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We are investigating the hyper6ne quenching of 1s2p Po for the three heliumlike ions F +,
Na +, and Al + in the multicon6gurational Hartree-Fock-Breit-Pauli scheme. The configuration

expansions are generated with the active-space method and are increased in a systematic way,
allowing the convergence of the calculated parameters to be studied. A careful comparison is done
with the pioneering work of Mohr using a perturbation approach [Beam Foil Sp-ectroscopy, Atomic
Structure and Lifetimes, edited by I. Sellin and D. Pegg (Plenum, New York, 1976), Vol. 1, pp.
97—103]. In the present calculations the orbital and spin-dipole magnetic contributions, which were
previously neglected, are added to the dominant Fermi contact interaction term and a detailed
analysis of the hyper6ne-induced transition rate is done in order to learn how to get an accurate
description of the property in the multicon6guration Hartree-Fock Breit-Pauli approximation.

PACS number(s): 31.10.+z, 31.15.Ar, 32.70.Cs

I. INTRODUCTION

The importance of forbidden lines in both laboratory
and astrophysical sources has been illustrated magnifi-
cently by Garstang [1]. A complete survey of forbidden
decays in one- and two-electron atoms written by Mar-
rus and Mohr [2] covers the literature up to the end of
the 1970s. The role and interest of forbidden transitions
in astrophysical and fusion studies has been renewed, as
pointed out in the recent bibliography by Biemont and
Zeippen [3] focusing on forbidden processes and in many
proceedings on "atomic spectra and oscillator strengths
for astrophysical and laboratory plasmas" [4—6].

Besides the usual class of "forbidden" processes (elec-
tric or magnetic multipole, spin-forbidden electric dipole,
or multiphoton transitions), hyperfine-induced transi-
tions can be very interesting. The J = 0 ~ J = 0
transitions are forbidden by the rigorous selection rules of
electric dipole, magnetic dipole, and electric quadrupole
radiation. Lines in Mg I, Zn I and Hg I for these forbid-
den processes appear, however, in spectra of planetary
nebulae [7]. They have been shown to be due to the hy-
perfine interaction between the nucleus and the orbital
electrons for isotopes with nonzero nuclear spin. The
same interaction can open new decay channels [8] or pro-
duce an E dependency in the lifetimes, as observed in
neutral strontium [9] for a strong localized singlet-triplet
mixing between the n = 19 members of the 58nd D2
and 58nd D3 series. The shortening of the 182@ P

lifetimes because of hyperfine-induced transitions to the
ground state was demonstrated experimentally for P2
in V2~+ by Gould et al. [10]. The nuclear spin-induced
quenching of the Po state has been searched in F"+
by Mowat et al. [11], but not found due to the exper-
imental uncertainties. More accurate lifetimes allowing
experimental verification were reported by Engstrom et
al. [12,13]. These measurements with those of Denne et
al. 14] and Livingston and Hinterlong [15] for Al ~+ and
P + respectively, all confirmed the theoretical predic-
tions of Mohr [8].

The hyperfine interaction can mix significantly levels
which cross for some specific nuclear charge in an iso-
electronic series for isotopes with nonzero nuclear spin
(I g 0). Indelicato et al. [16] suggested a precise mea-
surement of the 182p Po & I ~ 1s So ~—I lifetime
in heliumlike ions to determine the fine structure split-
ting Pi 0 in situations for which the radiative width of
the Pz level is larger than the level separation. This
has been done successfully for heliumlike ions, Ni +
[17], Ag s+ [18,19] and Gds2+ [20]. Marques et al.
[21,22] investigated theoretically the hyperfine quenching
of nsnp Pg in berylliumlike (n = 2) and magnesium-like
(n =, 3) ions. As in the heliumlike case, they show that
it is possible to estimate the P& 0 energy separation
through a measurement of the hyperfine-quenched Po
lifetime for ions with nonzero nuclear spin. Unlike he-
liumlike ions, the unperturbed lifetimes are infinite and
the perturbed ones are rather long, but could be mea-
sured by taking advantage of the recent progress in ion
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trap techniques. Along this line, laser cooling techniques
have been used recently to measure the radiative lifetime
of the forbidden transition 585p Po ~ 5s So of In+
ions stored in a radio frequency trap by Peik et aL [23],
who point out the possible use of this hyperfine-induced
transition as a frequency standard because of its insensi-
tivity to external perturbations.

