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Abstract

The development of melanocytes is regulated by the tyrosine kinase receptor c-KIT and the basic-helix-loop-helix-leucine
zipper transcription factor Mitf. These essential melanocyte survival regulators are also well known oncogenic factors in
malignant melanoma. Despite their importance, not much is known about the regulatory mechanisms and signaling
pathways involved. In this study, we therefore sought to identify the signaling pathways and mechanisms involved in c-KIT
mediated regulation of Mitf. We report that c-KIT stimulation leads to the activation of Mitf specifically through the c-KIT
phosphorylation sites Y721 (PI3 kinase binding site), Y568 and Y570 (Src binding site). Our study not only confirms the
involvement of Ras-Erk signaling pathway in the activation of Mitf, but also establishes that Src kinase binding to Y568 and
Y570 of c-KIT is required. Using specific inhibitors we observe and verify that c-KIT induced activation of Mitf is dependent
on PI3-, Akt-, Src-, p38- or Mek kinases. Moreover, the proliferative effect of c-KIT is dependent on Mitf in HEK293T cells. In
contrast, c-KIT Y568F and Y721F mutants are less effective in driving cell proliferation, compared to wild type c-KIT. Our
results reveal novel mechanisms by which c-KIT signaling regulates Mitf, with implications for understanding both
melanocyte development and melanoma.
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Introduction

Cell signaling plays an important role in the fine tuning of

cellular function and behavior. Signaling cascades generated by

the cell surface tyrosine kinase receptor c-KIT through the binding

of its ligand stem cell factor (SCF) are involved in the regulation

of many cell types including melanocytes [1], mast cells [2,3],

germ cells [4] and interstitial cells of Cajal [5]. Loss-of-function

mutations of the receptor or its ligand lead to abnormalities in

pigmentation [6–8], hematopoiesis [9,10], gametogenesis [11,12]

and gut motility [13]. The binding of SCF to c-KIT leads to

dimerization and auto-phosphorylation of tyrosine residues located

in the intracellular part of the receptor. Phosphorylation of

tyrosine residues enables c-KIT to recruit and bind to downstream

signaling proteins for subsequent activation of signal transduction

pathways. It is well characterized that the c-KIT phosphorylation

sites Y568 and Y570 can act as docking and activation sites for Src

family kinases. The transduction signal relayed from c-KIT to Src

kinases triggers the activation of the Ras-Erk pathway, involving

the pro-survival and anti-apoptotic Ras-Raf-Mek-Erk cascade

[14,15]. The activation of Src kinase also regulates the stress-

activated protein kinase p38 [16]. On the other hand, the

phosphatidylinositide 3 kinase (PI3 kinase) survival pathway is

switched on by phosphorylation of c-KIT at Y721. The activation

can either be set in motion by the direct binding of the p85 subunit

of PI3 kinase to Y721 or by binding of PI3 kinase to the scaffolding

protein Grb2 associated binding protein (Gab2). Grb2 that is

bound to phosphorylated Y703 and Y936 in c-KIT forms a bridge

to Gab2 [17–19]. Phosphorylation of Gab2 by Src creates binding

sites for PI3 kinase on Gab2. Since c-KIT is a pivotal player in

hematopoiesis, its signaling has been well characterized in

hematopoietic cells. Even though the importance of c-KIT in

melanogenesis is recognized and a loss-of-function mutation of the

receptor, or its downstream targets, can lead to developmental

pigmentary diseases like piebaldism and Waardenburgs syndrome,

the signaling cascades of c-KIT in melanocytes are not fully

elucidated [20,21].

Melanocytes are derived from the neural crest during

embryogenesis. In order for these cells to fully differentiate into

functional pigment producing melanocytes, these cells first have to

migrate and colonize target tissues, including the skin and hair

follicle. The program that enables such behavior is orchestrated by

the c-KIT tyrosine kinase receptor and its target, the melanocyte

master regulator Microphthalmia associated transcription factor

(Mitf) [22]. Consequently, loss-of-function mutation of Mitf give

rise to phenotypic defects in mice similar to that found in c-KIT

and SCF mutant mice in that coat color is lacking due to absence

of melanocytes and mutations in all three genes also affect mast

cells [23,24]. There are differences between Mitf mutations on the

one hand and c-KIT/SCF mutations on the other hand in that Mitf
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affects eye and bone development whereas c-KIT and SCF do not;

c-KIT and SCF have severe hematopoietic deficiencies which Mitf

mutations do not exhibit, at least not to the same degree.

