
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Multiplet bases, recursion relations and full color parton showers

Thorén, Johan

2018

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Thorén, J. (2018). Multiplet bases, recursion relations and full color parton showers. [Doctoral Thesis
(compilation), Department of Astronomy and Theoretical Physics - Undergoing reorganization]. Lund University,
Faculty of Science, Department of Astronomy and Theoretical Physics.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/405d0f34-587a-49ca-ac16-d57d1afc4808


Multiplet bases, recursion relations and full color parton showers





Multiplet bases, recursion
relations and full color parton

showers

by Johan Thorén

Thesis for the degree of Doctor of Philosophy
Thesis advisors: Dr. Malin Sjödahl

Faculty opponent: Prof. Davison E. Soper

To be presented, with the permission of the Faculty of Science of Lund University, for public criticism in the
Lundmark lecture hall (Lundmarksalen) at the Department of Astronomy and Theoretical Physics on Friday,

the 26th of October 2018 at 10:15.



D
O
K
U
M
EN

TD
A
TA

BL
A
D
en

lS
IS
61

41
21

Organization

LUND UNIVERSITY

Department of Astronomy and Theoretical Physics
Sölvegatan 14A
SE–223 62 LUND
Sweden

Author(s)

Johan Thorén

Document name

DOCTORAL DISSERTATION
Date of disputation

2018-10-26
Sponsoring organization

Title and subtitle

Multiplet bases, recursion relations and full color parton showers

Abstract

The papers in this thesis all concern the treatment of colors in perturbative QCD, both in the context of hard
scattering cross sections and for parton showers. The complexity of the color structure of QCD increases quickly
with the number of external partons. One way of tackling this issue is by using an orthogonal, group theory based,
type of bases, called multiplet bases. This is the topic of papers I, II and IV. In paper III the inclusion of full color
treatment in parton showers is addressed.

Paper I concerns the decomposition of QCD color structures into multiplet bases, using Wigner 3j and 6j
coefficients. A strong constraint is put on the required Wigner coefficients for leading order and next-to-leading
order QCD amplitudes. The required Wigner coefficients for up to six external gluons were calculated by the
method described in the paper.

In paper II the results of paper I is applied to maximally helicity violating amplitude recursion relations, to
investigate the viability of multiplet bases in this context. The result is a shift in the computational bottleneck of
recursion, from the squaring of amplitudes to the recursion step, but yielding an overall better scaling for the total
number of terms encountered.

In paper IV a more general method of constructing multiplet bases is presented, which improves the decom-
position of paper I for amplitudes with quarks. New basis vectors are constructed by the presented method and
from them Wigner 6j cofficients are calculated.

Paper III concerns the implementation of an Nc = 3 parton shower in the event generator Herwig. In the
implementation, the trace basis has been used, but it could, in a straight-forward way, be extended to other color
space bases. The implementation has been used to study the effects of subleading color corrections, for both LEP
and LHC events. The effects on observables are comparable to earlier findings for LEP, up to∼ 10% differences,
compared to a leading color shower. For LHC the differences are often of the order of a few percent, but in some
cases differences of up to 20% were found.

Key words

QCD, multiplet bases, SU(Nc), recursion relations, BCFW, Nc = 3 parton showers

Classification system and/or index terms (if any)

Supplementary bibliographical information Language

English

ISSN and key title ISBN

978-91-7753-854-7 (print)
978-91-7753-855-4 (pdf )

Recipient’s notes Number of pages

50
Price

Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to
all reference sources the permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature Date 2018-09-17



Multiplet bases, recursion
relations and full color parton

showers

by Johan Thorén

Thesis for the degree of Doctor of Philosophy
Thesis advisors: Dr. Malin Sjödahl

Faculty opponent: Prof. Davison E. Soper

To be presented, with the permission of the Faculty of Science of Lund University, for public criticism in the
Lundmark lecture hall (Lundmarksalen) at the Department of Astronomy and Theoretical Physics on Friday,

the 26th of October 2018 at 10:15.



A doctoral thesis at a university in Sweden takes either the form of a single, cohesive re-
search study (monograph) or a summary of research papers (compilation thesis), which the
doctoral student has written alone or together with one or several other author(s).

In the latter case the thesis consists of two parts. An introductory text puts the research work
into context and summarizes the main points of the papers. Then, the research publications
themselves are reproduced, together with a description of the individual contributions of
the authors. The research papers may either have been already published or are manuscripts
at various stages (in press, submitted, or in draft).

© Johan Thorén 2018

Faculty of Science, Department of Astronomy and Theoretical Physics

isbn: 978-91-7753-854-7 (print)
isbn: 978-91-7753-855-4 (pdf )

Printed in Sweden by Media-Tryck, Lund University, Lund 2018



Till mormor och farmor





Contents

List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Populärvetenskaplig sammanfattning på svenska . . . . . . . . . . . . . . . . . iv

Multiplet bases, recursion relations and full color parton showers 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Standard model of particle physics . . . . . . . . . . . . . . 1
1.2 Strong interactions SU(3) . . . . . . . . . . . . . . . . . . . . 4
1.3 Group theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Special Unitary groups, SU(Nc) . . . . . . . . . . . . 7
1.3.3 Lorentz group . . . . . . . . . . . . . . . . . . . . . 8
1.3.4 Young diagrams . . . . . . . . . . . . . . . . . . . . 9

1.4 Birdtracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4.1 Basic notation . . . . . . . . . . . . . . . . . . . . . 12
1.4.2 Group theoretical relations . . . . . . . . . . . . . . . 13
1.4.3 Color space bases . . . . . . . . . . . . . . . . . . . . 16
1.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Spinor-helicity formalism . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . 21

1.6 Amplitude recursion relations . . . . . . . . . . . . . . . . . . . 25
1.6.1 BCFW recursion . . . . . . . . . . . . . . . . . . . . 28
1.6.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . 29

1.7 Parton showers . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Scientific publications 35
Author contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



List of publications

This thesis is based on the following publications, referred to by their Roman numerals:

i Decomposing color structure into multiplet bases

M. Sjödahl and J. Thorén
JHEP 09 (2015) 055 [1507.03814]

ii Recursion in multiplet bases for tree-level MHV gluon amplitudes

Y.-J. Du, M. Sjödahl and J. Thorén
JHEP 1505 (2015) 119 [1503.00530]

iii Color matrix element corrections for parton showers

S. Plätzer, M. Sjödahl and J. Thorén
[1808.00332], submitted to JHEP

iv QCD multiplet bases with arbitrary parton ordering

M. Sjödahl and J. Thorén
[1809.05002], submitted to JHEP

All papers are reproduced with permission of their respective publishers.

ii



Acknowledgments

First of all, I would like to thank my supervisor, Malin Sjödahl, for your guidance and for
introducing me to colors in QCD. I have enjoyed birdtracking immensely. I would also
like to thank you for your hard work close to the end, in getting all of the papers finished.
You have, like the rest of the department, always had your door open for questions.

Further, I wish to thank my other collaborators, Simon Plätzer and Yi-Jian Du. I thor-
oughly enjoyed the topics our collaborations exposed me to, parton showers and amplitude
recursion. Simon, thank you for all the discussions, beer and all of the great food, especially
the home-cooked one! And thank you for inviting me over to both Durham and Vienna.

I would like to thank the Theoretical High Energy Physics group here in Lund. During
my years here it has always been a very welcoming and warm atmosphere. And all of the
seniors always have time for physics questions. I would especially like to thank all of the
PhD students who have been here during my time, Jesper, Christian, Christine, Jonas, Joel,
Astrid, Nils, Harsh, Smita, Marius and Leif.

I wish to thank my girlfriend, Elle, your support and belief in me has been invaluable, it
helped me get through the tougher parts of the time I have spent as a PhD student. The
year we met was a lucky year for me, both meeting you and getting a PhD position at Lund.
I also wish to thank my family, for all your love and support.

Finally, I wish to thank my friends, Misha and Robin, for all our board-game nights.

iii



Populärvetenskaplig sammanfattning på svenska

Vad består materia av? Det är en fundamental fråga som mänskligheten försökt besvara i
tusentals år. Vårt svar på den frågan har utvecklats enormt de senaste 200 åren. Atomer,
från grekiskans ord för odelbar, bygger upp materian vi ser omkring oss. Det antogs länge
att atomer verkligen var odelbara, men strax innan sekelskiftet år 1900, kom experimentellt
bevis från J. J. Thomson, som påvisade att det fanns en inre struktur i atomer. Thomson
hade upptäckt den negativt laddade elektronen, som tillsammans med den positivt laddade
kärnan bygger upp atomer. E. Rutherford lyckades ett par årtionden senare visa att även
atomkärnan har en inre struktur, den är uppbyggd av positivt laddade protoner och neutra-
la neutroner. De kommande decennierna resulterade i att fler och fler partiklar upptäcktes.
Vid det sena 1960-talet så hade man hundratals, till synes, elementarpartiklar. Vid denna
tid framförde M. Gell-Mann och G. Zweig, oberoende av varandra, kvarkmodellen, vilken
istället för hundratals partiklar innehåller tre “smaker” (flavor på engelska) av kvarkar. I
denna modell består merparten av de hundratals upptäckta partiklarna av bundna tillstånd
av tre kvarkar, baryoner, eller en kvark och en antikvark, mesoner. En antikvark är en an-
tipartikel, vilket är något som varje partikel har (om de inte är sin egen antipartikel). En
partikel och dess antipartikel delar vissa egenskaper, exempelvis massa, de är lika tunga,
medan andra egenskaper skiljer sig, exempelvis elektrisk laddning, om partikeln har positiv
laddning, så har dess antipartikel en lika stor, men negativ laddning.

