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Abstract

A non–oscillatory, high resolution reconstruction method on

quadrilateral meshes in 2D is presented. It is a two–dimensional

extension of Marquina’s hyperbolic method. The generalization to

quadrilateral meshes allows the method to simulate realistic flow

problems in complex domains. An essential point in the construction

of the method is a second order accurate approximation of gradients

on an irregular, quadrilateral mesh. The resulting scheme is optimal

in the sense that it is third order accurate and the reconstruction

requires only nearest neighbour information.

Numerical experiments are presented and the computational re-

sults are compared to experimental data.

Key words

Conservation law, hyperbolic reconstruction, high resolution fi-

nite volume scheme, quadrilateral mesh.

1 Introduction and Background

Finite volume schemes approximate local averages within computational
cells. These averages are determined by the flow balance across the cell
boundary. Thus, the accurate and efficient computation of fluxes along the
boundary is crucial for FV-schemes. A dilemma is that the available data
during the simulation are average quantities of the state variables. Accu-
rate point values of the flux along the boundary need to be reconstructed
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from these averages. During the 80’s, piecewise polynomial reconstructions
were developed (MUSCLE, PPM, ENO, WENO, etc. . . ).

By the nature of hyperbolic conservation laws, lacking natural diffu-
sion, small disturbances of a solution are preserved but not damped in
time — solutions are sensitive to artificial oscillations. It is the building
principle and the achievement of ENO-type reconstructions to select from
several higher degree polynomials the one of lowest variation. Obviously,
by this selection process, the stencil defining all the various interpolation
problems increases. Moreover, the question arises: Is a polynomial the
preferred ansatz-function for approximating the solution of a conservation
law? As usual, the answer is problem dependent. Oscillatory phenom-
ena, like acoustic waves may be well described by polynomials. Piecewise
linear solutions of 1D Riemann problems however, are better represented
by piecewise monotone functions like, for example, Marquina’s piecewise
hyperbolic reconstruction [12].

Given monotone data in only three neighbouring cells, the three param-
eters a, b and c defining a hyperbola

h(x) = a +
b

(x − xj) + c
(1)

can be adjusted in order to establish a third order accurate reconstruction
of the unknown profile ξ from its local cell averages

vj =

∫

Cj

ξ(x) dx, Cj = [xj−1/2, xj+1/2], xj = j · ∆x, ∆x > 0, j ∈ Z.

The building principle [12, 1] is to preserve the cell average vj

1

∆x

∫

Cj

h(x) dx = vj (2)

and to approximate the lateral gradients up to second order

h′(xj+1/2) = ξ′(xj+1/2) + O(∆x2). (3)

In the case of a uniform mesh, a second order approximation of ξ ′(xj+1/2)
is easily obtained by a central difference of neighbouring averages

1

∆x
(vj+1 − vj) = ξ′(xj+1/2) + O(∆x2).

The so obtained hyperbolic reconstruction is third order accurate [1], local
in the sense that only nearest neighbour information is required and it is
known for its capability to resolve sharp corners especially well.
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This feature of the piecewise hyperbolic method (PHM) was already
observed and documented in Marquina’s original paper [12]. The com-
pactness of the stencil (five points in 1D) gives better resolution of corners
compared to ENO and TVD upwind schemes of the same order (and with
larger stencils). We refer to Example 2 (linear advection) and Example 4
(non-convex, scalar conservation) in [12] for a comparison of third order
ENO and PHM.

We would also like to argue that in some sense a third order five-point
FV-scheme (like PHM) is the optimal method for a hyperbolic conservation
law in one space dimension: By definition of hyperbolicity such an evolution
is a local process. The most local scheme that is feasible would be a three-
point FV-scheme. However, a third order three-point scheme is not TV-
stable. In fact, any three-point TVD-scheme is at most first order accurate
[18]. The next bigger symmetric stencil contains five points. Achieving
third order accuracy and TV stability on a five point stencil is the best one
can hope for. A third order ENO scheme is not optimal in this sense, as it
requires a seven point stencil.

To take advantage of Marquina’s successful concept in realistic flow sim-
ulations, it is tempting to establish a similar reconstruction in two space
dimensions defined on non-uniform, quadrilateral meshes. The key ingre-
dient for achieving this goal is to establish a second order approximation
of the lateral gradients based on local averages in non-rectangular meshes
— the next section deals with that problem. Once again it is advantageous
to start out with a local scheme like PHM, otherwise this numerical differ-
entiation process would be even more technically involved and hence less
efficient.

