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We generalize a recently formulated theory of high-order harmonic generation by low-frequency laser fields
@Anne L’Huillier et al., Phys. Rev. A48, R3433 ~1993!# to the case of an elliptically polarized light. Our
theoretical description includes both the single-atom response and propagation. Phase matching significantly
modifies the results obtained in the single-atom response. The results of our calculations, including propagation
for both the intensity and polarization properties of harmonics as a function of laser ellipticity, compare very
well with recent experimental observations.

PACS number~s!: 32.80.Rm, 42.65.Ky

I. INTRODUCTION

High-order harmonic generation~HG! is one of the most
rapidly developing topics in the field of intense laser-atom
interactions. The recent progress in understanding the origin
of the high-order harmonics observed in the experiments
~typically beyond the 100th order! @1# can be attributed to the
development of the two-step quasiclassical interpretation
@2,3#. This model has been very useful in explaining, in par-
ticular, the location of the cutoff in the harmonic generation
spectra@4#. According to this model, the electron first tunnels
@5,6# from the ground state of the atom through the barrier
formed by the Coulomb potential and the laser field. Its sub-
sequent motion can be treated classically, and primarily con-
sists in oscillations of the free charge in the laser field. The
electron may come back in the vicinity of the nucleus and
recombine back to the ground state. If it returns with a ki-
netic energyEkin , a photon of the energyEkin1I p , where
I p is the ionization potential, may be emitted. Since the
maximal kinetic energy of the returning electron is
Ekin.3.2Up , whereUp5E2/4v2 is the ponderomotive po-
tential, i.e., the mean kinetic energy acquired by a free elec-
tron in the laser field of amplitudeE and frequencyv, the
cutoff in the harmonic spectrum occurs at harmonics of order
Nmax.(I p13.2Up)/v @7#.

In a series of papers@8,9#, we have formulated a fully
quantum theory, valid in the tunneling limit (Up>I p.v),
which recovers the semiclassical picture of the two-step
model and includes rigorously the effects of quantum tunnel-
ing, quantum diffusion, and interference. This theory is a
version of the so-called strong-field approximation@5# and is
very much related to thed-potential model of Becker and
co-workers@10#. Moreover, we have shown that a single-
atom description is not sufficient, in general, to explain the
experimental data@8,11#. To get good agreement between
theory and experiment, it is necessary to consider the effects
of propagation and phase matching of the harmonics in the
macroscopic medium. This, to a large extent, is caused by the
variation of the harmonic phase, which is due to the phase

shift of the fundamental beam at the focus and to the dy-
namical phase shift of the induced atomic dipole moment
@8,11–13#.

The two–step model, as well as our theory, lead to the
obvious conclusion that HG should be greatly reduced if the
atoms are driven by elliptically polarized light. In the case of
linear polarization, some of the classical trajectories of the
electron pass the nucleus periodically, thus allowing for re-
combination and harmonic generation. There are, strictly
speaking, no such trajectories for elliptic polarization. HG is,
in that case, possible only thanks to the finite extent of the
electronic wave packet and quantum diffusion effects. The
HG efficiency is expected to decrease rapidly with an in-
crease of the ellipticity of the laser. Several laboratories have
demonstrated this effect experimentally@14–17#. Measure-
ments have been performed both at relatively low intensities
and harmonic orders, i.e., in the multiphoton regime, and at
high intensities and harmonic orders, for which the two-step
description applies. The decrease of HG strength with ellip-
ticity is clearly more pronounced in the latter case.

Harmonics generated by single atoms driven by ellipti-
cally polarized light are also polarized elliptically. In the per-
turbative regime, their polarization is expected to be the
same as that of the laser@18#. This prediction is not valid in
the general~nonperturbative! case. Weiheet al. @19# have
observed that the polarization ellipse of low-order harmonics
is rotated by some angle with respect to the polarization el-
lipse of the laser.

A systematic theoretical study of HG, including the case
of elliptically polarized laser fields, has been recently pre-
sented by Beckeret al., who discussed the exact solutions for
the d-potential model@10#. Dietrich et al. @15# used a sim-
plified version of our theory~in which the electron is allowed
to return to the nucleus only once! to interpret their experi-
mental data. However, none of these authors discusses
propagation effects and the polarization properties of the har-
monics, which are the main subject of the present work.
Other studies of harmonics generated by laser fields of vari-
able polarization have concentrated on the possibility of gen-
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erating attosecond pulses@20#, and on applications for con-
trol and optimization of the harmonic source using several
colors @21,22#.

The aim of the present paper is to generalize and apply
the theory formulated in Refs.@8,9# to the case of elliptically
polarized light. The paper is organized as follows. In Sec. II,
we discuss the single-atom response. We show that the varia-
tion of the harmonic strengths as a function of laser elliptic-
ity exhibit quantum interference effects, which depend on the
laser intensity and harmonic order. In Sec. III, we present the
method for calculating the macroscopic response by solving
the inhomogeneous Maxwell equations@23# and we compare
the propagated results with experimental data@14#. We ob-
tain a very good agreement between theory and experiment.
Finally, in Sec. IV, we discuss the polarization of harmonics
from the single atom to the macroscopic response. For single
atoms, a simple linear dependence of the ellipticity of the
harmonics and of the rotation angle of the ellipse as a func-
tion of laser ellipticity occurs only at relatively low intensi-
ties. For higher intensities, both ellipticity and rotation angle
vary rapidly as a function of both laser intensity and elliptic-
ity, and exhibit quantum interference effects. In some situa-
tions, thehelicity of the harmonic field undergoes dynami-
cally induced change of sign, so that, in the complex plane,
the fundamental and harmonic fields circulate in opposite
directions. All these effects are smoothed~but not elimi-
nated! by propagation effects.

II. SINGLE-ATOM RESPONSE

A. Theory

We consider an atom in a single-electron approximation
under the influence of the laser fieldEW (t) of arbitrary polar-
ization. We here use atomic units, but express all energies in
terms of the photon energy. A more appropriate system of
units ~MKSA! will be used in Sec. III to describe the propa-
gation of electromagnetic fields. We skip the details of the
derivation and the discussion of the validity range of our
approach since they were thoroughly discussed in Ref.@9#.
Briefly, we neglect the contribution to the evolution of the
system of all bound states except the ground state, as well as
the effect of the atomic potential on continuum electronic
states. Our approach is valid in the tunneling regime for ion-
ization, i.e., whenUp is comparable or larger thanI p .

The time-dependent dipole moment xW (t)
5^C(t)uxW uC(t)&, with uC(t)& denoting the time-dependent
electronic wave function, can be written in the form of a
generalized Landau-Dyhne formula@24# as

xW~ t !5 i E
0

t

dt8E d3pWdW * „pW 2AW ~ t !…a* ~ t !

