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A Robust Correlation Receiver 
for Distance Estimation 

Hikan Eriksson, Student  Member,  IEEE, Per Ola  Borjesson, Member,  IEEE, 
Per Odling, Student  Member,  IEEE, and Nils-Gunnar  Holmer, Member, IEEE 

Abstruct-Many  methods for distance  estimation,  such as the 
ultrasonic  pulse-echo  method,  involve  the estimation of  a Eme- 
ofFlight (TOF). In this paper,  a  signal  model is developed  that, 
apart  from  the  TOF,  accounts for an unknown,  linear  frequency 
dependent  distortion as well as for additive noise. We derive  a 
TOF  estimator for this model  based  on  the criteria of  Maximum 
Likelihood. The  resulting  receiver  can  be seen  as an  extension or 
generalization of  the  well  known  cross-correlation, or “matched 
filter”,  estimator  described, e.g., by Nilsson  in [12]. The  novel 
receiver  is  found to be  more  robust against unknown  pulse 
shape  distortion  than  the  cross-correlation  estimator,  giving less 
biased  TOF estimates. Also,  bias  versus  noise sensitivity can  be 
controlled by proper  model order selection. 

Index Terms-Time-of-Flight, delay, estimation,  narrow-band, 
ultrasound,  robustness, pulse-echo method. 

I. INTRODUCTION 

T HE MOST widely used method  for  making  ultrasonic 
measurements is the  ultrasonic  pulse-echo  method,  intro- 

duced by Pellam and Galt in 1946  [14]. It is  used for  the 
investigation  and  detection of changes in acoustic  impedance. 
Applications  can,  for  instance, be found in medical  diagnostics 
[g] and nondestructive material testing  [17]. An electric  pulse 
is  applied  to an ultrasonic  transducer  which  is in acoustic 
contact with the  sample to be examined.  The  transducer 
converts the electric  pulse  into an acoustic  pressure  wave that 
is transmitted  into  the  sample.  Reflections will appear  where 
the  acoustic  impedance  changes,  e.g., in surfaces  between 
different  tissues,  and a  pressure  wave will be reflected to the 
transducer. The  transducer  receives  and  converts the reflected 
pressure  wave  into an electric  signal. The  objective  is then 
to extract  the  desired  information by analyzing this signal. In 
the case of distance  estimation it is often  assumed that the 
distance to be measured  is  proportional to the corresponding 
pressure  wave flight time. This  motivates  our  current  interest 
in Time-of-Flight (TOF)  estimation. 

When performing TOF estimation  the  choice of system 
model is an intricate  matter,  also  involving  defining  the 
TOF. In [ 121 the assumption that the  received  signal  consists 
of nonoverlapping  delayed  and  scaled  replicas of a known 
“reference”  echo  renders  the  well-known  cross-correlation, or 
“matched  filter”,  estimator.  The  received  signal is correlated 
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with the reference  signal  and  the  position of the  maximum 
of the  absolute value of the correlation  function  yields  the 
estimate of the  TOF.  This  estimator  is  optimal in the  sense 
that it is the Maximum  Likelihood estimator of the TOF  given 
additive  white  Gaussian noise with zero mean [ 181. In general 
the  shapes of the  received  echoes  depend  on  many  parameters, 
such as  the  locations  and the geometry of the reflectors. Many 
methods  for  TOF  estimation  are based on the assumption that 
some  feature of the received  echoes  is  essentially  invariant,  for 
instance  the  shape  [7],  [12],  the first zero crossing  [3], [ I l l ,  
the amplitude  peak of the  echoes  [15], the amplitude  peak 
of the envelope of the echoes  [l91  or the  initial  part of the 
received  echoes  [5].  Then, in [3],  [5],  [7], [ l   l] ,  [15], [l91 the 
positions in time of these  features  gives the TOF  estimates. If 
the assumptions of invariance of the features in question  are 
violated,  the  mentioned  techniques  for  TOF  estimation  will be 
likely to produce biased estimates. In fact,  the  bias of the TOF 
estimate could well be greater than the  standard  deviation of 
the  same,  as we will  exemplify in the sequel. 

Throughout this paper we consider  a  propagation  media 
containing only one reflector and the estimation of a single 
TOF. We address  the  problem of how to derive  a  receiver 
for  TOF  estimation when the  shape of the received  echo  is 
unknown or uncertain. 