The bi-hyperbolic reconstruction in Section 3 is based on these gradi-
ents. Flux balancing, see Section 4, is then straight forward and SSP-Runge
Kutta time stepping can be applied. The resulting bi-hyperbolic finite vol-
ume scheme is validated in Section 5. In a shock/bubble experiment, we
compare our numerical results to experimental data (Section 5.2). Two
other test cases, flow in a compression channel (Section 5.3) and flow past
a triangular obstacle (Section 5.4), illustrates the performance of the new
scheme in non-rectangular geometries.

2 Numerical gradients on quadrilateral mes-

hes in two dimensions

As outlined above, lateral gradients of second order accuracy along the cell
boundary are required for reconstruction. In analogy to one dimensional
finite difference formulas, the idea is to establish a linear combination of
function values from neighbouring cells, approximating the desired par-
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tial derivative up to second order accuracy. The coefficients in this linear
combination are obtained by Taylor expansion.

For illustration we consider the rectangular case first, where the mesh is
aligned with the coordinate system and spatial derivatives can be approx-
imated by one-dimensional difference formulas. To achieve second order
accuracy, it is sufficient to sample three function values and the coefficients
are spelled out in Section 2.1.

This concept is then extended to non-rectangular cells in two space
dimensions, where a six-point stencil is required for second order accuracy.
The six coefficients depend on the local (mesh-)geometry. They may be
computed (numerically) from local, linear systems. Another issue is how
to select an appropriate six point stencil in two dimensions, see Section 2.2.

2.1 Rectangular cells

In a rectangular mesh the approximation of normal derivatives along the
boundary is a one-dimensional problem. For the ease of notation, we omit
the second variable in this subsection. Consider non-uniform cells Ci =
[xi, xi], i ∈ Z with boundaries xi = xi+1 and variable width ∆xi = xi −xi,
see Fig. 1. The goal is to find a linear combination of known averages

--

∆xi−1 ∆xi ∆xi+1

Ci−1 Ci Ci+1

u u u uu

xi xi xi xi+1xi−1

� -� -� -

Figure 1: Non-uniform, rectangular mesh.

fCi
=
(

∫

Ci
f(x) dx

)

/∆xi, approximating the right edge derivative f(xi)

up to second order accuracy

αfCi+1
+ βfCi

+ γfCi−1
= f ′(xi) + O(∆x2), (4)

where ∆x = supi ∆xi.

Lemma 2.1 Assume f ∈ C3(R). The linear combination (4) with coeffi-
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cients α, β and γ satisfying














1 1 1

∆xi+1

2
−

∆xi

2
∆xi +

∆xi−1

2

∆x2
i+1 ∆x2

i 3∆x2
i + 3∆xi∆xi−1 + ∆x2

i−1

























α

β

γ











=











0

1

0











(5)
is a second order approximation of f ′(xi).

Proof: Expand f around the right edge in Ci and integrate

fCi
= f(xi) −

1

2
∆xif

′(xi) +
1

6
∆x2

i f
′′(xi) + O(∆x3).

Similarly,

fCi+1
= f(xi) +

1

2
∆xi+1f

′(xi) +
1

6
∆x2

i+1f
′′(xi) + O(∆x3)

and

fCi−1
= f(xi) + (∆xi +

∆xi−1

2
)f ′(xi)

−
1

6

∆x3
i − (∆xi + ∆xi−1)

3

∆xi−1

f ′′(xi) + O(∆x3).

Now the system (5) ensures that

αfCi+1
+ βfCi

+ γfCi−1
= f ′(xi) + α · O(∆x3) + β · O(∆x3) + γ · O(∆x3).

As the coefficients α, β and γ themselves are of order ∆x−1, the error sums
up to second order and the lemma is proved.

�

Remark 2.2 In the case of an equidistant mesh we have ∆xi = ∆x. In
this case the system (5) reads











1 1 1

∆x

2
−

∆x

2
−

3∆x

2

∆x2 ∆x2 7∆x2





















α

β

γ











=











0

1

0











.

