Ith peak amplitudes are not the 
same, which is correctly reproduced by our theory. This asymme-
try is due to electron–electron interactions in the spin-degenerate 
QD orbital at ε0.
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Fig. 1 | Experimental device and its operational principle. a, Scanning transmission electron microscopy with a high-angle annular dark field (STEM-
HAADF) image of a representative InAs/InP/InAs/InP/InAs heterostructured nanowire from the same growth as the nanowires in the devices. Methods 
gives details on the nanowire dimensions. b, Illustration of a QD-based PE heat engine with resonance energy ɛ0. The QD is tunnel-coupled (rate Γ) to 
hot and cold electron reservoirs with Fermi distributions characterized by TH, μH and TC, μC, respectively. An electron that traverses the QD at energy ε0 
removes heat QH from the hot reservoir, converts part of it into useful work, eV, and deposits the remaining part as heat, QC, in the cold reservoir. c, The 
circuit used for thermoelectric characterization features a tunable resistor R (this also includes a 10 kΩ  input impedance of the current preamplifier and a 
4.5 kΩ  resistance of the RC filters (not shown)), a current preamplifier and a voltage source Vext. A separate voltage source, Vheat =  VL

heat – VR
heat is applied in 

a push–pull configuration for running a current through a heater that is electrically decoupled from the hot electron reservoir. d, False-coloured SEM image 
of a nominally identical device to the one used in the experiment. Metallic leads (yellow) make contact to the nanowire (green). Heaters (blue and red) 
run over the contact leads and are insulated from them by a layer of high-k oxide. One of the heaters (red) is used in the experiment for thermal biasing, 
and the other (blue) is unused. The resulting Δ T = TH – TC is set by the temperature profile of the phonon bath.
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Unlike the measured Pth, the calculated heat flow JQ does not go 
to zero at the Ith reversal point (Fig. 3a,b). This is because the tun-
nelling effects of second order in Γ effectively decouple the charge 
current from the heat current, which also reduces the maximum 
achievable efficiency for the PE heat engine. Such effects could be 
pictured as contrapropagating charges at slightly different energies 
that results in a JQ with no net Ith.

By varying ε0, we were able to optimize either Pth or η at each 
given load R (Fig. 3c). The maximum η was achieved between the 
peak and the reversal point of Ith (black symbols in Fig. 3). However, 
fluctuations in Ith led to a significant scatter of the data points in 
this range and we therefore focused on the maximum Pth at each R,  
denoted Pmax, for which the signal-to-noise ratio was better. We 
found that Pmax peaked in the R range between 0.7 and 1.5 MΩ ,  
depending on the Vheat used, but this value will, in general, also 
depend on Γ (Fig. 4a). We note that no simple analytic expression 
exists for the optimal R for the maximum power production15.

We denote the estimated η at Pmax as ηPmax
. We found ηPmax

 ≈  ηCA for 
the R that produces the overall maximum Pmax (Fig. 4b), which con-
firms theoretical predictions9,13,15. Optimizing R for maximal ηPmax

 
yielded efficiencies in excess of 0.7ηC but still maintained a finite 
steady-state power output, roughly equal to one-half of the overall 
maximum power for the same Vheat (Fig. 4b). Deviations between the 
data points and the RTD theory curves for ηPmax

 in Fig. 4b originate 

from the measured Pmax being slightly higher than that predicted in 
theory. Note that the sign and magnitude of the underlying devia-
tions in the Ith peak values are consistent with a small thermoelectric 
effect in the contact leads, which our model does not account for.

Our results demonstrate an electronic efficiency at a finite power 
output in excess of 70% of the Carnot limit, comparable to tradi-
tional cyclical heat engines (Supplementary Section A), and they 
confirm that QDs can be operated close to the Curzon–Ahlborn effi-
ciency at maximum power. We achieved this by combining the use 
of high-quality, epitaxially defined QDs with a novel technique for 
non-invasive thermal biasing in immediate proximity to the QD21, 
and by directly measuring the power produced by the QD as a func-
tion of an external load R. To determine the electronic heat flow, and 
thus the efficiency, we used a theory that includes electron–electron 
interactions (Coulomb blockade), full non-linear effects and higher-
order tunnelling. The reliability of the model is validated by its agree-
ment with the experimental data (Supplementary Section D.III). In 
future work it would be desirable to measure the heat flow directly—
a difficult task in a QD heat engine under operating conditions that 
is subject to both electrical and thermal biases at the same time.

Our experiment approximates ‘the best thermoelectric’3 by 
realizing a system in which particle exchange between heat baths 
takes place only within a very narrow energy window. Our analy-
sis is limited to electronic thermal reservoirs and does not consider 
phonon-mediated heat flow, which is a parasitic effect that reduces 
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the efficiency25. Nevertheless, our results are directly applicable to 
emerging non-equilibrium devices, such as hot-carrier solar cells, 
that seek to harvest thermal energy stored by photogenerated carri-
ers that are out of thermal equilibrium with phonons10,26.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41565-018-0200-5.
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Methods
Device specifications. The QDs in this study are defined in axially 
heterostructured InAs/InP nanowires19 (Fig. 1b) grown by chemical beam epitaxy 
using gold nanoparticles as catalysts27,28. From the analyses of the transmission 
electron microscopy images of 11 nanowires from the same growth we found that, 
on average, the diameter of the nanowires was 60 nm, the thickness of the thin 
InP segments that defined the tunnel junctions was 4 ±  3 nm and the length of the 
InAs QD segment was 17 ±  1.5 nm. The outer InAs segments usable for contacting 
the nanowire were 350 ±  70 nm and 265 ±  60 nm long. The device fabrication 
procedure was identical to that reported previously21, with the only difference 
being that Ti (instead of Ni) was used for the electrode adhesion layers. A key 
element in this architecture is the so-called top heater21, that is, heaters fabricated 
directly on top of the contact leads rather than next to them or using the contact 
leads themselves as heaters17. This geometry allowed us to combine two important 
features of nanoscale heaters—a higher thermal bias Δ T with little overall heating 
of the device and the cryostat, and an electrically non-invasive thermal biasing that 
allows for the easy tuning of Δ T. As Ith roughly scales with Δ T, a large Δ T improves 
the signal-to-noise ratio of Ith.

Measurements. The experiment was carried out in a Triton 200 dilution 
refrigerator with resistor–capacitor (RC) cold-filtering at 3.5 K and a cut-off 
frequency of 300 Hz. All the measurements were performed with d.c. using 
Yokogawa 7651 voltage sources for the electrical biasing of the QD contacts, the 
top heater and the global back gate. A Femto DLPCA-200 low-noise current 
preamplifier with an input impedance of 10 kΩ  (at the gain mode of 1 nA V–1) was 
used to measure the current through the QD. Due to changes in the virtual ground 
potential of the DLPCA-200 (of the order of 10 μ V), whenever the measurement 
circuit was reconfigured (for example, when changing R and/or grounding and 

ungrounding the sample) a more accurate value of the Vext zero bias point was 
determined using I(VG) of the QD’s conductance peak as a probe. We used a Femto 
DLPVA voltage preamplifier to record voltage V (voltage across the QD with the 
RC filter in series) simultaneously with all the Ith measurements. This allowed us 
to characterize drifts in the applied Vext that were smaller than ± 1 μ V over a period 
of a single Ith measurement trace. Before and after the Ith measurements at each 
Vheat (at every R), four additional measurements of V(VG) and I(VG) with Vheat =  0 V 
were performed. This allowed us to ensure that the overall Vext drift was less than 
± 2 μ V within the measurement sessions at each R. The V(VG) data (recorded 
simultaneously with all the Ith(VG) measurements) also gave us a consistent set of 
redundant data with higher noise levels. Due to the filter resistance (4.5 kΩ ) of the 
refrigerator measurement lines, electrical biasing of the top heater was done by 
setting the two potentials VL

heat and VR
heat (see Fig. 1d) on both ends such that the 

potential of the heater at the device level remained closer to the ground potential  
to avoid unwanted gating of the QD (the first part of Supplementary Section  
D gives more details). The heater current is approximately (VL

heat – VR
heat)/4.5 kΩ .

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon  
reasonable request.
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A. Heat engines at various scales 
 
The key results from our work are that (i) we achieve a thermal-to-electric energy conversion 

efficiency (for electrons) in excess of 70% of the Carnot efficiency, and (ii) an efficiency at maximum 

power of about the Curzon-Ahlborn efficiency. These are the first tests of the performance limit of 

particle-exchange heat engines. To place our results into context, in this section we offer an overview 

of the efficiencies achieved in other systems. 

 

Power plants. As conveniently summarized in a table by M. Esposito et al. [1] efficiencies for large 

scale power plants built already decades ago achieved overall efficiencies in the 40% range and 

correspond to up to 70% of Carnot efficiency. Currently the most efficient heat engine technology is 

realized in so called combined cycle power plants where the waste heat, produced as a by-product of 

the gas turbine burning gas at high temperature, is captured and used for boiling water and running 

another steam turbine. According to a recent review [2] such plants can reach up to 61% overall 

efficiency and with a simple estimated gas entry temperature (also from Ref. 2) of 1600 °C and 

ambient temperature of 20 °C, this gives a Carnot efficiency of 84.4 % and the plant efficiency at 

72.3% of the Carnot efficiency.  

 

Stirling engines. An example of recent developments in Stirling engine technology is NASA’s 

Advanced Stirling Radioisotope Generator program where Advanced Stirling Convertors are 

developed for integration with General Purpose Heat Sources for generation of electric power [3]. The 

report (Ref. 3) refers to earlier achievements reported in 2007 when 88 W of AC electric power was 

achieved with a total efficiency of 38% using 850 °C heater and 90 °C cooler temperatures, which puts 

it at 56.1% of the Carnot efficiency. 

 

Thermoelectric materials. The highest figure of merit ZT to date reported for bulk thermoelectric 

materials (SnSe crystals at 650 °C) is 2.6 [4]. Assuming ZT remains at 2.6 when operating between 

baths at temperatures 650 °C and 23 °C would theoretically allow achieving an overall efficiency of 

27.3%, that is 40.4% of Carnot efficiency. Whereas this is significantly lower than the efficiency of 

existing combined cycle power plants [2] and Stirling engines [3], thermoelectric materials are more 

suitable for generating small amounts of power [5,6], for example for wearables [7] and self-powered 

sensors in general [8]. 

 

Quantum dot based cooling devices. The possibility to use energy-selective electron transport through 

QDs for cryogenic cooling was first proposed in Ref. 9, recognizing the potential for high efficiency. 

Experimentally, cryogenic cooling of an electron gas has been realized using the peaked 

superconducting density of states in superconducting-insulator-normal metal tunnel-junctions [10], 

using charging effects [11], using QDs [12], and using a single electron transistor (similar to a QD) 

[13]. However, the electronic efficiency of such devices has to date not been tested. 