3exp@2 iS~pW ,t,t8!#EW ~ t8!•dW „pW 2AW ~ t8!…a~ t8!1c.c.

~1!

In this expression,dW „pW 2AW (t)… is the field-free dipole transi-
tion matrix element between the ground-state and the con-
tinuum state characterized by the velocityvW 5pW 2AW (t), pW

denoting the canonical momentum andAW (t), the vector po-

tential. a(t) is the ground-state amplitude; Finally,
S(pW ,t,t8) is thequasiclassical action, describing the motion
of an electron moving in the laser field with a constant mo-
mentumpW ,

S~pW ,t,t8!5E
t8

t

dt9S @pW 2AW ~ t9!#2

2
1I pD . ~2!

Equation ~1! is a sum of probability amplitudes corre-
sponding to the following processes: The last term in the
integral,EW (t8)•dW „pW 2AW (t8)…a(t8), is the probability ampli-
tude for an electron to make the transition to the continuum
at time t8 with the canonical momentumpW . The electronic
wave function is then propagated until timet and acquires a
phase factor equal to exp@2iS(pW,t,t8)#. The electron recom-
bines at time t with an amplitude equal to
dW * „pW 2AW (t)…a* (t). The expression~1! neglects continuum-
continuum contributions toxW (t).

The ground-state amplitudea(t) can be expressed as

a~ t !5expS 2E
0

t

g~ t9!dt9D , ~3!

where the time-dependent, complex, ionization rate is deter-
mined from

g~ t !5E
0

t

dt8E d3pWE*W~ t !•dW * „pW 2AW ~ t !…

3exp@2 iS~pW ,t,t8!#EW ~ t8!•dW „pW 2AW ~ t8!…. ~4!

For small t, g(t) is a rather complicated function of time,
but becomes periodic typically after a few laser cycles. Since
the effect of depletion over the time scale of few optical
periods is negligible, and since the integral overt8 is actually
restricted tot8.t owing to quantum diffusion, we may set
a(t8).a(t) in Eq. ~1!.

The harmonic amplitudesxWq are obtained by Fourier
transforming the time-dependent dipole momentxW (t):

xWq5
1

2pE0
2p

xW~ t !eiqtdt. ~5!

As we have shown in Ref.@9#, the dominant contributions to
xWq come from the stationary points of the Legendre-
transformed quasiclassical action, for which the derivatives
of S(pW ,t,t8)2qt with respect topW , t, andt8 vanish~saddle-
point equations!. Introducing the return timet5t2t8, these
equations read

¹W pWS~pW ,t,t!5pW t2E
t2t

t

AW ~ t9!dt950W , ~6!

]S~pW ,t,t!

]t
5

@pW 2AW ~ t2t!#2

2
1I p50, ~7!

]S~pW ,t,t!

]t
5

@pW 2AW ~ t !#2

2
2

@pW 2AW ~ t2t!#2

2
5q. ~8!
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The first of these equations means that the only relevant elec-
tron trajectories are those in which the electron leaves the
nucleus at timet2t and returns to it att. Equation~7! has a
somewhat more complicated interpretation. IfI p was zero, it
would simply state that the electron leaving the nucleus at
t2t should have a velocity equal to zero. In reality,I pÞ0
and, in order to tunnel through the Coulomb barrier, the elec-
tron must have a negative kinetic energy att2t. This con-
dition cannot be fulfilled for realt ’s, but can easily be ful-
filled for complext ’s. The imaginary part oft can then be
interpreted as a tunneling time, just as it has been done in the
seminal papers of Ammosov, Delone, and Krainov@6#. Fi-
nally, we can rewrite the last expression~8! as

@pW 2AW ~ t !#2

2
1I p5Ekin~ t !1I p5q. ~9!

This is simply the energy conservation law, which gives the
final kinetic energy of the recombining electron that gener-
ates theqth harmonic.

In Ref. @15#, such a quasiclassical analysis was used. The
authors considered, however, the contribution from only one
saddle point (pW ,t,t), and calculated it in the limitI p!Up .
There are, however, in general, several complex stationary
points that fulfill the saddle-point equations. In Ref.@12#, we
included the contribution of the two most relevant saddle
points. We showed the importance of interferences between
the contributions of these two saddle points at high laser
intensities, in the case of linear polarization. In the present
paper, we will only use the saddle-point technique to evalu-
ate the integral over momenta, and to handle the slowly vary-
ing parts of expression~1!, as discussed below. We perform
all other integrations overt8 ~replaced, in practice, by
t5t2t8) and t numerically, thus accounting for the contri-
butions of all saddle points and their interferences exactly. As
we shall see, for small ellipticities and moderate intensities,
our results for the ellipticity dependences of the harmonics
are consistent with those of Ref.@15#. However, for high
intensities corresponding to the plateau region~e.g.,
.231014 W/cm2 for the 43rd harmonic in neon! @12#, the
interference of the two saddle points that have return times
Re(t) in the interval @0,2p# becomes very significant.
Moreover, for large ellipticities, the contributions of saddle
points with even larger return times can no longer be ne-
glected.

After performing the saddle-point integration over mo-
menta in Eq.~1! @see Eq.~6!#, replacinga(t8) by a(t), and
using the return timet, we obtain

xW~ t !5 i E
0

`

dtS p

n1 i t/2D
3/2

dW * „pW s2AW ~ t !…

3exp@2 iS~pW s ,t,t!#EW ~ t8!•dW „pW s2AW ~ t2t!…

3ua~ t !u21c.c., ~10!

wheren is a positive regularization constant, whereas

pW s5pW s~ t,t!5E
t2t

t

dt9AW ~ t9!/t. ~11!

Note the characteristic prefactor (n1 i t/2)23/2 coming from
the effect of quantum diffusion. It cuts off very efficiently the
contributions from larget ’s and allows us to extend the in-
tegration range from 0 to infinity.

The complex decay rate may be treated in a similar way
and becomes

g~ t !5E
0

`

dtS p

n1 i t/2D
3/2

EW * ~ t !•dW * „pW s2AW ~ t !…

3exp@2 iS~pW s ,t,t!#EW ~ t8!•dW „pW s2AW ~ t2t!….

~12!

Within this approximation,g(t) is a periodic function of
time. Oscillations ofg(t) modify obviously the Fourier spec-
trum of xW (t), i.e., influence the harmonic spectrum@25#. We
have checked numerically, however, that, in the discussed
regime of parameters, this effect is negligible. It is thus le-
gitimate to replaceg(t) by its time averageḡ and to assume
that the decay of the ground state is exponential:
ua(t)u25exp(2Gt), with G52Re(ḡ). Note thatG is a func-
tion of I p , Up , and the polarization of the laser field.