Mitf is a basic helix-loop-helix-leucine-zipper transcription factor

that is not only essential for melanogenesis and melanocyte function,

but is also involved in bone and mast cell development [25–28]. Mitf

regulates a wide range of genes important for melanocyte and

melanoma proliferation, survival, differentiation, apoptosis and cell

cycle arrest (for review see [29]). The expression of the survival

factor CDK2 is maintained by Mitf in melanocytes and melanoma

and the BCL2 gene was found to be transcribed and upregulated by

Mitf under SCF stimulation [30,31]. In addition to cell survival,

Mitf regulates CDKN1A and CDKN2A expression to inhibit cell

growth and initiate differentiation [32,33].

To date, two mechanisms are known by which c-KIT regulates

the activity of Mitf. First, c-KIT phosphorylation activates the Ras-

Erk pathway where Erk2 directly phosphorylates S73 of Mitf. As a

result, the transactivation activity of Mitf is increased and the half-

life of the protein is decreased as a consequence of ubiquitin-

dependent degradation [34,35]. Second, Erk activation leads to

activation of the serine/threonine kinase p90 Rsk-1 that phosphor-

ylates Mitf at S409. Un-phosphorylated mutants at S73 and S409 of

Mitf render the transcription factor more stable and transcription-

ally less active [34,36]. At this point, however, it is not clear if S73

and S409 are the only phospho-acceptor sites in Mitf and, in fact,

several pieces of evidence suggest that they are not. First, the Mitf

protein has been shown to be phosphorylated on a number of serine

residues, in addition to S73, and S409. These include S298 and

S307 (reviewed in [29]). Second, genetic analysis of the role of

signaling to Mitf during normal melanocyte development using

knock-in and BAC transgene rescue strategies indicate that the S73

and S409 do not play a role during normal melanocyte development

in mice [37,38]. Clearly, the signaling to Mitf needs to be further

characterized, both with respect to actual phosphoacceptor sites,

and with respect to the signaling mechanisms involved to be able to

understand the precise mechanism of regulation of Mitf activity.

In this report we have used a series of c-KIT mutants and

pharmacological inhibitors to identify the signaling pathways

radiating from c-KIT to Mitf in human embryonic kidney (HEK)

293T cells and in Melan-A melanocytes. We show that the

tyrosine-to- phenylalanine mutations Y568F, Y570F and Y721F in

c-KIT prevent activation of Mitf during SCF stimulation. In

contrast, the Y703F/Y936F c-KIT double mutant does not block

SCF-induced activation of Mitf. In addition, by using selective

inhibitors against Src, Mek 1 and 2, p38, PI3 kinase and Akt, we

show that the corresponding downstream signaling pathways are

involved in the activation of Mitf. Finally, our transfection model

revealed that the different c-KIT mutants together with wild type

(wt) Mitf yielded a lower degree of SCF-induced proliferation

compared to wild type c-KIT expressing HEK293T cells.

Materials and Methods

Cell culture
HEK293T cells (Thermo Scientific Open Biosystems) were

cultured in Dulbecco’s modified Eagle’s medium and supplemented

with 10% fetal bovine serum and 100 units/ml penicillin-

streptomycin. Mouse melanocyte Melan-A cells were cultured

according to recommended protocol (http://www.sgul.ac.uk/

depts/anatomy/pages/dcbm&m.htm). The Melan-A cell line was

a kind gift from Dr. Bennett.

BaF3 pro-B cells were maintained in RPMI-1640 medium

supplemented with 100 units/ml penicillin- streptomycin, 10%

heat inactivated fetal bovine serum and 10 ng/ml of IL-3.

Plasmids
QuikChange mutagenesis kit (Stratagene) was used to generate

tyrosine-to-phenylalanine substitution mutants of c-KIT contained

in pcDNA3 vector. P3XFLAG-CMV-14 (Sigma Aldrich) was used

as a vector backbone for the Mitf construct.

Transfection
Turbofect transfection reagent (Fermentas) was used for all the

experiments in this study according to manufacturer’s protocol.

Ligand stimulation and inhibitor treatment
SCF (ORF Genetics) was used for cell culture stimulation in a

final concentration of 100 ng/ml. In the inhibitor experiments,

10 mM of SU6656 (CalBiochem), U0126 (Promega), LY294002

(Sigma Aldrich) or 3 mM of Akt IV (CalBiochem) was pre-

incubated in cell culture medium for 30 minutes in 5% CO2, 37uC
prior to SCF stimulation.

Proliferation assay
HEK293T (4 million) cells were plated in 75 cm2 cell culture

flasks (Nunc). One day after plating, cells were transfected with

both c-KIT and/or Mitf plasmids and incubated for 8 hours in a

cell culture incubator, after which the cells were washed 3 times

with PBS and cultured in serum starved medium. Cells that were

detached from culture flasks during the washing steps were

collected and resuspended. SCF was added the day after the initial

starvation procedure. Cells were trypsinized, resuspended in

culture medium, stained with trypan blue and analyzed with

Countess automated cell counter (Invitrogen) after 48 hours of

SCF stimulation.

