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Minimal and Canonical Rational (Generator 
Matrices for Convolutional Codes 

G. David Forney, Jr., Fellow, IEEE, Rolf Johannesson, Senior Member, IEEE, and Zhe-xian Wan 

Abstract-A full-rank IC x n matrix G ( D )  over the rational 
functions F ( D )  generates a rate R = k / n  convolutional code 
C. G ( D )  is minimal if it can be realized with as few memory 
elements as any encoder for C, and G ( D )  is canonical if it has 
a minimal realization in controller canonical form. We show 
that G ( D )  is minimal if and only if for all rational input 
sequences p1 ( D ) ,  the span of U ( D )  G ( D )  covers the span of ZL ( D ) .  
Alternatively, G ( D )  is minimal if and only if G ( D )  is globally 
zero-free, or globally invertible. We show that G ( D )  is canonical 
if and only if G ( D )  is minimal and also globally orthogonal, in 
the valuation-theoretic sense of Monna. 

Index Terms-Algebraic structure of convolutional codes, mini- 
mal generator matrices, canonical generator matrices, behavioral 
system theory, valuation theory. 

I. INTRODUCTION 
HE structural properties of convolutional codes and their T generator matrices have been investigated in a series of 

papers by Forney [ll-[3] and Johannesson and Wan [4], [5]. 
In [l], it was shown that every convolutional code C can 

be generated by a polynomial generator matrix G ( D )  that 
has a polynomial inverse G-’(D) (is “basic”) and that can 
be realized in controller canonical form with as few memory 
elements as any encoder for C. The latter property requires 
that G ( D )  not only be “basic” but also have a property called 
the “predictable degree property.” More elementary proofs of 
these results were given in [21 and in [4]. 

In [4] and [5] ,  the authors also pointed out that the ter- 
minology of [ l ]  could be confusing, and improved it by 
defining a minimal generator matrix G ( D )  as one that can 
be realized with as few memory elements as any encoder 
for C, and a canonical generator matrix as one that has a 
minimal realization in controller canonical form. We continue 
to use this terminology here. In these terms, it is shown in [l]  
that every convolutional code C has a canonical polynomial 
generator matrix G( 0) , called “minimal” in [ 1 ] and “minimal- 
basic” in [4]. 

Generalizations of these definitions and results to rational 
generator matrices, using ideas from valuation theory, are 
sketched in [2, Appendix] and 13, sec. 3.51. However, no 
proofs are given, and some of the claimed extensions are not 
entirely correct. 
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In [5] (see also [6]), some steps were taken toward a more 
rigorous development of results for rational generator matrices 
along the lines suggested in [2] and 131. The purpose of this 
paper is to complete this dtwelopment. The rationale for this 
is twofold. First, rational generator matrices are sometimes 
preferred as convolutional encoders, e.g., in most trellis coding 
applications (e.g., V.32 and V.34 modems), and also in some 
newly developed iterative decoding schemes [7]. Second, it 
is of mathematical interest to generalize known results for 
polynomial generator matrices and to understand them in a 
more general setting. Moreover, such a generalization may 
suggest even further extensions. 

The main results of this paper are a) a generalization of 
the theory of [l], etc., to rational generator matrices using 
concepts from valuation theory; b) the new, general minimality 
test of Theorems 8 and 9, which applies to rational generator 
matrices; and c) a demonstration that canonicality is the 
intersection of two independent properties: minimality and the 
global predictable valuation property (global orthogonality). 

In Section 11, we review ideas from valuation theory which 
are useful in the study of rational generator matrices, as 
originally suggested in [2]. The valuation-theoretic notion of 
orthogonality due to Monnei [SI suggests a natural generaliza- 
tion of the predictable degree property called the “predictable 
valuation property,” which will be discussed in Section 111. 
In Section IV, we establislh simple necessary and sufficient 
conditions for a polynomial generator matrix to be canonical. 
These results use only elementary linear algebra and an 
elementary behavioral-theoretic construction of Forney and 
Trott [9]. In Section V, we give necessary and sufficient 
conditions for a rational generator matrix to be minimal. 
Canonicality is revisited in Sections VI and VU, in which 
we extend our results on canonicality to rational generator 
matrices of rates R = 1/11 and R = k / n ,  respectively. In 
Section VIII, we use the extended invariant factor theorem to 
show the equivalence of minimality to global invertibility. A 
brief discussion in Section IX concludes the paper. 