We are now in the position to evaluate the harmonic spec-
trum emitted by an atom driven by an elliptically polarized
field. The laser electric field and vector potential are given by

EW ~ t !5A 4Up

11e2
„cos~ t !,esin~ t !,0…, ~13!

AW ~ t !5A 4Up

11e2
„2sin~ t !,ecos~ t !,0…, ~14!

wheree denotes the ellipticity of the laser field.
For the case of hydrogenlike atoms and transitions froms

states, the field-free dipole matrix elements can be approxi-
mated by@9,26#

dW ~pW !5 i
27/2a5/4

p

pW

~pW 21a!3
, ~15!

with a52I p . Many qualitative and some quantitative prop-
erties of the HG spectra can be obtained from the simplified
expression

dW ~pW !}pW . ~16!

This expression describes a ‘‘flat’’ dipole moment and ne-
glects the energy dependence ofdW (pW ). It corresponds to the
‘‘Gaussian broad limit’’~GBR! model discussed in Ref.@9#;
an analogous formula has been used in Ref.@15#. We stress
that our present calculations indicate that the expression~16!
cannot be used for accurate quantitative evaluation of the HG
spectra. The absolute values of the harmonic strengths and
ionization rates from the~appropriately normalized! GBR
model are typically two orders of magnitude smaller than
those obtained with Eq.~15! @27#. The GBR model does,
however, provide quite an accurate description of the relative
harmonic intensity and ellipticity dependences.

In the present work, we use Eq.~15!. For the term
dW „pW s2AW (t)… in Eq. ~10!, we make use of the fact that the
main contribution to the integral overt andt in the equation
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giving theqth harmonic amplitude@Eq. ~5!, in which xW (t) is
replaced by the expression~10!#, comes from the saddle
points. We therefore substitute$@pW s2AW (t)#21a%23 by
(2q)23, in accordance with Eqs.~7! and~8!. This cannot be
done fordW „pW s2AW (t2t)…, since this term is singular at the
saddle point@see Eq.~7!#. We have to treat this term in the
integrand of~10! exactly. To this aim, we use the Fourier
expansion

1

$@pW s2AW ~ t2t!#21a%3
5 (

M52`

`

bM~t!exp@2 iM ~2t2t!#.

~17!

The coefficientsbM(t) can be evaluated exactly using the
Cauchy theorem, as described in Appendix A.

Without depletion, the Fourier transform ofxW (t)@Eq. ~5!#
consists of a series of the Dirac’sd peaks. The moduli
squared of these amplitudes determine the corresponding
harmonic strengths. With depletion, the Fourier transform of
xW (t) becomes a sum of Lorentzian peaks centered at the har-
monic frequencies. In the present regime of parameters, these

peaks are still very narrow, sinceG!1. Note that this condi-
tion means that depletion is negligible on a scale of one laser
cycle, which does not exclude that it might be dominant on a
scale of the laser pulse duration,TD . The complex harmonic
amplitudes are calculated as the values of the Fourier trans-
form of xW (t) at the centers of the lines, i.e., at the harmonic
frequencies, multiplied by appropriate normalization factors
N. The normalization is such thatuNu2 gives the total area
under the corresponding Lorentzian peak in the spectrum
~total energy emitted into the given harmonic field!, i.e.,
N25(12e22GTD)/2G.

The final expressions for thex andy components for the
complex harmonic amplitudes read

xq5N (
M52`

` E
0

`

dtXK2M~t!bM~t!eiM t, ~18!

yq5N (
M52`

` E
0

`

dtYK2M~t!bM~t!eiM t, ~19!

where 2K5q21,

XK~t!5 i S Up

~11e2! D
3/2 32a5/2

p2~2K11!3
~ i !KS p

n1 i t/2D
3/2

exp@2 iF K~t!#@2~12e2!B~t!JK12„ŨpC~t!…

2 i ~12e2!ei tB~t!JK21„ŨpC~t!…1 i @~11e2!ei tB~t!1D~t!1 i e2C~t!#JK11„ŨpC~t!…1$~11e2!B~t!

1@D~t!2 i e2C~t!#ei t%JK„ŨpC~t!…#, ~20!

YK~t!5 i S Up

~11e2! D
3/2 32a5/2

p2~2K11!3
~ i !K

e

i S p

n1 i t/2D
3/2

exp@2 iF K~t!#@2~12e2!B~t!JK12„ŨpC~t!…

1 i ~12e2!ei tB~t!JK21„ŨpC~t!…1 i @~11e2!ei tB~t!1e2D~t!1 iC~t!#JK11„ŨpC~t!…2$~11e2!B~t!

1@e2D~t!2 iC~t!#ei t%JK„ŨpC~t!…#, ~21!

with

Ũp5Up

12e2

11e2
, ~22!

and JK(•) denoting the Bessel function ofKth order. The
explicit expressions for the functionsB(t), C(t), D(t), and
FK(t) are given in Appendix B.

B. Numerical results

In the numerical calculations, we calculate the integrals
~18! and ~19! over a range of typically 4–5 optical cycles.
The sum overM is extended touM u.728 in order to get a
good convergence~note that the restriction of the sum over
M to M50 is equivalent to an appropriately normalized
GBR model!. Our results for neon are presented in Figs. 1–3.
Throughout the paper, we use laser parameters that corre-
spond to the laser used in the experiments of Ref.@14#,
which produced 150 fs@full width at half maximum
~FWHM!# pulses at the wavelength of 825 nm. In our system
of units, I p514.4 andTD.100.

In Figs. 1 and 2, we present typical results for the inten-
sity dependence of thex and y components of the induced
atomic dipole at the 43rd harmonic, for three values of the
ellipticity. Figure 2 contains only two curves, since for
e50, the y component of the dipole is zero. The intensity
dependences of bothux43u2@Fig. 1~a!#, and uy43u2@Fig. 2~a!#
show the characteristic transition from the cutoff region
~where the dipole strengths increase rapidly! to the plateau
region ~where the dipole strengths saturate and are domi-
nated by quantum interference effects!. With increasing el-
lipticity, the dipole strength decreases whereas the cutoff po-
sition shifts slightly toward higher intensities~hence, for a
given intensity, towards lower harmonic orders!. In Figs.
1~b! and 2~b!, we show the intensity dependences of the
phase of the dipole. This phase, as we stressed in Refs.
@11,12#, determines, to a great extent, the coherence proper-
ties of the propagated signal and can be interpreted in qua-
siclassical terms. It exhibits a piecewise linear behavior as a
function of the laser intensity. The slope of the phase for
intensities below the cutoff-plateau transition point is equal
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to .23.2 in units ofUp . In this regime, it practically does
not change with ellipticity. In the plateau region, the phase
exhibits oscillations due to quantum interferences. The aver-
age slope is larger (.25.8 for e50) than in the cutoff, and
increases with ellipticity (.220 for e50.6). This increase
of the slope with the laser ellipticity takes place over a lim-
ited range of intensities@from ;2.7 to 631014 W/cm2 in
Figs. 1~b! and 2~b!#. It strongly depends on the process order,
being more and more pronounced as the harmonic order in-
creases~it is very significant for the 63rd harmonic!.