Förståelsen av elementarpartiklar idag har ökat enormt sedan 1960-talet, men kvarkar är
fortfarande fundamentala i dagens modell av partikelfysik, standardmodellen. I standard-
modellen finns det tre krafter, elektromagnetism, svaga växelverkan och den starka växelver-
kan. Dessa förmedlas av bosoner. Den masslösa fotonen förmedlar den elektromagnetiska
kraften, de massiva,W+,W− och Z0 bosonerna, förmedlar den svaga kraften och de åtta
masslösa gluonerna förmedlar den starka kraften. Partiklar som ingår i materia delas upp i
två grupper, leptonerna, som inte växelverkar genom den starka kraften, och kvarkar, som
växelverkar genom den starka kraften. En till partikel ingår i standardmodellen, den be-
römda Higgsbosonen, som ger massa åt de andra partiklarna. Så vitt vi vet idag är alla dessa
elementarpartiklar, dvs. de har ingen inre struktur. Men som det har visat sig tidigare, så
kan det mycket väl finns ytterligare struktur som vi ännu inte haft tillräckligt med energi
för att upptäcka.

Den här avhandlingen rör den starka kraften, som beskrivs av teorin kvantkromodynamik
(QCD, från engelskans Quantum Chromodynamics). Likt den elektromagnetiska kraften,
så har partiklar en laddning, som avgör hur mycket de påverkas av den starka kraften.
En elektromagnetisk laddning är antingen positiv eller negativ, olika laddningar attrahe-
rar varandra och lika laddningar repellerar varandra. För QCD är det mer komplicerat, en
kvark kan ha tre olika laddningar. Laddningarna kallas för färger, och de tre olika möj-
ligheterna är röd, grön och blå. Likt elektromagnetism så har antikvarkar “negativ” färg,
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anti-röd, anti-grön och anti-blå. Kvarkar går inte att observera direkt, de kan endast ob-
serveras som bundna färglösa tillstånd, baryoner och mesoner. Att QCD laddningar kallas
färg kommer av att de bundna tillstånden är de kombinationer av färger som tillsammans
ger en “vit” färg, vilket är en färg och dess anti-färg, eller kombinationen röd-grön-blå. Glu-
on kommer i åtta färger, vilket motsvarar alla kombinationer av en färg och en anti-färg
bortsett från den färglösa kombinationen, röd-grön-blå.

För att beräkna tvärsnittet för en process (sannolikheten att den processen sker), behöver
ta med bidraget från varje möjlig färgkombination, det vill säga tre möjliga färger för varje
kvark och åtta färger för varje gluon i processen. Det blir snabbt ohanterbart, till och med för
datorer, när man ökar antalet partiklar i en process. Standard metoden att hantera färgerna,
använder att färgerna i QCD kommer från en symmetrigrupp, som kallas SU(3). Genom
att använda den matematiska teorin för grupper, så kan beräkningarna av färgernas effekt
på tvärsnittet organiseras i så kallad färgbaser. I de flesta fall används så kallade spårbaser,
DDM baser eller färgflödesbaser, då dessa baser har flera användbara egenskaper. Artikel I,
II och IV i den här avhandlingen utforskar en annan typ av färgbas, multiplettbaser. Denna
typ av bas är mer involverad att jobba med än standardbaserna, men den är ortogonal, vilket
är en väldigt användbar egenskap, speciellt när antalet partiklar blir stort.

I artikel III behandlas också färger i QCD, men i den artikeln används spårbasen. För att
beskriva proton kollisioner på Large Hadron Collider (LHC) vid CERN, behöver man
kombinera flera sätt att simulera en krock. Den första delen är att räkna ut tvärsnittet för
den så kallade hårda processen. Den hårda processen karaktäriseras av att de involverade
partiklarna har hög energi och är väl separerade i vinklar. Dessa tvärsnitt involverar en hand-
full partiklar, ofta är det två till två, eller två till tre, processer. Men detektorerna vid LHC
detekterar upp till hundratals partiklar i kollisioner. Den större delen av dessa partiklar
kommer från partonskursdelen av beskrivningen av kollisionen, vilken beskriver strålning
som inte klassas som lika hård, det vill säga strålning med liten rörelsemängd jämfört med
den hårda processen och strålning som skickas ut kollineärt. Denna strålning kommer ock-
så från QCD, och beror på färgerna av de involverade partiklarna. Eftersom partonskuren
går från ett tillstånd med en handfull partiklar till ett tillstånd med hundratals partiklar,
så är det beräkningsmässigt omöjligt att hantera färgdelen exakt. Därför används en ap-
proximation, att det finns oändligt många färger, istället för tre. Detta gör att färgdelen blir
lättare att hantera, och partonskuren kan behandla upp till hundratals partiklar i sluttill-
ståndet. I artikel III implementerade vi en algoritm som behandlar dom första utskicken
från partonskuren med hela färgstrukturen, och sedan övergår till att använda standardap-
proximationen med oändligt många färger.

v





Multiplet bases, recursion relations
and full color parton showers

1 Introduction

The main body of this thesis are the four articles in the end, which will be referred to as
paper I, paper II, paper III and paper IV. The first part of the thesis is an introduction to
the papers.

1.1 The Standard model of particle physics

The standard model of particle physics (SM) is an exceptionally good theory. It explains
all current high energy physics measurements (with a few exceptions). But there are pieces
that we know are missing from the standard model. The SM does not contain gravity,
which would need to be incorporated into a “theory of everything” at some point. At the
energies of the LHC, gravity is negligible, it starts becoming relevant at much, much, higher
experimental energies. Another experimental problem is the need for “dark matter”, seen
initially from the orbit of stars around the galactic plane, where the rotational speed is not
consistent with the matter that can be seen. While this is an astronomy problem, it can
be solved by several extensions of the standard model, usually by introducing a particle (or
particles) interacting in the right way to give us this “missing” matter. So far, however, all
such extensions have been either ruled out or not yet been tested, due to being out of reach
for current experiments.

The SM is a quantum field theory (QFT), which is the theory resulting from the combin-
ation of two of the greatest scientific theories of the 20th century, special relativity and
quantum mechanics. In the SM there are three types of particles, matter particles (fermi-
ons), force carriers (bosons) and the Higgs boson. There are three forces, electromagnetism
mediated by the massless photon, the weak force, mediated by the massiveW± andZ0 bo-

1



sons and finally, the strong force, mediated by eight massless gluons. The matter particles
can be divided based on their strong interactions. There are six leptons, which do not in-
teract with the strong force, and six quarks which do interact with the strong force. Every
particle has an antiparticle (or they are their own antiparticle), for example there is the
negatively charged electron, whose antiparticle is the positively charged positron. There is
also the Higgs boson, responsible for the mass of the other particles. Curiously enough,
the leptons and quarks are organized into families, that are copies of each other, except
for the mass. The lightest family consists of up and down quarks, electrons and electron
neutrinos (and their antiparticles). The particles of this family makes up almost all matter
in the universe.

Of the forces in the SM, electromagnetism is the most familiar one, it is described by the
QFT Quantum Electrodynamics (QED). This thesis, however, is mainly concerned with
the strong force, responsible for binding together the nuclei of atoms. The strong force is
described by the QFT Quantum Chromodynamics (QCD). There are two main differences
between QCD and QED. One is that the force carriers, the gluons, have color charges,
while the photon is electrically neutral. So the photons do not interact with themselves, as
they do not have any electric charge, but the gluons do interact with themselves. The other
difference is confinement, which is the fact that quarks and gluons cannot be observed as
free particles, only as color neutral bound states. These bound states are called hadrons, and
consist of a quark and an antiquark, which is called a meson, or three quarks (antiquarks),
which is a baryon (antibaryon).

To describe particle collisions at high energies, several models have to be combined. It
used to be the case that newly discovered particles could be directly observed, e.g. the first
identified positron (the antiparticle of the electron) was by C. D. Anderson, identified
from the track it left in a cloud chamber.¹ This is, however, not the case today, as theorized
particles today tend either be short-lived enough that they do not travel far enough to be
seen (despite the fact that they are moving close to the speed of light), be weakly interacting
enough that they do not leave a visible track in a detector or there are other processes that
can look exactly the same, such that they cannot be distinguished. To discover particles
despite of this, one can finding the probability of a process, and any other background noise,
i.e. any other allowed process that would look indistinguishable. We can then compare the
measured number of times the process occurs and compare with the calculated probability,
to see if it is more compatible with or without the process of interest. One of the recent
achievements of the SM, is the discovery of the Higgs boson. The Higgs boson is so short-
lived that it cannot be directly observed. As an example, take the process gg → H → tt,
two gluons fuse into a Higgs boson, which then decays into a top-antitop pair. This is then

¹A cloud chamber is a chamber containing supersaturated water or alcohol. If an ionizing particle (i.e. it
has enough energy to knock out electrons from atoms) traverses this chamber, it will leave a visible trail of
droplets.
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the process we are interested in, but what is actually detected at the LHC is not a couple
of particles, but rather up to a hundred of particles, and the detected particles are hadrons,
not quarks and gluons. Leaving out a lot of details, and just focusing on three of the main
parts in going from a process we are interested in to what is actually seen at the LHC, we
have the hard scattering cross section, the parton shower and hadronization.

• Hard scattering cross section: the cross section of a process, often denoted σ, is the
probability of that process occurring, for example gg → H → tt that we are con-
sidering. For the next steps, we actually want the differential cross section, which is
the probability of the process for a specific point in phase space, i.e. a specific set of
momenta or angles of the involved particles. This differential cross section can be
calculated by a perturbative expansion in the strength of the relevant coupling (here
the strength of the Higgs boson coupling to tops), keeping terms up to some order
in the expansion (limited by the fast growth of complexity in successive terms).