The  paper  proceeds  as  follows. A method for modeling 
uncertainties in the shape of the  received  signal in narrow-band 
pulse-echo  systems  is presented in Section 11. The  modeling 
method  is based on describing the received  echo as a known 
narrow-band reference  signal  being  distorted by an unknown 
linear  and  time-invariant system and  corrupted with additive 
noise.  This  linear  system is modeled in the  frequency  domain 
with a Taylor series  expansion  around the center  frequency 
of the  reference  signal.  The  coefficients of the Taylor series 
expansion hold the uncertainty in the system.  Inherent in the 
model is a definition of the  TOF. In Section I11 we derive  a 
TOF  estimator, based on the ML criteria, using an Mth order 
truncation of the model  derived in Section 11. The  estimation 
procedure  consists of a joint  estimation of the TOF and  the 2hl 
coefficients of the  truncated Taylor expansion. In Section IV 
the estimator  is  simulated  and  its  performance  is  compared 
with the  performance of the cross-correlation  estimator in 
terms of bias and  standard  deviation.  Section  V  describes 
measurements  where the cross-correlation  estimator  and  the 
estimator of Section I11 is  used to produce  ultrasonic  images 
for different  model  orders M .  Finally, in Section VI comments 
on the  results  can be found. 

0885-3010/94$04.00 0 1994  IEEE 
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11. LINEAR DISTORTION OF NARROWBAND SIGNALS 

Consider  the  situation  described in Fig. 1. An unknown 
excitation  signal  is  applied  as  an  input  to  two  unknown  linear 
systems.  The  output  signal  from  one of the  systems, s ( t ) ,  is a 
real valued known narrow-band signal,  henceforth  called  the 
reference  signal.  The  output  from  the  other system is  denoted 
y ( t  - e) ,  where 6 is the unknown  delay to be estimated. 

Assume that there  exists an impulse  response h(t)  so that 
the noiseless waveform 

y(t - e )  = (S * h)( t  - e ) ,  (1) 

where * denotes  continuous  time  convolution  and h(t)  is 
an unknown real valued impulse  response  representing  linear 
distortion.  Since  the real valued  reference  signal  is narrow- 
band, we  write it as 

s ( t )  = S{ ej2afot,(t)ejp(t) , 1 (2) 

where !R{ .} denotes the real part of its argument.  The  functions 
a( t )  and P ( t )  are real valued with the restriction that the 
Fourier  transform of the  complex  envelope, a( t )e ja( t ) ,  is  zero 
outside the frequency  interval [-B, B] ,  where B << fo. We 
also  assume  that  the  complex  envelope  has finite energy,  i.e., 
that a( t ) e jp ( t )  E LZ(R) = { z ( t ) J  Iz(t)12dt < m}. 

Define Lf(R) as  the  space of all  signals in &(R) whose 
Fourier  transforms  are  zero  outside  the  frequency  interval 
[-B, B].  These  signals  will be referred  to as baseband  signals. 
Furthermore,  due  to  the  narrow-band  assumption ( B  << fo) on 
s ( t ) ,  it is convenient  to  define  the  subspace L f F ( R )  of L z ( R )  
as the  space of all  signals in Lz(7Z) whose  Fourier  transforms 
are  zero  outside the frequency  intervals [ - t o  - B ,  -fo + B] 
and [fo - B,  fo + B]. By definition a ( t ) e j p ( t )  E LF(7Z) 
and by construction s ( t )  E L F F ( R ) .  Note that s ( t )  can  be 
any  narrow-band  signal  having finite energy whose  Fourier 
transform  only has support in two  intervals,  symmetrically 
around f = 0 and not containing f = 0. These  signals  could 
typically be bandlimited  ultrasonic  pulse  echo  signals  decaying 
fast  enough in time to have finite energy. 

