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Generating random variates from a bicompositional Dirichlet
distribution
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(Received 00 Month 200z; in final form 00 Month 200z)

A composition is a vector of positive components summing to a constant. The sample space
of a composition is the simplex and the sample space of two compositions, a bicomposition, is
a Cartesian product of two simplices. We present a way of generating random variates from a
bicompositional Dirichlet distribution defined on the Cartesian product of two simplices using
the rejection method. We derive a general solution for finding a dominating density function
and a rejection constant, and also compare this solution to using a uniform dominating density
function. Finally some examples of generated bicompositional random variates, with varying
number of components, are presented.

Keywords: Bicompositional Dirichlet distribution; Composition; Dirichlet distribution;
Random variate generation; Rejection method; Simplex
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1. Introduction

A composition is a vector of positive components summing to a constant. The
components of a composition are what we usually think of as proportions (at least
when the vector sums to 1). Compositions arise in many different areas; the geo-
chemical compositions of different rock specimens, the proportion of expenditures
on different commodity groups in household budgets, and the party preferences
in a party preference survey are all examples of compositions from three different
scientific areas. For more examples of compositions, see for instance [1].

The sample space of a composition is the simplex. Without loss of generality we
will always take the summing constant to be 1, and we define the D-dimensional
simplex .#P as

D
P = {a:: (x1,...,zp)" E%)E:ij :1},
j=1

where Z, is the positive real space. The joint sample space of two compositions
is the Cartesian product of two simplices .#P x .#P. It should be noted that,
unlike the case for real Cartesian product spaces, .#P x .#P # .#P+D and that
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P % P is not even a simplex, but a manifold with two constraints, i.e. the

subspace of %f +D where
D D+D
E xT; = g x; =1
7j=1 j=D+1

The bicompositional Dirichlet distribution, for modelling random vectors on
P x #P | was proposed in [2]. The proposed distribution has the probability
density function

D
flz,y) = A(a, B,7) H Sy (@ty), (1)

where z,y € P and aj,B; € #4(j = 1,...,D). The parameter space of ~y
depends on & = («y,...,ap)” and B = (f1,...,0p)"; however, all non-negative
values are always included. Expressions for the normalization constant A are given
in [2]. For instance, when D = 2 the distribution exists if v > — min(a+ 2, a2+051)
and A is determined by

L2 0 (S (s s

i=0 =0
‘ (Z (1) 0BG+ ko +i - k))
k=0

where B(p, q) is the Beta function, and when D > 2 and - is a non-negative integer
A is determined by

Do+ k) TT2, D(Bi + ki)
A Z() a+7) (5.+7) ’

k:>0

where o, =y +---+ap,B. =p1+--+Bp, k. =ki+---+kp, k= (k1,...,kpD)

and
N_
k) k!---kp!

If v = 0, the probability density function (1) is the product of two Dirichlet prob-
ability density functions with parameters a and 3 respectively, and hence X and
Y are independent in that case.

When X,Y € .72 we shall refer to this as the bicomponent case, and similarly
to .3 as the tricomponent case, and to yD(D > 2) as the multicomponent case.

Apart from the multinormal and Wishart distributions, papers on generating
bivariate and multivariate random variates are rare and most suggested general
methods have disadvantages [3]. The only universal algorithm for generating mul-
tivariate random variates is the algorithm presented in [4], which is a generalization
of algorithms for the univariate and bivariate case given in different versions in [5]
and [6]. However, in [3] it is noted that this algorithm is very slow and an alterna-
tive algorithm, which requires a function of the density to be concave, is suggested.
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The class of distributions given in (1) is not necessarily unimodal and may not even
be bounded, and it is therefore hard to find a function of the density that is con-
cave for all parameter values. Hence we will use the rejection method to construct
a specialized method for generating bicompositional random variates.

Let f be the density from which we wish to generate random variates. Let ¢ > 1
be a constant and g be a density such that

f(z,y) < cg(z,y) (2)

for all (x,y). We now generate a random variate (X,Y’) with density ¢ and a
random number U uniformly distributed on the unit interval. The variate (X,Y")
is accepted if

f(X,)Y)
Vs XYy

otherwise we reject (X,Y’) and generate new (X,Y’) and U until acceptance.