Remark: The appendix of [ 2 ]  stimulated a flurry of papers 
in system theory by a group of authors including Kailath [lo, 
ch. 61, Kung [ l l ] ,  LCvy [12], Verghese [131, and Wyman 
[14]. These papers use the language of valuation theory to 
provide a unified treatment of the entire polelzero structure 
of rational matrices over thc complex field, including those at 
zero and infinity. Most of the results of this paper having to do 
with globally orthogonal matrices (which [ 131 calls “globally 
(column-) reduced”) first appeared in [2]  or in these papers. In 
particular, the authors of [ 131 developed most of our Theorem 
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5, as well as the greedy construction algorithm for choosing a 
set of rational generators with minimum defect. 

Moreover, Kailath [lo, ch. 61, [13] traces the roots of these 
ideas back to Wedderbum [15], Vekua [16] (see also the 
references therein), and Gantmacher [ 171. Wyman has taken 
to calling our invariant structure indices “Fomey-Wedderbum 
indices.” 

This work seems to have been regarded by system theorists 
as mostly a matter of new language for known concepts, and 
eventually it died away. However, none of this work appears 
to have addressed realizations, or in particular minimality . It 
thus missed what we would regard as the most interesting 
system-theoretic results of this paper, such as the identifica- 
tion of minimality with global zero-freedom or with global 
invertibility. 

11. POLYNOMIALS, RATIONAL 
FUNCTIONS, AND VALUATION m O R Y  

It was suggested in [2] that valuation theory might provide 
the natural language for generalization of the results of [ 11 and 
121. In this section we present a brief, self-contained exposition 
of the few elementary concepts of valuations of the field of 
rational functions that will be needed in this paper. For a 
general introduction to valuation theory, see Jacobson [ 181 
or Monna [SI. 

The set F [ D ]  of polynomials in the indeterminate delay op- 
erator D over a field F is a ring which, like the ring of integers, 
is a principal ideal domain. This implies unique factorization: 
every nonzero polynomial can be uniquely factored into a 
product of primes, up to units. The units in F [ D ]  are the set 
U of polynomials of degree zero-i.e., the nonzero elements 
of F .  The primes in F[D]  are the set P of monic irreducible 
polynomials. (A polynomial p ( D )  = po + p l ~  + . . . + p l ~ ‘  

is said to be monic if pl = 1.) For simplicity we write p 
for the monic irreducible polynomial p ( D )  in P. A nonzero 
polynomial f ( D )  E F [ D ]  can be uniquely written as 

P E P  

for some unit U E U .  The exponents { eP( f (D)), p E P} that 
occur in this unique factorization are called the valuations of 
the polynomial f(0) at the primes p ,  or the p-valuations of 
*f(D>. If f ( D )  = 0, then by convention we define ep(0) = 00 
for all p in P. 

The set F ( D )  of rational functions in the indeterminate D 
over the field F is the field of quotients of F [ D ] ,  namely, the 
set of all r ( D )  = f (D)/g(D) with f ( D ) ,  g(D) E F[D]  and 
g(D) # 0. The quotient is made unique by requiring that g(D) 
be monic and that f(D)/g(D) be reduced to lowest terms 
by cancellation of common factors. Again, we have unique 
factorization of rational functions up to units 

for some U E U ,  where the p-valuation eP(r(D)) is defined 
as the difference 

.P(T(D))  = e,(f(D)) - ep(g(D)). 

Thus the p-valuation ep(r(D)) of a rational function may be 
negative for p E P. 