Models  related to (1) can be found  in, e.g., [2],  [4], 
[12].  The  special case of (1) where h(t)  is  modeled  as  the 
sum of weighted and delayed  Dirac-delta  functions has been 
extensively used in the context of TOF  estimation,  see,  e.g., 
[ 121. Recently in a  paper by Boudreau  and  Kabal  [2]  a  model 
for  the  purpose of TOF  estimation is presented,  allowing an 
unknown  linear  frequency  dependent  distortion in the delay 
path.  The  reference  signal  was  there  modeled  as  a  broadband 
stochastic  process  for  the  tracking of a time varying TOF with 
an adaptive  algorithm. A discrete  time  version of (1) is  studied 
in [4],  where  the  distortion  is  modeled  as  a  linear  stochastic 
system with a  known  Gaussian  statistic. 

A. An Mth Order  Model of the Distorting  System h(t)  
Due to the  narrow-band  assumption  on s ( t )  we are only 

interested in the  behaviour of h(t)  in the  frequency  intervals 
[ fo-B, fo+B]  and [- fo-B,- fo+B].  Let H ( f )  denote the 
Fourier  transform of h(t)  and assume that H ( f )  is M-times 
differentiable in  an interval  around f = fo. Define Chl(f) as 

excitation 4 linear I .s(t)  
signal system A 

Fig. I .  A model of a measurement  situation for TOF estimation. 

the Taylor series  expansion of H ( f )  around fo > 0 with a 
remainder term of order M :  

Now,  let us define  a  function Hhf(f) such that H,bf( f )  = 
CM ( f )  for f > 0 and  the  inverse  Fourier  transform of Hn;r ( f  ) 
is real valued, 

Hh.l(f) CJ\f(f)U(f) + c.;,(-f)u(-f), (4) 

where U ( f )  denotes  the  unit  step  function and the  superscript 
* denotes the complex  conjugate. 

The  system  model H h f ( f )  is then an Mth order  model of 
H ( f ) ,  especially  adapted  for  narrow-band  signals with their 
center  frequency  equal to fo. A similar  reasoning by Papoulis 
can be found in [13, page 591 for  baseband signals. 

B. Evaluation of the Convolution (S * h) ( t )  
For  the  purpose of modeling  the  convolution (S * h ) ( t )  in 

(l), we define 

y d t )  4 F-l{F{s(t)}H~f(f)}; ( 5 )  

where .F{.} denotes  the  Fourier  transform  and F-'{.} its 
inverse. By using the  narrow-band  representation of the  refer- 
ence  signal in (2), it follows that 

where Uk and b k  are real valued coefficients  given by 

and 

All g(')@) exist  and  have  Fourier  transforms  that  are  zero 
outside the frequency  interval [-B, B] since  the  subspace 
Lf(R) is  closed  under  linear  operations  and g(O)( t )  is  analytic 
having  derivatives of all orders in every  point  on R. 

We now  have  obtained  a  signal  representation, (6)-(ti), with 
the  model  order M to  choose.  Observe  that  the  waveforms 
{ g ( k ) ( t ) } g ; l  are  independent of the system h(t)  and that 
the  coefficients { U k ,  bk};:;' are  independent of the reference 
signal  once  the  center  frequency  is  given.  Thus,  the knowl- 
edge of the  reference  signal  gives us a  signal  basis  and  the 



coefficients {arc: b k } ; L ,  hold  the uncertainty in the shape of 
the waveform y.zr ( t  ). 

For the  development of  the estimator in Section 111 we  need 
an orthogonal  signal  basis. Define the  inner  product (., .) in 
L2(R) as 

x , y  n r ( t ) y * ( t ) d t .  
- L (9) 

and  the  norm I/zI/ A ( " C . X ' ) ' / ~ .  Since g( ' ) ( t )  E @(R) it  
can be shown that the signal set {g")}Ei' spans an 111- 
dimensional  signal  space flbf in Lf(R). Let {Q}:=-; denote 
an orthonormal  signal  basis that spans O,V, for  every N in 
{l.. . . , M } ,  which  ensures  the  signal basis { z k } E i '  to be in 
a  specific  order.  This  signal  basis  can,  for  instance, be obtained 
by applying  Gram-Schmidt  orthogonalization  to {g( ' ) }&' .  
Let us modulate  the  signal  basis {,Q}&' up to the frequency 
band  of interest  and define 