As we have shown in Ref.@12#, the slope is related to the
return time of the electron for the most relevant saddle
points. The large slopes obtained for large ellipticities seem
to imply that the trajectories corresponding to long return
times ~i.e., longer than one period with, possibly, multiple
returns! play a dominant role in this case, especially for high

harmonic orders. Numerical analysis confirms this interpre-
tation. The contributions from high values of the return times
are usually cut off due to diffusion effects~which our theory
accounts for!, and due to electron rescattering effects~which
our theory ignores!. One could argue that the physical sig-
nificance of such trajectories could be questioned at small
ellipticities, since electron rescattering would eliminate them
~see discussion in@9#!. At high ellipticities, however, this
argument fails, since the effects of rescattering are much
weaker, and can be perfectly neglected. These contributions
then have to be taken into account, and only quantum diffu-
sion might eliminate them. This effect influences the propa-
gation effects significantly, as we shall see below.

In Fig. 3, we plot the relative harmonic strengths as a
function of the laser ellipticity for the~a! 23rd,~b! 43rd, and
~c! 63rd harmonics, and for different values of the laser in-

FIG. 1. Strength~a! and phase~b! of the x component of the neon dipole at the 43rd harmonic frequency as a function of the laser
intensity, for three values of the ellipticity:e50 ~long-dashed line!, e50.3 ~solid line!, ande50.6 ~short-dashed line!.
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tensity. The curves are normalized such that the harmonic
strengths fore50 are set equal to one. The dipole strength
decreases drastically~six orders of magnitude at least! as the
laser ellipticity increases from 0~linear polarization! to 0.5
~an ellipticity of 1 corresponds to circular polarization!. This
effect is more pronounced for high harmonic orders, in
agreement with the experimental observations@14,28#. The
influence of the laser intensity is not very important. It
changes the relative dipole strengths by at most two orders of
magnitude, and in a nonmonotonic way@see, for example,
Fig. 3~a!#. Interference effects are clearly observed as oscil-
latory features in Figs. 3~b! and 3~c!. They even induce a
local minimum ate50 at high intensity@see Fig. 3~c!#. Note
that this minimum cannot be interpreted in terms of the ef-
fects discussed in@17#, which apply to much lower harmonic

orders~comparable toI p). It is also worth stressing that the
interference effects are smaller in the hydrogen model than
in the cruder GBR description. The contributions of several
Fourier components of the atomic dipole moments@see Eq.
~17!# apparently tend to smooth out quantum interference
effects.

The results presented in Fig. 3 have been obtained without
taking depletion into account. The effect of depletion is in-
deed hardly visible on these curves, at the intensities consid-
ered (<631014 W/cm2). The relative harmonic strengths
depend on the depletion rate only through the normalization
constantN. Since the depletion rate is a weakly decreasing
function of the ellipticity, the normN increases with elliptic-
ity. It thus promotes the regions of large values ofe relative
to the regione.0. The resulting broadening of the curves is,

FIG. 2. Strength~a! and phase~b! of the y component of the neon dipole at the 43rd harmonic frequency as a function of the laser
intensity, for two values of the ellipticity:e50.3 ~solid line! ande50.6 ~short-dashed line!.
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FIG. 3. Relative single-atom harmonic strengths as a function of the laser ellipticity for~a! 23rd,~b! 43rd, and~c! 63rd harmonic, and for
three values of the laser intensity: 231014 W/cm2 ~long-dashed line!, 431014 W/cm2 ~dot-dashed line!, and 631014

W/cm2 ~solid line!.
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however, visible only at sufficiently high intensities
(.831014W/cm2), when the depletion starts playing a sig-
nificant role. In the following, we shall thus neglect the
depletion, keeping in mind what its~small! effect might be.
Note that, if we had plotted the absolute harmonic strengths,
the effect of depletion would have been more pronounced,
since the results for high intensities~high depletion! would
have been shifted down along the vertical axis~i.e., reduced
in value!, by up to one order of magnitude.

III. MACROSCOPIC RESPONSE

The second step of the theoretical description consists of
solving the propagation equations in the paraxial and slowly
varying envelope approximations, using the dipole moments
discussed previously as source terms. The method for solv-
ing the propagation equations has been discussed previously
for linearly polarized fundamental~and harmonic! fields
@23#. In the present paper, we discuss the validity of the
different approximations used and we generalize the method
to elliptically polarized fields.

A. Propagation equations in homogeneous media

We start from the general wave equation describing the
propagation of an electromagnetic fieldEW (rW,t) in an isotro-
pic, globally neutral, nonmagnetic, dielectric medium, char-
acterized by an electronic polarizationPW (rW,t):

¹2EW ~rW,t !2
1

c2
]2EW ~rW,t !

]t2
5

1

e0c
2

]2PW ~rW,t !

]t2
. ~23!

It is natural to decomposeEW (rW,t) and PW (rW,t) as sum of
harmonic fields and polarizations:

EW ~rW,t !5(
q
EW q~rW,t !;PW ~rW,t !5(

q
PW q~rW,t !. ~24!

PW q(rW,t) can be expressed as

PW q~rW,t !5PW q
L~rW,t !1PW q

NL~rW,t ! ~25!

wherePW q
L(rW,t) denotes thelinear responseat the~harmonic!

frequency andPW q
NL(rW,t) thenonlinear response. We assume

that the linear response takes the simple form:

PW q
L~rW,t !5e0xqE

W
q~rW,t !, ~26!

the susceptibilityxq being related to the wave vectorkq by
kq
25(qv/c)2e(qv), with e(qv)511xq . The refractive in-
dex nq is equal toAe(qv). For the sake of simplicity, we
here neglect nonlinear corrections to the linear susceptibility
and assume the medium to be homogeneous. We will come
back on these points in the next section. The nonlinear re-
sponse of the medium,PW q

NL(rW,t), includes, in principle, con-
tributions from a large number of processes involving the
harmonic and fundamental fields. We neglect the influence of
wave mixing processes involving harmonic fields as well as
the depletion of the fundamental field by energy transfer to
the harmonic fields. Both assumptions are justified owing to
the relatively low conversion efficiency for these high-order

processes.PW q
NL is therefore the polarization induced by the

fundamental field only. Introducing the electric excitation
DW q5e0EW q1PW q

L , Eq. ~23! becomes a set of equations:

¹2EW 1~rW,t !2
1

e0c
2

]2DW 1~rW,t !

]t2
50W ,

¹2EW q~rW,t !2
1

e0c
2

]2DW q~rW,t !

