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Abstract

A large number of polls on party preferences are published today. In order

to get an estimate of the changes in political opinion, the polls may be com-

bined into a poll of polls. We discuss a method for combining polls using the

fact that they are compositions and respecting the properties of the compos-

itional sample space (the simplex). The method is easily implemented and

the estimate may be computed in linear time. We provide an example with

Swedish data from year 2007 to 2010. The method also allows us to present

the deviations between the estimated compositions and the observed. In the

data set, we note e.g. di�erences between di�erent polling institutes.

Keywords

compositional weighted least sum of squares, party preferences, simplex,
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1 Introduction

The results from a number of polls of political party preferences to nine

Swedish groups of political parties during approximately four years are shown

in Figure 1. The Swedish election system is proportional representation, and

hence the total share of votes for each party is of interest. There exists, as

seen in Figure 1, a large number of polls all trying to measure the same opin-

ions. Several websites and media combine the results of multiple polls to get

a (hopefully) better estimate of the current and past opinions; this is some-

times referred to as a �poll of polls�. Swedish poll of polls are e.g. presented by

Novus Opinion/Swedish Radio (http://www.novusgroup.se/vaeljaropinionen/ekotnovus-

svensk-vaeljaropinion), Svensk Opinion (http://svenskopinion.nu) and Hen-

rik Ekengren Oscarsson (http://www.henrikoscarsson.com). We have, how-

ever, found few suggestions in the literature how to do this. Jackman (2005)

models Australian polls using a Kalman �lter, and focuses on estimating

the �house e�ects�. The model is however limited to one party (proportion)

and hence of less use in a situation with many parties. Thorburn & Tongur

(2012) suggest using a logistic-transformed Wienerprocess.

An intuitive approach would be to �t smooth curves to the data to get

estimates of the population proportions of sympathizers. One way would

be to estimate each party individually and omit one party, e.g. the group

�Other parties�, and calculate the omitted party as one minus the sum of

the rest. However, these univariate series are not independent due to the

summation constraint; the sum of the proportions of all parties must always

be 1. In fact, a vector of positive components summing to a constant K is a

composition. The components of compositions are correlated (Pearson (1897)

refers to this as �spurious correlation�), and hence statistical methodology

disregarding this is not applicable. Dropping one group, e.g. the group �Other

parties�, does not remove this problem; it will still be there only less visible.

FIGURE 1 ABOUT HERE

We present a method for smoothing compositional data, which takes into

account the special nature of the multivariate data being compositions. The

application of the method is in no way only restricted to poll of polls, but

can be utilized in any situation requiring smoothing of compositional data.

This method is based on locally weighted regression (loess) introduced by
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Cleveland (1979) and further developed by Cleveland & Devlin (1988). As

an example we consider a data set consisting of n = 218 number of polls

of political party preferences in Sweden. The polls extend over the time

period from October 2006 to May 2010 and were performed by a number

of di�erent polling institutes including Statistics Sweden (SCB). They were

all essentially telephone interviews of a number of individuals, each of which

were given the question: �If it were general election today, what political

party would you vote for?� The given de�nite answers were used to cal-

culate proportions of the di�erent party sympathizers, i.e. party preference

compositions. The number of individuals taking part in each poll varies

from poll to poll but is in general quite stable around 1000-2500 individu-

als. However, there also exist polls in which as many as 7000 individuals

were interviewed. There are nine parts in the compositions: the four lib-

eral/conservative parties currently in o�ce (M, FP, C, KD), the three envir-

onmentalist/socialist parties (S, V, MP), the nationalist party (SD), and all

other parties (Other).

The organization of this paper is as follows. Section 2 presents some no-

tions in the theory of compositions, such as perturbation, power transforma-

tion and measures of distance in the simplex space. Section 3 introduces the

concept of compositional loess and discuss its properties. Section 4 reports

numerical results of the compositional loess technique applied to the poll of

polls data of political party preferences in Sweden. The paper ends with a

discussion in section 5.

2 Some theory

The sample space of a D-part composition is the simplex SD de�ned as

SD = {x : xi > 0, i = 1, . . . , D,
D∑
i=1

xi = K}.