 

 



B.  Reproducibility – additional devices 

 

The data presented in the main text are all based on a single QD device, using a single resonance. This 

device was chosen because it had very good quality, a value of  that allowed reaching high efficiency 

and because we managed to collect the most comprehensive data, including a large range of load 

resistances that included loads optimized for maximum power production and for maximum 

efficiency.  

 

The experiments have however been performed on several devices, often using more than one 

resonance per device. Data on other devices include QDs with stronger as well as weaker tunnel 

couplings compared with the one in the main text. Fits of the RTD theory to the measured data in 

order to obtain and TC,H were performed for each one of them. The data also includes examples of 

two energetically close resonances characterized together. Below follows a summary of the other 

devices used in similar experiments. For every device, the same assumptions regarding  were made 

as described in the main text (see Supplemental section D). All nanowires used in fabrication of 

devices described in this material come from the same growth. 

 

The results from all devices are consistent with the findings presented in the main text. In particular, 

we show parametric loop graphs for two resonances from device I, which show results consistent with 

those presented in Fig. 4 of the main text, albeit not for the full range of R. 

 

I. Device I 

 
Two separate resonances were characterized for Device I. Measurements of Ith on Resonance 1 were 

done using loads values R = 1, 2, 3, 3.4, 4, 5, 5.4, 6, 7, 7.4, 8 and 9.4 MΩ. As the Γ value for 

Resonance 2 was found to be much smaller than for any other resonance we measured, the 

measurements of Ith on the Resonance 2 were done using higher loads R = 19.5, 34.4, 44.5, 56.7 and 

68.9 MΩ. G peaks for both resonances were characterized before and after Ith measurements. The total 

heater circuit resistance was ≈ 0.6 kΩ such that a relatively high Vheat was needed. A typical problem 

when measuring this device, particularly for resonance 2, was a drifting Vext which made it harder to 

ensure zero electrical bias of the device. Therefore, measurements of I(VG) with Vheat = 0 mV were 

taken between each Vheat setting. The nonzero Vext showed up in the I(VG) traces as small G peaks, the 

magnitude of which was used to estimate a more exact Vext value by fitting it to the RTD theory. The 

existence of an external bias, Vext, also means that the dissipated power in the load is not equal to the 

produced power of the QD heat engine. Thus, we choose to investigate the engine’s effective power, –

IVQD = I(RI + Vext), and maximum effective power, Imax(RImax + Vext), instead. 

 

                        
 
Supplementary Fig. 1: SEM images of Device I after the measurements (also used in the main text). a Tilted view image 

with false colours, b top view. Both: The two parallel metallic (gold) strips, deposited on the substrate oxide, were used as 

source and drain contact leads. Heater leads are running on top of the source and drain contact leads. Only one of the heaters 

(coloured in red) was functional at the time of the measurements and was used for thermal biasing, while the other (blue) was 

not contacted.  

1 µm 

a b 



 

 
Supplementary Fig. 2: Characterization of resonance 1. a Differential conductance G = dI/dVext as a function of VG and 

Vext of Device I, resonance 1. G data is used to determine EC = 4.4 meV and αG = 0.032. b The measured G as a function of 

ΔVG (red dots) for the G peak (at VG = -3.617 V), characterized before and after the Ith measurements. Fit to the RTD theory 

of the G peak (black lines) yielding Γ values as indicated in the figure. c Measured Ith as a function of VG (red dots) for four 

Vheat settings using transport through the same resonance as characterized in b. All four measurements use R = 2 MΩ. The 

corresponding fits of the RTD theory (black curves) use Γ = 2.27 GHz, αG = 0.032 and small offset Vext, as obtained from G 

peaks at Vheat = 0 mV (values indicated in the figure). The values for TH and TC obtained from the fits are indicated in the 

figure together with the corresponding Vheat settings. d Measured Ith (red dots) for four different R values (as indicated in the 

figure) using the same device and Vheat = 150 mV. The small offset Vext, was obtained from G peaks at Vheat = 0 mV (values 

indicated in the figure). e Measured (markers) and calculated (solid line) maximum effective power, -VQDImax = 

Imax(RImax+Vext), plotted against the external load. Vext is obtained from G peaks at Vheat = 0 mV. f Parametric plot of 

maximum effective power, -VQDImax = Imax(RImax+Vext), and efficiency at maximum effective power when varying the external 

load. The arrow indicates the direction of increasing load and the dashed line shows the Curzon-Ahlborn efficiency, CA ≈ 

0.57C. 



 
Supplementary Fig. 3: Characterization of resonance 2. a The measured G as a function of ΔVG (red dots) for the G peak 

(at VG = -5.462 V) of Device I, resonance 2. This characterization was done after the Ith measurements. αG = 0.05 is obtained 

from characterization of Coulomb blockade peaks at finite Vext. Fit of the RTD theory to the measured G peak (black lines) 

yielding Γ values 165 and 170 MHz (before the Ith measurements), 132 and 148 MHz (after the Ith measurements) giving an 

average of 154 MHz. b Measured Ith as a function of VG (red dots) for four Vheat settings using transport through the same 

resonance as characterized in a. All four measurements use R = 45.5 MΩ. The corresponding fits of the RTD theory (black 

curves) use Γ = 154 MHz, αG = 0.05. The values for TH and TC obtained from the fits are indicated in the figure together with 

the corresponding Vheat settings. c Measured Ith (red dots) for four different R values (as indicated in the figure) using the 

same device and Vheat = 125 mV. d Measured (markers) and calculated (solid line) maximum power plotted against external 

load with Vheat as indicated in the figure. e Parametric plot showing efficiency at maximum power and maximum power when 

the external load is varied. The solid line represents the theoretical predictions and markers the experimental values. The 

arrow indicates direction of increasing load and the dashed line shows the Curzon-Ahlborn efficiency, CA ≈ 0.58C. 

 



II. Device II  

A set of two resonances was characterized during the measurements on Device II. Several load values 

were used (R = 0.01, 0.5, 1, 2, 4, 6, 8, 10 MΩ). It can be seen from Fig. S5b that both resonances were 

likely featuring slightly different tunnelling rates, which lowers the quality of the RTD theory fits to 

Ith, Fig. S5c-d, where the average rate of Γ  = 19.22 GHz was used. To achieve a comparable thermal 

bias, a relatively large heater bias Vheat was needed because of a relatively high heater circuit total 

resistance ≈ 1.1 kΩ. 

 
 
Supplementary Fig. 4: SEM image of Device II. The device was damaged in the process of preparing for imaging. The two 

metallic (gold) strips, deposited on the substrate oxide, were source and drain contact leads. Heater leads are running on top 

of the source and drain contact leads. Only one of the heaters was functional at the time of the measurements and was used 

for thermal biasing, the other featured a leak to the back-gate and was kept ungrounded. A shadow-like area was left between 

the two contact leads where the nanowire containing the QD used to be located. 
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Supplementary Fig. 5: Characterization of device II. a Differential conductance G = dI/dVext as a function of VG and Vext 

of Device II. G data is used to determine EC = 3.9 meV and αG = 0.048. b The measured G as a function of ΔVG (red dots) for 

two neighbouring G peaks (at VG = 0.430 V and VG = 0.347 V), characterized before the Ith measurements. Fits of the RTD 

theory to the peaks (black lines) yielding Γ values, as indicated in the figure. c Measured Ith as a function of VG (red dots) for 

three Vheat settings using transport through the same resonances as characterized in b. All three measurements use R = 2 MΩ. 

The corresponding fits of the RTD theory (black curves) use Γ = 19.22 GHz and αG = 0.048. The values for TH and TC 

obtained from the fits are indicated in the figure together with the corresponding Vheat settings. d Measured Ith (red dots) for 

three different R values (as indicated in the figure) using the same device and Vheat 400 mV. 

III. Device III  
 

All measurements on this device were done with R = 1 MΩ which was the input impedance of the 

current preamplifier SR570. A set of two resonances is characterized twice. Slight charge 

rearrangements in the device lead to the resonances being shifted in VG as well as to slight changes in 

tunnelling rates Γ. Data from this device is published in Ref.14 without the quantitative analyses of the 

temperatures and tunnelling rates. The total resistance of the heater circuit was ≈ 115 Ω. 

 

            
 
Supplementary Fig. 6: SEM images of Device III. Tilted-view SEM images of Device III after the measurements. The 

device was damaged in the process of preparing for imaging. The two parallel metallic (gold) strips, positioned on the 

substrate oxide perpendicular to the nanowire, were source train contact leads. Running on top of the source and drain contact 

leads are the heater leads. Both heaters were functioning at the time of the measurements. Visible in the right-hand picture is 

a shadow-like area that was left between the two contact leads where the QD-containing nanowire used to be located before it 

was unintentionally blown away after the experiments, likely by some electrostatic shock. 

 

    
Supplementary Fig. 7: Characterization 1 of device III. a The measured G as a function of ΔVG (red dots) for two 

neighbouring G peaks (at VG = -0.174 V and VG = -0.070V) of Device III. Fits of the RTD theory to the measured peaks 

(black lines) yielding similar Γ values, as indicated in the figure. αG = 0.050 is obtained from characterization of Coulomb 

blockade at finite Vext. b Measured Ith as a function of VG (red dots) for four Vheat settings using transport through the same 

resonances as characterized in a. The corresponding fits of the RTD theory (black curves) use Γ = 5.43 GHz and αG in a 

range between 0.050 and 0.052 (set using the Ith reversal points in VG). The values for TH and TC obtained from the fits are 

indicated in the figure together with the corresponding Vheat settings. 
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Supplementary Fig. 8: Characterization 2 of device III. A Differential conductance G = dI/dVext as a function of VG and 

Vext of Device III. G data is used to determine EC = 4.7 meV and αG = 0.0472   b The measured G as a function of ΔVG (red 

dots) for two neighbouring G peaks at VG = -0.132 V and VG = -0.03V, characterized before the Ith measurements. Fits of the 

RTD theory to the peaks (black lines) yielding similar Γ values, as indicated in the figure. G characterization before and after 

Ith measurements provided four values Γ = 4.67, 4.42, 4.33, 3.40 GHz, yielding an average of 4.21 GHz. C Measured Ith as a 

function of VG (red dots) for four Vheat settings using transport through the same resonances as characterized in b. The 

corresponding fits of the RTD theory (black curves) use Γ = 4.21 GHz and αG in a range between 0.047 and 0.048 (set using 

the Ith reversal points in VG that changed slightly with temperature). The values for TH and TC obtained from the fits are 

indicated in the figure together with the corresponding Vheat setting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IV. Device IV  
 

Device IV was the device used for the experiments in the main paper. In Fig. S9 we show SEM 

images of the device taken after the measurements.  