]t2
5

1

e0c
2

]2PW q
NL~rW,t !

]t2
.

~27!

These equations are only coupled through the dependence of
PW q
NL(rW,t) on EW 1(r 8W ,t8! ~it may not be a local function of the

electric field!. Note that, at this point, we have not made any
paraxial or slowly varying envelope approximations. We
now introduce the envelope functionsEW q andPW q

NL

EW q~rW,t !5
1

2
EW q~rW,t !e

i ~kqz2qvt ! 1 c.c.,

PW q
NL~rW,t !5

1

2
PW q
NL~rW,t !ei ~qk1z2qvt ! 1 c.c. ~28!

v is the laser frequency andz denotes the coordinate on the
propagation axis. In the paraxial approximation, the field
EW (rW,t) and the polarizationPW (rW,t) are supposed to be per-
pendicular to the propagation axisz, i.e., in the (x, y! plane.
Further, we make the slowly varying envelope approxima-
tion, i.e., we assume thatEW q(rW,t), PW q

NL(rW,t) vary slowly in
time over theharmonicperiod and in the coordinatez over
the harmonic wavelength. Although for short laser pulses and
high intensities, the nonlinear polarization may vary rapidly
in time, compared to the excitinglaser period, we believe
that the slowly varying envelope approximation is satisfied
for the harmonic propagation equations. After a few manipu-
lations described in textbooks~see, e.g.@29#!, Eq. ~27! be-
comes

¹'
2EW 1~rW,t !12ik1S ]EW 1~rW,t !

]z
1

1

vg1

]EW 1~rW,t !

]t
D 50W ,

¹'
2EW q~rW,t !12ikqS ]EW q~rW,t !

]z
1

1

vgq

]EW q~rW,t !

]t
D

52
q2v2

e0c
2PW q

NL~rW,t !exp~2 iDkqz!. ~29!

vgq denotes the group velocity at frequencyqv and
Dkq5kq2qk1 , the phase mismatch.¹'

2 is the Laplacian
operating on the transverse coordinates (x, y!, or when the
problem is axisymmetric, on the coordinater . To obtain Eq.
~29!, we have neglected the double derivatives ofEW q(rW,t)
relative to z and t and we have assumed
]2PW q(rW,t)/]t

2.2q2v2PW q(rW,t). Assuming equal group ve-
locities for all the frequencies~which is valid for the small
and diluted media considered in the high-order harmonic
generation experiments! and making the change of variables
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r 8W5rW;t85t2z/vg , which amounts to using the referential
moving at the common group velocity, we obtain

¹'
2EW 1~r 8W ,t8!12ik1

]EW 1~r 8W ,t8!

]z8
50W ,

¹'
2EW q~r 8W ,t8!12ikq

]EW q~r 8W ,t8!

]z8

52
q2v2

e0c
2PW q

NL~r 8W ,t8!e2 iDkqz8 ~30!

~we drop the primes from now on!. So far, we have not
specified the dependence of the polarization on the incident
field. We now assume that the polarization is alocal function
of the incident electric field, both in space and time. The field
creating a polarization in (rW,t) is EW 1(rW,t). In space, this ap-
proximation is valid for the dilute media used in the present
problem. In time, the implication that the polarization fol-
lows ‘‘instantaneously’’ the change in electric field, might be
questionable for high intensities and short pulses. The valid-
ity of the temporal locality will be investigated in future
work. Here, we simply approximate the nonlinear polariza-
tion, in the framework of the dipole approximation, by

PW q
NL~rW,t !52N xWq~rW,t !e

iqf1~rW,t !, ~31!

whereN is the atomic density, andxWq(rW,t), the harmonic
component of the atomic dipole moment, calculated for a
field @ uE1xucos(vt),uE1yusin(vt),0#. The factor of 2 arises from
different conventions used in the definitions ofPW q

NL@Eq. ~28!#

andxWq@Eq. ~5!#. Finally, f1(rW,t) represents the phase of the
laser field envelopeEW 1(rW,t), obtained by solving the propa-
gation equation for the fundamental.

B. Propagation equations in inhomogeneous media

The propagation equations@Eq. ~30!# are immediately
generalized to the case of neutral media, with az-dependent
atomic density,N (z). In Eqs. ~28!, ~29!, and ~30!, k1z,
kqz, andDkqz are replaced by*zk1(z8)dz8, *zkq(z8)dz8,
and*zDkq(z8)dz8, respectively.

When the medium isabsorbing at frequency qv,
uEW q(rW,t)u5uEW q(rW,t)uexp@*zkq(z8)dz8#, where kq is the ab-
sorption coefficient at frequency qv ~imaginary
part of kq). It is then more convenient to introduce a
new envelope function for the harmonic fields

ẼW q(rW,t)5EW q(rW,t)exp@i*
zDkq(z8)dz8#, such that uẼW q(rW,t)u

5uEW q(rW,t)u. The propagation equations~30! become

¹'
2EW 1~rW,t !12ik1

]EW 1~rW,t !

]z
50W ,

¹'
2 ẼW q~rW,t !12ikq

]ẼW q~rW,t !

]z
12kqDkq~z!ẼW q~rW,t !

52
q2v2

e0c
2PW q

NL~rW,t !. ~32!

The case of inhomogeneous media owing to~partial! ion-
ization is more difficult and requires additional approxima-
tions. The refractive indexnq contains contributions from
atoms, ions~which we assume, for simplicity, to be only
singly charged!, and electrons,

@nq~rW,t !#
2511xq

a~rW,t !1xq
i ~rW,t !1xq

e~rW,t !, ~33!

where the indicesa,i , and e refer to the atomic, ionic,
and electronic susceptibilities, respectively.xq

a,i(rW,t)

5N a,i(rW,t)aa,i(qv), whereaa,i(qv) andN a,i(rW,t) denote
the ~atomic or ionic! dipole polarizability and density. We do
not consider here nonlinear corrections to the polarizabilities.
In the calculations presented below, we shall actually com-
pletely neglect the atomic and ionic dispersion, considering
only the dispersion induced by the electrons. The electronic
term takes a simple form:

xq
e~rW,t !52

e2N e~rW,t !

mq2v2 . ~34!

For short laser pulses, the electrons do not have time to move
so that the electronic densityN e(rW,t).N i(rW,t). This ap-
proximation allows us to keep the cylindrical symmetry rela-
tive to the propagation axis. We express the refractive index
and the wave vector as

@nq~rW,t !#
2511xq

0~z!1dxq~rW,t !,

kq~rW,t !5nq~rW,t !qv/c5kq
0~z!1dkq~rW,t !, ~35!

with xq
0(z)5N (z)aa(qv), N (z) being the ~initial! me-

dium density, andkq
0(z)5(qv/c)@11xq

0(z)/2#. We have
here extracted the contributions from the atomic medium,
assumed to be not depleted by ionization@11xq

0(z) and
kq
0(z)#. The remaining contributions to the refractive index
and the wave vector induced by ionization are written as
correction termsdxq(rW,t) and dkq(rW,t), respectively. Note
that we could also, more simply, consider the wave vector
describing propagation in vacuum:kq

05qv/c, including all
dispersion effects indkq .