• Parton shower (PS): there is additional radiation that needs to be included, part of
which can be understood as the analog of bremsstrahlung for QED (where an ac-
celerated charge emits radiation). QCD interacts more strongly and gluons carry a
color charge themselves, making the bremsstrahlung different from the QED case.
The need for the parton shower can be seen from the perturbative calculations in the
previous step. The perturbative expansion an expansion in the coupling constant,
g, such that higher order terms in the expansion are suppressed by more factors of
g. However, for certain momentum configurations (when emissions are collinear or
soft) the suppression by g can be compensated for by a phase space enhancement. In
this case, the perturbative expansion cannot just be cut off after the first few terms,
instead there are contributions to every order in the perturbative expansion, that
need to be resummed. At first this seems very worrisome, as calculating more terms
in the perturbative expansion becomes extremely computationally expensive quickly.
However, the entire perturbative expansion is not required, only part of the expan-
sion is needed. This is handled by a parton shower. Similar contributions can also
be included by a method called analytic resummation.

The PS iteratively adds emissions, taking the initial process into a state with tens or
hundreds of particles at the LHC.

• Hadronization: as mentioned, we do not detect quarks or gluons, but rather hadrons,
which are bound states of three quarks (or antiquarks) or a quark and an antiquark.
The hadronization part of a simulated event is the step for going from a set of quarks
and gluons into a set of hadrons. The hard scattering cross section and the parton
shower can both be derived from first principles, i.e. from QCD, the hadronization
cannot however. Two common hadronization models are the Lund string model and
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the Herwig cluster model. While they are not derived from QCD, they are of course
heavily inspired by it.

In this thesis all four papers are related to QCD. Papers I, II and IV mainly concern the
hard scattering part (but the results of the papers can also be applied to parton showers)
and paper III concerns the parton shower part. Hence, the introduction is organized as
follows: section 1.2 introduces the theory of strong interactions, QCD, then in section 1.3
the mathematical theory of groups is introduced, as it is the common thread in all four pa-
pers. In section 1.4, the so-called birdtrack notation is introduced and a few useful relations
are derived, which have been heavily used in papers I, II and IV. Then, in section 1.6 the
spinor-helicity formalism is introduced and recursion relations are derived. In section 1.7,
parton showers are discussed.

1.2 Strong interactions SU(3)

The Lagrangian of QCD, describing the interactions of the quark fields, ψi, and the gluon
fields, Ga, is

LQCD = ψ
i
(i(γµ(Dµ)

j
i −m))ψj −

1

4
F a µνF a

µν , (1)

where the field strength is

F a
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , (2)

and the covariant derivative is

(Dµ)
j

i = ∂µδ
j

i − igGa
µ(t

a)j i, (3)

where i, j = 1, 2, 3 are quark color indices, a, b, c = 1, . . . , 8 are gluon color indices, and
gs is the coupling strength of QCD. The parts related to the symmetry group of QCD,
SU(3), in eqs. (1-3) are the generators, (ta)i j , and the structure constants, fabc. From
a Lagrangian, Feynman rules can be derived, see e.g. [1], for QCD these are (in Feynman
gauge):

p
i j =

i(/p+m)δij
p2 −m2 + iϵ

, (4)

a, µ b, ν
p

=
−iηµνδab
p2 + iϵ

, (5)

ji

= igsγ
µ(ta)ij , (6)

4



a, µ

b, ν c, ρ

p

k

q = gsf
abc[ηµν(k − p)ρ + ηνρ(p− q)µ + ηρµ(q − k)ν ], (7)

b, ν

c, ν d, ρ

a, µ

=
−ig2s [fabef cde(ηµρηνσ − ηµσηνρ) +

facef bde(ηµνηρσ − ηµσηνρ) +
fadef bce(ηµνηρσ − ηµρηνσ)],

(8)

where ηµν is the metric tensor. The Feynman rules for external particles are: initial fermions
(antifermions) pick up a wave function us(p) (vs(p)), final fermions (antifermions) pick
up a wave function us(p) (vs(p)) and initial (final) gluons pick up a polarization vector
ϵ∗µ(p) (ϵµ(p)).

One way of dealing with the color structure of QCD, is to use a specific basis and calculate
with explicit matrices. However, this quickly turns very cumbersome, as it does not take
advantage of the group theoretical structure. One common basis choice are the Gell-Mann
matrices,

t1 =
1

2

0 1 0
1 0 0
0 0 0

 , t2 =
1

2

0 −i 0
i 0 0
0 0 0

 , t3 =
1

2

1 0 0
0 −1 0
0 0 0

 ,

t4 =
1

2

0 0 1
0 0 0
1 0 0

 , t5 =
1

2

0 0 −i
0 0 0
i 0 0

 ,

t6 =
1

2

0 0 0
0 0 1
0 1 0

 , t7 =
1

2

0 0 0
0 0 −i
0 i 0

 , t8 =
1

2
√
3

1 0 0
0 1 0
0 0 −2

 . (9)

The structure constants, fabc, are related to the generators, as will be shown in section 1.3,
and they are completely antisymmetric in their indices. For the basis eq. (9), the structure
constants are

f123 = 1,

f147 = f165 = f246 = f257 = f345 = f376 =
1

2
,

f458 = f678 =

√
3

2
. (10)

With these explicit generators and structure constants any QCD amplitude could be evalu-
ated. However, there are better ways, avoiding any explicit basis, and even avoiding setting
the number of colors to Nc = 3, but rather performing the whole calculation for general
Nc.
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1.3 Group theory

In this section the necessary basic group theory will be reviewed [2, 3, 4].

1.3.1 Definitions

Definition (Group). A set of elements G with an associated operation ∗, is a group if they
satisfy the following conditions:

• Closure: for every pair of elements, g1, g2 ∈ G, g3 = g1 ∗ g2 ∈ G.

• Associativity: for every triplet of elements, g1, g2, g3 ∈ G, g1 ∗ (g2 ∗ g3) = (g1 ∗
g2) ∗ g3.

• Identity: there exists an identity element, 1, that obeys 1 ∗ g = g ∗ 1 = g for all
g ∈ G.

• Inverse: for every element g ∈ G there exists an inverse element, g−1, such that
g ∗ g−1 = g−1 ∗ g = 1.

A group is Abelian if for every pair of elements g1, g2 ∈ G we have g1 ∗ g2 = g2 ∗ g1,
and a group is non-Abelian if there exists at least one pair of elements g1, g2 ∈ G such that
g1 ∗ g2 ̸= g2 ∗ g1.

Definition (Representation). A mapping, D, of the elements of a group, G, onto linear
operators is a representation if the following conditions are satisfied:

• The identity element of G, 1, is mapped onto the identity operator of the space the
operators act on.

• The mapping preserves the group multiplication law, for any two elements g1, g2 ∈
G, D(g1 ∗ g2) = D(g1)D(g2).

A representation is faithful if, for every g ∈ G, D(g) is distinct. Furthermore, a rep-
resentation is reducible if there exists a change of basis such that D(g) can be put into a
block-diagonal form for all g in the group, i.e.

S−1D(g)S =

D1(g) 0 . . .
0 D2(g) . . .
...

...
. . .

 , (11)

and it is irreducible if it is not reducible. A powerful theorem for representations is Schur’s
lemma, which we will make extensive use of.
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Theorem (Schur’s lemma). If D1(g)A = AD2(g) for all g ∈ G, where D1 and D2 are
inequivalent irreducible representations, then A = 0. If D(g)A = AD(g) for all g ∈ G,
whereD is a finite dimensional irreducible representation, thenAmust be proportional to
the unit matrix.

In physics in general, it is often representations of groups, rather than groups that are
of interest, as groups are sets of abstract elements, while representations are sets of linear
operators, for which there exists powerful mathematical tools.

A Lie group is a continuous, hence infinite, group where the elements g(α) ∈ G depend
smoothly on some parameters α, i.e. there is a notion of closeness in the space of group
elements, such that if two elements are close together, then so are their parameters α. Rep-
resentations of Lie groups can be exponentially parametrized, i.e.

D(α) = eiα
ata , (12)

whereD is a representation, αa are real numbers and ta are the so-called generators of the
group. Close to the unit element for a representation of the group, i.e. when αa is close to
zero for all a, we can Taylor expand eq. (12) and get

D(α) = 1 + iαat
a +O(α2). (13)

To preserve the group multiplication law the generators must form a closed commutator
algebra, called the Lie algebra, i.e.

[ta, tb] = ifabctc, (14)

where the constants fabc are the structure constants of the group. Since the commutator
is antisymmetric in its arguments, the structure constant must also be antisymmetric in its
first two indices (we will later show that it is antisymmetric in all indices).

1.3.2 Special Unitary groups, SU(Nc)

In this thesis we are mainly concerned with one family of groups, the special unitary groups,
SU(Nc), for Nc = 2, 3, . . . . In QCD it is of course well established that Nc = 3,
but in papers I, II and IV, the number of colors have been left as a free parameter, as the
constructions elegantly work for any Nc.

The special unitary group SU(Nc) is the group of rotations in a complex Nc-dimensional
space. These transformations leave the scalar product of two vectors in this space invariant,
as well as the volume defined by ϵα1α2...αNcvα1vα2 . . . vαNc

, where ϵα1α2...αNc is the Levi-
Civita tensor and vαi are vectors in the space. For a representation of the group this is
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ensured if the linear operators are unitary, DD† = 1, and have detD = 1. That the
determinant is one, is equivalent to the generators being traceless, tr(ta) = 0, from eq. (12).