 

    
 
Supplementary Fig. 9: SEM images of Device IV. Top view SEM images of Device IV after the measurements. The device 

was damaged in the process of preparing for imaging. The two parallel metallic (gold) strips, deposited on the substrate oxide 

perpendicular to the nanowire, were used as source and drain contact leads. The leads running on top of the source and drain 

contact leads are the heater leads. Only one of the heaters was functional at the time of the measurements and was used for 

thermal biasing, the other featured a leak to the back-gate and was kept ungrounded. A shadow-like area was left between the 

two contact leads where the nanowire containing the QD used to be located.  
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C. Theory 

 
Below we describe the theoretical method used in the main paper. In short, our theory is based on the 

real-time diagrammatic techniques originally developed in Refs. [15,16]. To model the experiment we 

need to consider a finite voltage bias as well as a temperature difference, and we calculate both the 

charge and heat current, for which most aspects of the underlying theory have been developed in Refs. 

17,18,19. 

I. Hamiltonian 

We are interested in open quantum systems where a central quantum dot (QD) is coupled to 

macroscopic reservoirs via hybridization terms in the Hamiltonian. The Fock-space of the central QD 

is typically small. The reservoirs are assumed to be described by the grand canonical ensemble. 

 

The total system is modelled as the Hamiltonian 

 𝐻 = 𝐻𝐷 + ∑ 𝐻𝑟

𝑟

+ ∑ 𝐻𝑇,𝑟

𝑟

= 𝐻𝐷 + 𝐻𝑅 + 𝐻𝑇 . (1) 

Here, 𝐻𝐷 is the Hamiltonian describing the QD, which is assumed to be diagonal in the many body 

states of the QD 

 𝐻𝐷 = ∑ 𝜀𝜎

𝜎

𝑛𝜎 + 𝐸𝐶𝑛↑𝑛↓, (2) 

with single particle energy 𝜀𝜎 for an electron with spin 𝜎 =↑, ↓, and energy cost 𝐸𝐶 associated with 

double occupation (because of electron-electron interactions). 𝑛𝜎 = 𝑑𝜎
†𝑑𝜎 is the number operator 

made up from the fermion creation (𝑑𝜎
†

) and annihilation (𝑑𝜎) operators. In the following, field 

operators acting on the QD subspace are denoted by the letter 𝑑 and those acting on the reservoir 

subspace by the letter 𝑐. A reservoir 𝑟 is described by 

 𝐻𝑟 = ∑ 𝜔𝑘,𝜎,𝑟

𝑘,𝜎

𝑛𝑘,𝜎,𝑟,    𝑛𝑘,𝜎,𝑟 = 𝑐𝑘,𝜎,𝑟
† 𝑐𝑘,𝜎,𝑟 

(3) 

where 𝜔𝑘,𝜎,𝑟 is the eigenenergy for a state in reservoir 𝑟 with quantum numbers 𝑘, 𝜎. Finally, the QD 

and reservoir 𝑟 are coupled by the tunnelling Hamiltonian 

 𝐻𝑇,𝑟 = ∑ 𝑡𝑘,𝜎,𝑟

𝑘,𝜎

𝑑𝜎
†𝑐𝑘,𝜎,𝑟 + ℎ. 𝑐. . (4) 

The amplitude for electron tunnelling is given by |𝑡𝑘,𝜎,𝑟|2, which allows us to define a tunneling rate 

 
𝛤𝑟 =

2𝜋𝜈𝑟|𝑡𝑘,𝜎,𝑟|2

ℏ
. 

(5) 

Here 𝜈𝑟 is the density of states of the reservoir and ℏ is Planck’s reduced constant. In the sections to 

come we utilize the wide band approximation assuming that 𝜈𝑟 is constant over an energy 𝐷 much 

larger than any other involved energy scale, and for convenience we set ℏ = 𝑒 = 𝑘𝐵 = 1. 



II. Liouville-von Neumann equation 

Our aim is to calculate the nonequilibrium state of the QD when the reservoirs are kept at different 

temperatures and chemical potentials, and then to find the charge and energy currents flowing as a 

result of this nonequilibrium condition. The starting point is the Liouville-von Neumann equation for 

the time evolution of the full system density matrix (𝜌) 

 𝑑

𝑑𝑡
𝜌 = −𝑖[𝐻, 𝜌]− = −𝑖𝐿𝜌, 

(6) 

where 𝐿 •≡ [𝐻,•]− is the Liouville super-operator acting on an arbitrary operator • (we similarly 

define 𝐿𝑇 •≡ [𝐻𝑇 ,•]− and 𝐿𝐷 •≡ [𝐻𝐷 ,•]−). Here the term super-operator is used for mathematical 

objects operating on normal operators. The matrix elements of such a super-operator are evaluated as 

 𝐴𝑐𝑑
𝑎𝑏 = ⟨𝑐|(𝐴|𝑎⟩⟨𝑏|)|𝑑⟩. (7) 

There are many ways to find an approximate solution to eq. 6, we here use the real time diagrammatic 

technique [15] formulated in Liouville space [20]. The first step is performing a Laplace 

transformation and expanding the resulting expression in 𝐿𝑇. This expansion can then be re-summed 

by identifying it as a geometrical series to obtain 

 
𝜌𝐷(𝑧) =

𝑖

𝑧 − 𝐿𝐷 − 𝑊(𝑧)
𝜌𝐷(0), 

(8) 

where 𝜌𝐷 = Tr𝑅{𝜌} is the QD (reduced) density matrix and the kernel 𝑊(𝑧) is given by 

 
𝑊(𝑧) = ∑ Tr

𝑅

∞

𝑘=1

(𝐿𝑇

1

𝑧 − 𝐿𝐷 − 𝐿𝑅
)𝑘𝐿𝑇𝜌𝑅|𝑖𝑟𝑟𝑒𝑑.. 

(9) 

irred here refers to the irreducible diagrams in the perturbative series [15,20,21]. 

 

Here, we are only interested in the stationary state (long time limit and time-independent 

Hamiltonians). Re-arranging eq. 8 and taking the stationary (zero frequency) limit yields 

 0 = (−𝑖𝐿𝐷 + 𝑊)𝜌𝐷 . (10) 

The generalized master equation in eq. 10 is valid for the full QD density matrix, but for our model the 

QD density matrix will be diagonal in spin and charge because these quantities are conserved by the 

total Hamiltonian.  

 

Next we will introduce a convenient super-operator notation in Liouville space which will make the 

evaluation of 𝑊 fairly straight forward. 

III. Kernel evaluation 

In order to evaluate the series in eq. 9 it is convenient to find super-operators in Liouville space whose 

properties resemble those of fermion field operators in Fock space. 

 



We define the notation for our fermionic creation and annihilation operators acting on the QD 

subspace as 

 
𝑑𝜂𝜎 = {

𝑑𝜎 if 𝜂 = −

𝑑𝜎
† if 𝜂 = +

 . 
(11) 

We combine all indices to a single index represented by a positive integer, 1 = 𝜂1𝜎1, and denote by a 

bar the sign change of appropriate numbers i.e. 1 = 𝜂1𝜎1 = (−𝜂1)𝜎1 and 𝑞1 = −𝑞1. Furthermore, a 

sum over such a multi-index (Σ1) is implicitly understood as sums over all involved indices if nothing 

else is stated. The field operators acting on the reservoir subspace are defined in a similar manner 

where the indices 𝑘 and 𝑟 are also included in the multi-index. 

 

Using the notation in eq. 11 we define Liouville field super-operators as 

 
𝒢1

𝑞1 •=
1

√2
(𝑑1 • +𝑞1(−1)𝑁 • (−1)𝑁𝑑1),    𝑞1 ∈ {−, +} 

(12) 

with 𝑁 = ∑ 𝑛𝜎𝜎 . These operators have properties similar to those of fermionic operators in Hilbert 

space 

 (𝒢1
𝑞1)† = 𝒢

1

𝑞1 ,

[𝒢2
𝑞2 , 𝒢1

𝑞1]+ = 𝛿𝑞2𝑞1
𝛿21ℐ.

 

(13) 

(14) 

Analogously for the field operators acting on the reservoir subspace we use the notation 𝒥1
𝑞1. 

 

Using these operator definitions the kernel in eq. 9 can be evaluated. However, this expression 

contains an infinite sum of terms and needs to be truncated. Only terms of even order in 𝑘 gives a non-

vanishing contribution and we include terms up to order 𝑘 = 4, which account for processes ∝ Γ and 

𝛤2. The remaining terms are evaluated by collecting all reservoir super-operators and calculating their 

expectation value using Wick’s theorem. The leading order terms of the kernel now reads  

 
𝑊(2) = ∑

𝛤1

2𝜋
𝑞11

𝒢
1
+ 𝑞1𝛾1

𝑞1

𝑖0 − 𝐿𝐷 + 𝜂1𝜔1
𝒢1

𝑞1 , 
(15) 

and the next to leading order [17,18,19]. 

 
𝑊(4) = ∑

𝛤1𝛤2

(2𝜋)2

12𝑞1𝑞2

(𝒢
1
+ 1

𝜂1𝜔1 + 𝑖0 − 𝐿𝐷
𝒢

2
+ − 𝒢

2
+ 1

𝜂2𝜔2 + 𝑖0 − 𝐿𝐷
𝒢

1
+)

×
𝑞

2
𝛾2

𝑞2

𝜂1𝜔1 + 𝜂2𝜔2 + 𝑖0 − 𝐿𝐷
𝒢2

𝑞2
𝑞

1
𝛾1

𝑞1

𝜂1𝜔1 + 𝑖0 − 𝐿𝐷
𝒢1

𝑞1 ,

 

 

(16) 

Where 

 
𝛾𝑞1 = 𝛿𝑞1+ + 𝛿𝑞1−tanh(

𝜂1(𝜔1 − 𝜇1)

2𝑇1
). 

(17) 



The resulting integrals in equation 15 and 16 are solved in the Supplementary Information of Ref.17. 

IV. Observables 

Any observable can now be calculated using the density matrix 

 ⟨𝐴⟩ = Tr𝐴𝜌. (18) 

When evaluating this expectation value it is however possible to make several simplifications by 

writing 

 
⟨𝐴⟩ =

1

2
Tr 𝐿𝐴

+𝜌,    𝐿𝐴
+ •= [𝐴,•]+. 