We thus need to find a dominating density g and constant ¢, and preferably such
choices of g and ¢ that will give high probabilities of acceptance and hence make
the random variate generation efficient.

2. Generating random bicompositions

2.1. The case when v =10

A Dirichlet distributed random variate is easily generated using Gamma dis-
tributed variates. Let V; be a Gamma distributed variate with parameter (a;, 1) and
X;=V;/ E]D:l Vi (i=1,...,D), then X = (Xy,...,Xp) is Dirichlet distributed
with parameter a = (a1,...,ap) [7, pp. 593-596]. There are also other more or
less efficient ways to generate Dirichlet distributed variates. These are reviewed
and compared in [8].

Hence, to generate a random bicompositional Dirichlet distributed variate (x,y)
with parameter (a, 3,0), we need only to generate a Dirichlet distributed variate
x with parameter a and a Dirichlet distributed variate y with parameter 3.

2.2. The case when v >0

When v > 0, we may use the product of two Dirichlet distributions, i.e. a bi-
compositional Dirichlet distribution with v = 0, as a dominating density, since
0 < "™y < 1 and thus

Hxa’ ! BJ (x"y) < Al Hwa’ ! ’8]_1

The inequality (2) now becomes

D D
-1 -1 -1
.87 | [T | @) < cAes g,0) | [T 57"
J=1

J=1
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which holds if we choose

o= AB) g (3)

A(e, 3,0)

Here A(a,83,v) is inversely  proportional to  the integral  of
gt -a:%Dilyfl_l . ‘-y%D_l(a:Ty)V. Since the crossproduct "y is bounded to
(0,1), it follows that A(e,3,7) is a non-negative increasing function of v > 0 for
fixed o and B. Hence the last inequality of (3) is thus true.

A random variate (x,y) with a bicompositional Dirichlet distribution with pa-

rameter (o, 3,0) is generated as described in Section 2.1. We accept the variate
(z,y) if

Ale ,7) (T2 =51y ™) @y

- A( 7ﬁ7 ) D C\(j*l ﬁ].,l ’
A(zﬁﬁ)A(a,B,O) (Hj:l Ti®Y; )

ie. if U < (x"y)7; otherwise it is rejected and new (x,y) and U are generated
until acceptance.

We note that this procedure does not require the calculation of A(e, 3,7) and
hence is applicable for all non-negative v. We thus have the slightly surprising
situation that we may generate random variates from distributions whose densities
we cannot calculate, since at present expressions for A are not known for non-
integer v in the multicomponent case [2].

Using a product of two Dirichlet distributions as dominating density is however
not always very efficient, as ("y)” may be close to 0 when ~ is large. When v > 0,
and oj, 85 > 1(j =1,...,D), it is easily seen that the density (1) will have an upper
bound. We may therefore use a uniform density as g, with ¢ = maxg 4 f(x,y).
This is though only applicable for non-negative integers -, since it is necessary to
calculate A(a, 3,7).

2.3. The case when v < 0 and D = 2

The bicomponent case is simpler as = (z,1 — z)" and y = (y,1 — y)". This has
enabled the distribution to be defined also for v < 0. We will in this section view
the density as a function of x and y.

The bicomponent bicompositional Dirichlet density exists if and only if v >
—min(ag + P2, a0 + B1) [2]. If v < 0, the factor (x™y)? will tend to infinity when
x is close to 0 and y is close to 1, and also when « is close to 1 and y is close to
0. We therefore divide the sample space .72 x .2 into four quadrants, denoted
Q1-Q4 counter-clockwise from the origin. Figure 1 shows the .72 x .2 with the
four quadrants.