Without loss of generality, we will take K = 1.

There are two basic operations on the simplex analogous to addition and

multiplication on the real space: perturbation (Aitchison, 1982) de�ned as

x⊕ y = C(x1y1, . . . , xDyD)′
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for x,y ∈ SD, and power transformation (Aitchison, 1986, p. 120) de�ned as

a� x = C(xa1, . . . , xaD)′

for a ∈ R and x ∈ SD. In both cases, C denotes the closure operation

C(z) =
(

z1
z1 + · · ·+ zD

, . . . ,
zD

z1 + · · ·+ zD

)
,

where z ∈ RD
+ . Aitchison (2001) showed that the perturbation and power

transformation de�ne a vector space on the simplex.

For a composition α ∈ SD, the centred log-ratio transform clr introduced

by Aitchison (1983) is de�ned as:

De�nition 1. Let α ∈ SD, then the centred log-ratio transform clr is

clr(α) =

{
log

α1

g(α)
, . . . , log

αD

g(α)

}
= aC ,

where g(α) = (α1 · · ·αD)
1/D, i.e. the geometric mean, and its inverse clr−1

is

clr−1(aC) =

(
exp a1∑D
i=1 exp ai

, . . . ,
exp aD∑D
i=1 exp ai

)
= α.

The distance between compositions is measured with the Aitchison (or

simplicial) distance dS de�ned by Aitchison (1983) and Aitchison (1986,

p. 193) as

d2S(x,y) = d2E{clr(x), clr(y)},

where dE is the Euclidean distance, or equivalently de�ned by Aitchison

(1992) and Pawlowsky-Glahn & Egozcue (2002) as

dS(x,y) =

√√√√ 1

D

∑
i<j

(
log

xi
xj
− log

yi
yj

)2

.

Locally weighted regression models are based on weighted least sum of

squares estimates (WLS); hence we need to de�ne an analogue for com-

positional data. Given observations of a dependent variable yi ∈ SD (i =

1, . . . , n) and of an explanatory variable ti ∈ Rp (i = 1, . . . , n), we want

to �t an arbitrary SD-valued parametric function ŷi = f(ti,θ), such that

the squared distances between yi and ŷi are minimized. In estimating θ
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we however believe that some observations (yi, ti) are more informative and

hence should have a larger in�uence on the estimate. Each observation is

therefore assigned a weight wi ∈ (0, 1). Using the Aitchison distance we

de�ne a compositional weighted least sum of squares estimate.

De�nition 2. The compositional weighted least sum of squares (C-WLS)

estimate θ̂ is the θ minimizing the compositional weighted sum of squares

QC(θ) =

n∑
i=1

wid
2
S{yi, f(ti,θ)},

where wi ∈ (0, 1), yi ∈ SD, ti ∈ Rp, and f is a SD-valued function.

3 Compositional loess (C-loess)

Returning to our data, we denote by yi the di�erent proportions of party

sympathizers at time ti, i.e. yi ∈ S9. In our case, the compositions are

assumed to be dependent of time, but the procedure could of course use any

explanatory variable or variables. Suppose that the data is generated by

yi = f(ti)⊕ εi,

where f is assumed to be a smooth S9-valued function of the real-valued

variable t and εi ∈ S9 is the error term. The idea is to estimate f at an

arbitrary time point tk by locally �tting a �rst degree polynomial β0⊕(t�β1)

in the simplex space. This is done by letting the closest points in�uence the

estimates the most. Polynomials of higher order could also be �tted, if that

is deemed necessary.

At each time point tk we �nd compositions β0 ∈ S9 and β1 ∈ S9 that

minimize

QC(β0,β1) =

n∑
i=1

wi(tk)d
2
S{yi,β0 ⊕ (ti � β1)},

where wi(tk) are the weights de�ned by a weight function W

wi(tk) =W

{
dE(tk, ti)

d(tk)

}
,

where in turn d(tk) = dE(tk, the q closest ti) for some given integer q, 1 ≤
q ≤ n. Here closeness is measured in a metric of the space of t, and thus
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dE(t
′, t) is the Euclidean distance between t′ and t. Following Cleveland

(1979) we have chosen to use the �tricube� weight function

W (u) =

{
(1− u3)3, if 0 ≤ u < 1

0, otherwise.