Very accurate ab initio calculations of hyperfine struc-
tures are now possible Rom variational wave functions
[24—26] and can even compete in some cases with the
many-body perturbation theory [27]. This, associated
with the rebirth of the hyperfine quenching, motivated
the present study. We extended the McHF Asp pack-
age [28—31], very well adapted for weakly to moder-
ately ionized systems, to allow J-hyperfine mixing in the
Breit-Pauli configuration-interaction program [32] and
hyperfine-induced radiative decay rate calculations in
the transition probability computer codes [33]. These
new programs are tested by evaluating the hyperfine
quenching of the ls2p Po level of a few heliumlike
ious (Z = 9, 11,13) for which experimental lifetimes are
available. The comparison between our configuration-
interaction approach and. the perturbation pioneer work
of Mohr [8] on the hyperfine quenching in heliumlike sys-
tems provides excellent guidelines for capturing the vari-
ous physical eKects affecting the hyperfine-induced tran-
sition probability in the multiconfiguration Hartree-Fock-
Breit-Pauli scheme.

II. HY'PERFINE QUENCHING IN HELIUMLIKE
IONS

the transition probability to the ground state ind. uced by
this hyperfine mixing as

4(d e +3hc3

with
b2 a2

~ = —+ —, (2 'P;IM~H" f
~2 'P;IM)

+ ———, (2'P;IM~II"»~2 'P;IM), (4)

4 = E(2 Po) —E(2 Pi*),
A' = E(2 Po) —E(2 Pi*) .

In this scheme, e represents the "pure" nonrelativistic
P& character of the 182p Po state that includes hyper-

fine mixing directly and spin-orbit mixing indirectly.

III. COMPUTATIONAL METHODS

Unlike Mohr, who used Z perturbation theory and
(Zn) expansions of the different quantities involved
in A" ', we adopt a configuration-interaction approach
based on radial functions (P„g(r)) optimized using non-
relativistic multiconfiguration Hartree-Fock (MCHF) ex-
pansions:

where a and b are coeKcients describing the mixing of
the J = 1 states of Eq. 1 and L and 4' the energy shifts
for this mixing, namely,

For systems having a nonzero nuclear spin (I P 0),
the lifetime of 182p Po, which decays to ls28 S~ by
an allowed electric dipole (El) transition, is shortened
by the opening of the new decay channel ls2p Po
ls So. This new decay channel is due first to the
mixing of P& and P~ by the Breit-Pauli interaction
resulting in mixed states

~2 'Pi') = a~2 Pi) —b~2 Pi),
12'P:*)= bI2'P:)+ 12'P')

and the subsequent mixing of Po with the above J = 1
states due to the hyperfine interaction. To first-order this
wave function may be expressed as

~ ~(MLS~) = ) c;4 (p; LS~) .

In our specific case, we will use the concept of "complete
active space" (CAS) by generating all the configuration
state functions (CSF's) of a given LSm symmetry which
can be built by distributing the two electrons within a
specified set of orbitals defining the active Set. Separate
active sets were optimized for both 18 S and ls2p P .
When required, a hybrid optimization procedure is used
to get a balanced description of both 1s2p P and P
(see Sec. IV B).

The hyperfine program [31] has been reorganized to
take the J mixing of states induced by the hyperfine op-
erators into account [32]. In our approach, the wave func-
tion expansions

= ils2p Po IM)

(2 Pi*IM~H"» ~2 sPO IM)
E(2'P ) —E(2'P *) ls2p Pi *IM

E(2'P ) —E(2'P") lsd Pi 'IM (2)

0 (pIE~) = ) c,4(p;L;S;J;IE~)

are obtained by diagonalizing the Breit-Pauli matrix [34]
corrected by the hyperfine Hamiltonian, which represents
the interaction between the orbital electrons and the elec-
tromagnetic moments of the nucleus:

[H~~+ H"»]c = Ec .
where, in the present case (J = 0), I is the value of
the total angular momentum E with F = J + I and
M = Mr = M~ its z component. Mohr [8] expressed