(19) 

    IV.a Charge current 

The charge current is given by the time derivative of the particle number in one of the reservoirs 

 
𝐼𝑟 = −

𝑑

𝑑𝑡
𝑁𝑟 = −𝑖[𝐻, 𝑁𝑟],    𝑁𝑟 = ∑ 𝑛𝑘,𝜎,𝑟

𝑘,𝜎

. 
(20) 

The calculation of the charge current can be simplified by using the fact that the charge is conserved in 

all tunnelling processes [22]. Using this conservation law the current leaving reservoir 𝑟 is given by 

 
𝐼𝑟 = −

1

2
𝑖 Tr𝐿𝑁

+ 𝑊𝑟 
(21) 

where 𝑁 = ∑ 𝑛𝜎𝜎  and 𝑊𝑟 is similar to 𝑊 in eq. 9 with the only difference that the left-most 𝐿𝑇 is 

replaced by 𝐿𝑇,𝑟. 

     IV.b Energy and heat current 

A similar treatment as the charge current is possible for the energy current. It is however non-trivial 

because the tunnelling Hamiltonian introduces additional dynamics which cannot be ignored [19, 23]. 

The energy current thus consists of two parts 

 𝐽𝐸𝑟
= 𝑖Tr

𝐷
𝐿𝐻𝐷

+ 𝑊𝑟𝜌𝐷 − 𝑖Tr
𝐷

𝑊𝛤,𝑟𝜌𝐷 (22) 

where the first term on the right-hand side is evaluated in the same manner as eq. 21. In order 𝛤 only 

the first term in 22 contributes and in the next to-leading order the second term is given by [19]  

 
−𝑖Tr

𝐷
𝑊𝛤,𝑟𝜌𝐷 =

𝛤𝑟𝛤𝑟′

2𝜋
∑ [

𝜎,𝑝=±

𝑓𝑟𝜎𝑝 + 𝑝𝑓𝑟𝜎𝑝Tr
𝐷

(−ℐ)𝑛𝜎′𝜌𝐷], 
 (23) 

where 𝑟′ ≠ 𝑟,  ℐ  the identity matrix and 



 

𝑓𝑟𝜎𝑝 = Re [𝛹 (
1

2
− 𝑖

𝐸𝐶

2(𝑝 − 1)
− 𝜖 + 𝜇𝑟

2𝜋𝑇𝑟
) − 𝛹 (

1

2
− 𝑖

𝐸𝐶

2(𝑝 − 1)
− 𝜖 + 𝜇𝑟′

2𝜋𝑇𝑟′
)], 

(24) 

with 𝛹 denoting the digamma function. 

 

The heat flow leaving the hot reservoir is related to the above quantities through the first law of 

thermodynamics 

 𝐽𝑄𝐻
= 𝐽𝐸𝐻

−
𝜇𝐻

𝑒
𝐼𝐻 . (25) 

V. Self-consistent solution 

The introduction of a serial load 𝑅 introduces additional computation steps because the electrical bias 

𝑉𝑄𝐷 across the QD is set by the current flowing through the dot, 𝑉𝑄𝐷 = 𝐼𝑄𝐷𝑅, rather than by an 

external bias applied to the reservoirs (see circuit diagram in Fig. 1c in the main paper). 𝑉𝑄𝐷 thus 

needs to be obtained by solving the self-consistent equation 

 
𝐼𝑄𝐷(𝑉𝑄𝐷) −

𝑉𝑄𝐷

𝑅
= 0, 

(26) 

which is done numerically in an iterative manner. 𝐼𝑄𝐷(𝑉𝑄𝐷) is obtained from eq. 21 with 𝑒𝑉𝑄𝐷 = 𝜇𝐻 −

𝜇𝐶. This means that for each iteration in the root finding algorithm (eq. 26) 𝐻𝑅 is changed and thus a 

new density matrix and new currents need to be calculated by going through the steps described 

above. 

 

  



D. Details of the measurement and fitting process 
 

The parameters , TC and TH were obtained from fitting the RTD theory to the measured conductance 

and current using least square fits. Data in Fig. 2a in the main text allowed determination of the gate 

coupling G = 0.049 which was further used as an input parameter. Motivated by the straight Coulomb 

diamonds (see Fig. 2a in the main paper) we let the potential eV drop symmetrically over both tunnel 

barriers. Furthermore, the value of 𝜀0 was adjusted to compensate for electrostatic potential variations, 

not considered by the model. On a measurement-to-measurement basis, one source of such variations 

in general is charge rearrangements in the proximity of the QD. In our experimental setup there was an 

additional factor, namely finite electrical potential changes at the top-heater as a function of Vheat. The 

origin of this effect can be understood in the following way. Whenever the heater is biased by Vheat in 

order to run a heating current through it, the filter resistances in series with the heater on both sides 

develop voltages across them. In case this effect is not counterbalanced by applying Vheat = VR
heat – 

VL
heat in a push-pull manner (by setting positive bias VR

heat on one side of the heater and negative bias 

VL
heat on the other, or visa versa) it results in an overall potential change at a heater electrode that can 

slightly gate the QD. A characteristic of this effect is that this parasitic “gating” scales linearly with 

Vheat. Unfortunately, due to different resistances of the voltage sources’ output filters the balancing of 

the potentials was not done perfectly and a slight shift in the Ith reversal point with increasing ΔT 

remained and was compensated for when fitting. 

 

 

I. Tunnel rate characterization 
 

The tunnelling rate  can be related to the G(Vext = 0) of the Coulomb peaks (Fig 2b in the main text). 

The VG dependence of the G peaks is sensitive to and temperature T Experimentally we determined 

G(VG) by measuring I-Vext curves and finding linear fits at each VG. The measurements were done in 

DC and used the range of Vext in which the I-V curves are linear, typically Vext ≤ ± 50 μV. We believe 

that most of the scatter of the data points in G originates from the variations in the electrostatic 

potential landscape due to charge rearrangements in the proximity of the QD, having an effect similar 

to VG noise. 

 

The explained G peak characterization was done at the beginning as well as at the end of the 

thermoelectric characterization of the resonance. For better consistency G(VG) was measured at the 

cryostat base temperature (estimated electron temperature slightly below 0.2 K) as well as at two 

elevated temperatures obtained by rising the cryostat mixing chamber temperature to 0.5 and 1.0 K. 

From the resulting fits of the RTD theory to the measured data we could conclude that at the cryostat 

base temperature ℏkT≈ 0.34 was too large for the theory to quantitatively reproduce the 

measurements with high accuracy because we were not deep enough in the perturbative regime (ℏkT 

<< 1). Thus only G measurements at elevated temperatures were used for determining . The four 

remaining conductance measurements yielded = 8.93 GHz (and T = 503 mK), = 9.25 GHz (and T 

= 480 mK), = 8.28 GHz (and T = 906 mK) and = 9.06 GHz (and T = 953 mK). This gives an 

average = 8.88 ± 0.42 GHz which was used for all calculations in the main text. One standard 

deviation is used as the error interval.  

 

II. Temperature characterization 
 

In our experimental device the electron reservoirs were, effectively, the short (~ 100 nm) InAs 

nanowire segments, and our analysis requires determination of their electronic temperatures TH and TC. 

Fitting the RTD theory to the characteristic behaviour of Ith(VG) is a non-invasive method with good 

sensitivity given that the thermal bias ΔT = TH – TC is big enough to produce a sufficiently large Ith for 

accurate measurements. We preferred using Ith(VG) over the more conventionally used I(Vext) [24], 

because of the energy dependency of the tunnelling rates at higher Vext conditions (manifesting in a Vext 

dependent saturation current Fig. S13). This is likely due to the small size of the nanowire lead 



segments that affect the density of states in the reservoirs. Using the Ith(VG) ensures that the 

temperatures are characterized at the conditions in which the engine itself is characterized. 

 

TH and TC were determined from least-square fits of the RTD theory to Ith(VG) using the temperatures 

as the only two free parameters. We used = 8.88 GHz and G = 0.049 as determined from the G 

measurements.  

 

Small measurement-to-measurement variations in the VG-location of the resonant energy were 

compensated for by setting the theoretical Ith reversal point equal to the measured one before fitting. 

We also accounted for a small offset in the current (ca -0.3 pA), determined from the current reading 

in the Coulomb blockade regime without any biases, V or ΔT, applied. The external load was included 

in the model by self-consistently solving for V across the QD.  

 

Ith(VG) was measured four times for each Vheat configuration (two times sweeping VG in one direction, 

and two in the other). The two-parameter RTD theory fit for TH and TC was done for each Ith(VG) trace 

independently. An example of four such fits is shown in Fig. S10a. This procedure was repeated for all 

11 R values used in the experiment of the presented device and similar temperatures for all R values 

were found. For an example, the Fig. S10b shows the result for four Ith using Vheat = 1000 mV, but for 

different R. In Fig. S10c we summarize thermometry results performed at 7 different thermal bias 

conditions 4 times for each of the 11 loads. Overall both TH and TC are found to increase 

approximately linearly with Vheat. 

 

 
 
Supplementary Fig. 10: Temperature characterization. The fits of the RTD theory to Ith using the two temperatures are 

free parameters yield similar results for all measurements using a given Vheat. a Results from the RTD theory fits to Ith(VG) for 

all measurements with Vheat = 1000 mV and R = 1.5 M. b Resulting RTD theory fits to Ith(VG) using Vheat = 1000 mV and 

different R as indicated. c The temperatures from fits to all measurements including Vheat in a range between 500 and 1250 

mV, and R in a range between 14 k and 250 M.  

 

III. Validity of the model and heat flow estimate 
 

In order to estimate the heat-to-electric energy conversion efficiency η = Pth/JQ, our analysis required a 

quantitative estimate of the heat flow JQ. To achieve this, we used microscopic modeling based on the 

RTD theory, described in Section C. This theoretical approach includes full nonlinear effects, strong 

electron-electron interactions and properly takes into account all second order tunneling processes. 

Furthermore, our QD model has only a few experimentally determined parameters ( and gate 

coupling are extracted from G, and the TC,H at each Vheat from Ith).  

By using the theory described in Section C we found an excellent agreement between the calculated 

charge current, eq. 21, and the measured Ith over wide value ranges of VG, Vheat (see fig. 2.c in the main 

paper) and R (see fig. S10.b). This quantitative and qualitative agreement provides a strong indication 



that our model fully captures the physics of the experiment. Even though we used modelling – rather 

than a direct measurement – to estimate the electronic heat flow JQ using eq. 25 we are confident about 

the quantitative accuracy of our calculations. An alternative, model-independent way of determining 

the electronic heat flow, used in Refs. 25 and 26 does not allow for independent control of the thermal 

and electric biases and is therefore incompatible with our performance analysis at constant ΔT. 

 

IV. Finding the best fit 
 

When fitting the measured current and conductance to the RTD theory in order to obtain the tunnel 

rate and the temperatures, the best fit is found by minimizing the sum of squares of the residues 

 𝑟 =  ∑[𝐼𝑡ℎ𝑒𝑜𝑟𝑦(𝑉𝐺,𝑖) − 𝐼𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡(𝑉𝐺,𝑖)]
2

.