The physically important irreducible representations in QCD are the fundamental repres-
entation, V , the complex conjugate of the fundamental representation, V and the adjoint
representation, A, corresponding to the quark, the antiquark and the gluon, respectively.
The invariants of the group are also of physical interest, as they show combinations of rep-
resentations that transform trivially under the group. As QCD has confinement, i.e. only
states transforming trivially under SU(3) are observed, we can see what combinations of
hadrons are possible from the invariants. A vector in anNc dimensional space transforms as
the fundamental representation, and its complex conjugate as the complex conjugate of the
fundamental representation. The scalar product being invariant, means that a quark and
an antiquark transforms trivially, and hence correspond to an observable state, these are
the so-called mesons. The other invariant is the combination of three quarks (antiquarks),
which are the baryons (antibaryons).

1.3.3 Lorentz group

In section 1.6 the Lorentz group will be needed. The Lorentz group is the group of all
Lorentz transformations of Minkowski spacetime. In one time and three space dimensions,
there are three rotations, whose generators we denote Ji for i = 1, 2, 3, and three boosts,
with the generators Ki, for i = 1, 2, 3. They form the Lorentz commutator algebra

[Ji, Jj ] = iϵijkJk,

[Ki,Kj ] = −iϵijkJk,
[Ji,Kj ] = iϵijkKk. (15)

By constructing the combinations J±i = 1
2(Ji±iKi) the algebra separates into two pieces,

[J+
i , J

+
j ] = iϵijkJ

+
k ,

[J−i , J
−
j ] = iϵijkJ

−
k ,

[J+
i , J

−
j ] = 0. (16)

This is in fact two copies of theSU(2) commutator algebra. Due to this, the representations
of the Lorentz group can be labeled by the representation in each of the two SU(2) groups.
Note that J±i are related to each other both through complex conjugation and through
parity.
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1.3.4 Young diagrams

The irreducible representations of SU(Nc) can be labeled by Young diagrams, which are
composed of left- and top-justified boxes. A Young diagram of SU(Nc) can have columns
that are at mostNc boxes high. A column that isNc columns high corresponds to the Levi-
Civita tensor with Nc indices, which is a singlet for SU(Nc), so the Young diagram with
an Nc boxes high column, corresponds to the same representation as the Young diagram
with that column removed. As an example, the Young diagrams of the quark, antiquark
and gluon representations are

V = , V =
N

c
-1

·
·
·

, A =

N
c
-1

1

·
·
·

, (17)

where the height of the first column of V and A depends on Nc. The Young diagrams
are not only useful as labels of the representations, they can also be used to determine the
dimension of the representations and the tensor product of different representations.

The dimension of a representation, α, is given by

dα =
fY
|Y |

, (18)

where fY and |Y | are numbers calculated from the Young diagram. Both of these numbers
are found by filling the boxes of the Young diagram with numbers² and then taking the
product of the numbers. The first number, fY , is calculated by setting the top-left box to
Nc and then filling the remaining boxes with numbers fulfilling:

• The numbers increase by one per box going to the right.

• The numbers decrease by one per box going down.

The number fY is now given by the product of all of the numbers in the boxes. The second
number, |Y |, is calculated by using the so-called Hook rule. The number in a box is given
by one plus the number of boxes below and to the right of the box.

²When the boxes are filled with numbers it is called a Young tableau, instead of diagram.
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Applying this to the representations in eq. (17) gives

V V A

fY Nc Nc! (Nc + 1)!
|Y | 1 (Nc − 1)! (Nc − 2)!Nc

d Nc Nc N2
c − 1,

(19)

as we should have (for Nc = 3 we have 3 quark/antiquark colors and 8 gluon colors).

Representations in SU(Nc) are in general complex, meaning that there is a conjugate rep-
resentation associated with them. If the conjugate representation is related by a unitary
transformation, the representation is real and the representations are the same, otherwise
the representations are distinct. Using the Young diagram of a representation it is easy to
find the Young diagram of the conjugate representation. The conjugated diagram is found
by marking the boxes of the original diagram, rotating them 180◦ degrees, adding boxes on
top of each column until they are Nc boxes high and finally removing the marked boxes,
the remaining boxes are the conjugated diagram [4]. Using forNc = 3 as an example,
we get

• • •
• → •

• • •
→ , (20)

i.e. the conjugated diagram of is . If using the procedure in eq. (20) on a diagram
returns the same diagram, the representation is real.

Finally, we can consider the decomposition of the tensor product of two irreducible repres-
entations into a direct sum of irreducible representations [2]. First we draw the two Young
diagrams of the representations in the tensor product, for example

⊗ . (21)

One of the diagrams is then filled with letters, a in all boxes of the first row, b in the second
row, and so on. For the example tensor product this yields

⊗ a a
b

. (22)

The labeled boxes will now be added to the unlabeled diagram, one row at a time, with the
conditions:

(i) The diagram is still left- and top-justified.

(ii) No column contains more than one a (or b, or c,. . . ).
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(iii) No column contains more than Nc boxes.

(iv) Reading from right to left, and going downwards, the sequence of letters is admissible,
meaning that at no point in the sequence of letters are there more bs than as, or cs
than bs, and so on.

After all of the labeled boxes have been added to the unlabeled diagram, the decomposition
is finished and the labels can be removed. Columns with Nc boxes can also be removed.
The tensor product is equal to the direct sum of all of the representations corresponding
to the Young diagrams given by this procedure. Applying this procedure to the example
tensor product for the first row gives

⊗ a a
b

→ a a ⊕ a
a

⊕
a

a
⊕ a

a
. (23)

The next step is to repeat the procedure for the second row, filled with bs. If we takeNc = 3,
there are two admissible ways of adding the box with a b to the first and second diagrams of
eq. (23) (adding the box to the first row violates (iv) in both cases) and one way of adding
the box to the last two diagrams (since adding it to the fourth row violates (iii)). In total
we get

⊗ a a
b

= a a
b

⊕
a a

b
⊕ a

a b
⊕

a
a

b

⊕
a

b
a

⊕ a
a b

= 27⊕ 10⊕ 10⊕ 8⊕ 8⊕ 1, (24)

where the right-hand-side denote the representations by their dimension (that can be cal-
culated from eq. (18)). Note that we have used that 3 boxes high columns can be removed.
The labels are no longer needed, and are only kept in eq. (24) to make it easier to see where
each diagram comes from.

1.4 Birdtracks

This section will introduce birdtrack notation [4], and we will derive several useful relations,
that are heavily used in papers I, II and IV. Birdtracks is a diagrammatical notation for
tensors. It is a great tool for dealing with representation theory, where the group we have
in mind is of course the symmetry group of QCD, SU(3). It is, however, not limited to
just the SU(Nc) groups, nor even only to group theory. For the applications in this thesis,
the number of colors,Nc, is not specified, it is left as a free parameter and hence the results
are applicable to any SU(Nc) symmetry group.
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1.4.1 Basic notation

In this notation indices correspond to lines with arrows, so a Kronecker delta for two indices
is simply

δi j = i j . (25)

An upper index corresponds to a line with an arrow pointing away from it, and a lower
index has the arrow pointing towards it. A vector is written as

vµ = v µ (26)

and a tensor is

T a b c
i jk = T

a
i
b j

k
c

, (27)

where the convention is that indices are read counter-clockwise. That there is a circle in
eq. (26) and a square eq. (27) is of no significance, however if a tensor is not cyclically
symmetric, the shape of it must somehow indicate what index to read first. One of the
advantages of the birdtrack notation is that the indices of tensors often do not have to be
written out, as they are replaced with lines. This is possible since it is immediately clear how
many indices a tensor has by simply counting its legs. If a sum of tensors is considered, the
position of the endpoint of the leg is used to determine its index. A contraction of indices
is simply connecting lines, for example

T a b c
i jk X kj d

c lm = T

a

i

b
X

d
m

l
. (28)

In our applications there will be several types of indices, one for each possible representa-
tion. To distinguish the types of indices we will use different types of lines, corresponding
to different representations, and in some cases use labels for the lines, denoting what rep-
resentation it is. The most common representations (quark, antiquark and gluons) have
their own types of lines and all other representations share the same type of line, and have
a label to distinguish them.

Using this notation for the group theoretical parts of QCD introduced in section 1.2, we
can write the generators as

(ta)i j =

a

i j
(29)

and the structure constants

ifabc =

a

b c
, (30)
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where the plain lines with arrows are quarks (in the fundamental representation) and the
curly lines are gluons (in the adjoint representation).

1.4.2 Group theoretical relations

The Lie algebra, eq. (14), is

a

i j

b

−
a

i j

b

=

a

i j

b

= −
a

i j

b

,

(31)

where the second step is using that fabc is antisymmetric in its first two indices. The indices
in eq. (31) are superfluous, as the positions of the ends of the legs can be used to determine
which legs have the same index in each birdtrack, but they are kept for clarity.

The two group theoretical results that are used the most in papers I, II and IV are Schur’s
lemma and the completeness relation. Schur’s lemma in birdtracks is

α β
=

α

dα
δαβ

α

, (32)

where the double line with an arrow and a representation label (α and β in this case), is
the notation we use for representations that are not the quark, antiquark or gluon repres-
entation. The blob in eq. (32) is to indicate any kind of color structure with two indices,
one in the α representation and one in the β representation. The Kronecker delta makes
the entire expression vanish if the two representations are not the same. The completeness
relation is a more powerful statement of the decomposition of tensor products into a direct
sum of irreducible representations. In birdtracks the relation is

µ

ν
=

∑
α∈µ⊗ν

dα

ν

α

µ

µ

ν

µ

ν

α

, (33)

on the left-hand side we see how tensor products are written in the birdtrack notation,
simply two lines. On the right-hand side we see the decomposition of the tensor product
into irreducible representations α. The denominator is a so-called Wigner 3j coefficient,
which is just a normalization factor for the vertices. It is required as the left-hand side does
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not contain any vertices and can hence not be dependent on vertex normalizations. The
factor for each term in eq. (33) is exactly such that each term in the sum corresponds to a
projector, Pα, with the idempotency property, PαPα = Pα (as applying Schur’s lemma
immediately gives the inverse of the factor in eq. (33)).