- 

where 9{.} denotes the imaginary  part of its argument. 
Since  the  Fourier  transform of Z k  is narrow-band ( B  << fo) 
and ( z k ,  z l )  = 6 k l  the function set { $ k ;  q k } & i '  is a real 
valued orthonormal  basis of dimension 2151 in L F F ( R ) .  The 
model signal yhr(t) in (S) can then  be expressed as a  linear 
combination of { $ k ,  Gk}E;' according  to 

hf -1 

l/Al(t) = c C k $ k ( t )  + &&(t) .  (1 1) 
k=O 

The unknown  coefficients { c k :  d k } f L i l  are  the new  coordi- 
nates  for { a k .  hk}&' after the change of signal basis. The 
coefficients { c k ,  &}E;' now  hold  the uncertainty in  the shape 
of  the waveform yibf ( t ) .  Note  that ( t )  is a  normalized  replica 
of  the reference  signal,  i.e., $,(t) = s ( t ) / l l s l / ,  and  that q b k ( t )  

and q k ( t )  by construction  form  a Hilbert transform  pair  for 
all k in (0. .  . . ~M - l}. 

C. A Summary of the Signal  Basis  Design 
In this section  we  have  presented  a  method  for  modeling 

linear  distortion of narrow-band  signals.  The  analysis  results 
in a  signal  representation  consisting of  an orthonormal  signal 
basis. The  design  process  for  obtaining  this  signal  basis  can 
be summarized  as  follows: 

For k = 0; 1. . . . , M - 1. take the  kth order  derivative of 
the bandlimited  complex  envelope of  the reference  signal, 
see (8). 
Use for  instance the Gram-Schmidt  orthogonalization 
process  to  obtain  a  complex  orthonormal  baseband  signal 
basis, { z k } & ' .  

Calculate the high  frequency  signal  basis, { & ( t ) ,  
$ k ( t ) } c L i ' ,  as  described by (10). 

In the case when s ( t )  is acquired by a  calibration or 
measurement  procedure, the design  process will be affected 
by noise. To reduce  this  effect,  a  band-pass filter matched to 
the bandwidth of s(t)  should be introduced when acquiring 
s ( t ) ,  thereby  reducing the noise  power.  The  design  process is 

described in Fig. 2 where LP denotes an ideal low pass filter 
with a  bandwidth  equal to B,  i.e., the bandwidth of c>(l)eJ ' ' ( t ) .  

111. TIME OF FLIGHT  ESTIMATION 

Consider the joint  estimation of a  single TOF and  the 
coefficients  describing the linear  distortion. We model  the 
received  signal as 

where ynr(.) is given by the Mth order model ( 1  1) and n ( t )  
is an additive  white  Gaussian  noise  process, with zero  mean 
and a  power  spectral  density  equal  to ni;/2. The parameter 
B is the TOF. With this definition  of  the TOF the shape of 
the waveform y.lf(,) is  allowed  to  vary,  cf., [ 3 ] ,  [ 5 ] ,  [7],  [ l  I ] ,  
[121, [151, [191. 

To get a compact  notation we rewrite y,jr (.) of ( I  1)  as 

ynr(t - H )  = pT$(t - e ) .  (1 3 )  

where $ = [$IO. . . . ~ J , J - ~  ~ $0 .  . . . . qL~l-1]* is a  vector 
representation of  the orthonormal  signal  basis and p = 
[c,? . . . 0~11-1. d o .  . . . . d,jf-1] T . With this notation  we write 
the  Signal  to  Noise  Ratio  (SNR)  as 

A. The ML Estimator 

The  estimation problem is to determine the  unknown TOF 
B when observing { ~ ( f )  I t E I}, where Z = [Tl.T2] is 
the observation interval (TI < Tl) .  Define  the deterministic 
parameter  vector 

and denote the estimate of q as ;i = [ H .  G=]*. The function 
A 
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is a log likelihood function for q given the observation 
{ ~ ( t )  1 t E I}, c.f. [18, p. 2741. Using (13), (16) can be written 
as 

2 1 l 
l(q I r ( t ) )  = -pTre - -pTp + -pTE(0)p. (17) 

where r e  is a vector resulting from 2 M  parallel correlations, 
*v, NO NO 

and where the matrix 

vector g .  
For a given observation { r ( t j  I t E I}, the ML estimate 

of q is obtained by locating the global maximum of the 
log  likelihood  function l ( q  I ~ ( t ) )  with respect to g .  Let 
H E 20, where 20 is  an interval, or a set of intervals, on 
R. If the observation interval 1 is chosen sufficiently large for 
+ k ( t  - H )  and ,&(t - 8) to  have  negligible energy outside 1 
for all O E 10, then, according  to  Schwarz’s  inequality,  each 
element in E(H) is not greater than this negligible energy. 
Approximating E(O) with zero  and  completing the square in 
(17)  we  have 

low SNR’s the cross-correlation estimator will suffer from a 
threshold effect when applied to narrow-band signals in the 
sense that the performance  decreases rapidly with decreasing 
SNR below a certain SNR  [9]. 