𝑖

 
(27) 

An example of such a residue is shown in Fig. S11 where the current is measured for VH = 1000 mV 

and R=14.4 k. The termination condition used for the temperature fits is that the minimum is found 

with a resolution of 0.003 K and when fitting the tunnel rate the resolution is 0.01 GHz.  

 

Since the residue in Fig. S11 shows one clear, global minimum the fit results in two unique 

temperatures and the fitting procedure is a valid thermometry tool.  

 
Supplementary Fig. 11: Residues from temperature fit. Logarithm of the sum of residues (see eq. 27) normalized by its 

minimum value when fitting the RTD theory to the measured thermocurrent using Vheat = 1000 mV and R = 14.4 k. The 

best fit is given by TC = 0.89 K and TH = 1.46 K. A global minimum means that the fitting technique produces two unique 

temperatures. 

 

 

V. Obtaining the maximal power value from the data 

 
In Fig. 3a,b of the main text Pth was calculated using Pth = Ith

2R on a point-to-point basis. A 

polynomial fit was used to obtain the maximal power value from the each Ith trace. The gate position 

of the Ith extremum was then used to calculate the electronic heat flow JQ and thus also the efficiency 

at maximum power, ηPmax. 



    
 
Supplementary Fig. 12: Obtaining the Ith maximal amplitude for the maximal Pth = Ith2R. All four traces show Ith data 

around the maximal power peak for R = 1 MΩ and Vheat = 1250 mV. In total 400 data points (red dots) around the Ith peak are 

fitted using a polynomial (black line). The peak value and position in VG is determined by the extremum of the fit (black dot). 

E. Symmetric tunnel rates 
 

The procedure by which we determined  from conductance data is described in Section D.I. During 

the fitting process we assumed that the QD is coupled equally strong to both reservoirs, i.e. C = 

H. Here we motivate why we are safe to assume symmetric and energy independent tunnelling rates. 

 

Performing the RTD theory fits to the conductance G(Vext = 0) alone does not provide any information 

about any asymmetry in tunnelling rates, because the conductance scales with the parameter 

CH/(C+H) and does not directly depend on C and H. Information about asymmetry is however 

found in the saturation current, i.e. the maximum current the corresponding resonance can carry in 

either direction. This is easiest seen when gating the device to the resonant condition (VG ~ 0.13 V in 

Fig 2a of the main text) and applying a large enough bias Vext of both polarities. For example, for a 

two-fold spin degenerate QD energy level, one finds that a large asymmetry, C/H >> H/C, results in a 

factor two for the difference in the saturation currents in opposite directions [27]. 

 

In Fig. S13 we compare the measured saturation currents I(Vext) in our device to the theoretical 

predictions using C = H, C = 2H and C = 10H while keeping CH/(C+H) fixed. The measured 

plateau current is not constant, which we attribute to energy dependent density of states (DOS) of the 

short nanowire leads segments. However, we note that the scale within which these variations 

manifest themselves is on the order of several mV while the voltages that were developed across the 

QD during the thermoelectric experiments were limited to much smaller values, less than 0.25 meV, 

within which it is safe to assume an energy-independent DOS. 

 

The saturation current levels in Fig. S12 suggest that there might be a small asymmetry in our 

device corresponding to C H between 1 and 2, but it is not possible to obtain a good quantitative 

estimate of its magnitude. Such an asymmetry will slightly change the thermally induced current and 

thus also the temperatures extracted form fitting the RTD theory to the current, and more importantly 

increase the heat current since H + C is increased. In Fig. S14 we show the same type of analyses as 

in Fig. 3c in the main paper with the exception that the analysis is performed using an asymmetry 

factor of 2. The difference between  at maximum P obtained when using C H = 2, instead of C H 

= 1, is at most 0.02C, showing that the asymmetry has little effect on the analysis of our dot and it is 

safe to assume symmetric couplings.  

 



 
 

Supplementary Fig. 13: Saturation current. Measured (red dots) and calculated (lines) current as a function of Vext at the 

resonance (VG = 0.126 V). The RTD calculations use different asymmetries as indicated in the figure. The magnitude of the 

saturation current is used to probe tunnel coupling asymmetry.  

 

 

 
 
Supplementary Fig. 14:  Thermoelectric performance of the QD including tunnel rate asymmetry. Same as Fig 3 c in 

the main paper but using C = 2H, CH/(C+H) = 4.44 GHz.  Parametric plot of Pth and  = Pth/JQ as VG is varied at Vheat= 

1000 mV for four different R = 0.4, 1.5, 3.3 and 9.4 MΩ. Red and black markers identify data points from the corresponding 

VG ranges as indicated in FIG 3 a,b in the main paper. Data points are based on the measured values of Pth and the calculated 

JQ using the experimentally determined parameters. The solid lines are based purely on RTD calculations using the same 

parameters. The arrow indicates the direction for increasing VG. The plots show close resemblance to those in Fig. 3c. The 

difference between  at maximum P obtained when using C H = 2, instead of C H = 1, is at most 0.02C, which is within 

the measurement uncertainties.  
 

Any additional resistance in series with the QD would modify the Coulomb peak, which would in turn 

lead to an incorrect value obtained from the G measurements. However, since the magnitude of 
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saturation currents is supposed to be independent of the series load it can be used to check whether 

any additional resistances, such as contact resistances between the nanowire and the metallic leads or 

nanowire lead resistances, are negligible. This is done by comparing theory predictions for saturation 

currents given the obtained value. Indeed, from Fig. S12 we see that GHz, as determined 

from G(Vext = 0), predicts the saturation current magnitude quite well, and we thus  conclude that there 

are no significant contributions from parasitic resistances. 

 

Further evidence for the negligibility of the contact resistances is provided by a comparison of the 

measured and calculated thermoelectric power produced by the dot. Our measurement of Pth = Ith
2R is 

determined using the known load R. Any additional power dissipated, say in the nanowire leads (a few 

kΩ at most), is not accounted for and would lead to an error in Pth proportional to the relative 

contribution of the parasitic resistance to the overall resistance. If this error was significant it would 

manifest itself as a significant deviation from the predicted power at smaller loads (Fig. 4a). However, 

this is not the case, further confirming the negligibility of parasitic resistances.  
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Thermoelectric characterization of the Kondo resonance in nanowire quantum dots

Artis Svilans, Martin Josefsson, Adam M. Burke, Sofia Fahlvik, Claes Thelander, Heiner Linke, and Martin Leijnse
Division of Solid State Physics and NanoLund, Lund University, Box 118,S-221 00 Lund, Sweden

We experimentally verify hitherto untested theoretical predictions about the thermoelectric prop-
erties of Kondo correlated quantum dots (QDs). The specific conditions required for this study are
obtained by using QDs epitaxially grown in nanowires, combined with a recently developed method
for controlling and measuring temperature differences at the nanoscale. This makes it possible to
obtain data of very high quality both below and above the Kondo temperature, and allows a quan-
titative comparison with theoretical predictions. Specifically, we verify that Kondo correlations can
induce a polarity change of the thermoelectric current, which can be reversed either by increasing
the temperature or by applying a magnetic field.

PACS numbers: 72.10.Fk, 72.20.Pa, 73.63.Kv, 81.07.Gf

Measurements of electric and thermoelectric trans-
port properties can be used to reveal and characterize
novel strongly correlated phases, which often appear in
meso- and nano-scale systems. The Kondo effect [1] is
a prominent example where interactions between con-
duction electrons and magnetic impurities result in a
many-body singlet state involving the impurity spin and
a large number of conduction electrons. In metals it leads
to increased resistivity at low temperatures where the
magnetic impurity scattering dominates. More recently,
quantum dots (QDs) tunnel-coupled to two leads have
provided a platform for more detailed experimental stud-
ies of the Kondo effect [2–4]. In QDs, the Kondo scatter-
ing lifts the Coulomb blockade [5–7] and gives rise to a
peak in the differential conductance g = dI/dV around
V = 0 (I is the current and V is the bias voltage).

Several theoretical works (see, e.g., Refs [8–16]) have
proposed that additional insights into Kondo physics can
be gained from thermoelectric measurements. Here, a
temperature difference ∆T = Tc−Th is applied between a
hot (h) and a cold (c) lead and one measures either the re-
sulting thermocurrent Ith (measured under closed-circuit
conditions), or the thermovoltage Vth (measured under
open-circuit conditions). In QDs without Kondo correla-
tions, Ith and Vth have characteristic shapes as functions
of the gate voltage, VG, exhibiting a sign reversal (zero
crossing) at each charge degeneracy point as well as in
the center of each Coulomb valley [17–19]. It has been
theoretically predicted [9] that Kondo correlations would
significantly change this behavior by removing some zero
crossings and consequently reversing the polarity of Ith
and Vth over a finite VG range. Whether a QD shows
the typical Kondo or non-Kondo behavior depends sen-
sitively on several system parameters. Therefore, by ob-
serving the qualitative change in thermoelectric response
as Kondo correlations are suppressed, e.g., by increased
average temperature T = (Th + Tc)/2 or magnetic field
B, one can not only gain insights into Kondo physics,
but also probe the internal QD energy scales.

Despite such clear theoretical predictions, experimen-
tal studies of the thermoelectric properties of Kondo cor-

related QDs remain rather limited [20, 21]. Experimen-
tally uncontrolled internal QD degrees of freedom often
complicate even a qualitative comparison with theory.
Therefore, the predicted reversal of Ith and Vth has been
difficult to observe (although some unpublished data ex-
ist [22]) and the response to a B field has, to the best of
our knowledge, not been investigated.

In this Letter, we take important steps towards fill-
ing this gap between experiments and theory by present-
ing thermoelectric measurements on several Kondo cor-
related QDs. We measure Ith and g(V ≈ 0) = g0 over
consecutive Kondo and non-Kondo Coulomb valleys. We
observe the sign reversal of Ith theoretically predicted for
the Kondo regime, and measure the transition between
Kondo and non-Kondo behavior as T is increased, finding
quantitative agreement with theory [9]. Furthermore, we
apply an external B field which also destroys Kondo cor-
relations and find that a surprisingly large B is needed
to recover the typical non-Kondo behavior.

Our observations necessitate overcoming significant ex-
perimental challenges to access the parameter regimes
which most clearly reveal the Kondo correlations and al-
low detailed comparison with theory predictions. The
requirements include: (i) strong quantum confinement
such that transport is dominated by a single orbital
(δε� kBT,Γ, where δε is the orbital spacing and Γ is the
tunnel coupling); (ii) large charging energy U and tun-
nel coupling, and low temperature, such that the Kondo
regime is reached (U � Γ� kBT and T < TK , where TK
is the Kondo temperature); (iii) application and charac-
terization of ∆T across a very small QD; (iv) the ability
to controllably tune the system in and out of the Kondo
regime, e.g., by gating or by varying T or B.