Immunoblotting and immunoprecipitation
Cells were lysed for 15 minutes in cold lysis buffer containing

1% Triton X-100, 25 mM Tris, pH 7.5, 1 mM Na3VO4, 1%

Trasylol, 1 mM phenylmethylsulfonyl fluoride, 5 mM EDTA and

25mM beta-glycerophosphate. The lysates were centrifuged at

17,000 X g for 20 minutes at 4uC. The FLAG-tagged Mitf protein

was immunoprecipitated with monoclonal anti-FLAG M2 anti-

body (Sigma Aldrich). Human c-KIT was immunoprecipitated

with the KitC1 antibody [39]. Mouse c-KIT was immunoprecip-

itated with the M-14 anti-c-KIT antibody (Santa Cruz, CA). After

antibody addition, the cell lysate was incubated with rotation at

4uC for 1.5 hours. The immunoprecipitates were collected on

protein G-Sepharose beads (GE Healthcare), washed three times

in lysis buffer supplemented with above mentioned inhibitors.

Protein elution was carried out by boiling 4 minutes in sample

buffer (50 mM Tris-HCl pH 6.8, 2% SDS, 10% glycerol,

200 mM dithiothreitol, 12.5 mM EDTA and 0.02% bromophenol

blue). After sample separation in SDS-PAGE with 8% continuous

gel, proteins were electrotransferred to Immobilon P (Millipore)

membranes using a semi-dry blotting system (BioRad). The

membranes were blocked in 0.2% Tween 20 in PBS for 1 hour

at room temperature. Primary and secondary horseradish peroxidase-

conjugated antibody incubation was performed at room tempera-

ture for 1 hour. Prior to incubation with the secondary antibody the

membranes were washed extensively with 0.5% Tween 20 in PBS.

Finally, Immobilon Western chemiluminescent HRP substrate

(Millipore) was used for protein detection.

Mitf mobility shift quantitation
Mitf protein intensity was measured with ImageJ as outlined at

the NIH website: http://rsbweb.nih.gov/ij/docs/menus/analyze.

html. The intensity of the low molecular weight band was

KIT/Mitf Effects on Cell Proliferation
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subtracted from the intensity of the heavy molecular weight band.

According to this method a protein mobility shift seen as increased

intensity of the heavy molecular weight protein band, produces a

positive value. A resulting negative value indicates inactive state of

Mitf. Each bar in the mobility shift quantitation charts in this study

represents the average from three independent experiments. Error

bars are reported as standard error of the mean.

Statistical analysis
Each data set from Mitf mobility shift assays and cell proliferation

experiments represents the mean for three and nine separate

experiments, respectively. One way analysis of variance was used to

analyze significant differences in cell proliferation assay. Significant

results were further examined by a Newman- Keuls multiple

comparison test. A p-value of ,0.05 was considered significant. A

2-tail non parametric sign test was performed on Mitf mobility shift

assay data, where the criterion for significance was set as p,0.05.

Results

Mitf is activated upon c-KIT stimulation
Ligand-stimulation of c-KIT post transcriptionally modifies Mitf

through Erk-dependent phosphorylation of Mitf at S73 and S409.

Addition of these phospho-groups can easily be detected by

Western blotting where the modifications generate a mobility shift

of the Mitf protein [34,36]. Previous mobility shift studies were

mostly performed with endogenous c-KIT and Mitf in melano-

cytes and melanoma cells. Because of this we needed to verify

that our transfection model with HEK293T cells and mouse

melanocyte Melan-A cells would produce equivalent results. Mitf

in unstimulated state resolves as one heavy (upper) and one light

(lower) molecular weight band with a higher intensity of the lower

band. We transfected HEK293T cells with both c-KIT and Mitf

whereas Melan- A cells were only transfected with Mitf. After

15 minutes of SCF stimulation in both HEK293T and Melan-A

cells the band intensity of Mitf shifted resulting in increased

intensity of the heavy band. (Fig. 1A & B). The intensity shift of

Mitf was partly reversed back to basal state after 30 minutes of

SCF stimulation. We further tested Mitf protein shift in HEK293T

cells by generating serine to alanine substitution mutation of Mitf

at position 73 and/or 409 and then transfecting these mutants or

wt Mitf together with c-KIT. As expected, mobility shift of wt Mitf

was detected after 15 minutes of SCF stimulation (Fig. 2).

However, single substitution mutation of S73 or S409 and double

mutation of S70/409A completely removed the upper band of the

protein regardless of SCF stimulation. These results illustrate that

SCF induced mobility shift of Mitf is dependent on S73 and S409.

Collectively, our data from these cell lines are in agreement with

previous reports, suggesting that our transfection model can be

used for further signaling studies.