The (unique) solution is α = 1/∆x, β = −1/∆x and γ = 0 and the well-
known central difference formula is recovered

fCi+1
− fCi

∆x
= f ′(xi) + O(∆x2) .
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Remark 2.3 A formula for the left edge derivative can be obtained anal-
ogously. The defining system reads











1 1 1

∆xi+1

2
+ ∆xi

∆xi

2
−

∆xi−1

2

3∆x2
i + 3∆xi∆xi+1 + ∆x2

i+1 ∆x2
i ∆x2

i−1





















α′

β′

γ′











=











0

1

0











.

Observe the symmetry with respect to x = xi.

2.2 Quadrilateral cells

In this section, non-rectangular convex cells bounded by four linear edges
are considered. Given cell averages fCj

= (
∫

Cj
f(x, y) dxdy)/vol(Cj) of

a sufficiently smooth function f ∈ C3(Ω), Ω ⊂ R
2, the plan is to make a

second order accurate approximation of the gradient of f in a given point
p = (x, y) on one of the edges (see Fig. 4 for illustration). To this end we
expand f in p = (x, y) ∈ Ω around p

f(x, y) = f(p) + fx(p)(x − x) + fy(p)(y − y)+

1

2
fxx(p)(x − x)2 + fxy(p)(x − x)(y − y)+

1

2
fyy(p)(y − y)2 + O(‖p − p‖3).

Next, we integrate f(x, y) in Cj , divide by the cell volume vol(Cj) and find
for the average

fCj
= f(p)+αjfx(p)+βjfy(p)+

1

2
γjfxx(p)+δjfxy(p)+

1

2
εjfyy(p)+O(∆3

j ) ,

where ∆j = diam(Cj) = maxp,q∈Cj
‖p − q‖. Note that by averaging, third

order is preserved. Moreover, the coefficients

αj =
1

vol(Cj)

∫∫

Cj

(x − x) dxdy , βj =
1

vol(Cj)

∫∫

Cj

(y − y) dxdy ,

γj =
1

vol(Cj)

∫∫

Cj

(x−x)2 dxdy , δj =
1

vol(Cj)

∫∫

Cj

(x−x)(y−y) dxdy ,

and

εj =
1

vol(Cj)

∫∫

Cj

(y − y)2 dxdy

are determined from the mesh and p only. The integrals can be worked out
explicitly, which is avoided in this text however.
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By a linear combination of averages in neighbouring cells, the goal is to
approximate e.g. fx(p) by

∑

l

µlfCl
= fx(p) +

∑

l

µlO(∆3
l ) , (6)

where l is a local index to be specified below, see Fig. 3. To achieve this,
the following linear systems have to hold for the weights µl

Constant terms :
∑

l

µl = 0

First order integral terms :
∑

l

αlµl = 1 ,
∑

l

βlµl = 0

Second order integral terms :
∑

l

γlµl =
∑

l

δlµl =
∑

l

εlµl = 0 .

(7)

These equations form a linear system

Aµ = 12 (8)

from which the weights µl and thus the formula (6) is determined. The l-th
column of A is Al = (1, αl, βl, γl, δl, εl)

T and 12 = (0, 1, 0, . . . , 0)T ∈ R
6.

The corresponding formula for the y-derivative

∑

l

νlfCl
= fy(p) +

∑

l

νlO(∆3
l ) (9)

is determined from
Aν = 13 ,

correspondingly. To fulfill the six conditions (7) in general meshes, a six-cell
stencil is required. A tempting choice is to use the six nearest neighbour
cells to p, as illustrated in Fig. 2. However in uniform meshes the resulting
system (8) for µ is under determined. In this case γl = γ is the same
constant in all six cells, thus

∑

µl = 0 implies
∑

γlµl = 0. Indeed, in
this situation the central difference 1

∆x

(

fC3
− fC0

)

= fx(p) + O(∆x2)
is a second order approximation. The coefficients µi for i = 1, 2, 4 and
5 may, but need not, be set to zero. Thus, in the general case the most
compact stencil (Fig. 2) is not practical, as the formula becomes ambiguous
in uniform meshes.

The problem is avoided by moving C3 in Fig. 2 to the west side, see
Fig. 3. Note the renumbering of cells. On uniform quadratic cells with
cell side length h, the formulas using this stencil are uniquely defined,
detA = 8h8. It turns out that µ0 = µ5 = 0 and the partial derivatives are
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Figure 2: The most compact stencil.

approximated by an average of two central differences

fx(p) =
1

2

(

fC2
− fC1

h
+

fC3
− fC4

h

)

and

fy(p) =
1

2

(

fC4
− fC1

2h
+

fC3
− fC2

2h

)

.