The lowest-order hyperfine interaction, i.e., the magnetic
dipole and the electric quadrupole interactions
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= ~dip + ~quad7'

are represented by the operators [35]
—T().M() (9)

Hq„d„——T M(2) . (2) (10)

For an N-electron atom the electronic tensor operators
are, in atomic units,

charges and is called the orbital term. The second term
(spin dipole) represents the dipole field due to the spin
motion of the electrons. The third term (Fermi contact)
comes &om the contact interaction between the nuclear
magnetic dipole moment and the electron spin. The elec-
tric quadrupole operator (12) represents the electric field
gradient at the nucleus. The required electronic matrix
element expressions are given elsewhere [31].

The nuclear data, i.e. , the nuclear spin I, the nuclear
magnetic dipole moment pl (in nuclear magnetons)

and

N
T( ) = —) 2 I( )('), —g, ~10[C( )(')

2=1

Ig)s(') (i)](')r,—. ' + g. -orb(r,-)s(') (i)
8

PI = (&III~Mo ]plII)

and the electric quadrupole moment Q (in barns),

2
= ('71II

~
Mo ~yl II)

N
T(2) ) g(2) (.)

—s (12)

where g, = 2.002 32 is the electronic g-factor and b'(r) the
three-dimensional delta function. The magnetic dipole
operator gives the magnetic field due to the electrons at
the nucleus. The first term of Eq. (11) represents the
contribution to the magnetic field of the orbiting electric

which are the expectation values of the nuclear tensors

Mo appearing in (9) and (10) in the nuclear state
)piIMz = I), have been taken Rom the compilation of
Raghavan [36] and are given in Table I for the three nu-
clei ( sF, Na, and Al) considered in the present study.
The transition programs [29,30] have been adapted for
evaluating the electric dipole line strength between hy-
perfine components, taking the J mixing of the wave
functions (6) into account:

N 2

S(pS, p'S') = e' ) (pSMr ) r(k)C~'~(k) p'S'Mr)
q, MF, MF I =x

N 2

= e' P ) e,'e, (yL;S;11SMr ) r(k)L~'~(k) p, L,S,J,IS'Mr)
q, MF, MF ij %=1

and the corresponding transition rate [33]

4u
A~F ~ y = S(pF, p'E') .

3hc3 2E+ 1

In this approach, the e value of Eq. (3) is merely the
configuration-interaction coeKcient of the nonrelativistic
(i.e. , pure LS) ~ls2p Pi ) component in the eigenvector

(6), which is dominant in ~ls2p Po) within the E = I
subspace.

IV. RESULTS AND DISCUSSION

A. The one-con6guration approximation

Nucleus Z I y, (nm)

19F

Na

Al

+2.628868(8)

+2.2176556(6)

+3.64150687(65)

From Ref. [36].

TABLE I. Nuclear data.

0.

+0.1006(20)

+0.150(6)

The approximation that limits the superposition (6) to
one configuration for describing the initial (ls ) and final
(ls2p) states, though basically too crude, gives us a qual-
itative picture of what is going on and can even provide
some useful quantitative information. The three nuclei
considered difFer by their nuclear angular momentum val-
ues I. The hyperfine coupling between the four configu-
ration states arising from ls2p, i.e. , the sP& (J = 2, 1, 0)
and Pz terms, difFerently affect the three ions F +,
Na +, and Al +. Since we are more interested in the
containination of

~
ls2p sPo ) by any symmetry that could

open radiative channels, we can restrict ourselves to the
final "good" quantum number F = I. The I =

2 value
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of the F nucleus is a natural constraint which block di-
agonalizes the (4 x 4) hyperfine interaction matrix into
one (3 x 3) block sPanned by sPo and two ' Pi comPo-
nents, uncoupling 1s2p P2, which can never give rise to
the wanted F =

&
value. Furthermore, the I =

2 value
makes the sF nucleus undeformed (Q = 0).

For the two other nuclei (I =
2 for Na + and I =

for Al i+), ls2p P2 should (in principle) be included in
the I' = I hyperfine interaction matrix, giving rise to
the desired I" value. However, &om a practical point of
view, as shown in our e values deduced Rom the single-
configuration approximation using Hartree-Fock radial
distributions (see Table II), the magnetic dipole hyperfine
interaction selection rule makes the P2 — Po coupling
indirect and the contamination of Po by P2 very small.
The direct electric quadrupole interaction (b,J = k2)
does exist but, as shown in Table II, turns out to be
negligible.