To achieve the above requirements we use QDs epi-
taxially defined in axially heterostructured InAs/InP
nanowires grown by chemical beam epitaxy [24] [see inset
in Fig. 1(a)]. Each InAs nanowire from the same growth
is about 60 nm in diameter and contains two thin InP
segments that confine an approximately 20 nm long InAs
QD, similar to those used in our previous studies [25, 26].
The small QD size and the small effective mass of InAs
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FIG. 1: (a) Scanning electron microscope (SEM) image of
device QD3. An InAs/InP nanowire containing a QD is con-
tacted to metallic leads for electrical biasing with voltage V
(see SM [23] for details on circuitry). Additional heater leads
(lighter gray) enable application of a thermal bias ∆T to the
QD by running a current IH resulting from a heater bias
VH = V1−V2. Only one heater is used in the experiment. In-
set: Close-up scanning transmission electron microscope with
high angle annular dark field (STEM-HAADF) image of an
InAs/InP nanowire from the same growth. (b) Sketch of an
unbiased spin-1/2 QD tunnel-coupled to two leads (h and c).

give sufficiently large U and δε, and the large g-factor
allows tuning the Zeeman energy over a wide range. We
use the fabrication process developed in Ref. [27] to fabri-
cate thermoelectric devices. Figure 1(a) shows a scanning
electron microscope (SEM) image of the device QD1. In
short, the devices are fabricated on an n-doped Si wafer
coated with SiO2. Two Ni/Au leads are used to contact
the outer InAs segments on each side of the QD. The
nanowires along with the contacting leads are coated with
HfO2 in order to electrically isolate the heater leads from
the electrical biasing circuit [25, 27]. A back contact to
the Si wafer is at a voltage VG and allows for electrostatic
gating of the epitaxially defined QDs. We let Th and Tc
denote the temperatures of the nanowire leads contact-
ing the QD, which might differ from those in the metallic
leads further away. Application of a heating current IH
increases both Th and (to a lesser degree) Tc, which in our
devices gives control over ∆T and T while maintaining
a roughly constant ∆T/T ≈ 0.30 − 0.35. Th and Tc are
estimated based on QD thermometry (see Supplemental
Material (SM) [23] and Ref. [26] for details). During this
study we characterized three QDs (QD1, QD2 and QD3)
showing similar behavior. Only the data from QD1 is
presented with figures in the main text. Results on all
devices are summarized in Table I (see SM [23] for the
corresponding data on other devices). The characteriza-
tion was done in a dilution refrigerator with electron base
temperature T0 < 100 mK.

Figure 1(b) shows a sketch of a single-level QD with or-
bital energy ε0 and onsite Coulomb repulsion U , coupled
to leads by tunnel couplings Γh and Γc (Anderson model).
The Kondo effect occurs when the level is occupied by a
single electron. It originates from anti-ferromagnetic ex-
change interaction due to virtual exchange of electrons
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FIG. 2: (a) g as a function of V and VG, measured at T =
T0 < 100 mK. (b) The corresponding g0 as a function of VG

measured at three different T . (c) Ith normalized by ∆T as a
function of VG measured at three different T . The horizontal
VG axis is the same in (a)–(c). Vertical dashed lines refer to
VG values in Fig. 3.

between the leads and the QD. Kondo correlations give
rise to the formation of a singlet-like state (with binding
energy ∼ kBTK), involving the QD spin and a large num-
ber of electron spins in the leads. Below this energy the
system behaves as a Fermi liquid and Coulomb blockade
is lifted.

We use Fig. 2 to identify the effects of Kondo corre-
lations in the experimental data. The measured charge
stability diagram at T0 < 100 mK in Fig. 2(a) shows
an increased g0 inside Coulomb diamonds corresponding
to odd electron numbers on the QD. In the absence of
Kondo correlations one expects g0 < e2/h, but Fig. 2(b)
shows that (at T = T0) g0 approaches the limit 2e2/h,
as expected in the Kondo regime. Increasing T reduces
g0 in the odd occupancy Coulomb valleys but has little
effect on valleys with even occupancy.

Figure 2(c) shows Ith/∆T measured over the same
gate range. We note that around VG = 1.06 V, where
the strongest Kondo correlations are seen in (a) and (b),
there is a qualitative change in Ith(VG) with increasing
T with two sign reversals being absent at low T . There-
fore, we focus our analysis on this particular VG range
and come back to a detailed discussion of the thermo-
electric behavior later.

Figure 3 presents the analysis for determining TK and
Γ. We use the T dependence of g0 at the chosen VG
range to determine TK using the phenomenological ex-
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FIG. 3: (a) Dots are the measured values of g0(T ) in the
left panel and of g(V ) at T0 in the right panel, both for four
different values of VG, also indicated by vertical dashed lines
in Fig. 2 with the corresponding colors. The solid lines for
g0(T ) are fits to Eq. (1) whereas the solid lines for g(V ) are
fits to Eq. (2) in the SM [23]. The curves and data points at
different VG are offset by 0.5 e2/h in g from each other. (b)
TK as a function of VG determined from fitting the measured
g0(T ) to Eq. (1) (dark blue points) and the measured g(V )
to Eq. (2) in the SM [23] (light blue points). The error bars
represents a 95 % confidence interval for TK as a fit parameter.
Inset to (b): the corresponding estimates of Γ as a function
of VG using Eq. (2).

pression [2, 28]

g0(T ) = g0(T = 0)

[
1 +

(
21/s − 1

)( T

TK

)2
]−s

, (1)

where s = 0.22 for a spin-1/2 QD and g0(T = 0) and
TK are used as free fit parameters. Examples of the fits
can be seen in the left panel of Fig. 3(a) while the corre-
sponding TK fit values are plotted in Fig. 3(b). We also
cross check the TK values by fitting the V dependence of
g instead [23, 29]. Examples of those fits are shown in the
right panel of Fig. 3(a) while the corresponding fit values
are plotted in Fig. 3(b). Although the V dependence of
g yields somewhat lower TK values, there is a qualita-
tive agreement between the two methods. In all further
analysis we use the values extracted using the more well-
established method based on the T -dependency of g0.

For a single-orbital model, TK is given by [7]

kBTK =
1

2

√
ΓU exp

(
πε0(ε0 + U)

ΓU

)
, (2)

where ε0 is the energy of the QD orbital relative to the
Fermi level of the leads and varies from 0 to −U across
the Coulomb valley. Equation (2) is strictly valid only in
the Kondo regime where −U + Γ/2 < ε0 < −Γ/2 [28,
30], i.e., far enough from the charge degeneracy points

into the Coulomb valley. We estimate U ≈ 3.5 meV
which is used to calculate Γ from the estimated TK values
using Eq. (2) [see inset of Fig. 3(c)]. We find that Γ
has a slight VG dependence, which is commonly observed
in nanowire QDs because of the quasi one-dimensional
density of states in the leads.

We now turn our attention to the thermoelectric prop-
erties of QDs in the Kondo regime. The T = 4 K trace in
Fig. 2(c) illustrates the expected behavior of Ith(VG)/∆T
in the absence of Kondo correlations, where it undergoes
twice as many sign reversals as there are charge degen-
eracy points – one when passing through zero at each of
the charge degeneracy points and one in the middle of
every Coulomb valley [17–19]. It was theoretically pre-
dicted in Ref. [9] that this behavior is qualitatively dif-
ferent in the presence of Kondo correlations, which cause
the zero crossings at the degeneracy points to disappear.
Our experimental data verifies this prediction as the two
sign reversals in the gate range between VG = 1.02 and
1.10 V disappear at low T . This behavior is in contradic-
tion with what the Mott relation [31] would suggest for
the measured g0(VG) as the center of the Coulomb valley
in Fig. 2(b) develops already at T = 0.2 K (see SM [23]
for details on Mott relation). Two additional Kondo res-
onances are also seen in Fig. 2 (close to VG = 0.9 and
1.4 V) but because TK is lower in those cases the sign
reversal is not observed in Fig. 2(c).

Figure 4 shows the sign reversal of Ith more closely and
focuses on the effects of increasing T and B. Both are
known to destroy Kondo correlations and it is therefore
intuitive that also the sign reversal should be affected.
We aim to quantify the values ofB and T below which the
Kondo-induced sign reversal takes place. Figures 4(a)–
(d) show data at differentB values, each for several differ-
ent T . The corresponding charge stability diagrams for
the same values of B are displayed in Fig. 4(e). The sign
reversal of Ith as a function of T is best seen in Fig. 4(a)
where B = 0 T. The trace at T = 1 K ≈ TK shows a
single zero-crossing within the Coulomb valley marked as
the ”Kondo region”. By raising the temperature T > TK
the two additional zero-crossings are recovered, indicat-
ing a reversal of the direction of Ith within the Kondo
region. This observation is a clear verification of theoret-
ical predictions in Ref. [9].

Based on the splitting of the Kondo peak, observable in
Fig. 4(e), we estimate the electron g-factor |gZ | ≈ 9 [23].
Thus, TK ≈ 1 K corresponds to B ≈ 0.17 T. Interest-
ingly, however, the behavior of Ith at B = 0.5 T, as
shown in Fig. 4(b), remains qualitatively and quantita-
tively similar to the zero field case. Only when increasing
B to 1.0 T and 2.0 T the two additional zero-crossings
are recovered at all accessible T [see Figs. 4(c) and (d)].

Closer examination of the sign reversal requires anal-
ysis of the small Ith within the Coulomb valley which
is sensitive to the experimental uncertainties in the ap-
plied electrical bias (δV ≈ ±1 µV). We therefore fit the
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FIG. 4: (a)–(d) Measured Ith normalized by ∆T for different T as indicated in the figure. The black arrows indicate VG

positions around which the values of σ in (f) are determined. The magnetic field is increased from B = 0 to B = 2 T from
(a)–(d) as indicated in the figures. The dashed lines in (a) indicate the VG range that corresponds to the Kondo regime. (e)
Charge stability diagrams showing g as a function of V and VG, measured at the base temperature T0 < 100 mK for values of
B corresponding to those used in (a)–(d). (f) Thermocurrent slope, σ = (dIth/dVG)/∆T , as a function of T at B field values
corresponding to those used in (a)–(d).

gate-slope of the thermocurrent, (dIth/dVG)/∆T = σ,
at the center of the Coulomb valley [marked by arrows
in Figs. 4(a)–(d)] and use its sign as an alternative in-
dicator for the sign reversal of Ith. Figure 4(f) shows
σ(T ) measured at different B values. We let T1 denote
the temperature at which σ(T ) changes from positive
to negative. Interestingly, we find that T1 is larger at
B = 0.5 T (T1 ≈ 2.5 K) than at B = 0 T (T1 ≈ 1.8 K),
however this result does not seem to be reproduced in
other devices and we do not have an explanation for it.
In contrast, at field values B = 1.0 T and B = 2.0 T
σ no longer reverses sign as a function of T . There-
fore, we conclude that the crossover happens between
B = 0.5 T and B = 1.0 T. These field values correspond
to |gZ |µBB/kB ≈ 3TK − 6TK , which is consistent with
measurements under B field on other devices [23].