The linear response of the medium@see Eq.~26!# can be
written as

PW q
L~rW,t !5e0xq

0~z!EW q~rW,t !1e0dxq~rW,t !EW q~rW,t !. ~36!

The first term in the sum is treated as before by moving it to
the left-hand side of the propagation equation, incorporating
it by means of the wave vectorkq

0 . The second term is con-
sidered as an additional source term to the propagation equa-
tions, to which the slowly varying envelope approximation
can be applied, i.e., ]2dxq(rW,t)EW q(rW,t)/]t

2

.2q2v2dxq(rW,t)EW q(rW,t). Following the derivation of the
preceding section, and using the envelopes defined by
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EW q~rW,t !5
1

2
EW q~rW,t !e

i @q*zkq
0
~z8!dz82qvt#1c.c.

PW q
NL~rW,t !5

1

2
PW q
NL~rW,t !ei @q*zk1

0
~z8!dz82qvt#1c.c., ~37!

Eq. ~32! becomes

¹'
2EW 1~rW,t !12ik1

0 ]EW 1~rW,t !

]z
12k1

0dk1~rW,t !EW 1~rW,t !50W ,

~38!

¹'
2EW q~rW,t !12ikq

0 ]EW q~rW,t !

]z
12kq

0@Dkq
0~z!

1dkq~rW,t !#EW q~rW,t !52
q2v2

e0c
2PW q

NL~rW,t !. ~39!

C. Numerical results

The propagation equations@Eqs.~38! and~39!# are solved
numerically over the length of the nonlinear medium using a
finite-difference technique. They are discretized in the (r ,z)
plane on a 5003300 point grid and integrated using a space-
marching Crank-Nicholson scheme. The field at the position
zi is obtained from that at the positionzi21 by inverting a
tridiagonal matrix with a classical recursive algorithm. Equa-
tion ~38!, nonlinear through the dependence ofdk1(rW,t) on
the field intensity is solved first, for the two components of
the ~elliptically polarized! incident field. Next, one calculates
PW q
NL(rW,t) anddkq(r ,z) induced by theperturbedfundamen-

tal field EW 1(rW,t). Then, Eq.~39! is solved, yielding the har-
monic fieldEW q(rW,t). This is repeated for a sequence of times
t spanning the laser pulse duration~typically 30 points!. To
obtain the harmonic strengths, we integrateuEW q(rW,t)u2 at the
exit of the medium, over the transverse coordinater ~using
cylindrical coordinates!, and over the laser pulse duration. As
in Sec. II, we use parameters close to the experimental con-
ditions of @14#. The laser is assumed to be Gaussian in space
and time, with a 5-mm confocal parameter and a 150-fs pulse
duration at half maximum. The atomic density profile is a
truncated Lorentzian function with a 0.8-mm FWHM, cen-
tered at the laser focus. This is not the best condition for
generating coherent harmonics@11,12#, but no optimization
with respect to the focus position has been done in the ex-
periments. The peak density is taken to be 15 Torr. The di-
mension of the grid in space is approximately~depending on
the process order! 100mm 31.6 mm, and in time, 250 fs.

For low laser frequencies, pressures above 10 Torr and
intensities high enough to partially ionize the medium, the
refractive index will be dominated by the free electron con-
tribution. In the calculations presented below, we neglect
all atomic or ionic dispersion effects, as well as absorp-
tion, but we include the effects of depletion and the
dispersion induced by free electrons. In Eqs.~38!
and ~39!, we set kq

05qv/c, Dkq
0(z) 50, and dkq(rW,t)

52e2N e(rW,t)/2mqcv.The electronic density is obtained

from the tunneling ionization ratesG(uEW 1u) derived in Sec. II
as

N e~rW,t !5N ~z!F12expS 2E
2`

t

G@ uEW 1~rW,t8!u#dt8D G .
~40!

The dispersion introduced by the free electrons has several
effects: it introduces an additional phase mismatch, thus de-
teriorating phase matching. It leads to defocusing and blue-
shifting of the fundamental field. These effects play a domi-
nant role in some situations@30#. For the intensities and
density used in these calculations, however, they remain mar-
ginal. We checked that they do not influence the polarization
properties of the generated harmonic field in any significant
way.

In Fig. 4, we compare the single-atom results~solid line!
with the propagated signals~dashed line! for the~a! 23rd,~b!
43rd, and ~c! 63rd harmonics at an intensity of 631014

W/cm2. For the calculation including propagation, this in-
tensity is to be understood as the peak intensity. The first
conclusion to be drawn from the figure is that propagation
~and time-averaging! smooths out quantum interference pat-
terns. In general, the propagated results decrease faster with
ellipticity than in the single-atom response, especially for
high-order harmonics@see Fig. 4~c!#. The result in Fig. 4~b!,
which is at variance with this tendency, is probably due to
the destructive interfence effect occurring ate.0.35, which
reduces, in this case, the single-atom response. The faster
decrease with ellipticity in the propagated results can be ex-
plained by the previously noted increase of the variation of
the phase in the plateau region with the laser ellipticity@see
Figs. 1 and 2~b!#, which deteriorates phase matching for
large ellipticities.

In Fig. 5, we compare the results of our calculation~in-
cluding propagation! with experimental data for the~a! 23rd,
~b! 43rd, ~c! 63rd harmonics. In each plot, we present three
theoretical curves corresponding to the laser peak intensities
2, 4, and 63 1014 W/cm2 @only the last two are shown in
Fig. 5~c!, the 63rd-harmonic generation efficiency at 2
31014 W/cm2 being negligible#. The full circles denote the
result of the experiment performed by Budilet al. @14#. The
open squares are the results of recent experiments carried out
at Saclay with a Ti:sapphire laser at a slightly different wave-
length, 790 nm, but otherwise in very similar conditions
@28#. This laser has a higher repetition rate~20 Hz! than the
one used in@14#, thus allowing for better statistics. The
agreement between theory and experiment is very good, ir-
respective of the laser intensity used in the calculations
~which does not influence much the results!. In particular, the
theory reproduces extremely well the significant narrowing
of the ellipticity dependence with increasing harmonic num-
ber @compare Figs. 5~a! and 5~c!#. The deviation observed at
large ellipticities is simply due to the fact that, in the experi-
ments, the signal was barely above the noise level, and mea-
sured with poor accuracy in this region.
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FIG. 4. Comparison of the single-atom~solid line! and propagated~dashed line! harmonic strengths for~a! 23rd, ~b! 43rd, and~c! 63rd
harmonic, at a peak laser intensity of 631014 W/cm2.
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FIG. 5. Comparison of the simulated harmonic strengths with experimental data for~a! 23rd,~b! 43rd, and~c! 63rd harmonic. Theoretical
curves correspond to three different peak intensities: 231014 W/cm2 ~long-dashed line!, 431014 W/cm2 ~dot-dashed line!, and 631014