More important is the effect of the orbital and spin-
dipole terms of the magnetic dipole hyperfine interac-
tion [see the first two terms of Eq. (11)], which were
neglected in Mohr's calculations. They have been con-
sidered by Mowat et al. [11] in F7+, but the matrix
elements reported in their paper are not reliable. For
that reason, we give in the Appendix the required ma-
tri.x elements using radial unscreened hydrogenic wave
functions. In contrast to their results, we found that
these two terms counteract the effect of the dominant
spin-contact Po — Pi off-diagonal matrix element (op-
posite signs), reducing the e value. The effect found in e,
which monitors the hyperfine-induced transition proba-
bility, lies around 6—7 % in our Hartree-Fock model.

B. The multiconfiguration approximation

z = (2 Pi IMiHd "' "i2 P. oIM),
y = (2 PiIM~Hq "' "~2 PoIM)

(15)

(16)

and the nonrelativistic transition moment S~„
e(l S~~ P&r(k)C( )(k)[~2 P ) can be evaluated from
the nonrelativistic wave functions. The different contri-
butions to the analytical expression of e [see Eq. (3)] and
to the hyperfine-induced transition rate [Eq. (2)] are re-
ported in Table III for the ion Na + and compared
with those evaluated from the Z and (Zn) expanded
quantities given by Mohr [8]. The agreement between our
results and Mohr's values is already very satisfactory.

Using the same nonrelativistic MCHF radial orbital
basis sets, we can compare this perturbation approach

The n = 5 ( P ) CAS expansion corresponds to the su-
perposition (5) of the 40 ( P ) CSF's which can be built
from the 15 radial distributions (P r(r);n ( 5, I. ( n'I.
In the MCHF method, the latter are the numerical solu-
tions of the multiconfiguration Hartree-Fock radial equa-
tions, coupled to the (40 x 40) configuration- interaction
problem [37].

The n = 5 ( P ) CAS eigenvector can be obtained by
diagonalizing the nonrelativistic Hamiltonian in the basis
of the 40 CSF's ~nEn'E' P ) constructed from the sP
optimized radial orbital active set. The singlet-triplet
a and 6 mixing coeKcients of Eq. (4) are simply the
eigenvectors of the Breit-Pauli matrix in the basis of
the two nonrelativistic MCHF wave functions describing
~ls2p P ) and ~ls2p P ). An independent n = 5 CAS
multiconfiguration Hartree-Fock (35 CSF's) calculation
is performed on the ground state 1s S. The hyperfine
matrix elements, limited to the Fermi contact interaction
term,

In order to capture correlation effects beyond the
Hartree-Fock approximation, we will describe both the
1s S and 1s2p P states by multiconfiguration
Hartree-Fock expansions of increasing sizes in the CAS
scheme.

MCHF Mohrb

TABLE III. Analysis of the contributions to the hyper-
6ne-induced transition probability of 1s2p Pp ~ 1s So in

Na + in the perturbation approach.

TABLE II. Effect of the orbital and spin-dipole terms on
the e value for different nuclei. The numbers in parenthe-
ses are computed by neglecting the hyperfine coupling with
1s2p P2 . A (cm ')

4' (cm ')

0.9995100
0.0313152

—520
—67164

0.9994990
0.0316492

—532
—66243

H contact
di~

0.00170294
(0.00170294)

~totaL
dip

0.00164758
(0.00164758)

IItotal
d cp+ g tl ad T

0.00164758
(0.00164758)

y (cm ')
T (cm ')

13.142
9.327

9.412 x 10

13~ 223
9.350

9.382 x 10

13

0.00097039
(0.00097036)

0.00165589
(0.00165584)

0.00093486
(0.00093483)

0.00159393
(0.00159389)

0.00093484
(0.00093485)

0.00159390
(0.00159387)

S„' (a.u. )

A "1' (ns ')

This work.
"From Ref. [8].