Table I summarizes our results from all devices, see
SM [23] for the corresponding data and analysis. We
estimate the relative errors for U and TK to be in the
range ±10%, which translates into a similar error for Γ.
The accuracy of T1 depends mostly on the accuracy of the
thermometry, which we have not been able to quantify.
However, we do not expect it to be a source of significant
error. For all resonances we find T1/TK ≈ 1.2−1.8. This
is in quantitative agreement with theory predictions in
Ref. [9] where T1/TK ≈ 1.6 for U/Γ = 3 at B = 0 T.

In conclusion, we have presented a detailed experi-
mental study of the thermoelectric properties of Kondo
correlated QDs. Our measurements confirm the theo-
retical prediction [9] that sufficiently strong Kondo cor-

TABLE I: Summary of data from several devices. QD1a (in
bold) represents results obtained on the device QD1 for which
the data is shown in this Letter. QD1b represents results
obtained on the same device QD1 but in a different VG range.
QD2 and QD3 represents results obtained on devices QD2
and QD3.

U(meV) TK(K) Γ(meV) T1(K)
QD1a 3.5 1.0 1.1 1.8
QD1b 2.2 0.6 0.7 0.7
QD2 2.6 0.6 0.8 0.8
QD3 3.0 0.8 1.0 1.2

relations can reverse the direction of Ith over a finite
range in VG. We find quantitative agreement with theo-
retical predictions for the temperature T1 at which sign
the reversal takes place. We have also investigated the
magnetic field dependence of Ith and conclude that, un-
like other transport quantities which change behavior at
|gZ |µBB/(kBTK) ≈ 1 [32], the sign reversal of Ith re-
mains until this ratio is significantly larger than 1. This
raises new questions and opens up for further theoreti-
cal and experimental studies. More generally, our work
demonstrates that the use of thermoelectric measure-
ments can be a sensitive probe of Kondo physics and
other strong correlation effects. An interesting direction
for future works is to investigate more complex QDs with
additional symmetries [16] or the nonlinear, large ∆T ,
regime [14, 15], where theoretical predictions are much
more challenging.
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DATA ON OTHER DEVICES

The main paper presents data and analysis on a certain resonance of device quantum dot 1 (labeled QD1a). In this
section we provide additional data and the corresponding analyses on devices QD2 and QD3, as well as additional
data on quantum dot 1 (labeled QD1b) measured over a different range of gate voltages. Figure S1 shows SEM images
of the devices (QD1, QD2 and QD3). They all show clear signs of Kondo correlations in the charge stability diagrams
(Fig. S2) when characterized at the base temperature of the cryostat T0 < 100 mK. They also show similar behavior of
the thermocurrent Ith as a function of average temperature T = (Th + Tc)/2 (Fig. S4), in particular a Kondo-related
inversion of the direction of Ith as a function of T . Complementary data on the behavior of Ith in the presence of
finite magnetic field B is also given for QD1b and QD3. Unfortunately no data in the presence of magnetic field is
available on QD2. All three devices are identical by design and are fabricated in the same process on the same sample
chip. Figure S1 shows SEM images of the corresponding devices.
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Fig. S1: Scanning electron micrograph (SEM) of devices QD1, QD2 and QD3. InAs/InP nanowires containing QDs
are contacted by metallic leads on both sides of the QD. A bias voltage V can be applied to the QDs via the leads.
The path of the current I, resulting from V > 0, is indicated by green arrows. The leads along with the nanowire are
covered in HfO2 to electrically insulate the overlaying thermal biasing circuit from the electrical circuit. A heater bias
VH = V2 − V1 is applied to one of the heater leads of every device resulting in a heating current IH that dissipates
heat locally. The path and direction of IH resulting from VH > 0 is indicated by the red arrows. The damage to the
heater visible on Device QD3 occurred during the process of unloading from the cryostat after the experiment was
finalized.

Accounting for series resistances in the measured differential conductance

The current I though the QD is measured by a current preamplifier with input impedance RI = 1 kΩ. Both the
contact and the heater leads are connected to the external electrical setup via DC lines with RC filters (total of
RRC = 3.26 kΩ per line) designed to cut off frequencies above 300 Hz. In order to account for the serial resistances
originating from the DC line filters and the input impedance of the current preamplifier when determining g, a
distinction is made between V , which is the voltage across the QD, and Vext, which is the voltage applied to the
entire circuit (including the filter resistances and the input impedance of the preamplifier). Therefore, g is calculated
as g = dI/(dVext −RdI) = dI/dV , where R = 2RRC +RI = 7.52 kΩ.

When taking the series resistance into account the resulting array of g data for plotting charge stability diagrams is
no longer rectangular in the coordinates of V and VG, therefore, polynomials are used to interpolate g(V ) in between
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the data points [concerns Fig. 3(c) in the main paper and Figs. S2 and S5 here]. Figure S2 plots the charge stability
diagrams measured on QD1b, QD2 and QD3 that show clear signs of Kondo correlations in the form of zero-bias
conductance peaks (similar to resonance QD1a discussed in the main paper).

g(e2/h)

0.2

1.6

1.0

QD2 QD3

g(e2/h)

0.2

1.6

1.0

g(e2/h)

0.2

1.6

1.0

QD1b (b) (c)(a)

Fig. S2: g as a function of VG and V for Kondo resonances QD1b (a), QD2 (b) and QD3 (c).

Characterization of the Kondo temperature TK and the strength of the tunnel-coupling Γ.

A characterization of the Kondo effect, equivalent to that presented in the main paper for QD1a, is also carried
out for QD1b, QD2 and QD3. The characterization presented in Figs. 3 and S3 is based on analyzing the behavior
of g as a function of T and V . For the T dependence we use the notation g(V ≈ 0) = g0 to distinguish it from g(V ).
The quantity g0 in Fig. 3 and Fig. S3 is determined using linear fits to I(V ) within a range of V ≈ ±10 µV, whereas
g(V ) values are calculated as the differential increase in current ∆I in response to the voltage change ∆V between
two sequential steps in V . We note that in the Fig. 2 the quantity g0 is approximated by I/Vext where Vext = 25 µV

The first row in Fig. S3 shows how g0(VG) evolves with increasing T . Within the Coulomb valleys g0 demonstrates
a gradual decrease with T indicating the melting of the Kondo correlations. Examples of fits to g0(T ) and g(V ) are
shown in the second row of Fig. S3. The two dependencies are used to determine the value of the Kondo temperature
TK by fitting it to empirical analytic expressions. For analyzing g0, we use a standard expression

g0(T ) = g0(T = 0)

[
1 +

(
21/s − 1

)( T

TK

)2
]−s

, (1)

where s = 0.22 for a spin-1/2 QD and g0 and TK are used as free fit parameters [1, 2]. For analyzing the V dependence
of g we use the recently proposed expression [2]

g(V ) = g0(T = 0)

1 +

 21/s − 1

1− b+ b
(
e(V−V0)
kTK ′

)s′
(e(V − V0)

kTK ′

)2


−s

, (2)

where s = 0.32, b = 0.05, s′ = 1.26 and the parameters g0(T = 0), V0 and TK are used as free fit parameters. Note
that the qualitative shapes of g0(T ) and g(V ), as defined by in Eqs. (1) and (2), have a slightly different qualitative
behavior. Also note that the two temperature constants, TK and TK ′, do not have the same meaning (TK 6= TK ′).
However, as pointed out in Ref. [2] using TK ′ ≈ 1.8TK yields a definition of TK in Eq. (2) that is consistent with the
definition of TK in Eq. (1), therefore we plot the results from g(V ) as TK ≈ TK ′/1.8.

The third row in Fig. S3 shows the results for TK as a function of VG. As expected, TK has a minimum in the
center of the Coulomb valley. For a single-orbital model, TK is given by [3] [Eq. (2) in the main paper]

kBTK =
1

2

√
ΓU exp

(
πε0(ε0 + U)

ΓU

)
, (3)

which can be used to extract the corresponding tunnel-coupling strength Γ. The results of this calculation are shown
as insets in the third row of the Fig. S3. The VG dependence of Γ might be explained by an energy dependent density
of states in the leads, which are effectively quasi one-dimensional pieces of nanowires.
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Fig. S3: Characterization of TK and Γ. (a)–(c) present data for QD1b, (d)–(f) present data for QD2, and (g)–(i)
present data for QD3. (a), (d) and (g) show g as a function of VG at different T . (b), (e) and (h) show g as a function
of T in left panels and as a function of V in right panels, both for several different VG settings which are indicated in
(a), (d) and (g) as dashed lines with the same color. The data points and curves are offset by 0.5 e2/h. (c), (f) and (i)
show TK results using the data from the T -dependence (dark blue points) and using the data from the V -dependence
(light blue points). Error bars represent a 95% confidence interval for the TK value. Insets: results of numerical
calculation of Γ using the results for TK and Eq. (3) where ε0 = −eαG(VG − VG0) with αG being the gate lever arm.
When calculating Γ, we used the following parameter values extracted from the charge stability diagrams: QD1b:
U = 2.2 meV, αG = 0.0349, VG0 = 0.564 V; QD2: U = 2.6 meV, αG = 0.0382, VG0 = 11.152 V; QD3: U = 3.0 meV,
αG = 0.0326, VG0 = 9.169 V.

Thermoelectric characterization

Thermoelectric characterization is realized by applying ∆T and measuring the thermocurrent Ith. In the linear
response regime, and with no parasitic resistances in series with the QD, it is related to the thermovoltage Vth via the
relation Ith = g0Vth, therefore the detection of the sign inversion in Ith also implies a sign inversion in Vth. Applying
∆T in our experimental devices also heats the colder reservoir. We use this effect to our advantage in order to study
the T = (Th + Tc)/2 dependence of Ith as a function of VG. All Ith(VG) traces (at each T ) have been measured by
sweeping VG in both directions a number of times (4 or 8) in order to average out current fluctuations related to the
instability of the electrical bias V across the QD with a typical magnitude of ±1 µV. Plots and the data analyses use
the mean values of Ith at every VG.