C-KIT phosphorylation sites Y568, Y570 & Y721, but not
Y703/963, are required for Mitf activation

SCF binding to c-KIT causes auto-phosphorylation of various

tyrosine residues in the intracellular domain of c-KIT. To pinpoint

the involvement of the specific phospho-tyrosine residues involved

Figure 1. C-KIT activation induces a mobility shift of Mitf. (A) HEK293T cells transfected with c-KIT and Mitf and (B) Melan-A cells transfected
with only Mitf displays mobility shift, where the upper band becomes more intense than the lower band, after 5–15 min of SCF (100 ng/ml)
stimulation.
doi:10.1371/journal.pone.0024064.g001

KIT/Mitf Effects on Cell Proliferation
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in the SCF-induced activation of Mitf, we generated tyrosine-

to-phenylalanine c-KIT mutants. In this experiment we used

the HEK293T and mouse melanocyte Melan-A cell lines and

transfected both c-KIT and Mitf into the cells. Because the Melan-

A cells have endogenous expression of both wt Mitf and wt c-KIT,

we needed to bypass the signals generated from wt mouse c-KIT

in order to avoid interference with the transfected human

c-KIT mutants. The activation of c-KIT can be detected by a

general anti-phosphotyrosine monoclonal antibody (4G10 from

Sigma Aldrich) after immunoprecipitation of the c-KIT protein. In

the Melan-A cells, endogenous mouse c-KIT was phosphorylated

after 5–15 min of mouse SCF (mSCF) stimulation (Fig. 3A).

Furthermore, after 30 min to 1 hour of stimulation the level of

endogenous c-KIT was decreased due to phosphorylation depen-

dent internalization of the receptor. However, by using human SCF

(hSCF) we were able to avoid the activation of the endogenous

mouse c-KIT protein altogether (Fig. 3B).

Phosphorylation of c-KIT sites Y568 and Y570 (with Y568

being the primary activation site) allows docking and activation of

Src family kinases leading to the activation of the Ras-Raf-Mek-

Erk signaling cascade [15,16]. The Erk signaling pathway as the

activator of Mitf is well characterized [34,36,40,41]. To determine

Figure 2. Mitf upper band is abolished by S73A, S409A and
S73/409A substitution mutations. Transfection with wt Mitf in
HEK293T cells shows a mobility shift after 15 minutes of SCF
stimulation. In contrast, the S73A, S409A and S73/409A mutations of
Mitf completely eliminate the heavy molecular weight band of Mitf,
independent of hSCF treatment.
doi:10.1371/journal.pone.0024064.g002

Figure 3. Human SCF (hSCF) does not activate mouse c-KIT. (A) Endogenous mouse c- kit immunoprecipitated from Melan-A cells stimulated
with mouse SCF (mSCF) was autophosphorylated. (B) However, the addition of hSCF to the Melan-A cells did not activate endogenous mouse c-KIT.
Immunoblotting with 4G10 antibody was used to detect general tyrosine phosphorylation to assess the c-KIT phosphorylation/ activation.
doi:10.1371/journal.pone.0024064.g003

KIT/Mitf Effects on Cell Proliferation
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whether the c-KIT phosphorylation sites Y568 and Y570 and

potentially Src kinase are involved in the activation of Mitf

we transfected c-KIT mutants Y568F and Y568/570F into both

HEK293T and Melan-A cells together with Mitf. When sti-

mulated with SCF these c-KIT mutants blocked the activation of

Mitf as determined by reduced mobility shift of the protein (Fig. 4).

Our results suggest that the c-KIT phosphorylation sites Y586 and

Y570 are involved in the signaling to Mitf and that Src might play

a role in this event.

The PI3 kinase survival pathway involving the serine/ threonine

kinase Akt has been shown to protect melanocytes from apoptosis

[42] and is also involved in the regulation of Mitf [43,44]. The

activation of the PI3 kinase pathway by c-KIT can be triggered

through two alternative pathways [17–19]: first, through direct

binding of p85 (subunit of PI3 kinase) to c-KIT phosphorylation

site Y721. Second, c-KIT phosphorylation residues Y703 and

Y936 can serve as binding sites for Grb2, allowing Grb2 to form a

complex with Gab2, to which p85 can bind and interact. As a

consequence of the interaction the PI3 kinase pathway is activated.

In our transfection model, SCF stimulation of c-KIT Y721F

mutant inhibited Mitf activation, indicating that phosphorylation

of c-KIT at Y721 is needed in the activation of Mitf and that the

PI3 kinase pathway might be involved (Fig. 4). However, despite

impeded Grb2 binding sites, the c-KIT mutant Y703/936F was

still able to cause a mobility shift of Mitf after the addition of SCF.

Further examination showed that neither the HEK293T cells nor

the Melan- A cells maintain an endogenous expression of Gab2

protein compared to the positive control pro-B BaF3 cells (Fig. 4C).