The Mth order  extended correlation receiver can be de- 
scribed as a cross-correlation estimator that  first estimates the 
received waveform ( t  - H )  and then correlates the received 
signal r ( t j  with this estimate. This can be seen, cf. [18. p. 
3541,  by substituting the right-hand side of (18) for one of the 
re’s in (22), giving 

For any given O the maximum of I ( q  I r ( t ) ) ,  with respect to p, 
is given by p = re. Using 1-8 for p in (20), it follows that the 
location of the global maximum of l(q [ r ( t )  j, with respect to 
q (resulting in an approximate ML estimate of q), is given by 

(21 1 

where 
h 

yJjf(f - H )  = ro +(t - H ) .  (24) 

The function Gi,1(t - H )  can  be interpreted as  an estimate of 
y,jf(t - H )  for a given H ,  cf. (13) with p estimated by ro. 

T 

8;irL(r) = arg maxg E Is { zAil (0)} 
FAIL = r -  e=e.tl L Iv. ESTIMATION EXAMPLE 

where 

. ~ ; ~ q [ ( f l )  = re rg. 

Fig. 3 depicts a receiver structure for  generating . r . j f ( t )  from 
~ ( t )  according  to  (22). We henceforth refer to this receiver as 
the Mth  order  extended  correlation  receiver. Note that  an ML 
estimator, in its general form, need not to be unbiased. This 
also  applies  to the Mth order  extended correlation receiver. 

T (22) 

B. A Comparison  With  the  Cross-Correlation  Estimator 

The  cross-correlation,  or  “matched filter”, estimator of [ 121 
is derived using the  Maximum  Likelihood criterion and as- 
sumptions of additive white Gaussian noise and perfect knowl- 
edge of the linear  distortion,  except  for an unknown amplifi- 
cation  factor.  The received signal is correlated with a known 
waveform corresponding to y.t f( t)  in (161, and the position of 
the maximum of the absolute value of the correlation function 
yields the estimate of the TOF.  This receiver, when applied to 
a situation where the assumptions  are valid, is unbiased and 
has a performance that meets the Cram&-Rao  lower bound 
for high SNR’s,  see, e.g., [9] and the references therein. For 

Let us investigate the influence of the  model order ~1.1 on  the 
bias and the standard deviation of the TOF  estimate by means 
of Monte  Carlo  simulations. We compare the performance of 
the cross-correlation estimator and the performance of  the IIIth 
order  extended correlation receiver for different values of the 
model order hi‘ and various SNR’s. 

In these simulations the reference signal S (  f )  is given by (2) 
with /-l(t) = 0 and ( ? ( l )  as a Hanning window in the frequency 
domain. With a Hanning window of bandwidth B, the Fourier 
transform of a ( t )  becomes 

The  center frequency of  the reference signal was chosen as 
fo = 2B Hz. In all  of these simulations the cross-correlation 
estimator is matched to the reference signal. For  each estimator 
and every integer value of SNR, the TOF of one thousand 
echoes has been estimated. 

In Figs. 5-6 the absolute value of  the bias and  the standard 
deviation of the receivers are  shown  for a case when the 
received signal has been subjected to a specific “unknown” 
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Fig. 5.  The  absolute value of the estimated and normalized bias of the 
receivers plotted versus  SNR when a specific  frequency  dependent  linear 
distortion is present. 

linear distortion. Note that the bias and the standard deviation 
in the figures have been normalized with 1/B. The distortion 
is described by ynr(t) in (13), with M = 2 and p = 
[1/3,2/3,1/3, 1 / G I T .  Fig. 4 shows y.af(t) together with the 
reference signal s ( t ) .  In Fig. 7 the standard deviation of the 
receivers is given for the case when no frequency  dependent 
linear distortion is present, i.e., gnl(t) = us ( t )  where a is  an 
unknown constant.  The  bias was.  in this case,  almost  equal  to 
zero  for all receivers. 