In the general case however, it is a hopeless enterprise to spell out
explicit formulas for the coefficients µ and ν. Therefore, in practical com-
putations, the coefficients are computed and stored in each cell before the
main simulation. Note that the matrix A and thus the formulas (6) and
(9) depend on the local geometry of the mesh.

In the context of bi-hyperbolic reconstructions, as described in the next
section, x-derivatives and therefore µ-coefficients are required on east and
west cell edges, while y-derivatives and ν-coefficients are stored for use
on the north and south edges of every cell. The derivation of numerical
derivatives on the west, north and south edges is completely analogous to
those on the east side (as described above), and is therefore omitted.

Finally, it would be interesting to prove the regularity of the coefficient
matrix A in the general case for an arbitrary quadrilateral cell. However,
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Figure 3: Chosen stencil.

even that is tedious due to the many parameters involved. In any case, due
to the continuity of the determinant these systems are regular at least for
”almost” rectangular meshes. Also, in the numerical simulations presented
in Section 5, all linear systems defining the coefficients µl and νl were
regular, and the formulas (6) and (9) are uniquely defined.

3 The bi–hyperbolic reconstruction

Marquina proposed in [12] a hyperbolic reconstruction of type (1). To
establish the conservation property (2), the ansatz reads

rM
j (x) = vj + dj

∆x

α2
j

(

ln

(

2 − αj

2 + αj

)

−
∆x

(x − xj) −
∆x
αj

)

, (10)

where vj denotes the given average in cell Cj . The remaining two param-
eters dj and αj are adjusted by both lateral gradients.

In the case of monotone data (vj − vj−1) · (vj+1 − vj) > 0, there exists
a unique reconstruction (10) which preserves the average vj and picks up
both lateral gradients

rM
j (xj±1/2) = ±

vj±1 − vj

∆x
.
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Otherwise, third order reconstruction by a monotone hyperbola is not pos-
sible and order reduction is the consequence (a globally third order, double
logarithmic reconstruction is currently being developed [2]). The resulting
algorithm is known as local hyperbolic reconstruction: LHR, see [12] for
details.
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B
B
B
B
B
B
B
B
B
B
BB

-

6

u uu
pij pp

x

y

∆yij/2

∆yij/2

∆xij/2 ∆xij/2

Figure 4: The geometry of a generic cell.

The natural extension of (10) to non-uniform meshes in two space di-
mensions reads

rij(x, y) = vij + dij
∆xij

α2
ij

·



ln
2 − αij

2 + αij
−

∆xij

(x − xij) −
∆xij

αij





+ eij
∆yij

β2
ij

·



ln
2 − βij

2 + βij
−

∆yij

(y − yij) −
∆yij

βij



 .

(11)
Just like in (10), the bi-hyperbolic functions rij are supported only in the
corresponding cells Cij , so that each computational cell has its own specific
reconstruction. Obviously, ∆xij and ∆yij are the local cell sizes according
to Fig. 4. Further, vij is set to the desired cell specific average. The four
parameters αij , βij , dij and eij are adjusted by the lateral gradients on all
four edges, which are determined as in the previous section. In fact, we

10



apply Marquina’s LHR-algorithm coordinate wise so that the x-derivatives
on the east and west edges determine the reconstruction in x-direction i.e.
αij and dij ; analogous in y-direction.

For computational convenience we define

η(γ; p, pij , h) =
1

γ2

(

ln
2 − γ

2 + γ
−

h

(p − pij) −
h
γ

)

.

The ansatz (11) then reads

rij(x, y) = vij + dij∆xijη(αij ; x, xij , ∆xij) + eij∆yijη(βij ; y, yij , ∆yij).

Note, the function η has a removable singularity at γ = 0:

lim
γ→0

η(γ; p, pij , h) =
p − pij

h
.

At this point a remark is in place: On rectangular — not necessarily uni-
form — meshes, the cell average of rij in fact is vij

∫∫

Cij

rij(x, y) dxdy = vij · vol(Cij), (12)

where vol(Cij) denotes the volume of the cell. This is easily checked using
the one-dimensional conservation principle (2). In non-rectangular cells
however, (12) does not hold due to the nonlinearity of the bi-hyperbolic
ansatz rij . Consequently, third order accuracy can not be expected in
those cells and once again order reduction occurs.