W/cm2 ~solid line!. Only the last two intensities are plotted for the 63rd harmonic since it is very far in the cutoff region at low intensity.
Full circles denote experimental data from Ref.@14#. Open squares denote recent results obtained at Saclay with a Ti:S laser@28#.
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IV. POLARIZATION OF HARMONICS

Before presenting numerical results, we discuss how to
extract from the calculated dipole componentxWq in the
single-atom response, and from the complex space- and
time-dependent harmonic fieldEW q(rW,t) in the macroscopic
response, the polarization of the harmonics. We use the
Stokes parameters, following Born and Wolf@31#.

A. Stokes parameters

For an elliptically polarized light field (Exe
2 ifx,

Eye
2 ify, 0!, the Stokes parameterss0 , s1 , s2 , and s3 are

defined by

s05Ex
21Ey

2 ~intensity!,

s15Ex
22Ey

2 ,

s252ExEycos~f! , with f5fy2fx ,

s352ExEysin~f!. ~41!

Note thats0
25s1

21s2
21s3

2 . Let c be the angle of rotation of
the major axes of the ellipse in the (x,y) plane~defined with
respect to thex axis! andx the parameter characterizing, at
the same time, the ellipticity of the field and the sense of
rotation of the ellipse ~helicity!; more precisely, let
tan(x)56b/a, b anda denoting, correspondingly, the mi-
nor and major axes of the ellipse, andb/a denoting the el-
lipticity. The sign is positive for right-handed polarization,
i.e., such that, to an observer looking in the direction from
which the light is coming, the electric field vector turns in
the clockwise sense.x andc are related to the Stokes pa-
rameters by the relations:

s15s0cos~2x!cos~2c!,

s25s0cos~2x!sin~2c!,

s35s0sin~2x!,

s25s1tan~2c!. ~42!

Equations~41! and ~42! allow us to calculate simply the
polarization properties of the harmonics in the single-atom
response.

The interest of the Stokes parameters is that they can also
be defined as results of simple experiments consisting in
measuring the intensity of the light passing through a com-
bination of polarizer and compensator. Let us introduce
I (u,w) as the intensity of light vibration in the direction
making an angleu with thex axis, when they component is
subjected to a retardationw with respect to thex component.
The Stokes parameters can be expressed as

s05I ~0,0!1I ~p/2,0!,

s15I ~0,0!2I ~p/2,0!,

s25I ~p/4,0!2I ~3p/4,0!,

s35I ~p/4,p/2!2I ~3p/4,p/2!. ~43!

These definitions~43! do not require the light source to be
polarized. They can therefore be used to characterize the
polarization properties of apartially polarized light source,
i.e., such that the phase differencef between the two com-
ponents of the field is not fixed and varies with time and/or
space. Thedegree of polarizationof a light source is defined
by

P5
As121s2

21s3
2

s0
. ~44!

In general,P is less than 1, and equal to 1 only for com-
pletely polarized radiation. The angle of rotation, and ellip-
ticity ~helicity! of an ‘‘average’’ ellipse, are defined through
the relations:

tan~2c!5
s2
s1
,

sin~2x!5
s3

As121s2
21s3

2
. ~45!

The harmonic radiation generated by high-order conver-
sion of an elliptically polarized laser field,EW q(rW,t), is only
partially polarized, because the phase differencef(rW,t) be-
tween thex and y components varies, inspace, over the
beam profile, and intime, over the pulse duration. We define
the polarization properties of the harmonic field with the help
of the Stokes parameters@Eq. ~43!#. We calculateI (u,w) as
we would measure it in an experiment:

I ~u,e!5E E uEqx~r ,z,t !cos~u!1Eqy~r ,z,t !sin~u!eiwu22prdrdt. ~46!

53 1737THEORY OF HIGH-ORDER HARMONIC GENERATION BY AN . . .



FIG. 6. Ellipticity of the~a! 23rd, ~b! 43rd, and~c! 63rd harmonics generated by a single atom as a function of the laser ellipticity, and
for three values of the laser intensity: 231014W/cm2 ~long-dashed line!, 431014W/cm2 ~dot-dashed line!, and 631014W/cm2 ~solid line!.
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In this equation,Eqx ,Eqy represent thecomplex xand y
components of the total fieldEW q(r ,z,t). I (u,w) is calculated
at the exit of the medium~it does not depend on the coordi-
natez, as long asz is outside the medium!. If the degree of
polarizationP51, the ellipticity of the field can be deter-
mined froms0 ,s1 , ands2 @compare Eqs.~44! and~45!#. It is
worth stressing, however, that in general, whenP,1, it is
necessary to measures3 in order to determine the ellipticity
of the fields. The experimental determination of the elliptic-
ity is obviously more difficult in this case than the determi-
nation of the rotation angle, which can be done by perform-
ing contrast measurements~amounting to measurings1 and
s2), as explained in Ref.@19#.

B. Numerical results

Our results are organized as follows: we present two se-
ries of figures, one for the single atom, the other for the
macroscopic results, concerning successively the harmonic
ellipticity and the rotation angle. Figure 6 shows the varia-
tion of the ellipticity of the~a! 23rd, ~b! 43rd, ~c! 63rd har-
monics generated by a single atom, as a function of the laser
ellipticity and for different values of laser intensity. At low
intensities and small ellipticities~i.e., for harmonics in the
cutoff region!, the ellipticity of the harmonic is a linear func-
tion of the ellipticity of the laser,eharm}e. The proportion-
ality factor is smaller than one@see the dashed curves in Figs.
6~a! and 6~b!#. At higher intensities~when the harmonics
enter the plateau! and higher ellipticities, the ellipticity of the
harmonics is a rapidly changing function of the laser ellip-
ticity and exhibits several local maxima and minima@see all
other curves in Figs. 6~a!–6~c!#. We attribute these variations
to quantum interference effects. Note that the harmonic el-
lipticity may change sign, which means that the helicity of
the harmonic undergoes a dynamically induced jump~this
effect is seen practically in all curves in Fig. 6!.

Figure 7 presents the same quantities as Fig. 6, but for the
macroscopic response. Propagation smooths out the quantum
interferences, but only partly, in particular for low-order har-
monics @Fig. 7~a!#. Note, that, in contrast to the harmonic
strengths~Fig. 5!, the results are quite dependent on the laser
intensity. The harmonic ellipticity becomes significantly
smaller with increasing laser intensity.