So far we have only seen how to write different expressions in birdtracks, now we will
move on to how to actually perform calculations. The first step is to express the structure
constants in terms of the generators. This is easily achieved by contracting the Lie algebra,
eq. (31), with a generator,

a b

−

a b

= −

a b

, (34)

where in the second term on the left-hand side we have changed the order of all three
vertices. In general, changing the order of a vertex could contribute with a sign (as fabc

would, since it is antisymmetric in its three indices). The closed quark loop on the right-
hand side of eq. (34) can be removed by applying Schur’s lemma, eq. (32), giving a factor.
This factor is just the generator normalization (and consequently determining the structure
constant normalization),

TR =
dA

=
tr(tata)

dA
, (35)

where we have included the tensor notation for familiarity. Common choices for TR are
1/2 and 1, for example in the Gell-Mann matrices, eq. (9), TR = 1/2. Using eq. (35) on
eq. (34) and rearranging, gives us

a b

=
1

TR


a b

−

a b

 , (36)

where it is easy to verify that fabc is indeed antisymmetric in all three of its indices.

Next we can use the completeness relation, eq. (33), on a quark and an antiquark. For
the completeness relation we need to determine what representations α to sum over, the
dimensions of those representations and finally we need an expression for the vertices on
the right-hand side. The possibilities for α is easy to find from the tensor product of the
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Young diagrams. The tensor product of a quark and an antiquark is

V ⊗ V = ⊗

N
c
-1

·
·
·

= • ⊕

N
c
-1

1

·
·
·

= 1⊕A, (37)

where • is used as the Young diagram of the singlet representation (which has zero boxes).
Hence, we know that for µ = V and ν = V the representation α can be the singlet andA.
The dimension of A is in eq. (19), and the dimension of the singlet is 1. All we are missing
now are the vertices. The V -V -singlet vertex is easy to construct, as a singlet in birdtracks
is simply no line at all, i.e. the vertex is

V

V
1

= . (38)

We note that the normalization of this vertex is such that its Wigner 3j coefficient is Nc.
The other vertex we already know, from eq. (29). Combining all of these results gives us

=
1

+
dA

. (39)

The factor in front of the first term is, if we recall eq. (25), simply dV = Nc and for the
second term the factor is eq. (35). With these factors, we can rearrange eq. (39) into the
so-called Fierz’ identity,

= TR

 − 1

Nc

 . (40)

The Fierz identity, along with eq. (36), can be used to calculate the value of any vacuum
bubble, i.e. a color structure with no external legs, consisting solely of quarks and gluons.
As a quark loop is equal to the dimension of the fundamental representation, Nc, such an
evaluation will in the end give a polynomial in Nc.

Another useful relation is the invariance condition for color structures. One way of think-
ing of the invariance condition, is that an infinitesimal group rotation must leave a color
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structure unchanged, hence the sum of attaching the generator to each leg of a color struc-
ture must vanish. In birdtrack notation the invariance condition is

+ − + · · · = 0, (41)

where representations flowing in have a positive sign and representations flowing out have
a negative sign, and the dots indicate that the gluon should be attached to all external
legs. Note that the relative sign of the terms attached to a gluon depends on the sign of the
structure constant. We can apply the invariance condition on a structure constant, eq. (30),
giving

+ + = 0. (42)

With these relations we can start deriving different color bases.

1.4.3 Color space bases

Any color structure can be seen as a vector in a vector space, called the color space, and
can hence be decomposed into a basis. We can use the relations we have found, in order to
rewrite any perturbative QCD amplitude into three different bases.

With the relations eq. (36) and eq. (40), one can remove all triple-gluon vertices and any
internal gluon line, this gives a color structure consisting purely of external gluons connec-
ted to open (if there are external quarks) or closed quark lines. This is the trace basis³. An
example of a decomposition into the trace basis is

= A1 +A2 + ...,

(43)
where the gray blob can be an amplitude to any order in perturbation theory. The basis
vectors in this basis are the color structures on the right-hand side of eq. (43), where different
permutations of the legs correspond to different basis vectors (with the caveat that closed

³It is actually a spanning set if there are enough external partons, as the number of basis vectors is larger
than the dimension of the vector space.
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quark lines are cyclically symmetric). If we consider a pure gluon color structure at tree-
level, the trace basis will consist of a single closed quark line, with all gluons attached to
it. If there are Ng external gluons, there are Ng! possible permutations, but due to the
cyclic symmetry there are (Ng − 1)! different trace basis vectors. We can easily find the
basis vectors that are not related by the cyclic symmetry by fixing one leg, and taking all
permutations of the Ng − 1 other legs.

Using the example of the invariance condition, eq. (42), another type of color basis can be
derived, the Del Duca-Dixon-Maltoni (DDM) basis [5, 6]. If we consider a pure gluon
amplitude at tree-level (no loops), we can use eq. (42) to move a structure constant past
another structure constant, at the cost of getting two terms. As an example we could have
(where, for this and the next equation only, curly gluon lines have been replaced with
straight lines without arrows, to make the equation clearer)

1 2

=

21

−

1 2

,

(44)
where we, again, note that the structure constants are antisymmetric, meaning that chan-
ging the order of a vertex gives a minus sign. The labels, 1 and 2, denote two specific
gluons, the goal of rewriting the color structure as in eq. (44), is that we can imagine a
gluon connecting 1 and 2, and the above step can be repeated until all other gluons are
directly attached to this gluon. The basis vectors are then of form

1 2 , (45)

where the different basis vectors are all possible permutations of the legs, excluding the legs
labeled 1 and 2. Hence, for color structures with Ng gluons, there are (Ng − 2)! basis
vectors. The DDM basis is smaller than the trace basis because the position of two gluons
are fixed in the DDM basis vectors, while only one gluon has a fixed position for the trace
basis vectors.

Another type of basis, the multiplet basis, is the basis used in papers I, II and IV. For any
color structure, we can easily find an expression for its decomposition into this basis using
the completeness relation, eq. (33), and Schur’s lemma, eq. (32). As an example we consider
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a color structure with six legs. We apply completeness relations on the legs,

=
∑
α1

dα1

α1

=
∑
α1,α2

dα1dα2

α1α1 α2

=
∑

α1,α2,α3,α4

dα1dα2dα3dα4

×
α1α1 α2 α3α3 α4

=
∑

α1,α2,α3

dα1dα2dα3

α1α2 α3 α2

×
α3α1 α2

, (46)

where in the last step Schur’s lemma was used. In the above, several of the representation
labels have been suppressed for clarity. The basis is the color structures of the form of the
last line in eq. (46). The advantage of this type of basis, as compared to the trace and DDM
bases, is that the basis vectors are orthogonal. This also means that this is a proper basis,
and not only a spanning set. The number of basis vectors for a multiplet basis grows as
an exponential in the number of external partons, as opposed to a factorial growth for the
trace bases and the DDM bases.

1.4.4 Summary

In this section we have seen how to use birdtrack notation for calculating QCD color
structures. We have also explored three different types of bases, the trace basis, the DDM
basis and multiplet basis. In [7] it was shown how to construct projectors, and with them
multiplet basis vectors. With these one can evaluate the vacuum bubbles in eq. (46), which
is needed in order to use the multiplet bases. Paper I explores a way of decomposing color
structures into the multiplet bases, using so-called Wigner coefficients, paper II applies
the result of paper I on amplitude recursion relations. In paper IV, the construction of
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projectors is generalized, allowing more freedom in basis choice. Paper III uses the trace
basis for the color structure, but the method introduced there could in principle use any
color basis.

1.5 Spinor-helicity formalism

1.5.1 Notation

The conventions of this thesis follows [8]. Hence, we are using the mostly-plus metric,
ηµν = diag(−1,+1,+1,+1).

In section 1.3.3 it was noted that the representations of the Lorentz group could be labeled
by their representation in the two SU(2) groups. The representations for SU(2) are usu-
ally labeled by j = 0, 12 , 1, ..., where each representation has dimensionality 2j+1. From
section 1.3.4 we know that we can label the representations with Young diagrams, which
in the case of SU(2) is a single row of boxes. The dimension of a single row of boxes,
using eq. (18), is dn = n + 1, where n is the number of boxes. Hence, j = 0 cor-
responds to zero boxes and has dimension 1, j = 1/2 corresponds to one box with di-
mension 2, and so on. For the Lorentz group representations this means that we have
(j1, j2) = (0, 0), (12 , 0), (0,

1
2), (

1
2 ,

1
2), .... The first representation is the Lorentz scalar,

transforming trivially under the group, the second and third representations are the left-
handed and right-handed Weyl spinors, respectively, and the fourth is the four-vector.