We make the following observations. When linear distortion 
is present the bias of the cross-correlation estimator can be 
much greater than the standard deviation of the same. The 
TOF  estimates of the first-order extended correlation receiver 
are almost as biased as the estimates of the cross-correlation 
estimator. As expected,  since the linear distortion is generated 
with M = 2 ,  the second-order  extended correlation receiver 
has very little  bias  compared with the cross-correlation esti- 
mator. It  can be noted that the variance of the  estimates in 
general increases with the model order M ,  especially when 
no  linear distortion is present. An exception can be seen in 
Fig. 6 for SNR's less than 22 dB. Here both the bias and the 
variance of the  TOF  estimate  are  small  for the second-order 

SNR [dB] 

Fig. 6.  The  estimated  normalized  standard  deviation of the receivers plotted 
versus  SNR when a specific frequency  dependent  linear  distortion is present. 

extended  correlation receiver whose  model  order  is matched 
to  the  linear distortion. 

From these and  other  simulations we draw the following 
conclusions.  The cross-correlation estimator may give biased 
estimates  when linear distortion not accounted for is present 
and the  error  due  to  bias can be more  severe than the  error 
caused by the additive white Gaussian noise. By using the Mth 
order  extended correlation receiver the bias caused by linear 
distortion can be reduced. Robustness  against  linear distortion 
of the shape of the received pulse  can be traded for  noise 
sensitivity by increasing the model order Al.  

V. ULTRASONIC MEASUREMENTS 

In this section we present results from using an  experimental 
ultrasonic system to  produce relief pictures of a surface 
structure by estimating  the  TOF of echoes reflecting from 
different points  on  the surface. This  is a typical example 
of  when  it is difficult to  choose a specific waveform as the 
reference signal for the cross-correlation estimator. 

A. Measurement Setup 

Experiments were carried out by scanning  over a Swedish 
five crown  coin in a 100 by 100 point grid, with a distance 
of 0.3 mm between  adjacent points. The coupling  medium 
between  the  transducer and the  surface was air at room 
temperature. A circular  transducer with a radius of 10.5 mm 
and a nominal frequency of 1 MHz  was used. (The wavelength 
in air at room  temperature  is approximately 0.3 mm). The 
transducer was a focused transducer acoustically adapted to 
air, with a focal distance of 25 mm. It was  designed by H. 
W. Persson for the investigation presented in [ 161. The  data 
were acquired with a LeCroy 9430 sampling  oscilloscope.  The 
sampling rate was chosen as 5.5 MHz  and  the  sampling was 
synchronized with the transmitter by the use  of an  external 
crystal oscillator. The  distance  between the transducer  and  the 
surface of the coin was equal to the focal distance of the 
transducer. 

B. Signal Processing  and Measurements 

A reference  echo  was acquired for the design of the signal 
basis { $ k , ? j k } & , ' ,  i.e., the receiver filter bank in Fig. 3,  
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versus SNR when no frequency  dependent  linear  distortion is present. 
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Fig. 8. The  basis { y k ( t ) .  <-,,.(t)}:=o corresponding to the  acquired  ref- 
erence  signal. 

by letting the acoustic  wave be  reflected  on  the flat tip of a 
cut steel needle  with  a  diameter of 1 mm,  placed in the  focal 
point of  the transducer, cf., [ 101. When  acquiring the reference 
signal an averaging  over  1000  B-scans  was  performed. The 
design  process,  described in Section 11, Fig. 2, was then  used 
to  generate  the  signal  set { + k ( t ) , & ( t ) } & '  for M = 3, see 
Fig. 8. As mentioned  before  the  signal  is  identical  to 
the normalized  reference  signal. The reference  signal  is  also 
illustrated in Fig. 9 and  compared with the  features on the 
surface of  the coin. 

The Mth  order  extended  correlation  receiver, (21)-(22), and 
the cross-correlation  estimator  were used to estimate  the TOF 
for  each  point in the 100 by 100  point  grid.  Fig.  10  shows 
the result when  the  cross-correlation  estimator  matched to the 

Fig. 9. The proportions of the  features on the  surface of the  coin in 
comparison  with  the  length of the  reference  signal. 