Any other weight function satisfying the properties (2.1) in Cleveland (1979)

can of course be used. The squared distance measure used here is

d2S{yi,β0 ⊕ (ti � β1)} =
1

D

∑
j<l

(
log

yj
yl
− log

β0,j
β0,l
− ti log

β1,j
β1,l

)2

where β0,i and β1,i are the components of β0 and β1, respectively.

Here β0 and β1 are compositions in SD and hence the minimization of

QC is subject to the simplicial constraints.

The local compositional weighted least sum of squares (C-WLS) estimates

corresponding to tk are

(β̂0k, β̂1k) = argmin
β0,β1

QC(β0,β1) .

It is possible to �nd explicit expressions for the minimizing β0 and β1

when using the distance measure d2S (see Appendix).

The method proposed here is not restricted to the use of dS and it is pos-

sible to use other distance measures de�ned on SD. Martín-Fernández et al.

(1999) for instance has suggested a distance measure based on divergence.

Aitchison (1992) discusses the properties of various distance measures. If

other distance measures are used, numerical minimization algorithms allow-

ing for the simplicial constraints probably have to be used.

Repeating the procedure for each tk in some set we obtain a set of estim-

ated compositions. The locally �tted �rst degree polynomial composition at

tk is denoted ŷk = ŷ(tk) and is equal to β̂0k ⊕ (tk � β̂1k), where β̂0k and

β̂1k are the locally �tted estimates corresponding to time tk. This is then a

compositional locally weighted regression, which we name C-loess.
The C-loess estimate ŷk is not a linear combination of the yi's as it would

be for unrestricted spaces. However, it can be shown that it can be written

as
n⊕

i=1

{`i(tk)� yi},
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i.e. a compositional linear combination, where the `i(tk) depend on t1, . . . , tn,W ,

and q (and tk) but not on the yi's (see Appendix).

If we �t C-loess estimates for the same time points as we have observed,

i.e. tk = ti, we may de�ne the squared residual deviations d2i = d2S(yi, ŷi).

As a measure of lack-of-�t we may use the average

s2LOF =
1

n

n∑
i=1

d2S(yi, ŷi)

based on the residual deviations between the �tted and observed composi-

tions at t1, . . . , tn. It may also sometimes be useful to plot the individual

deviations d2i or di against ti to have a summary of the deviations over the

whole range of observations. This plot may reveal time points where the

smoothed result deviate very much from what is observed. Also a smoothed

version of such a scatter plot may give information on the local deviations

from the estimated level.

The larger q, the smoother result will be obtained from the C-loess pro-
cedure and the larger value of s2

LOF
. An �optimum� smoothing parameter

q can be obtained by minimizing a function of s2
LOF

suitably penalized by

sample size n and q.

4 Fitting the data

FIGURE 2 ABOUT HERE

We modelled the data using a number of di�erent values of the smoothing

parameter q, ranging from 10 to 150. We choose to use q = 40 as it seems to

give a good balance between capturing the changes in trend while not being

too sensitive to individual polls.

Figure 2 shows the smoothed series using q = 40. For the largest party

in o�ce (M) we see a clear increase around the start of the economic crisis in

the second half of 2008, and at the same time a large decrease for the largest

opposition party (S). We see a steady decline for C and an almost doubling

in size for MP. Two parties are constantly close to the election threshold:

KD is just above four per cent and SD is approaching four per cent from

below. The increase for Other parties around early summer 2009 is likely

due to the Pirate party's success in the European parliament elections in
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June that year (see e.g. Barber, 2009).

FIGURE 3 ABOUT HERE

The sequence of residual deviations di for the smoothed series in Figures 2

is shown in Figure 3. There does not seem to be any major changes in

deviations due to time. This is con�rmed by the smoothed line which is

roughly constant over time; the smaller deviation values at the beginning

and the end of the series are due to edge e�ects.