To generate a random variate from a bicomponent bicompositional Dirichlet
distribution with parameters a, 8 and —min(ag, 82) < 7 < 0, we first randomly
choose a quadrant Qy (k = 1,2,3,4) with probability

D = / /Q ey (k=1,2.3.4),

where f(x,y) is the bicomponent bicompositional Dirichlet probability density
function (1) viewed as a function of z and y. Expressions for the cumulative dis-
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Figure 1. The four quadrants Q1-Q4 of the sample space .72 x .#2; the horizontal axis represents z and
the vertical axis represents y.

tribution function are given in [2], which may be used in calculating py:

Fxy(z,y) 272 ( > (;—)(_1)ljBac(O‘1 +j,a0 +i—j)

=0 j=

: < <;> (—1)*By(B1 + k, Ba +i — k))
k

[en]

o

where B, (p,q) is the incomplete Beta function. Depending on which quadrant is
chosen, we then choose a dominating density ¢ and a constant ¢ in the following
manner.

Q1 & Qs In quadrants Q; and Qs, "y > 1/2 and we may hence use a product of
two Dirichlet (or equivalently Beta) distributions with parameters a respectively
3 as g and a constant
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Q2 In quadrant Q2, we may find a lower bound for "y if we introduce a weight
0<f<1:

zy=ay+(1-2)(1-y)

1—x y
Z T T
e Y
=0 20 +( @ml—m
. 1—2\? Y 1-6
- 20 2(1-10)
_ 1 N0, 10
= g —gyio L Y
Since v < 0,
o)y — 2\, v(1-0)
(m y) S 27979(1 o 9),7(1_9) (1 x) y
and

f@,y e, B8,7) = Ala, B,7)z™ (1 — 2)* 1y 711 — )N (2y)?
Ala, B, 7)1 — g)22t10-1yfitr(1=0)=1(] _ )1
27970(1 — 9)7(179)

<

A dominating density could hence be a the product of two independent Dirichlet
densities with parameters (a1, as + v0) and (81 + (1 — 0), B2), respectively. For
this distribution to exist

az+v0 >0
Br+y(1-6)>0

or equivalently

7>—%
Y>> -1

To solve these inequalities we assume

and solve for 6, which yields the solution

(0%)
as + B

We therefore use a product of two Dirichlet distributions with parameters (o, as+
Eawg) and (51 + €S, B2), respectively, as the density g and the constant ¢ given by

Ala, B,7) (a2 + £1)7
Alay, ag + Eag, B1 + B, Ba, 0)27a57 g1

CcC =
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Table 1. Comparisons of the estimated acceptance probabilities
depending on choice of dominating density. We clearly see that
the product of two Dirichlet densities can be very inefficient for
large values of v, but also that it may be much more efficient than
a uniform density for some distributions.

Parameter values Dominating density
ai s 51 B2 v  Dirichlet  Uniform
2.1 3.1 5.5 2.3 0.3 0.769 0.222
2.1 3.1 5.5 2.3 3.2 0.103 0.200
2.1 3.1 5.5 2.3 7.7 0.007 0.110
2.1 3.1 5.5 23 —-1.2 0.208 0.208
2.1 3.1 0.7 2.3 3.2 0.185 NA
7.1 4.2 6.3 8.5 0.3 0.769 0.119
71 4.2 6.3 8.5 3.2 0.100 0.125
7.1 4.2 6.3 8.5 7.7 0.005 0.135
7.1 1.2 12.5 3.1 3.2 0.357 0.031

where
= g
as + B

Q41 Analogously to quadrant Qo, we may in quadrant Q4 use a product of two
Dirichlet distributions with parameters (ay + naq, ae) and (51, B2 + nS2), respec-
tively, as the density g and the constant ¢ given by

A(a) /37 7)(041 + ﬁ?)7

CcC = )
Aoy + nay, ag, Bi, Bz + 02, 02705 35"

where

0
a1 + Bo

In all four cases, we must though assure that the generated variates with density
g are restricted to that particular quadrant.

3. Comparison of the two dominating densities

The efficiency of the generation process will usually depend on the choice of domi-
nating density. In most cases we have a possibility to choose between two different
dominating densities: a product of two independent Dirichlet densities or a uniform
density. In general, the product of two Dirichlet distributions will often be more
efficient when ~ is close to 0, but may however be highly inefficient when ~ is large.