0.163598

0.0118

0.163545

0.0118
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with the more "direct" configuration-interaction method
described in Sec. III, considering the hyperfine-induced
transition rates. This is done in Table IV for two ions

F + and Na +, limiting the hyperfine interaction to
the Fermi contact term to be consistent with Mohr's
study. The comparison clearly illustrates that the ex-
cellent agreement between our results and Mohr's values
found in the (2 x 2) perturbation model (Table III) is
somewhat degraded (10—20%) when adopting the config-
uration interaction approach of Sec. III. One can there-
fore conclude that the coupling between the nonrelativis-
tic wave functions through both relativistic and hyperfine
interactions cannot be limited to the two lowest eigenvec-
tors ]ls2p P ) and ~ls2p P ), as it is in the perturba-
tion method.

Considering the tota/ magnetic dipole hyperfine inter-
action, the multiconfiguration calculations corroborate
the observation made in the one-configuration level of
approximation that the orbital and spin-dipole terms re-
duce the e2 value by a factor of 8%. As in the one-
configuration approach, we checked in our (n = 5) mul-

ticonfiguration calculations that the interaction with the
P2 configuration state functions can definitely be ne-

glected.
On the basis of these observations, we can adopt the

following systematic computational strategy for the odd
parity.

(i) First, solve the nonrelativistic multiconfiguration
problem with increasing active sets with the constraint
that the intermediate coupling Breit-Pauli matrix, even-

tually corrected for hyperfine structure operators, will
be built on a common one-electron orthonormal set de-
scribing all the configuration state functions appearing
in (6). The analysis of the different contributions to the
hyperfine-induced transition rate (see Table III) does not
help in the delicate choice of targeting either the triplet
or the singlet wave function in this nonrelativistic opti-
mization procedure. Both spin symmetries' wave func-
tions have to be described accurately and a judiciously
balanced optimization procedure is prescribed to get si-

multaneously the correct singlet-triplet mixing and the
spin-allowed E1 transition probability.

(ii) Second, diagonalize the Breit-Pauli matrix cor-
rected by the hyperfine Hamiltonian [Eq. (7)] restricting

the space to LS = ' P and J = 0, 1 and including the
total magnetic dipole interaction for the odd parity.

Step (i) is also performed for the ground state, but hy-
perfine mixings are systematically neglected. No radial
orthogonality constraints are imposed in these two sepa-
rate optimizations.

The total nonrelativistic energies are reported for
182@ P and 182@ P in F + in Table V as a function
of the increasing active set. The notation 9k means that
for n = 9, the highest / value considered is E = 7 (k
electrons), the number of magnetic integrals occurring in
configurations such as nknE, becoming too large for the
Breit-Pauli codes [34]. The total number of CSF's might
be considered, at first sight, as relatively small in com-
parison to some now "routinely" performed large-scale
atomic structure calculations for more complex systems.
One should realize that the evaluation of the angular part
of the Breit-Pauli Hamiltonian, consisting of a number of
complex operators, is much more time consuming than
the nonrelativistic Hamiltonian.

In a first approach (" P optimized"), the radial or-
bitals are optimized on 182p P and the corresponding
182@ P energy is calculated through configuration in-

teraction. The convergence with the n-active set is much
faster for P than for P, as it should be. To avoid this
unbalanced description, a hybrid optimization procedure
is also used, consisting of optimizing the 28 radial orbitals
belonging to the (n = 7) active set on the sP . The ac-
tive set is then increased, optimizing the new orbitals on
P and keeping the first 28 orbitals &ozen.

The total energies are compared with the nonrelativis-
tic energies used in the unified method by Drake [38], who
combines high precision nonrelativistic variational calcu-
lations with relativistic and quantum electrodynamic cor-
rections. The results of the hybrid approach are rather
good, within an accuracy somewhat less than (10 s) for
the P state.

In Table VI, we report the P fine structure split-
tings and the Pz- Po energy separation, obtained by
diagonalizing the Breit-Pauli matrix in the L S basis for
the largest active set (9k), neglecting the orbit-orbit in-

teraction. No LS mixing other than P — P was con-
sidered, making the number of CSF's twice or identical

TABLE IV. Hyper6ne-induced transition rates
23N 9+

(ns ) of 1s2p Po -+ ls So in F + and

19F7+ 23N 9+

H contact
dip IItotal

dzp H contact
dip

Htotal
dzp

Mohr
MCHF (n = 5)/perturbation
MCHF (n = 5)/CI

0.0127
0.0125
0.0151 0.0141

0.0118
0.0118
0.0130 0.0120

Froin Ref. [8].
This ~ork.
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TABLE V. Total nonrelativistic energies (a.u.) of ls2p P and ls2p P in F +.