FIGURE 4 ABOUT HERE

FIGURE 5 ABOUT HERE

In Figure 4 we see the deviations plotted for the di�erent polling insti-

tutes. Using analysis of variance we �nd that there exist signi�cant di�er-

ences in mean deviations between the various institutes (p < 0.001), and this

even when controlling for di�erent sample sizes, which also has a signi�cant

e�ect (p < 0.001). Di�erences due to di�erent institutes are sometimes re-

ferred to as �house e�ects�. The small deviations for Statistics Sweden (SCB)

are, at least in part, explained by the fact SCB uses much larger sample sizes:

approximately 6000-7000 compared to the others institutes' sample sizes of

1000-2000. The large deviations of United Minds are probably explained by

the fact that they use a web panel and not a telephone interviewing scheme.

We believe that the other di�erences are probably due to di�erent degrees

of weighting of the proportions using previous election results and various

demographic statistics.

5 Discussion

An important aspect of all data analysis is to respect the data generation

process. If the question �What party would you vote for?� is asked, it seems

strange to perform the analysis as if the questions

�Would you vote for party A?�

�Would you vote for party B?�

�Would you vote for party C?�

etc.
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had been asked for all parties. The two set-ups might appear identical, but

result in two di�erent sample spaces. The analysis should of course always

be consistent with the data generation process. In our case this means that

the data is generated by counting processes where every poll results in a nine

part composition.

We have introduced a method for smoothing such compositional data.

The method has been developed for proportions of party preferences de-

pending of time but can be applied to any compositional series with an ex-

planatory variable. We have illustrated it for a one-dimensional explanatory

variable (time), but the method can easily be generalized to accommodate

not just one-dimensional but also multi-dimensional explanatory variables,

e.g. using Cartesian coordinates to smooth spatial compositional data.

The method essentially provides a point estimate of the population pro-

portions. (Looking at the many poll of polls seen today, this seems to be

the statistic given the most attention.) As with any loess model estimating

the uncertainty is very hard without distributional assumptions; in the poll

of polls example it would be even harder due to di�erent sampling designs

and institute weighting procedures. This would of course be an interesting

but demanding �eld for further research.

We have demonstrated that the smoothed series can be easily computed.

The method respects the inherent properties and constraints of the sample

space (the simplex). In general it will result in di�erent values than when

the traditional loess model is applied componentwise and possibly scaled to

sum to 1. We therefore suggest that C-loess is used for compositional time

series and other situations which require smoothing of compositional data.

One advantage of using C-loess for creating poll of polls is that we can get
a single-valued measurement of the deviation of the poll compared to the es-

timation: a sort of residual estimate. The analysis of these deviations showed

signi�cant di�erences between the di�erent polling institutes, i.e. house ef-

fects. A further investigation of the causes of the di�erences would of course

be interesting and perhaps revealing. Another interesting idea would be to

use the inverse mean deviation for each polling institute in weighting the

polls. Hence polling institutes with greater precision would have a larger

in�uence than institute with less precision. This, however, remains as future

research.

9



References

Aitchison, J. (1982). The statistical analysis of compositional data. J. R.

Stat. Soc. Ser. B Stat. Methodol. 44, 139�177.

Aitchison, J. (1983). Principal component analysis of compositional data.

Biometrika 70, 57�65.

Aitchison, J. (1986). The statistical analysis of compositional data. Mono-

graphs on statistics and applied probability. Chapman and Hall, London.

(Reprinted in 2003 with additional material by The Blackburn Press).

Aitchison, J. (1992). On criteria for measures of compositional di�erence.

Math. Geosci. 24, 365�379.

Aitchison, J. (2001). Simplicial inference. In Algebraic methods in statistics

and probability (Notre Dame, IN, 2000), vol. 287 of Contemp. Math., 1�22.

Amer. Math. Soc., Providence, RI.

Barber, T. (2009). Centre-right parties victorious. Financial Times.

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing

scatterplots. J. Amer. Statist. Assoc. 74, 829�837.