Figure S4 shows results of Ith/∆T for QD1b, QD2 and QD3. In the absence of magnetic field (B = 0) all three
devices show a similar behavior to the one presented in the main paper, i.e., Ith/∆T shows a sign inversion as a function
of T within the Coulomb valley where Kondo correlations can be observed at low T . We let T1 denote the temperature
at which the sign inversion takes place. Similarly as done in the main paper, we examine σ = (dIth/dVG)/∆T as a
function of T to study the sign inversion. To complement the data in the main paper, we also present data on QD1b
and QD3 in presence of magnetic field B. For QD1b we present data at B = 0.2 T and B = 1.5 T [∼ 1.3kBTK/(|gZ |µB)
and ∼ 10kBTK/(|gZ |µB) respectively]. For QD3 we present data at B = 0.25 T (∼ 2.3kBTK/(|gZ |µB)). One can
observe that for both (QD1b and QD3) the presence of a weak field [B between 1 and 3 kBTK/(|gZ |µB)] does not
reverse back the direction of Ith which is consistent with observations in QD1a. However, the presence of the weak
field seem to reduce T1 instead of increasing it, as seen in presence of B ≈ 3kBTK/(|gZ |µB) for QD1a. In addition we
show that under application of a strong field (B = 1.5 T) to QD1b, the sign inversion is no longer observable and a
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behavior of Ith/∆T characteristic to QDs without Kondo correlations is recovered, similarly as in the case of a strong
field for QD1a [B = 2.0 T, corresponding to ∼ 12kBTK/(|gZ |µB)] presented in the main paper.
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Fig. S4: Results of thermoelectric characterization. Results from QD1b are presented in (a) – (c), results on QD2
are shown in (d), and results from QD3 are shown in (e) and (f). All plots present results on the measured Ith
normalized by ∆T = Th − Tc for various T = (Th + Tc)/2, as indicated in the figures. B values are indicated in
the right top corners of all subfigures (a)–(f). The insets present data for the corresponding thermocurrent slopes
σ = (dIth/dVG)/∆T that are determined at the VG values indicated by the black arrows. The temperature T1 at
which σ crosses 0 is estimated from the graph and indicated by the vertical dashed lines.

Measurements of g-factors

Figure S5 shows the splitting of the Kondo peaks in magnetic field, based on which we estimate the g-factors. In
all cases, we find values slightly below the bulk value gbulkZ ≈ −14.9 for InAs [4]. This is consistent with other studies
showing a confinement-induced reduction and variation of g-factors [5, 6].

QD1a QD3QD1b

VG = 0.6 V VG = 9.225 VVG = 1.065 V

g(e2/h)

0.2

0.9
g(e2/h)

0.2

0.9
g(e2/h)

0.2

0.9

|gZ|≈9 |gZ|≈6 |gZ|≈11

(a) (c)(b)

Fig. S5: Splitting of the Kondo peaks in magnetic field. All plots show differential conductance g as a function of V
and B (at T0 < 100 mK). (a) Data on QD1a, corresponding to the data the main paper. (b) Data on QD1b. (c) Data
in QD3. The corresponding gate voltage settings for are indicated in figures. The dashed lines are rough estimates of
the Zeeman splitting corresponding to the g-factor values, |gZ |, that are also indicated in the figures.



5

COMPARISON OF THERMOELECTRIC DATA ON QD1A WITH THE MOTT RELATION

The Mott relation is an approximate relation between the conductivity G as a function of carrier energy E and the
Seebeck coefficient SMott [7]

SMott =
π2k2T

3e

1

G(E)

∂G(E)

∂E
. (4)

Equation (4) is a low-temperature approximation (based on a leading order Sommerfeld expansion), valid only when
G(E) does not vary significantly over an energy range kBT [8]. In nanoscale systems, G(E) can vary rapidly because
of confinement effects, and strong electron-electron interactions further complicate the picture. Therefore, the Mott
relation might not even hold at extremely low temperatures. A further, commonly used, approximation is to assume
that there is a linear dependence between the energy dependence and the gate-voltage dependence of G(E), such that
E ∝ −eαGVG, where αG is the gate coupling.

In our experimental setup we measure the thermocurrent Ith/∆T that in the linear-response regime would correspond
to the Seebeck coeeficient S = −g0Vth/∆T , where we replacedG(E) with g0 because of linear response. For the purpose
of comparing the predictions of the Mott relation with our experimental results we therefore plot −SMottg0/T which
is given by

−SMottg0
T

=
1

3αG

(
πk

e

)2
∂g0
∂VG

. (5)

We use g0 data from Fig. 2 of the main paper as well as corresponding data at additional temperatures to evaluate
the quantity −SMottg0/T . The results are shown in Fig. S6(a).

Moving average(b)(a)

T < 0.1 K 
T = 0.2 K 
T = 0.4 K 
T = 0.8 K 
T = 1.0 K 

T < 0.1 K 
T = 0.2 K 
T = 0.4 K 
T = 0.8 K
T = 1.0 K 

Fig. S6: Prediction for −SMottg0/T based on the Mott relation using conductance data from Fig. 2(b) (as well as
additional analogous g0 traces at T = 0.4 and 0.8 K). In (a) ∂g0/∂VG is calculated using the sequentially measured
g0 data points in VG, (b) shows the moving average (over 5 points) of the curves plotted in (a). Here αG = 0.039.

Figure S6 demonstrates that, given the measured g0, the Mott relation predicts the sign reversal of the thermoelectric
signature within the Coulomb valley to occur below T = 0.2 K. This is in contradiction with the experimental
observations in which the reversal of Ith/∆T is detected at T = T1 ≈ 1.8 K, or at almost an order of magnitude
higher temperature than the Mott relation predicts. This, in fact, can be concluded already from Fig. 2(b) in the
main paper, as well as from the g0 plots in Fig. S3. The sign inversion of SMott originates from the sign inversion
of ∂g0/∂VG within the Coulomb valley region, and measurements on all devices show that there is a valley in g0 at
temperatures way below the measured T1, meaning that the disagreement with the Mott relation is systematic. This
demonstrates that measuring Ith (or Vth) indeed provides additional information which cannot be extracted from g0.

THERMOMETRY OF QD3 IN THE WEAK COUPLING REGIME

To estimate the elevated electronic temperatures induced by the current IH though the heater lead we use the
thermocurrent Ith as a function of VG in the weak coupling regime (Γ� kBT ) where Kondo correlations are absent.
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The measured Ith(VG) is sensitive to both Tc and Th and therefore can be compared to theoretical calculations to
estimate the temperatures, in the same way as done in Ref. [9]. Such measurements were performed on all QDs,
however, only QD3 displayed a resonance which exhibited the type of clear single-level behavior and weak enough
coupling needed for the thermometry approach to be valid. Hence, this data is used to estimate Th and Tc as a function
of the heater bias VH . We find an approximately linear dependence of temperatures on VH which is consistent with
observations in previous studies [9] (see Fig. S7). Unfortunately, the thermometry data on QD3 does not cover the
full range of VH used in measurements on other devices, and we therefore base our temperature estimates for large
VH on a linear extrapolation of Th and Tc. Because all devices are identical by design we apply the thermometry
result of QD3 also to devices QD1 and QD2. The estimated ∆T yields consistent results for Ith/∆T on all devices
which increases our confidence that this is a good approximation.

Our theoretical approach [10, 11] for calculating the current through the weakly coupled QD is based on the real
time diagrammatic (RTD) approach [12], in which one expands the Liouville-von Neumann equation in Γ in order to
calculate the stationary state reduced density matrix of the QD, as well as the stationary charge current. We keep
all terms up to order Γ2 in the expansion which, in addition to sequential tunneling, also accounts for co-tunneling,
fluctuations and energy renormalization processes. The resistive load in series with the QD is included in the modeling
by solving the self-consistent equation Ith(VG, V ) = −V/R (see Supplementary Information of Ref. [9]).

We model the QD as a single-orbital Anderson model. This Hamiltonian can be broken into the respective Hamil-
tonians for the electronic reservoirs (HR), the QD (HD) and the tunnel couplings (HT )

H = HR +HD +HT . (6)

Here the reservoirs are assumed to be non-interacting

HR =
∑
r=h,c

εr,σ,kc
†
r,σ,kcr,σ,k, (7)

and they are also assumed to be in local equilibrium at all times such that they can be characterized by the Fermi-
Dirac distribution fr(ε) = [e(ε−µr)/kTr + 1]−1. c†r,σ,k (cr,σ,k) is the creation (annihilation) operator for an electron in
reservoir r with wave vector k and spin σ, and εr,σ,k is the eigenenergy for the same electron. The QD is modeled as
a single spin-degenerate energy level with on-site electron-electron interactions

HD =
∑
σ

εσnσ + Un↑n↓, nσ = d†σdσ, (8)

with single particle energy εσ and interaction strength U . The field operators acting on the QD subspace are denoted
by the letter d. Finally the tunneling Hamiltonian is given by

HT =
∑
r=h,c

tr,σ,kc
†
r,σ,kdσ + h.c. . (9)

The amplitude for an electron making a tunneling transition tr,σ,k is related to the tunneling rate Γ as

Γr,σ = 2πνr|tr,σ,k|2, (10)

where νr is the density of states of reservoir r.
The analysis required to obtain the temperatures is a three-step process. First, basic QD parameters are extracted

from current measurements without a thermal bias. From the stability diagram in Fig. S7(a) we find U = 4.2 meV
and αG = 0.061. Since the Coulomb diamonds in Fig. S7(a) are almost perfectly straight we consider symmetric
voltage drop across both reservoirs, µh,c = ±V/2. Next we determine Γh and Γc by fitting the RTD theory to the
measured current as a function of applied voltage as the QD is gated to the resonant condition VG = 2.385 V, see
Fig. S7(b). Determination of Γs is possible since the saturated current values for large Vext, and thus also large V , are
independent of other parameters, like temperature or series resistance [13]. In the final step we fit the RTD theory
to the measured Ith(VG) using the previously extracted values for U, αG, Γh and Γc, see Fig. S7(c). This is done for
all traces of Ith(VG), two for each VH setting.
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Fig. S7: Temperature estimates using a weakly coupled resonance. (a) G = dI/dVext as a function of VG and
Vext show four possible resonances for temperature characterization. Only the resonance at VG = 2.385 V was well
reproduced by a single-level QD model with weak tunnel couplings. U = 4.2 meV and αG = 0.061 are determined
from (a). (b) The tunnel rates are determined by fitting the RTD theory to the measured I(Vext) at the resonance
without thermal bias using Γh and Γc as free parameters. (c) Using the Γs from (b) the temperatures of the electronic
reservoirs are estimated by fitting the RTD theory to the measured Ith(VG) with Th (plotted in red) and Tc (plotted
in blue) as free parameters. The resulting temperatures and the applied VH are indicated in the figure. (d) The
estimated temperatures for all Ith(VG) at this resonance show a linear increase as a function of VH . Linear regression
for the two temperatures yield Th = 0.90VH + 0.21 and Tc = 0.60VH + 0.22. All measurements and calculations in
the figure include a series resistance R = 7.52 kΩ.
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