P optimized
E(P) E('P) E( P )

Hybrid
E(P) No. of CSF's

2

4
5
6
7
8

9l

—48.6638979
—48.6679420
—48.6683215
—48.6683939
—48.6684143
—48.6684214
—48.6684243
—48.6684255

—48.4153878
—48.4207681
—48.4375498
—48.4387694
—48.4393327
—48.4396641
—48.4398572
—48.4399768

—48.6684238
—48.6684251

—48.4401566
—48.4401777

1
8

20
40
70
112
168
238

theoryb —48.6684273 —48.4402443

Number of configuration state functions.
"Prom Ref. [38].

to the one reported in Table V for J = 1 or J = 0, 2,
respectively. Mass-polarization corrections have been in-
cluded, but Lamb-shift corrections, contributing for 9.5
cm ~ to the ~pf spo en-ergy diB'erence [38], were system-
atically neglected. The P — P energy difFerences are
systematically too large, due to the optimization proce-
dure which remains a little unbalanced in favor of the

P state, despite its hybrid character. The agreement
with Drake's values is very satisfactory for our purposes
and the wave functions are undoubtedly adequate for the
accuracy of the present hyper6ne-induced transition rate
calculations.

The transition energies, line strengths, and hyper6ne-
induced transition rates (calculated with the theoretical

TABLE VI. Fine structures, P — P energy separations (cm ), transition energies, line
strengths, and hyperfine-induced transition probabilities for 1s2p Po ~ ls So in F +.

QE(3Po 3Po) QE(3Po 3Po) gE(1po spo)

P optimized hybrid P optimized hybrid P optimized hybrid

this work (9k) 960 960 151 151 50931 50890

AEL
observed

unified theory'
958
957

149
150

50750

50571

ZE(1 'So —2 Po) (cm ') S (10 ' a.u. ) A(2 'Po m 1 'So) (ns ')

this work (9k)

P optimized

5900921

hybrid

5900893 6.82855 6.84353 0.01421

P optimized hybrid P optimized hybrid

0.01424

unified theory'
perturbation

Expt.

5899553

5899150
0.0130

0.0142 + 0.0020'

From Ref. [40].
From Ref. [41].

'From Ref. [38].
Prom Ref. [8].

'From Ref. [42].
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energy difFerences) for ls2p Po ~ Is
reported in the same table. The final theoretical tran-
sition energy remains 1000 wave numbers too large, af-
ter adding the 705 cm Lamb-shift corrections calcu-
lated by Drake [38]. The efFect of increasing the active
set is obviously larger for low n, but the line strength
rapidly stabilizes to the l%%uo level. Our final theoreti-
cal transition rate is in remarkably good agreement with
the value of Engstrom et al. [12,13], deduced from the
difFerence between the measured lifetimes of sP2 (~ =
10.44 + 0.15 ns) and sPo (r = 9.48 6 0.20 ns), assuming
a wavelength scaling A (2sP& —2 Si) of the transition
rates A(2 st ~ 2sSi) for J = 2 and 0, respectively.
The source of the 10%%uo difFerence with Mohr's result has
been discussed above (see Table IV).

The results of our most accurate complete calculations
are presented in Table VII, using a hybrid wave function
up to n = 10A: for Al +. Comments made above for our
F + results remain relevant for the two other ions consid-
ered in our study. One should remember &om the discus-
sion relevant to Table IV that the very good agreement
with Mohr's values found for Na + and Al + is acciden-
tal due to the cancellation between the transition am-
plitude reduction &om the orbital and spin-dipole mag-
netic terms not considered in the hyperfine interaction
by Mohr and the increasing eR'ect found when going &om
the perturbation scheme to the more direct configuration-
interaction approach.