Because c-KIT utilizes both direct (Y721) and indirect (Y703/936)

binding of p85 to activate the PI3 kinase pathway, the lack of

Gab2 in our cell lines favored the direct pathway, thus, rendering

the Y703/936 c-KIT docking sites dispensable for the activation of

Mitf.

In all, these observations illustrate that the activation of Mitf by

c-KIT is dependent on functional direct docking sites for the PI3

kinase subunit p85 and Src kinase on c-KIT Y721 and Y568,

respectively. Also, the data show that c-KIT phosphorylation sites

Y703/936 are obsolete.

C-KIT activates Mitf through the signaling proteins Src,
Mek, PI3 kinase, Akt and p38

The role of Src kinase in the activation of Mitf has not been

investigated previously nor has the PI3 kinase-Akt pathway been

studied in the context of c-KIT- induced Mitf activation. To

investigate this, we treated cells with either Src family kinase

inhibitor (SU6656), Mek inhibitor (U0126), PI3 kinase inhibitor

(LY294002) or Akt inhibitor (Akt IV) for 30 minutes prior to SCF

stimulation. The addition of SCF to untreated samples caused a

mobility shift or activation of Mitf. However, pre-treatment with

SU6656, U0126, LY294002 or Akt IV inhibited the activation of

Mitf in all cases (Fig. 5). These observations suggest that Src

kinases, Mek, PI3 kinase and Akt are all involved in SCF-induced

Mitf phosphorylation.

The stress activated protein kinase p38 acts downstream of c-

KIT and is known to be involved in the activation of Mitf gene

expression in response to UV radiation [45]. In contrast, when

human melanocytes are exposed to UV-B, p38 increases the

expression of Mitf which in turn up-regulates the protein level of c-

KIT via unknown mechanisms [46]. To test whether p38 is

involved in SCF-induced Mitf activation, we employed the p38

inhibitor SU203580. Pre-treatment with SU203580 completely

blocked SCF-induced Mitf mobility shift (Fig. 5), indicating that

the signal from c-KIT to Mitf can also be mediated through p38.

Our results not only confirm that c-KIT activates Mitf through

the Ras-Erk pathway as previously reported [34,36], but show that

this mechanism is Src kinase-dependent. Our inhibitor studies also

demonstrate that upon SCF stimulation, c-KIT triggers the

activation of Mitf through the stress activated p38 kinase and

the survival PI3 kinase-Akt pathway.

C-KIT and Mitf mediated cell proliferation
Mitf activates transcription of a wide array of genes that regulate

both cell survival and cell death [30,41,47,48]. In melanocytes and

melanoma the survival gene BCL2 is transcribed as a consequence

of c-KIT- mediated Mitf activation [31]. To study the biological

function resulting from the c-KIT and Mitf interaction in the

HEK293T cell model we transfected this cell line with either wt c-

KIT or mutant form of c-KIT together with wt Mitf. Treatment of

serum-starved HEK293T cells with SCF for 48 hours in the

presence of wt c-KIT and wt Mitf, promoted enhanced cell growth

(Fig. 6). However, when the cells were transfected with the c-KIT

mutants Y568F or Y721F together with wt Mitf, SCF stimulation

yielded a significantly reduced level of cell growth compared to wt

c-KIT. In contrast, the Y703F/Y936F double mutant of c-KIT

that lacks functional Grb2 binding sites (that could bind to Gab2)

did not significantly produce lower cell proliferation rate com-

pared to wt c-KIT. This result can be explained by the fact that

the HEK293T cells do not maintain an endogenous level of Gab2

protein (Fig. 4C). The addition of SCF for 48 hours to c-KIT

Y568F, Y721F and Y703/936 mutants significantly (p,0.01,

p,0.01 and p,0.001, respectively) augmented cell growth

compared to respective 0 hour negative control. In addition,

control cells transfected with only c-KIT or Mitf did not produce

any proliferative effects upon SCF stimulation (Fig. 6).

Our results show that SCF-dependent cell proliferation is only

achieved in the HEK293T cells when wt c-KIT and wt Mitf are

present. Although, c-KIT mutants that lack functional Src and

p85 binding sites can mediate ligand-induced cell proliferation, the

response is severely impaired compared to the wild-type receptor.

Discussion

The mechanisms behind c-KIT activation are well studied.