To compare the efficiencies of the two dominating densities we generated 25,000
random variates for each of the dominating densities from a number of different
bicomponent bicompositional Dirichlet distributions, and calculated the average
number of trials to generate one random variate. Table 1 shows the results presented
as the estimated probability of acceptance (the reciprocal of the average number
of trials) as well as the results for a distribution where only a Dirichlet product is
available as dominating density as the distribution density function does not have
an upper bound. We note that the probability of acceptance with a uniform density
can be much (almost 30 times) larger than the probability of acceptance with a
with a Dirichlet density. On the other hand we also see that there are distributions
for which the probability of acceptance with a with a Dirichlet density is more
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Figure 2. 150 random variates generated from four different bicomponent bicompositional Dirich-
let distributions with (e;3;7) parameters (2.1,3.1;5.5,2.3; 0.3) (a), (2.1,3.1;5.5,2.3; 7.7) (b),
(2.1,3.1; 5.5,2.3; —1.2) (c), and (2.1,3.1; 0.7,2.3; 3.2) (d), using the product of two Dirichlet densities
(o) and a uniform density () as dominating density. Since the distribution in (d) does not have an upper
bound, a uniform density may not be utilized. As a reference, the contour curves of the true densities are
also drawn.

Table 2. Comparisons of the estimated acceptance probabilities for some
multicomponent bicompositional Dirichlet distributions using a Dirichlet and
a uniform dominating density.

Parameter values Density
[e% B o Dir. Unif.
(2, 2,2) (2, 2,2) 1 0.333 0.145
(2, 2,2) (2, 2,2) 7 0.001 0.085
(2.1,1.2,3.2,4.1,2.8) (3.2,2.2,5.3,1.8,29) 1 0.204 0.000
(2.1,1.2,3.2,4.1,2.8) (3.2,2.2,5.3,1.8,29) 3 0.009 0.000

than 10 times the probability of acceptance with a uniform density. As a graphical
illustration of the differences between the distributions, 150 generated random
variates from four of the distributions in Table 1 are plotted for each of the two
dominating densities in Figure 2 together with contour curves of the density.

The differences in efficiency between the two dominating densities is even more
obvious for the multicomponent bicompositional Dirichlet distribution examples
presented in Table 2. Here again, we generated 25,000 random variates, this time
from four different multicomponent bicompositional Dirichlet distributions using
both of the two dominating densities. For the tricomponent distributions, when
~v = 1, the Dirichlet density has a probability of acceptance of more than twice
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that of the uniform density, but when v = 7 the probability of acceptance of the
uniform density is more than 80 times that of the the Dirichlet density. For the
two distributions with five components, we see that the Dirichlet density is much
more effective for both cases. In general, as the dimension D increases the rejection
constant often deteriorates quickly when a uniform density is used [7, p. 557].

4. Conclusions

The choice of the dominating density is evidently crucial to the efficiency of this
random variate generation. When ~ is close to 0 or the number of components
is large, a product of two Dirichlet density functions seems the most efficient,
otherwise a uniform density function (if possible) is recommended. What is meant
by close is however dependent of the other parameters (a, 3), so when in doubt,
the recommendation would be to generate a small number of variates with each
dominating density and see which is the most efficient for the particular parameter
values in question. We note that the efficiency of the method seems to degrade as
the dimension (i.e. the number of components) increases, and that further research
is needed to find more efficient dominating densities for distributions with a large
number of components and for large v values.

It remains yet to find a way of generating random numbers for the bicomponent
case when —min(a; + B2, 0 + $1) < v < —min(ag, f2) and the density function
does not have an upper bound.

The random variate generation might further be made more efficient for at least
the bicomponent case, by adopting the quadrant scheme also for positive ; espe-
cially when the probability mass is concentrated in one or two of the quadrants,
which is often the case for large -, this might speed up the generation process
considerably.
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