There is no experimental value of the hyperfine quench-

ing in 2sNa +. Denne et al. [14] estimated, from their
ls2p Po experimental value (v = 4.8 6 0.2 ns), the
hyperfine-induced transition probability in Al + to be
(6.1 + 1.7)10 s and (6.9+ 1.7)10 s, using the theo-
retical rates of Lin et al. [39] and Mohr [8], respectively,
for 2 Po —+ 2 Sq. Our transition rate, in perfect agree-
ment with the experimental value for F + [12,13], falls
within the (large) experimental error bounds for 27Alii+
[14].
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APPENDIX: HYPERFINE MATRIX ELEMENTS

The hyperfine magnetic dipole matrix element can be
written as

TABLE VII. Energy differences (cm ) and hyperfine-induced transition rates (ns ) for F +,
Na + and Al

gE(3Po 3Po) 6E( P, — P ) AE('P — P ) A"~f (ns )

19p7+ 9k-active set
uni6ed theory
perturbation
observed

960
957

958'

151
150

149'

50890
50571

50750

0.0142

0.0127
0.0142(20)'

23~ 9+

VAll. l.+

9k-active set
unified theory
perturbation
observed

10k-active set
uni6ed theory
perturbation
observed

2418
2406

2397

5166
5124

5100g

525
520

522

1256
1241

1240g

66959
66355

66347

84277
83233

83240~

0.0122

0.0117

0.0760

0.0737
0.069(17)"
0.061(17)'

Prom
bProm
'Prom
"Prom
'Prom
'Prom
g Prom
"Prom
'Prom

Ref. [38).
Ref. [8].
Ref. [41].
Ref. [40].
Refs. [12,13].
Ref. [43].
Ref. [44].
Ref. [14] using the 2 Po m 2 Si transition rate of Ref. [8].
Ref. [14] using the 2 Ps —+ 2 Si transition rate of Ref. [3S].
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(~LSJIFMIT&') . M{')I~ILIS'JzIF'M'}

= 6M, z'M (—1)
J I F

& O'Ls JIIT"Il~'L's'J'}

x —QI(I + 1)(2I + 1).I (Al)

(»nI LsJ ) [C'"(i) e s ' (i))' r Isn't L,'S'J')

L S j'
= (—1)'+ + v 3[J,J', L, L', S, S'] ) i L,' S' J'

2 1 1 )

2 2

The electronic reduced matrix element is evaluated using
expression (ll). We will focus on the one-configuration
case p = lani (l g 0) for which the orbital contribution
is simply

(Isnt LSJ ) 1'"(i)r,. ' Isnl L'S'J')

x (~II&"'ll&') (r ') z .

(lsnl LSJ ) b'(r;)s{ )(i) lani LSJ)

The matrix element of the contact term is given by

=I (
—1)++[IIII]1()J' 1 L' = bL, L, (—1) + +'[J J' S S']')'x, Ql(l+ l)(2l+ l)(r } z .0 / L

(A2) Jl gl gl (~(r)) i. (A4)

The spin-dipole term can be evaluated as
The (l = L = 1) lsnp st hyperfine magnetic dipole
interaction matrix can then be built &om

(lsnp (L = I)SJIFMIT{ ) M{')l»np (L = 1)S'J'IF'M')

= ——gi( —1) +'+
( I I, 1 ) JI(1+1)(2I+1)&6(I,I']' '1

(1) ~»' J 11 ( ) +(I) glss] & ls J'
& S ( )

1 1
+(—1)'—g. (s, s'I"[, I s ) s, ', i (&('))i~

2

The triplet (S = 1) matrix elements for the I = 1/2 case considered by Mowat et al. [11]using unscreened hydrogenic
wave functions with (r }2„——24 and (h(r))i, ———are corrected as follows: for F = 1/2,

and for F = 3/2,

fA
(ls2p Pi IT&') M{')lls2p Pi) = ——glZ' ——

2 M 48 48 3
2

(ls2p Pi IT ~ M Ils2p Po } = ——gIZ ————+—(1) (1) 3 ™ 3
2 M 48 96 3 (AO)

I
(ls2p Pi IT{ ) M lls2p Pi } = ——gIZ —+ —+—

2 M 96 96 3,
The three terms are the orbital, spin-dipole, and contact contributions, respectively.
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