In principle, conservation and hence third order accuracy can be re-
stored by adjusting the parameter vij such that the desired cell average
is achieved by the reconstruction. This means in practice that the bi-
hyperbolic ansatz (11) needs to be integrated in the quadrilateral cell.
However, an appropriate numerical quadrature in 2D is expensive, as it
has to be performed cell wise. Our numerical experience (Section 5) shows
that this effort is not justified and we accept local order reduction instead.

4 Flux Balancing and Time Update

Consider the conservation law which is simulated cell-wise

d

dt

∫

Cij

U(x, y, t) dxdy +

∫

∂Cij

F (U(x, y, t)) · n dS = 0. (13)

To determine the dynamics of the cell average

U ij(t) =
1

vol(Cij )

∫

Cij

U(x, y, t) dxdy

11



the flux balance along the cell boundary is required

dU ij(t)

dt
= −

1

vol(Cij)

∫

∂Cij

F (U(x, y, t)) · n dS. (14)

The flux F (U(·, ·), t)|∂Cij
on the boundary is computed via flux-splitting

and upwinding, i.e. van-Leer’s splitting [21] for the Euler equations or Mar-
quina’s splitting [13] in case of two component gas.

The boundary integral in (14) is evaluated by a quadrature formula of
suitable order e.g. the fourth order Gauss formula or, for simplicity, just
the midpoint rule. Therefore the reconstructed flux functions need to be
evaluated at nodal points along ∂Cij . The quadrature formula applied
to the reconstructed normal fluxes F (U(·, ·), t)|∂Cij

, summed over all four
edges of the cell gives the right hand side in (14). Finally the third order,
non-linear SSP-Runge Kutta scheme ([5], Section 4.1) is applied for stable
time integration.
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Figure 5: The normal vectors for a generic cell and nodal points for the
mid point rule.

5 Numerical Tests

In order to test and validate the newly developed bi-hyperbolic scheme, we
simulate four different gas flows, three of them governed by the well known

12



Euler system in two dimensions [15, 8, 17]

Ut + F(U)x + G(U)y = 0, (15)

with

U =









ρ
ρu
ρv
E









, F(U) =









ρu
ρu2 + p

ρuv
u(E + p)









, G(U) =









ρv
ρuv

ρv2 + p
v(E + p)









.

(16)
In air, γ = 1.4 and the pressure is p = (γ − 1)(E − ρ

2
(u2 + v2)).

In the second test case (Section 5.2) a two component gas consisting of
air and helium is simulated. The governing equations (see [7, 13]) are (15)
with

U =













ρ
ρu
ρv
E
ρφ













, F(U) =













ρu
ρu2 + p

ρuv
u(E + p)

ρφu













, G(U) =













ρv
ρuv

ρv2 + p
v(E + p)

ρφv













.

(17)
Here φ models the mass fraction of the first component in the mixture and
hence 1 − φ is the mass fraction of the second component. Furthermore γ
is the ratio of specific heats in the mixture

γ(φ) =
Cp

Cv
=

Cp1φ + Cp2(1 − φ)

Cv1φ + Cv2(1 − φ)
.

The pressure is determined as usual

p = (γ(φ) − 1)(E −
ρ

2
(u2 + v2)). (18)

5.1 Shock interacting with a bubble in air

Shock/bubble interactions have been studied both in experiments [6] and
by impressing numerical simulations [7, 9, 13]. The fascinating images gen-
erated by these problems are due to the generation of vorticity, turbulence
and mixing. Photographs of the experiments by Haas and Sturtevant [6]
with a bubble of helium immersed in air are presented in the Gallery of
Fluid Motion [14].

Inspired by these experiments Langseth and LeVeque [9] formulated a
single gas experiment: A 2.95 Mach shock wave propagates into a bubble
of low density air. A colored Schlieren image of this interaction became the
CLAWPACK logo [23]. The original 3D problem is cylindrically symmetric
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and may be formulated as the 2D Euler equations (15) and (16), however
with a source term. Very nice results both in 2D and 3D computed by the
CLAWPACK package can be found in [9].