The p-valuation e Y ( r ( D ) )  for each p E P has the defining 
properties of an exponential nonarchimedean valuation [ 181: 
i) (uniqueness of 0): 

ep(r(D)) = CO, if and only if r ( D )  = 0; 

ii) (additivity): 

e,(r(D)s(D)) = ep(r (D))  + e P ( S ( m  

eP(r(D) + 4D)) 2 min{ep(r(D)), ep(s(D))). 

iii) (strong triangle inequality): 

There is one more nontrivial valuation on F(D), viz., the 
negative degree function 

eD-1 ( r ( D ) )  = 
def 

degg(D) - degf(D),  if r ( D )  = f (D) /g(D)  # 0, 
where f(D),s(D) E FPI; 

. L> if r ( D )  = 0. 

The reason for calling this function a valuation at p = D-’ 
will be explained below. It is easily verified that this D-’- 
valuation satisfies properties i)-iii). 

We denote by P* the set consisting of the elements of P 
plus D-1 

P* def P U {D- l } .  

It is easy to see that the p-valuations e,(r(D)) are equal to 
zero for all p in P* if and only if r ( D )  is a unit (a nonzero 
element of F ) .  Thus all of the p-valuations for p in P* are 
trivial on F. It is shown in valuation theory [18] that there 
are no other valuations of the rational functions F ( D )  that are 
trivial on F .  

For r ( D )  # 0, from the unique factorization of r ( D )  we 
have immediately the important product formula, as it is called 
in valuation theory [18], written here in additive form since 
we are using exponential valuations 

e,(r(D)) degp = 0 
P € P *  

where the degree of D-’ is defined as 1. 

D + D2 + D3.  Then 
Example 1: Let F be the binary field Fa, and let f ( D )  = 

.D(f(D)) = 1, el+D+D z ( f ( Q )  = 1, e D - l ( f ( D ) )  = -3  

and all other p-valuations are equal to zero. The reader may 
verify easily that the product formula holds. 

The delay of a rational function r ( D )  is defined as 

delr(D) = eD(r(D)) 
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Similarly, the degree of a rational function r ( D )  may be 
defined as 

degr(D) = -eD-1 ( r ( D ) )  

which for polynomials coincides with the standard definition. 
A rational function r ( D )  is 
a) causal 

if delr(D) 2 0, i.e., if e o ( r ( D ) )  2 0; 

b) polynomial 

if e,(r(D)) 2 O for all p E P ;  

c) finite 

if e,(r(D)) 2 0 for all p E P except possibly D. 

Causal rational functions are also sometimes called proper 
(particularly when z-transforms are used rather than D- 
transforms), and finite rational functions are also called 
Laurent polynomials. 

A rational function r ( D )  may be expanded by long division 
into a formal Laurent series in powers of D and thus identified 
with a semi-infinite sequence over F that begins with all 
zeroes; for example 

1 / ( 1 - D ) = 1 + D + D 2 $  

In this way, the set of rational functions F ( D )  may be 
identified with a subset of the set F ( ( D ) )  of formal Laurent 
series in D over F ,  which we shall call the rational formal 
Laurent series. These are precisely the formal Laurent series 
that eventually become periodic. The first nonzero term of a 
formal Laurent series expansion of r ( D )  in powers of D is 
the term involving D"D('(D)) = Dde'r(D);  i.e., the formal 
Laurent series in D "starts" at a "time index" equal to the 
delay eD(r(D))  of r (D) .  

Alternatively, a rational function may be expanded similarly 
into a formal Laurent series in D-l;  for example 

1/(1- D )  = -D-1 - 0 - 2  - . . . . 

In this way, F ( D )  may alternatively be identified with a subset 
of F ( ( D - l ) ) .  If elements of F((D- ' ) )  are identified with 
semi-infinite sequences over P that finish with all zeroes, then 
r ( D )  "ends" at a time equal to the degree -eD-I(r(D)) of 
r ( D ) .  This hints at why we use the notation p = D-l for 
this valuation. 