When c-KIT is bound to its ligand, SCF, the receptor dimerizes,

leading to auto-activation of the cytoplasmic tyrosine kinase

domain [49]. Subsequent phosphorylation of additional tyrosine

residues in c-KIT enables downstream signaling proteins to bind

to the receptor. These events result in the activation of many

different signaling pathways. In contrast, the c-KIT signaling

mechanisms involved in the activation of Mitf in melanocytes are

not fully understood. To date, the Ras-Erk pathway is the only

known signaling cascade that has been shown to participate in the

phosphorylation and activation of Mitf after SCF stimulation

[34,36]. Erk-2 has been shown to directly phosphorylate Mitf at

S73 in both melanocytes and melanoma cells. Alternatively, c-KIT

activation can also influence Erk-2 to activate the serine/threonine

kinase p90 Rsk-1 to phosphorylate Mitf at S409. Phosphorylation

of Mitf increases its transcriptional activity and decreases the

protein stability. The biological outcome of this interaction in cell

culture models is to promote melanocyte and melanoma cell

survival. However, genetic analysis of the role of signaling to Mitf

during normal melanocyte development suggests that neither S73

nor S409 are essential during normal melanocyte development in

mice [37,38]. Thus, the signaling from c-KIT to Mitf needs to be

further characterized, especially with respect to the signaling

mechanisms involved. As that both c-KIT and Mitf are essential

factors in the development of melanocyte and melanoma and the

KIT/Mitf Effects on Cell Proliferation
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role they play in related pathogenesis, it is of importance that the

additional mechanisms and pathways that are controlled by c-KIT

and regulate Mitf are identified. In this study we transfected

HEK293T cells and mouse melanocytes, Melan-A, with c-KIT

and Mitf to elucidate novel signal transduction pathways.

In melanoma, Src family of kinases has the ability to suppress

differentiation and favor proliferation [50]. Src kinases are

responsible for sustained Erk activation, whereby Mitf protein

levels are diminished, resulting in abrogation of differentiation

and pigment production. The c-KIT phosphorylation site Y568

located in the juxtamembrane region of the receptor can act

as a docking site for Src family kinases. The association and

phosphorylation of Src kinase by c-KIT leads to the activation of

Src and phosphorylation of the adaptor protein Shc which in turn

provides association sites for the Grb2/Sos complex and thereby

activating the Ras-Erk pathway. Thus, a substitution mutation of

c-KIT Y568 to phenylalanine would prevent the activation of the

Ras-Erk pathway [14]. In our study, ligand stimulation of wt c-

KIT caused a mobility shift of the Mitf protein. However, when

the c-KIT mutant Y568F was presented with SCF, the Mitf

mobility shift was absent. To further verify the involvement of Src

kinase and Erk in the activation of Mitf, we complemented the

experiment with an inhibitor study. The addition of the Src family

kinase inhibitor (SU6656) and Mek (U0126) inhibitor reversed the

effect of SCF-induced Mitf activation. Although, it is established

that phosphorylation mediated mobility shift of Mitf is generated

by the activation of the Ras-Erk Map kinase pathway, treatment

with a general Mek inhibitor, U0126, did not completely eliminate

the upper band of Mitf. Previous reports [34,36] and our study

(Fig. 2) demonstrate that the upper band is only present in wt Mitf

and that S73A and S409A Mitf mutants exclusively resolve as a

single lower band. Based on these observations one can draw the

conclusion that phosphorylation of both S73 and S409 are

required for the existence of the upper band. However, earlier

studies [36] show that in vitro phosphatase treatment of SCF-

stimulated Mitf only reversed SCF-induced mobility shift of the

protein, leaving the upper band intact. Thus, it seems mobility

shift of Mitf is the consequence of S73 and S409 phosphorylation

and subsequent post translational modification that directly

dictates the occurrence of the upper band. Since, in vivo inhibition

of Mek did not completely abrogate the shift, this suggests the

involvement of additional signaling pathways that might regulate

the modification of Mitf.

The importance of the Ras-Erk pathway in the activation of

Mitf is highlighted in this experiment, in agreement with previous

studies. But, more importantly, we show that the interaction

between Src kinase and c-KIT phosphorylation site Y568 is

required for the activation of Mitf. The Ras-Erk pathway is known

to be critical for cell proliferation and both c-KIT [14] and

Mitf [41] have been shown to affect cell growth through this

cascade. Correspondingly, our cell proliferation study revealed

that in HEK293T cells transfected with Y568F c-KIT and Mitf,

ligand-stimulated proliferation was greatly impaired compared to

wt c-KIT.

One of the functions of Mitf is to indirectly protect the skin

cells from UVB-induced DNA damage by transcribing genes that

controls the production and transfer of melanin to adjacent

keratinocytes. The p38 stress response pathway is triggered by

UVB exposure in human melanocytes. As a result, the level of Mitf

is increased and pigment producing genes are transcribed [45].

This stress pathway is also a signaling component downstream of

c-KIT where the binding of Src kinase to mouse c-KIT Y567

(analogous to human c-KIT Y568) triggers the activation of p38 in

bone marrow derived pro-B cells [16]. These observations

prompted us to investigate whether there is a direct connection

between c-KIT and Mitf through the p38 pathway. Indeed, by

using a p38 inhibitor (SU203580) we show that SCF activation of

Mitf is significantly reduced.