Here we simulate the homogenous Euler equations in 2D, with the initial
data from [9] but ignoring the source term. Figs. 6, 7 and 8 show Schlieren
type images of the density computed on a 1600× 500 rectangular mesh on
the computational domain Ω = [−0.1, 1.5]× [−0.5, 0]. The Figures do not
reflect the full computational resolution due to data compression. Anyway,
compared to both the first order Front Tracking simulation [22] and the
second order accurate CLAWPACK results reported in the preprint [9]
we do observe very well resolved vortex formulation, which indicates low
numerical viscosity — as expected for a third order scheme.

Figure 6: Shock-bubble interaction in air at t = 0.21 s.

5.2 A shock wave in air hits a bubble of helium

The next simulation addresses the two gas experiment by Haas and Sturte-
vant [6]: A 1.22 Mach shock in air hits a helium bubble contaminated with
28% of air. We find this an attractive test case as well documented data
both from experiments and simulations are available. Following Marquina
and Mulet [13], the flow is governed by the homogenous 2D two component
Euler equations (15) and (17). The initial location of the shock and the
bubble is shown in Fig. 9.
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Figure 7: Shock-bubble interaction in air at t = 0.30 s.

Figure 8: Shock-bubble interaction in air at t = 0.40 s.
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The initial data is described as follows: To the left of the shock both
gases are at rest, i.e. u = v = 0 m/s. The pressure is uniformly 101325
Pa and the density of air (outside the bubble) is ρl = 1225 g/m3. From
the ideal gas law p = ρRT assuming constant temperature it follows for
the density inside the bubble ρb = ρl

R
Rb

= 222.8 g/m3. The gas constants

for air and helium containing 28% of air are R = 0.287 J/gK and Rb =
1.578 J/gK. The total energy is determined from the pressure and the
specific heats by using (18). So both states to the left of the shock are
completely determined by specifying the ratios of specific heats for air
γ = 1.4 and the mixture γb = 1.648. It remains to determine the state
to the right of the shock wave. From standard shock relations [20] (3.59)
and (3.61) we find ρr = 1686 g/m3, ur = −113.52 m/s, vr = 0, and
pr = 159060 Pa (note the misprint in Table Ib in [13]).

The remaining two plots in Fig. 9 show density contours at later times.
We see how the shock deforms the bubble, the contact line curls up and
vorticity is created. These solutions are computed on a 3000 × 300 grid.
Marquina et al used a 8000 × 800 grid for their simulations. Here, the
intention is not to show highly resolved Schlieren pictures, but to compare
certain time-averaged wave speeds with available data. Table I is actually
taken from [13] but augmented with the figures from the present computa-
tion.

Vs Vr Vt Vui(1) Vui(2) Vdi Vj

Haas and Sturtevant 410 900 393 170 113 145 230
Bi-hyp scheme 414 936 374 181 118 143 230
Percentage error -1.0 -3.9 5.1 -6.1 -4.2 1.4 0
Marquina and Mulet 414 943 373 176 111 153 229
Bi-hyp scheme 414 936 374 181 118 143 230
Percentage error 0 0.8 -0.3 -2.8 -5.9 7.0 -0.4

Table I.

In this Table Vt, for example, stands for the velocity of the transmitted
shock wave and Vdi is the velocity of the downstream border of the bubble,
both measured along y = 0. For further details we refer to [13]. In any
case, we can conclude that our figures agree perfectly (up to the measure-
ment error) with the experiment and also quite well with the independent
numerical simulation. In this test case, our code is clearly verified.

5.3 A compression channel

Here, the bi-hyperbolic method is applied to a flow in a non-rectangular
domain, i.e. a channel of decreasing width. The mesh consists of 900× 600
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Figure 9: Initial configuration and computed solution (density contours)
at t = 261µs and t = 449µs.

cells and the CFL number is set to 0.8. In Fig. 10 we observe the incident
2.95 Mach shock wave in air rightwards propagating in the cannel. By the
compression within the channel, secondary shocks form at the walls and
propagate in vertical direction into the channel. Observe the three-shock
interaction with the incident wave at t = 0.2 s. The secondary shocks pass
each other in the middle of the channel and get reflected at the opposite
wall (t = 0.4 s). They bounce back into the channel and a periodic wave
pattern forms (t = 0.5 s and t = 0.6 s). The initial shock has passed
through the channel at these times.