We will be dealing with the Weyl spinors. As we saw above, they correspond to the fun-
damental representations of the two SU(2) groups. Hence, we need the generators for
SU(2) in the Lorentz group, namely the Pauli sigma matrices (the analogues of the Gell-
Mann matrices, eq. (9), for SU(2))

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (47)

Roman indices are used for spatial parts of vectors, i.e. i, j, ... = 1, 2, 3 and Greek indices
for both time and spatial parts, i.e. µ, ν, ... = 0, 1, 2, 3. We define σµ = (1, σ1, σ2, σ3)
and σµ = (1,−σ1,−σ2,−σ3), where 1 is the 2 × 2 identity matrix. We use the chiral
basis for the Dirac matrices,

γµ =

(
0 σµ

σµ 0

)
(48)

and

γ5 ≡ iγ0γ1γ2γ3 =

(
−1 0
0 1

)
, (49)

where 0 and 1 are 2× 2 matrices in both equations.
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The Weyl spinors will have indices, these will be denoted by Roman letters, but starting at
a instead of i (and we will never need enough of them that there would be any confusion).
There are two types of such spinor indices, one for each of the SU(2) groups. The two
types will be distinguished by the indices of the right-handed spinor coming with a dot on
top of them, i.e. ȧ. As the indices belong to two different SU(2) groups they should never
be contracted with each other, so a will only be contracted with another a, and never ȧ,
and vice versa. We will need matrices to raise and lower these types of indices, this is done
with two versions of the two index Levi-Civita tensor (one for each type of index, dotted
and undotted)

ϵab = ϵȧḃ =

(
0 1
−1 0

)
= −ϵab = −ϵȧḃ. (50)

The four-component Dirac spinor ψ transforms as (12 , 0) ⊕ (0, 12) under Lorentz trans-
formations. The Dirac conjugate of a four-component spinor ψ is

ψ = ψ†
(

0 δȧ
ḃ

δ b
a 0

)
. (51)

For the amplitude recursion we will also need Cauchy’s residue theorem. Take f(z) to be
a complex function that is analytic in a region around z0, but not necessarily at z0. Then
f(z) has a Laurent expansion around z0,

f(z) =

∞∑
i=−∞

ai(z − z0)
i (52)

and the residue of f(z) at z0 is
Res(z0) = a−1. (53)

Theorem (Cauchy’s residue theorem). If f(z), for z ∈ C is an analytic function at each
point within and on a closed contour C in the complex plane, except for a finite number
of poles at positions zj within C, then∮

C
f(z)dz = 2πi

∑
j

Res(zj), (54)

where the sum is over all poles within C.

See for example [9] for the proof.
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1.5.2 Formalism

We start by considering the Lagrangian for a free massive fermion,

L = iψγµ∂µψ −mψψ, (55)

which has the equation of motion

(−/∂ +m)ψ = 0. (56)

The standard way of solving the equation of motion, for on-shell momenta is by making a
plane-wave expansion, i.e.

ψ(x) ∼ u(p)eip·x + v(p)e−ip·x, (57)

and the general solution is then an integral over such plane-wave solutions. Eq. (57) will
be a solution to the Dirac equation, eq. (56), if the four-component spinors u(p) and v(p)
solve

(/p+m)u(p) = 0, (58)

and
(−/p+m)v(p) = 0, (59)

as u and v are not functions of x. There are two independent solutions for u and for v.
We can chose the basis such that the solutions are the eigenstates of the z-component of
the spin-matrix and label the solutions with a subscript, s = ±, according to their spin
projection onto the z-axis. For massless particles moving in the z-direction, this would
correspond to the helicity. The general solution to eq. (55) is then

ψ(x) =
∑
s=±

∫
d3p

(2π)32Ep

(
bs(p)us(p)e

ip·x + d†s(p)vs(p)e
−ip·x

)
, (60)

where bs(p) is a fermionic annihilation operator and d†s(p) is a fermionic creation operator.

We are only concerned with massless particles here, which simplifies eq. (58) to

/pu(p) = 0, (61)

and eq. (59) simplifies to
/pv(p) = 0. (62)

As we have crossing symmetry we will only consider outgoing states. An outgoing anti-
fermion comes with a wave function v, and an outgoing fermion comes with u. Crossing
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symmetry also relates the wave functions, u± = v∓ and v± = u∓ (it flips helicity). In the
chiral basis we can write the two independent solutions as angle and square bras and kets,

u+(p) =
(
[p|a 0

)
, u−(p) =

(
0 ⟨p|ȧ

)
(63)

and

v+(p) =

(
|p]a
0

)
, v−(p) =

(
0

|p⟩ȧ
)
. (64)

By defining the bi-spinors pȧb = pµ(σ
µ)aḃ and pȧb = pµ(σ

µ)ȧb, we get

/p =

(
0 paḃ
pȧb 0

)
. (65)

This can then be used to rewrite the Dirac equation into the massless Weyl equations. So,
eq. (61) and eq. (62) becomes

[p|apaḃ = 0, ⟨p|ȧpȧb = 0,

pȧb|p]b = 0, paḃ|p⟩
ḃ = 0. (66)

Now we can consider the Lorentz invariants we can construct, the angle spinor bracket and
the square spinor bracket,

⟨p1p2⟩ ≡ ⟨p1|ȧ|p2⟩ȧ = −⟨p2p1⟩,
[p1p2] ≡ [p1|a|p2]a = −[p2p1], (67)

where the antisymmetry comes from the fact that the spinor indices are raised and lowered
by the Levi-Civita symbol, i.e. ⟨p|ȧ = ϵȧḃ|p⟩

ḃ and [p|a = ϵab|p]b.

From the spinor completeness relation we can relate the angle and square spinors to the
momenta. The spinor completeness relation is

u−(p)u−(p) + u+(p)u+(p) = −/p, (68)

for massless fermions. Using u± = v∓ this becomes

−/p =
(
|p]a
0

)(
0 ⟨p|ȧ

)
+

(
0

|p⟩ȧ
)(

[p|a 0
)

=

(
0 |p]a⟨p|ȧ

|p⟩ȧ[p|a 0

)
, (69)

which, by comparing with eq. (65), gives

paḃ = −|p]a⟨p|ḃ,
pȧb = −|p⟩ȧ[p|b. (70)
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Using this and tr(σµσν) = tr(σµσν) = −2ηµν , one can derive

⟨pq⟩[pq] = 2p · q. (71)

The following notation will be used,

⟨p|γµ|q] ≡ ⟨p|ȧ(σµ)ȧb|q]b, (72)

i.e. it should be understood as picking out the component of γµ with matching index
structure. Using this notation and (σµ)ȧa(σµ)ḃb = −2ϵabϵȧḃ one can derive the Fierz
identity for spinors

⟨1|γµ|2]⟨3γµ|4] = 2⟨13⟩[24], (73)

where the short-hand notation |i] = |pi] and |i⟩ = |pi⟩ has been used. A very useful
relation for spinors is

pµ =
1

2
⟨p|γµ|p]. (74)

We can now state the polarization vectors for massless spin 1 bosons with momentum p,

ϵµ−(p; q) = −⟨p|γµ|q]√
2[qp]

, ϵµ+(p; q) = −⟨q|γµ|p]√
2⟨qp⟩

, (75)

where q is an arbitrary reference vector (with the constraint that q ̸= p). The freedom of
choice of q, is due to gauge invariance. By using the Fierz identity, eq. (73), and eq. (74), it
is straight-forward to prove that these polarization vectors satisfy the desired properties of
polarization vectors, i.e.

ϵ±(p; q) · p = 0, ϵ±(p; q) · ϵ±(p; q) = 0 and ϵ+(p; q) · ϵ−(p; q) = −1. (76)

This freedom can be utilized to simplify calculations, as each external spin 1 particle has
their own reference vector. One immediate use of this freedom, is when considering the
contraction of two polarization vectors. By using the Fierz identity, eq. (73), on the con-
traction of two polarization vectors we find

ϵ−(pi; qi) · ϵ−(pj ; qj) ∝ ⟨pipj⟩[qiqj ], (77)

ϵ+(pi; qi) · ϵ+(pj ; qj) ∝ ⟨qiqj⟩[pipj ], (78)

and
ϵ−(pi; qi) · ϵ+(pj ; qj) ∝ ⟨piqj⟩[qipj ]. (79)

By the antisymmetry of the spinor brackets, we have ⟨pp⟩ = [pp] = 0. As we are free to
choose the reference spinors, we can choose qi = qj to make eq. (77) and (78) vanish, and
qi = pj (or qj = pi) to make eq. (79) vanish.
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We now turn to QCD and consider a pure gluon tree-level amplitude decomposed into the
trace basis, as in section 1.4.3,

An = gn−2
∑

perms σ, σ1=1

An[σ1...σn] tr(t
σ1 ...tσn), (80)

where the sum is over all permutations of the legs 2 to n. The prefactors, An[σ1...σn],
are called partial amplitudes. Each of the partial amplitudes is gauge invariant, so in the
amplitude recursion of the next section they can be treated separately.

The different helicities of the particles come with different spinors. When evaluating amp-
litudes with the spinor helicity formalism, it is done for each helicity configuration. Heli-
city is not conserved in QCD, so for a specific helicity configuration, we can calculate how
much it “violates helicity conservation”, for n external gluons,

n∑
i=1

hn, (81)

since all particles are outgoing. The maximal value of helicity violation is obtained when
all of the gluons have the same helicity. These amplitudes are zero at tree-level, as are the
amplitudes with all helicities except one being equal. We can prove that they must vanish,
by showing that any Feynman diagram contributing to the amplitude must contain at least
one contraction of two polarization vectors which can be made to vanish by an appropriate
choice of reference spinors (as mentioned under eq. (79)). As we are considering the n
gluon amplitude, there will be n polarization vectors in each Feynman diagram. From the
Feynman rules in eq. (5), eq. (7) and eq. (8), we see that the only four-vector contractions
that can occur in a diagram are

ϵi · ϵj , ϵi · pj , pi · pj . (82)

The diagrams with the fewest ϵi ·ϵj contractions will be composed purely out of triple-gluon
vertices, because the four-gluon vertex does not contain any momentum that could be
contracted with a polarization vector. The propagators, eq. (5), do not contribute any factor
of momentum to the numerator of the expression. Hence, we will not need to consider
the four-gluon vertices or the propagators any further. An n gluon tree-level Feynman
diagram, consisting solely of triple-gluon vertices, will contain n − 2 vertices. From the
Feynman rule for triple-gluon vertices eq. (7), we get a factor of a momentum from each
vertex. Each external gluon gets a polarization vector. In total we have n−2 momenta and
n polarization vectors, hence the there must be at least one contraction of the form ϵi · ϵj .