Fig. 10. A grey  scale  picture of a  Swedish five crown  coin.  generated  with 
the  cross-correlation  estimator  matched  to  the  reference  signal . s ( t ) .  

reference  signal s ( t )  was  used. Figs. 1 1-13 show  the  results 
when  the Mth  order  extended  correlation  receiver was  used 
with M E {l, 2,3}, respectively. All figures are  derived  from 
the  same  measured  data. 

In  the grey-scale  pictures the brightness of each  pixel in- 
creases with  the TOF. No post-processing  has  been  performed 
to the data,  except  for  a  histogram  normalization of the  grey- 
scale  level  thresholds in the grey-scale  pictures. 

The SNR, when  defined as in (14), varies  from  point  to 
point in the grid,  since  the reflected signal  energy  depends  on, 
e.g., the  angle of  the reflecting surface.  Therefore,  no SNR is 
presented in the  figures. The SNR was  though well above 
the  threshold  region [9] for the cross-correlation  estimator 
(SNR > 30 dB). 

C. Comments on the Measurements 

In the  estimation  examples presented the  image  correspond- 
ing  to hl = l, Fig. 11, shows  a  significant  improvement in 
quality  compared  to  the  image  corresponding  to the cross- 
correlation  estimator,  Fig.  10.  The  performance of  the cross- 
correlation  estimator is apparently  sensitive  to  shape  changes 
in the received waveform. The  errors in the  picture  are mainly 
due  to  bias,  since the SNR is  high,  and  can  for  that  reason 
not be removed by averaging repeated measurements.  When 
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Fig. 1 1 .  A grey  scale  picture of a  Swedish five crown  coin,  generated using 
[he first-order extended  correlation  receiver. 

applying the receiver with M = 3 (Fig. 13) the  disturbances 
due  to the additive noise seem  to  dominate over the effects due 
to model errors. For this measurement situation the choices 
AI‘ = 1 and M = 2 appear  to be the most appropriate. 

The choice and the acquisition of the reference signal is a 
delicate matter, see, e.g., [6]. In this investigation we  have used 
the echo  from a cut needle located in the focal point of the 
transducer. We have not found any reference signal that gives 
the cross-correlation estimator a noticeable better performance 
in the presented measurement situation. However,  other refer- 
ence  echoes  could be used, for instance an echo  from a flat 
surface where total  reflection occurs,  giving  similar  images. 

VI. CONCLUSION 

This  paper treats the problem of how to design a receiver for 
TOF estimation when the received signal has been subjected to 
an unknown linear distortion. Based on a narrow-band  assump- 
tion on the interrogation pulse, a model of the received signal 
incorporating unknown linear frequency dependent distortion 
has been presented together with a TOF  estimator based on 
the criteria of Mc~ximum Likelihood. This ML estimator can be 
seen  as  an extension or generalization of the cross-correlation 
estimator [ 121, and is referred to as the extended hlth order 
correlation receiver. The receiver can be implemented as a 
correlation receiver using a filter bank consisting of 2 M  
parallel filters. 

Simulations have shown that the performance of  the cross- 
correlation receiver is sensitive to the choice of reference 
signal.  The bias of the TOF estimate can be large compared 
with the standard deviation. By  using  the 114th order  extended 
correlation receiver the bias caused by linear distortion can be 
reduced. In  the presented ultrasonic measurements we observe 
that the ,Ifth  order extended correlation receiver achieves ro- 
bustness against pulse shape distortion at the cost of increased 
noise sensitivity. By increasing the model order the tendency 
of bias in the TOF estimate can be traded for variance. 

In this paper we only examine the case of estimating a single 
TOF. The receiver could be extended to estimating multiple 
TOF’s, possibly with the exception of closely spaced echoes. 

Fig.  12.  A grey scale picture of a  Swedish tive crown  coin,  generated  using 
the second-order extended correlation  receiver. 

Fig.  13. A  grey  scale  picture of a  Swedish five crown  coin,  generated using 
the third-order  extended  correlation  receiver. 

We would like to point out that although this investigation is 
focused  on ultrasound applications. the model presented only 
presumes a narrowband pulse being distorted by a linear time- 
invariant system. Such conditions could also be present in 
other application areas. 
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