5.4 Triangular obstacle

A 1.36-Mach shock wave in pure air passes a triangular obstacle with reflec-
tive properties. Like all previous experiments, also this problem is obviously
symmetric with respect to the x-axis. The computational domain is the
lower half only as shown schematically in Fig. 11. This domain is divided
into four blocks as shown in Fig. 12. By this division each block has only
one type of boundary condition along each edge and, of course, parallel
computation speeds up the turn around time. The mesh size is 200 × 200
cells in each block, i.e. there are 160 kcells in the computational domain.
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Figure 10: Density contours for a shock wave passing through a compression
channel. Time is increasing row wise from 0.1 s to 0.6 s by 0.1 s steps.
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How to implement boundary conditions is described in the textbook [10].
Density contours at four different times are shown in Figs. 13, 14 and

15. It is quite fascinating to observe how the contact lines in the wake of
the triangle roll up and form vortices as time evolves.
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Figure 11: The computational domain.

6 Summary, discussion and outlook

We have presented a new high resolution FV-scheme based on bi-hyperbolic
reconstruction on quadrilateral meshes in two space dimensions. The bi-
hyperbolic reconstruction is a two-dimensional extension of Marquina’s
piecewise hyperbolic method (PHM). The formally third order accurate,
bi-hyperbolic FV-scheme is validated with both computational and exper-
imental data.

To formulate the basic FV-scheme on quadrilateral cells is straight-
forward. The difficulty was to establish a higher order reconstruction on
irregular meshes. The key ingredients are the accurate approximations of
lateral gradients developed in Section 2.
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Figure 12: Block structure of the computational domain.
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Figure 13: Flow past a triangle at t = 0.30 s.
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Figure 14: Flow past a triangle at t = 0.45 s.
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Figure 15: Flow past a triangle at t = 0.60 s.
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It might be tempting to avoid this effort by transforming the quadrilat-
eral mesh in the physical domain onto a logically rectangular and uniform
computational mesh. The transformed conservation law, involving metric
terms, could then be discretized on the rectangular mesh in the computa-
tional domain. However, this approach has several drawbacks:

First, in order to achieve good accuracy when discretizing the trans-
formed equations, the grid mapping must be smooth. In practice however,
for highly non-uniform meshes in the physical domain, this mapping typ-
ically is not smooth. Second, when discretizing in the computational do-
main, it is not obvious how to establish exact conservation with respect to
the physical variables. Finally, even if the first two points may be handled
in some way, then in order to simulate the transformed conservation law
in the computational domain, transformed Riemann problems need to be
solved. These artificial Riemann problems might be more difficult to deal
with than the original one describing some natural process.

In combination with the mesh redistribution method by Tang and Tang
[19], the bi-hyperbolic FV-scheme may be used as an efficient, robust and
competitive, adaptive simulation tool for realistic flow simulations.

It might also be possible to use bi-hyperbolic reconstructions as basis
functions in a discontinuous Galerkin framework [3]. Goal oriented error
control and adaptivity via duality could be exploited.

Acknowledgement

Support by the European network HYKE, funded by the EC as contract
HPRN-CT-2002-00282, is acknowledged.

References

[1] Artebrant R. and Schroll J. (2003) Conservative logarithmic

reconstructions and finite volume methods, submitted.

[2] Artebrant R. and Schroll J. (2004) A limiter free, globally third

order reconstruction, in preparation.

[3] Cockburn B., Karniadakis G.E. and Shu C.-W. (eds.) (2000)
Discontinuous Galerkin methods. Theory, computation and applica-

tions., Lecture Notes in Computational Science and Engineering.
Springer, Berlin.

[4] Donat R. and Marquina A. (1996) Capturing shock reflections: An

improved flux formula, J. Comput. Phys., v. 125 (1996) pp 42-58.

22



[5] Gottlieb S., Shu C.W. and Tadmor E. (2001) Strong Stability-

preserving high order time discretization methods, SIAM Review 43

pp. 89–112.

[6] Haas J.-F. and Sturtevant B. (1987) Interaction of weak shock

waves with cylindrical and spherical gas inhomogeneities, J. Fluid.
Mech. 181 pp. 41–76.

[7] Karni S. (1994) Multicomponent flow calculations by a consistent

primitive algorithm, J. Comput. Phys. 112 (1994), pp 31–43.
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