During progression of melanoma, expression of the scaffolding

and adaptor protein Gab2 is often found to be amplified. The

presence of Gab2 aggravates the invasiveness and mestastatic

capabilities of melanoma [51]. Gab2 interacts with receptor

tyrosine kinases including ErbB2 and c-KIT. This adaptor protein

is activated through the binding to c-KIT phosphorylation sites

Y703 and Y936 and potentiates the Ras-Erk and PI3 kinase-Akt

pathways [17–19]. In our study the c-KIT mutant Y703F/Y936F,

despite lacking the Gab2 binding sites, is still able to activate Mitf.

This activity can be explained by the absence of Gab2 expression

from both HEK293T and Melan-A cells. The fact that the

expression of Gab2 either is low or absent in melanocytes [51]

(Fig. 3E) together with the fact that it does not regulate Mitf in our

study, suggest that the role of Gab2 in melanocytes is dispensable.

Although, Gab2 might not be important in melanocytes it has

been shown that Gab2 knock down melanoma cells exhibit

decreased migration and invasion capabilities [51]. Thus, Gab2

and Grb2 signaling in melanoma cells does enhance oncogenic

phenotype [52]; These Gab2-dependent phenotypes are reported

to be mediated via the PI3 kinase-Akt signaling pathway.

The PI3 kinase-Akt survival pathway protects both melanocytes

and melanoma from programmed cell death [42,53]. Interestingly,

inhibition of this signaling pathway increases the production of

melanogenic enzymes through the stimulation of Mitf in mouse

melanoma cells [54]. Clearly, the PI3 kinase-Akt pathway is

involved in the regulation of melanocytic cells and Mitf is a target

of this pathway. However, the participation of c-KIT in this

process has never been studied. PI3 kinase can be activated by

binding of its p85 subunit to c-KIT phosphorylation site Y721.

Here we show that the c-KIT mutant Y721F transiently trans-

fected in both HEK293T and Melan-A cells was unable to activate

Mitf. In addition, inhibitors against PI3 kinase and Akt also

blocked SCF-induced activation of Mitf. Thus, the signal trans-

duction from c-KIT to Mitf seems to be relayed partly through the

Figure 4. C-KIT phosphorylation mutants Y721F, Y568F and Y568F/Y570F are unable to activate Mitf. (A) HEK293T cells were
transfected with wt or mutant forms of c-KIT and Mitf. C-KIT with mutated binding site for the PI3 kinase regulatory subunit p85 (Y721F), did not
result in a Mitf band shift. C-KIT mutants Y568F and Y568F/Y570F, lacking the ability to activated Src, did not activate Mitf upon SCF stimulation.
However, the c-KIT Y703F/Y936F mutant was able to mediate SCF-induced Mitf activation. (B) Mouse melanocytes Melan-A that were treated as
above showed the same Mitf activation pattern. To statistically verify the results, Mitf mobility shift densitometric quantitation was performed on (A)
HEK293T cells and (B) Melan-A cells. Each bar represents the mean 6 SEM for at least three independent experiments. *Denotes significant difference
from positive control p = 0.00025. SFC treatment is indicated by gray bars. (C) Immunoprecipitation and subsequent immunoblotting of Gab2 protein
reveal that neither HEK293T cells nor Melan- A melanocytes maintain an endogenous expression. In contrast, Gab2 protein is detected in the positive
control BaF3 cell line.
doi:10.1371/journal.pone.0024064.g004
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PI3 kinase-Akt pathway. In our study, blocking of this pathway by

the Y721F mutant of c-KIT leads to decreased proliferation

demonstrating the importance of the PI3-kinase pathway for Mitf-

mediated HEK293T cell proliferation. On the other hand, this

cascade might not be pivotal in melanocytes, since the disruption

of PI3 kinase binding to c-KIT by an Y719F substitution-

mutation of c-KIT (analogous to human c-KIT Y721) in mice did

not produce any pigment defects [11,12].

Our cell proliferation results point out another level of

signaling complexity. As expected, the highest level of cell

proliferation was achieved through the stimulation of wt c-KIT in

the presence of Mitf. Even though SCF stimulation of the

different mutants of c-KIT results in reduced Mitf- dependent

cell growth, the mutants are still quite capable of promoting

proliferation. This phenomenon can be partly explained by the

involvement of other regulators in c-KIT signaling. The c-KIT

phosphorylation sites Y568 and Y570 in the juxtamembrane

domain serve as multifunctional docking sites. Mutation of one or

the other leads to a loss of signalling through multiple pathways.