Cleveland, W. S. & Devlin, S. J. (1988). Locally weighted regression: An

approach to regression analysis by local �tting. J. Amer. Statist. Assoc.

83, 596�610.

Jackman, S. (2005). Pooling the polls over an election campaign. Australian

Journal of Political Science 40, 499�517.

Martín-Fernández, J., Bren, M., Barceló-Vidal, C. & Pawlowsky-Glahn, V.

(1999). A measure of di�erence for compositional data based on measures

of divergence. In Proceedings of the 5th annual conference of the Interna-

tional association for mathematical geology (eds. S. Lippard, A. Næss &

R. Sinding-Larsen), vol. 1, 211�215. Trondheim, Norway.

Pawlowsky-Glahn, V. & Egozcue, J. J. (2002). BLU estimators and compos-

itional data. Math. Geosci. 34, 259�274.

Pearson, K. (1897). Mathematical contributions to the theory of evolution.�

On a form of spurious correlation which may arise when indices are used

in the measurement of organs. Proc. R. Soc. Lond. LX, 489�498.

10



Thorburn, D. & Tongur, C. (2012). Combination of sample surveys or pro-

jections of political opinions. InWorkshop of Baltic-Nordic-Ukrainian Net-

work on Survey Statistics, 191�197. University of Latvia, Central Statist-

ical Bureau of Latvia, Riga.

Jakob Bergman, Department of Statistics, Box 743, SE-220 07 Lund, Sweden.

E-mail: jakob.bergman@stat.lu.se

Appendix

For each tk we minimize

QC =
n∑

i=1

wi(tk)d
2
S{yi;α⊕ (ti � β)}

=
1

2D

n∑
i=1

wi

D∑
k=1

D∑
j=1

(
log

yik
yij
− log

αk

αj
− ti log

βk
βj

)2

where yij , αj and βj are the components of yi, α and β, respectively, and

where we in the notation have suppressed the dependence of wi from tk. Let

ηCi = clr(yi), aC = clr(α) and bC = clr(b), then

QC =

n∑
i=1

wiη
′
CiηCi − 2

n∑
i=1

wiη
′
CiaC − 2

n∑
i=1

witiη
′
CibC+

+

n∑
i=1

wia
′
CaC + 2

n∑
i=1

witia
′
CbC +

n∑
i=1

wit
2
i b
′
CbC .

By di�erentiating QC with respect to aC and bC and setting these to zero

we obtain, with d11 =
∑n

1 wi, d12 =
∑n

1 witi, and d22 =
∑n

1 wit
2
i ,

d11aC + d12bC =

n∑
i=1

wiηCi
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and

d12aC + d22bC =

n∑
i=1

witiηCi.

These have the solutions

aC =

n∑
i=1

uiηCi

and

bC =
n∑

i=1

viηCi

where ui = (d22wi−d12witi)/(d11d22−d212) and vi = (d11witi−d12wi)/(d11d22−
d212) which both depend on tk. Finally α = clr−1(aC) and β = clr−1(bC).

In a similar way, expressions for compositional polynomials of higher

order, e.g. α⊕ (ti � β1)⊕ (t2i � β2), may also be found.

For α⊕ (tk � β) we have

clr{α⊕ (tk � β)} = clr(α) + tk clr(β) = aC + tkbC =
n∑

i=1

(ui + tkvi)ηCi

which can be written

clr

[
n⊕

i=1

{`i(tk)� yi}

]
=

n∑
i=1

`i(tk) clr(yi) =
n∑

i=1

`i(tk)ηCi

where `i(tk) = ui + tkvi where ui, vi of course also depend on tk as well as

on W , q, and t1, . . . , tn but not yi.

12



Time

P
ro

po
rt

io
n 

of
 s

ym
pa

th
iz

er
s

0.1

0.2

0.3

0.4

2007 2008 2009 2010
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Figure 3: The residual deviations di from the smoothed series for q = 40
plotted versus time.
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Figure 4: The residual deviations di from the smoothed series for q = 40
plotted for the di�erent institutes.
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Figure 5: The residual deviations di from the smoothed series for q = 40
plotted versus sample size for the di�erent institutes.
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