For an all-plus (or all-minus) helicity amplitude,An(+, ...,+), every diagram contributing
to the amplitude will have a factor of ϵ±i · ϵ±j . If we pick all reference vectors to be the
same, qi = q for all i, then ϵ±i · ϵ±j = 0 for all i and j, from eq. (77) and (78). Hence, all
diagrams vanish and the amplitude must vanish.
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If we instead consider one of the gluons, say gluon 1, to have negative helicity and the rest
positive helicity, i.e. An(−,+, ...,+), we can pick the reference spinors q2 = q3 = ... =
qn = p1. For the same reason as for the all-plus/minus case this means that ϵ+i · ϵ+j = 0.
With this choice of reference spinors ϵ−1 · ϵ+j = 0. As for the all-plus/minus case, all
diagrams contributing to the amplitude must vanish.

Note that the amplitude should be independent of the arbitrary reference spinors, and
hence this is true for any choice of reference spinors. There is an exception to the argument
above for the three gluon amplitudes with one negative helicity gluon and two positive
helicity gluons, e.g. A3(−,+,+). This is due to special three particle kinematics. The
momentum is so constrained by momentum conservation that the three gluon amplitude,
A3(−,+,+), is either zero or the choice of reference spinors above, q2 = q3 = p1, is not
valid. The proof of this can be found in, for example, [8].

With the above argument we can define a so-called Maximally Helicity Violating (MHV)
amplitude, an amplitude that violates helicity maximally, while being non-zero at tree-
level. Hence, MHV amplitudes are amplitudes with two negative helicity legs and the rest
positive helicity (the parity transformed version, two positive and the rest negative helicity
are the anti-MHV, or MHV, amplitudes).

1.6 Amplitude recursion relations

An alternative to using Feynman diagrams for perturbative calculations in QFTs is amp-
litude recursion relations. The spinor-helicity formalism is well-suited for recursion rela-
tions. In this section An can be any tree-level amplitude derived from a local Lagrangian.

If we consider the amplitude for massless particles, then it depends on the momenta and
type of the external particles (for example helicity). As in the previous section we consider
all particles to be outgoing. Momentum conservation is then

n∑
i=1

pµi = 0, (83)

for n external particles with momenta pµi . Consider now n complex momenta rµi that
fulfill:

(i) Momentum conservation,
∑n

i=1 r
µ
i = 0.

(ii) Mutual orthogonality, ri · rj = 0 for all i, j.

(iii) Orthogonality to the momenta pi, ri · pi = 0 (without a sum) for all i.
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We consider the shifted momenta p̂µi = pµi + zr
µ
i for any complex z. These momenta will

have the properties:

1. Momentum conservation,
n∑

i=1

p̂µi =

n∑
i=1

pµi + z

n∑
i=1

rµi = 0 (84)

from eq. (83) and (i).

2. Masslessness,
p̂2i = p2i + 2pi · ri + r2i = 0 (85)

from the masslessness of pi, (ii) and (iii).

3. The invariant mass of any set I of the momenta pi, with at least 2 momenta and at
most n − 2 momenta, will be linearly dependent on z. If we define P̂µ

I =
∑
p̂µi ,

Pµ
I =

∑
pµi and Rµ

I =
∑
rµi , where the sums are over i ∈ I , we have

P̂ 2
I =

(∑
i∈I

p̂i

)2

= P 2
I + 2zPI ·RI+z2R2

I = P 2
I + z2PI ·RI , (86)

where the z2 term vanishes due to (ii).

Now we can consider the tree-level color ordered amplitude An, as a complex function of
z. For general momenta pi (i.e. no internal propagator is on-shell) An(z) is an analytic
function, except for poles of the propagators for z such that eq. (86) goes on-shell. Our
goal is to evaluate An(0), which has real physical momenta. If we then consider An(z)/z,
which has an additional pole at z = 0, with residue An(0), Cauchy’s residue theorem,
eq. (54), can be used,

1

2πi

∮
C

An(z)

z
dz = An(0) +

∑
j

Res(zj), (87)

where we assume C to include z = 0, and the sum is over any other poles enclosed by C.
Here, if An(z)/z falls off fast enough⁴ as z tends to infinity, the left-hand side vanishes if
C is taken be a circle with its radius tending to infinity. For the purposes of this thesis the
integrand falls off fast enough, and the left-hand side can hence be set to zero, as we will
only consider pure gluon amplitudes with a specific shift (i.e. a specific choice of ris). Shifts
for which the integral vanishes are called valid or good shifts. If we consider the poles that

⁴As the length of the contour,C, grows as |z|, which is canceled by the factor 1/z,An(z) → 0 as |z| → ∞
is sufficient for the left-hand side in eq. (87) to vanish.
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are summed over in eq. (87), they will occur for z such that eq. (86) goes on-shell. This
happens when

zI = −
P 2
I

2PI ·RI
, (88)

and as we are interested in the residue (which can be found from the Laurent expansion,
eq. (52) and eq. (53)), we can rewrite eq. (86) as

P̂ 2
I = −

P 2
I

zI
(z − zI). (89)

Now we consider the behavior of An(z)/z close to one of these poles. Of the Feynman
diagrams contributing to An(z), the ones that dominate close to zI are the ones with the
propagator P̂ 2

I , i.e. any diagram of the form

P̂
2
I

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

L R
, (90)

where the carets are to indicate that all of the legs are, possibly⁵, shifted, and the external
legs connecting to the blob labeled L are i ∈ I and the external legs connecting to the blob
labeled R are then all of the legs that are not in I . The total contribution to the pole at zI ,
is then the sum of all diagrams of the form eq. (90). Hence, both the left and right blobs
are tree-level amplitudes. The amplitude close to zI is then

An(z)

z
→

z near zI

∑
hI

AL(zI)
1

zI P̂ 2
I

AR(zI) = −
∑
hI

1

z − zI
AL(zI)

1

P 2
I

AR(zI) (91)

where we have used eq. (89). In this form it is easy to read off the residue,

ReszI = −
∑
hI

AL(zI)
1

P 2
I

AR(zI). (92)

Plugging this expression into eq. (87), definingBn to be the left-hand side and rearranging,
gives

An(0) =
∑
I

∑
hI

AL(zI)
1

P 2
I

AR(zI) +Bn, (93)

where the sum is over all, so-called, factorization channels I (sets of at least 2 and at most
n − 2 momenta), and AL and AR are called subamplitudes. Note that the momentum
arguments have been suppressed in eq. (93), butAn(0) have the unshifted momenta, while
the subamplitudes have the shifted momenta.

⁵Some of the shift vectors, ri, can be trivial, as conditions (i), (ii) and (ii) are still fulfilled.
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1.6.1 BCFW recursion

BCFW, Britto-Cachazo-Feng-Witten, recursion relations [10, 11] are special cases of the
above relation, where a particular choice of ri has been made. When considering the shift
vectors, ri, some of them can be trivial, i.e. ri = 0, and still fulfill (i), (ii) and (iii)⁶. For
this shift, only two of the ri will be non-trivial, for any two legs i and j. It is at this point
that we will actually make use of the spinor helicity formalism. The shift is conveniently
expressed in the angle and square spinors

|̂i] = |i] + z|j], |ĵ] = |j],
|̂i⟩ = |i⟩, |ĵ⟩ = |j⟩ − z|i⟩. (94)

To find the corresponding shifts of four-vectors we can use eq. (74),

p̂µi =
1

2
⟨̂i|γµ |̂i] = 1

2
⟨i|γµ|i] + z

1

2
⟨i|γµ|j]

p̂µj =
1

2
⟨ĵ|γµ|ĵ] = 1

2
⟨j|γµ|j]− z

1

2
⟨i|γµ|j], (95)

and read off ri,
rµi =

1

2
⟨i|γµ|j] = −rµj . (96)

The shift should satisfy conditions (i), (ii) and (iii) of the previous section. We immediately
see that (i), momentum conservation, is satisfied, and using the Fierz identity, eq. (73),
mutual orthogonality and orthogonality to the momenta can be shown.

The recursion relation is still given by eq. (93), but the sum over factorization channels, I ,
only include terms where i and j are in different subamplitudes.

In [12] it is shown that if i and j are adjacent gluon lines, the BCFW shift is a valid shift
for (i, j) having the helicities (−,−), (−,+), (+,+) (but not (+,−))⁷. If i and j are
not adjacent, the amplitude falls off at large z with one additional power of 1/z, hence the
same shifts are valid in that case, but the (+,−) shift is still not valid.

If we now consider a color ordered MHV amplitude, An[1
−, 2−, 3+, ..., n+], where we

shift leg 1 and 2, eq. (93) becomes

An[1
−, 2−, 3+, ..., n+] =

∑
h=±

n−1∑
i=3

AL[2̂
−, 3+, ..., i+,−P̂ h

I ]
1

P 2
I

×AR[P̂
−h
I , (i+ 1)+, ..., n+, 1̂−]. (97)

⁶All ri being trivial would not be an interesting shift, as An(z) would then be a constant w.r.t. z, and Bn

would not vanish, unless An(0) = 0.
⁷There is, of course, no i ↔ j symmetry for which shifts are valid, since the BCFW shift is not symmetric

in i and j, see eq. (94) and eq. (96).
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For h = +, AL will only contain one negative helicity leg, and for h = −, AR will only
contain one negative helicity leg. Hence, the only terms in the sum that survive will be
i = 3 and i = n − 1, as the three parton amplitudes are special. These two divisions are
called (3, n−1) and (n−1, 3), from the number of legs in the left and right subamplitudes.
In appendix A of paper II there is a proof of why the (3, n − 1) division vanishes. Then
there is only one term left, and we end up with the, remarkably simple, BCFW recursion
relation for MHV amplitudes,

An[1
−, 2−, 3+, ..., n+] = AL[2̂

−, 3+, ..., (n− 1)+, P̂−n1]
1

P 2
I

AR[−P̂+
n1, n

+, 1̂−], (98)

where P̂n1 = pn + p̂1.