The phosphorylated Y568 residue does not only act as binding

site for Src family kinases [14], but also for the Csk homologous

kinase [55] which is involved in negative regulation of the Src

family kinase Lyn [56]. In addition, Y568 is the docking site for

the protein tyrosine phosphatase SHP2. SHP2 is known mainly as

a positive regulator of the Ras-Erk pathway. Another protein

tyrosine phosphatase, SHP1, binds to Tyr570 [57]. Thus a

number of positive as well as negative signals emanate from the

juxtamembrane region. To complicate things further, Src family

kinases are known to both positively regulates signalling through

phosphorylation of Shc and subsequent activation of the Ras-Erk

pathway[14] and through phosphorylation of GAB2 [19]. On the

other hand, the ubiquitin E3-ligase Cbl is tyrosine phosphorylat-

ed by Src and involved in ubiquitination and degradation of c-

KIT [58].

Tyrosine 703 and 936 are consensus Grb2 binding sites in that

they have an asparagine residue located two amino acids

downstream of the phosphorylated tyrosine residue. However,

they do not seem to be directly involved in recruitment of Grb2-

Sos to the receptor. Rather, Grb2 acts as an adapter recruiting

either the negative regulator Cbl [59] to the receptor or to the

scaffolding protein GAB2. Thus Y703 and Y936 can mediate both

positive and negative signals by c-KIT.

Figure 5. Inhibitors against Src kinase, Mek, PI3 kinase, Akt and p38 antagonize c-KIT mediated Mitf activation. Thirty minutes prior to
SCF stimulation (A) HEK293T cells and (B) Melan-A cells were treated with Src family kinase inhibitor (SU6656), Mek inhibitor (U0126), PI3 kinase
inhibitor (LY294002) or Akt inhibitor (Akt IV), respectively, all of which prevented c-KIT from activating Mitf. Densitometry analysis was done to
statistically present Mitf mobility shift in (A) HEK293T cells and (B) Melan-A cells. Each bar represents the mean 6 SEM for at least three independent
experiments. *Denotes significant difference from positive control p = 0.00025. SFC treatment is indicated by gray bars.
doi:10.1371/journal.pone.0024064.g005

Figure 6. Effects of C-KIT and Mitf on cell proliferation. HEK293T cells transfected with either c-KIT or Mitf did not influence the level of cell
proliferation regardless of SCF stimulation. However, when wt c-KIT or c-KIT Y703F/Y936F and Mitf were introduced, SCF treatment for 48 hours
resulted in an increase in cell numbers. While the c-KIT mutants Y568F and Y721F were able to mediate a proliferative response to SCF stimulation,
the level of increase was significantly (p,0.01) lower compared to wt c-KIT or c-KIT Y703F/Y936F. Each bar represents the average of nine
independent experiments. Error bars signify 95% confidence interval.
doi:10.1371/journal.pone.0024064.g006
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Y721 is a consensus binding site for the p85 subunit of PI3-

kinase. In cells not expressing GAB2, Y721 is essential for

activation of PI3 kinase by c-KIT [17]. However, in cells

expressing GAB2, activation of PI3-kinase is mediated both by

direct binding of PI3-kinase to Tyr721 as well as indirect binding

to tyrosine phosphorylated GAB2 [19].

To summarize, the signalling income of ligand-stimulation of c-

KIT is very complex, with several pathways initiated by the

receptor feeding into each other and influencing each other. Thus,

when all these components come into play, an apparent loss of

Mitf mobility shift caused by c-KIT mutants Y568F and Y721F

does not necessarily translate into a phenotypic response such as

complete lack of cell proliferation.

In summary, our data show that c-KIT regulates Mitf through

the c-KIT phosphorylation sites Y568, Y570 and Y721 while

Y703 and Y936 are dispensable (Fig. 7). We have identified the

Src, p38, PI3 and Akt kinases to be involved in the regulation of

Mitf. Furthermore, c-KIT mutants Y568F and Y721F lead to

decreased Mitf-dependent cell proliferation compared to wt c-

KIT. Collectively, our results suggest that the activation of Mitf by

c-KIT is more complex than previously indicated. However, the

involvement of the additional pathways we identified need to be

further characterized to reveal their actual role in melanocyte and

melanoma development.
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Figure 7. Proposed model for c-KIT mediated Mitf activation in HEK293T cells and mouse melanocytes, Melan- A. Phosphorylation of
c-KIT Y568/Y570 recruits and Src kinase, triggering the activation of Ras/Raf/Mek/Erk and p38 kinase pathways which finally leads to Mitf activation. In
contrast, phosphorylation of c-KIT Y721 results direct binding of p85 and subsequent Mitf activation through Akt. P85 can also indirectly interact with
c-KIT through the binding of Gab 2. Since Gab 2 is absent in both HEK283T and Melan- A cells, the Y721 pathways is favored, rendering the Y703/Y936
dispensible for Mitf activation.
doi:10.1371/journal.pone.0024064.g007
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