In Figs. 8 and 9, we present single-atom and macroscopic
results concerning the rotation angle of the harmonic ellipse
with respect to the fundamental, as a function of the laser
ellipticity. For low process orders, low intensities and low
ellipticities, the rotation angle is a linear function of the laser
ellipticity, and may reach 20°–30°@see the dashed line in
Fig. 8~a!#. For high-order harmonics, low intensities and low
ellipticities, the rotation of the ellipse is hardly visible@see
the dashed line in Fig. 8~b! and the solid line in Fig. 8~c!#.
For high intensities and ellipticities, the rotation angle be-
comes a rapidly varying function of both laser ellipticity and
intensity, and exhibits quantum interference effects. The ro-
tation angles for the high-order harmonics@see Figs. 8~b! and
8~c!# are, in general, apart from a narrow ellipticity range,
smaller (. 5°–10°) than for low-order harmonics@which
are close to 60°; see Fig. 8~a!#.

Propagation smooths out interference features quite effi-
ciently, as shown in Fig. 9. For low-order harmonics, the

rotation angle increases approximately linearly with the laser
ellipticity up to about 30°, then saturates. This result is con-
sistent with the experiments of Ref.@19#, performed, how-
ever, for lower harmonic orders. For the 43rd harmonic, the
linear increase of the angle stops at about 7°, and is followed
by a decrease. The rotation angles for the high-order harmon-
ics remain practically equal to zero (,5°).

In Fig. 10, we show similar results~i.e., same harmonics
and intensities! for the polarization degree. Here, we con-
sider only the propagated results, since, for a single atom, the
polarization degree is by definition equal to 1. The polariza-
tion degree remains close to 1 for high-order process. It de-
viates from 1 for high intensities, large ellipticities, and low
process orders. It remains, however, practically always larger
than 0.65.

V. CONCLUSION

In conclusion, we have presented a theoretical approach
to harmonic generation by elliptically polarized fields. The
single-atom part is a generalization of the theory developed
in @8,9#. Numerical calculations are presented for the 23rd,
43rd, and 63rd harmonics of 825-nm-wavelength light. The
harmonic strengths decrease rapidly with ellipticity, and ex-
hibit quantum intereferences.

The macroscopic response of the nonlinear medium is cal-
culated within the slowly varying envelope and paraxial ap-
proximations. The effect of propagation is to smooth out in-
terference features and to make the decrease of harmonic
strength versus ellipticity even faster, especially for the high-
order harmonics. This is attributed to the increase of the
phase variation of the dipole for large ellipticities, which we
interpret as due to the influence of electron trajectories with
several returns. The numerical results obtained agree very
well with the experimental data.

The polarization properties of the generated light are ex-
tracted with the help of the Stokes parameters. The single-
atom response is dominated by quantum interference effects
and exhibit rapid variations of the ellipticity as well rotation
angle as a function of the laser ellipticity, especially for low-
order harmonics. Propagation partly smooths out the quan-
tum interference effects. The rotation angle of the ellipse
with respect to the fundamental is quite important (;30°)
for low-order harmonics, in agreement with experiments.
Note that the harmonic fields generated in the macroscopic
response are only partially polarized. Their degree of polar-
ization remains, however, close to unity.

The theory developed in the present manuscript provides
the ground for treating other appealing problems, dealing
with the control of harmonics using more sophisticated fun-
damental fields~with a polarization that varies during the
laser pulse@20#, or involving several colors!. These aspects
will be addressed in future work.
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APPENDIX A: FOURIER COMPONENTS
OF THE FIELD-FREE DIPOLE MOMENT

Here we present a derivation of the analytic expression
for the coefficientsbM(t). Let us introduce
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FIG. 7. Same as Fig. 6 but for the macroscopic response of the system driven by the corresponding peak intensities.
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FIG. 8. Rotation angle of the harmonic ellipse with respect to the fundamental for the~a! 23rd, ~b! 43rd, and~c! 63rd harmonics
generated by a single atom as a function of the laser ellipticity, and for three values of the laser intensity: 231014W/cm2 ~long-dashed line!,
431014 W/cm2 ~dot-dashed line!, and 631014 W/cm2 ~solid line!.
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FIG. 9. Same as Fig. 8 but for the macroscopic response of the system driven by the corresponding peak intensities.
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FIG. 10. Polarization degree of the~a! 23rd, ~b! 43rd, and~c! 63rd harmonics as a function of the laser ellipticity, and for three values
of the laser peak intensity: 231014 W/cm2 ~long-dashed line!, 431014 W/cm2 ~dot-dashed line!, and 631014 W/cm2 ~solid line!.
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2pE0
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, ~A1!

related tobM(t) by

bM~t!5
1

2

]2

]a2 cM~a,t! U
a52I p

. ~A2!

Introducing the complex variablez5ei (2t2t), the integral
~47! reduces to a contour integral along the unit circleC ,

cM~a,t!5
1

2p i EC dz
zM

W1~a,t!z1V~t!z21V* ~t!
,

~A3!

where

W1~a,t!52Up@a
2~t!1s2~t!#1a, ~A4!

V~t!5@W2~t!2 iW3~t!#/2, ~A5!

V* ~t!5@W2~t!1 iW3~t!#/2, ~A6!

W2~t!52Ũp@s
2~t!2a2~t!#, ~A7!

W3~t!524Ũpa~t!s~t!, ~A8!

with s(t)5sin(t/2), a(t)5cos(t/2)22sin(t/2)/t.
ForM>0, we obtain
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AW1
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2~t!2W3
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with
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1AW1
2~a,t!2W2

2~t!2W3
2~t!!/2V~t!,

~A10!

From Eqs.~48! and ~55!, the analytic expression forbM(t)
can be easily obtained. For M,0, we use
b2M(t)5bM* (t).

APPENDIX B: ADDITIONAL DEFINITIONS

In this appendix, we present the explicit expressions for
the functionsC(t), B(t), D(t), andFK(t) that enter the
expressions~20! and ~21!. Their definitions are, in fact, the
same as for the case of the GBR discussed in@9#. These
functions are given by

C~t!5sin~t!2
4sin2~t/2!

t
, ~B1!

B~t!52
2sin2~t/2!

t2
1
sin~t!

t
2
1

2
, ~B2!

D~t!522B~t!211cos~t!, ~B3!

FK~t!5~ I p1Up2K !t2
4Upsin

2~t/2!

t
. ~B4!
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Teor. Fiz.91, 2008~1986! @Sov. Phys. JETP64, 1191~1986!#;
N. B. Delone and V. P. Kraı¨nov, J. Opt. Soc. Am. B8, 1207
~1991!; V. P. Kraı̈nov and V. M. Ristic´, Zh. Éksp. Teor. Fiz.
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