1.6.2 Summary

In this section we have seen the derivation of recursion relations, in particular the ap-
plication of the spinor-helicity formalism to find the elegant recursion relation for MHV
amplitudes, eq. (98). This is the recursion relation considered in paper II. The standard
color bases used for recursion relations are the trace and DDM bases, that we saw in sec-
tion 1.4. The advantage of them is that the recursion step is very simple, but squaring an
amplitude is not due to non-orthogonality and over-completeness. In paper II, the viability
of the multiplet basis is explored, where the recursion step becomes more complicated, but
squaring becomes trivial due to orthogonality.

1.7 Parton showers

So far in this thesis, only the hard part of scattering cross sections, calculated using full
amplitudes, has been considered. To motivate the need of parton showers we can consider
QCD amplitudes. As we saw in section 1.6, amplitudes have singularities when propagators
go on-shell. Let An be an amplitude for with some momenta, pni ,

An(p1, ..., pn) =

1

2

i

n

, (99)

which gets contributions from some set of Feynman diagrams. We consider the amplitude
An+1(p

′
1, ..., p

′
n+1), where the momenta of p′n+1 is small compared to all other momenta

pi. The most important Feynman diagrams contributing to An+1 will be when the soft
gluon is attached to an external leg. This is because any internal leg will be far off-shell,
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such that shifting its momentum by a small amount (by attaching the (n + 1)th gluon
to it) will have a small effect. The external legs, however, are on-shell, and attaching the
(n + 1)th gluon to them will give a propagator that is only slightly off-shell, and hence
very large. So the most important contributions to the amplitude, are

An+1(p
′
1, ..., p

′
n, p
′
n+1) ≈

∑
i

1

2

i

n

n+1
. (100)

The same thing occurs if pn+1 is collinear with some momentum pi, rather than soft,
the propagator would go on-shell in the collinear limit. The equation corresponding to
eq. (100) would only have one term though, as it is only if the (n+ 1)th gluon is attached
to the parton it is collinear with that a propagator would go on-shell. The naive assumption
would be that if we had calculated An, then An+1 would be a smaller contribution, as the
vertex in eq. (100) comes with a coupling constant and is hence suppressed. But, as argued
above, the propagator grows large, which will compensate for the smallness of the coupling
constant. Hence, An will give a poor approximation of the cross section, as An+1 is not
negligible in some regions of phase space of the (n+1)th particle. But, this argument can
be repeated, leading to us having to include an infinite number of emissions.

Next we consider two collinear emissions from the parton i, the emission of the (n +
1)th and the (n + 2)th gluon. As the emissions should be collinear, the virtuality of the
propagators,Q2

n+1 = 2pi ·pn+1 andQ2
n+2 = 2pi ·pn+2, should be small, and we consider

which contribution to the amplitude will be largest. The relevant Feynman diagram is

1

2

i

n

n+1
n+2 , (101)

where the left propagator (from eq. (5)) will get the factor 1
(pi+pn+1+pn+2)2

and the right
propagator gets the factor 1

(pi+pn+2)2
. If Q2

n+1 ≫ Q2
n+2, pn+2 in the left propagator can

be neglected, and the propagator is ∼ 1/pi · pn+1 (since the external partons are massless,
i.e. p2 = 0). The right propagator is, similarly ∼ 1/pi · pn+2. Hence, the first propagator
is a large number, and the second propagator is an even larger number. For the other order,
Q2

n+1 ≪ Q2
n+2, both propagators are ∼ 1/pi ·pn+2, as pn+1 can be neglected for the first

propagator. So, for this order the amplitude will not be enhanced as much as for the first
order, which then means that emissions tend to be ordered. This ordering of the emissions
is in their virtuality, but there is a freedom in the choice of ordering variable, as long as
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the ordering variables agree in the collinear limit. Common choices are virtuality of the
propagator (as we did here), angle of the emission or transverse momentum. The latter
two choices are more common, as they preserve the coherence of QCD better, which is the
destructive interference of emissions reducing the total emission rate.

So far we have seen that certain amplitudes will become important in the soft and collinear
limits. The cross section is proportional to the amplitude square, so just looking at amp-
litudes is not sufficient. When considering the cross section, σn+1 ∝ |An+1|2, in the soft
limit, the most important terms will be, so-called, self-energy diagrams

i

j

k

ĩj i

j

k

ĩj

(102)

and interference diagrams

i

j

k

ĩj i

j

k k̃

, (103)

where the other legs are not shown. It turns out that in the soft and collinear limits, the cross
section factorizes into a so-called splitting kernel and a cross section with fewer particles,

dσn+1 ∝ dz
dQ2

Q2
Pgg←g(z)σn. (104)

The parton shower then treats the splitting kernels Pij←k as probabilities of going from a
state with n partons to a state with n+ 1 partons. The calculation of the splitting kernels
can be found in [13].

The emissions are thus ordered in some variable (virtuality, angle, transverse momentum),
which we now call q. The splitting kernel is interpreted as a probability of an emission
occurring. To find the q-value of the next emission, and the additional splitting variables,
x, (e.g. energy fraction z and azimuthal angle, ϕ), the probability distribution

dSP (µ|q, x|Q) = dqddx [∆P (µ|Q)δ(q − µ) + P (q, x)∆P (q|Q)] , (105)

is used, where P (q, x) is the splitting kernel (which we allow to depend on the ordering
variable), µ is a cutoff scale (at which point hadronization kicks in and the parton shower
should stop) and

∆P (q|Q) = exp

(
−
∫ Q

q
dk

∫
ddzP (k, z)

)
. (106)
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The interpretation of this is that∆P (q|Q) is the no emission probability, i.e. the probability
that no emission occurred for any splitting variables z at any value k of the ordering variable
between the q-values, Q and q.
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Paper i: Decomposing color structure into multiplet bases

M. Sjödahl and J. Thorén, JHEP 09 (2015) 055 [1507.03814].

This paper builds on the work initiated in my master thesis Decomposing colour structures
into multiplet bases (supervised by Malin Sjödahl). In the paper we investigate the method
of using Wigner 3j and 6j coefficients for decomposing group invariants in the context of
QCD. The result of the paper was a recipe for decomposing color structures into multiplet
bases, using a comparatively small set of Wigner 6j coefficients. I calculated this set of
Wigner coefficients for NLO amplitudes with up to 6 external gluons. For the writing
of the manuscript, I wrote a draft for sections 3 and 4 and appendices A and C. Malin
Sjödahl wrote the remaining sections and heavily edited my draft. The calculated Wigner
coefficients were checked by both me and Malin Sjödahl.

Paper ii: Recursion in multiplet bases for tree-level MHV gluon amplitudes

Y.-J. Du, M. Sjödahl and J. Thorén, JHEP 1505 (2015) 119 [1503.00530].

In this paper we investigate the viability of amplitude recursion in the multiplet basis. This
was done by comparing the number of terms one would encounter in the “bottleneck” for
the basis in question: the squaring of the amplitude for traditional bases and the recursion
step for the multiplet basis. Yi-Jian Du performed the recursion in the trace basis and
worked out the kinematical recursion for the paper. I worked out the details of the recursion
for the color structure in the multiplet basis. The counting of the number of terms required
for the multiplet, trace and DDM bases depending on the number of external gluons was
done by both me and Malin Sjödahl. I wrote a draft of section 3.3, this was then edited by
Malin Sjödahl, or by me with suggestions from Malin Sjödahl.
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Paper iii: Color matrix element corrections for parton showers

S. Plätzer, M. Sjödahl and J. Thorén, [1808.00332], submitted to JHEP.

This paper builds on previous work by Malin Sjödahl and Simon Plätzer, where they im-
plemented a full color shower in a LEP context. The goal was to include color suppressed
dipole emissions for realistic events in the event generator Herwig, for any process, in par-
ticular for LHC events. For this project, I implemented the shower in Herwig with help
from Simon Plätzer, modified the Rivet analyses and did most of the runs. As the sub-
leading color dipoles can have negative splitting kernels, a weighted veto algorithm was
required. Initially we had convergence issues due to large and negative weights. I found a
solution to this, described in section 5 and appendix A of the paper. In terms of the writing
of the manuscript, I wrote section 5, with helpful comments from Malin Sjödahl, and a
small part of sections 7 and 8.

Paper iv: QCD multiplet bases with arbitrary parton ordering

M. Sjödahl and J. Thorén, [1809.05002], submitted to JHEP.

The idea for this paper, applying similar ideas as Malin Sjödahl and Stefan Keppeler did
in their paper, was conceived by me after suggestions from Malin Sjödahl. This paper
builds upon paper I, but generalizes the construction of the basis vectors, allowing for
more freedom in the choice of multiplet bases. This freedom of choice can be utilized to
choose more suitable multiplet bases for applications of the multiplet bases, for example
in recursion relations with fermions or in parton showers. The paper gives a recipe for
constructing projectors for multiplet bases with any parton ordering. These can then be
used to construct multiplet basis vectors and Wigner 6j coefficients. I implemented the
method we describe in the paper, and calculated the projectors, and from them I calculated
basis vectors and Wigner 6j coefficients. The coefficients have been thoroughly tested by
both me and Malin Sjödahl. I have written the draft of the paper.
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