We should emphasize that this second, alternative expansion 
is a purely mathematical construct, and that when we wish to 
identify a rational function in r ( D )  with a physical sequence 
of elements of F ,  we shall always use the first formal Laurent 
series expansion in powers of D. 

A finite rational function (Laurent polynomial) may be 
written as r ( D )  = f ( D ) / D "  for f ( D )  E F [ D ]  and n E 2. 
The two expansions of a finite rational function r ( D )  as formal 
Laurent series in D and in D-l coincide, and r ( D )  "starts" 
at time delr(D) and "ends" at time degr(D). 

More generally, a rational function r ( D )  may be expanded 
as a formal Laurent series in powers of p for any p in P*, as 

follows. Let r ( D )  = f (D)/ ig(D),  where f ( D )  and g ( D )  # 0 
are polynomial. If f ( D )  = 0,  then the formal power series in 
p is simply f ( D )  = 0. if f ( D )  # 0, then we may write 

f(0) = [f (D)] , ,p""( f (D))  + f ' l ' ( D )  

where e p ( f ( D ) )  is the p-valuation of f ( D ) ,  [ f ( D ) ] ,  is 
the residue of f ( D ) p - " ~ ( f ( ~ ) )  modulo p ,  and f ( l ) ( D )  is 
a polynomial (possibly 0) whose p-valuation is greater than 
e, ( f  (D) ) .  Iterating this process, possibly indefinitely, we 
obtain a formal Laurent series in p whose first nonzero term is 
[ f ( D ) ] ,  p e p ( f ( 0 ) ) .  Similarly, we may expand the denominator 
g(D)  into a formal Laurent series in p whose first nonzero term 
is [g(D)],  p e p ( g ( D ) ) .  Then b y  long division we obtain a formal 
Laurent series expansion of r ( D )  in powers of p whose first 
term is [ r (D)] ,  p e p ( ' ( D ) ) ,  where 

e,(r(D)) = e , ( f (D) )  - ep(g(D)) 
[.(D)lP = [f(D)l,/[g(D)I,. 

This division is well-defined because [ f ( D ) ] ,  and [g(D)],  
are nonzero residues of polynomials in F[D]  modulo p ,  which 
may be regarded as elements of the quotient ring P[D],  = 
F[D] /pF[D] ,  which is actually a field since p is an irreducible 
(prime) polynomial. 

If r ( D )  = 0, then in addition to ep(0) = 00, we define 
[0], = O for all p in P*. 

Note that this general expansion method works pedectly 
well for p = D-l ,  if we take [ f (D) lD- l  and [g(D)lD-l to be 
the coefficients of the highest order terms of f ( D )  and g(D) ,  
respectively, i.e., the coefficients of Ddeg f ( D )  and D d e g g ( D ) ,  

respectively. This explains our use of the notation p = D-' 
for this valuation. in our previous papers [l], [2], [4], 151, we 
denoted the highest order coefficient [ f (D)]D- l  by [ f ( D ) ] h .  

Example 1 (cont.): For j '(D) = D + D2 + D3 (or indeed 
for any nonzero polynomial in D), the formal Laurent series 
in the polynomial D is simply f ( D ) .  We have e o ( f ( D ) )  = 1, 
[ f ( D ) ] o  = 1, and the first nonzero term of the series is 
[ f ( l l ) ] ~ D " D ( f ( ~ ) )  = D. Similarly, for p = D-l ,  we have 
eD- l ( f (D) )  = -3, [ f (D) lD- l  = 1, and the formal Laurent 
series in D-' is 

f ( D )  = ( 0 - 1 ) - 3  + ( D - y  + (D-1)-1 

whose first nonzero term is 

[ f ( D ) ] D - l  ( D - l ) " ~ - l ( f ( ~ ) )  = (D-1)-3.  

For p = 1 + D, we have 

.l+D(f(D)> = 0, [f(D)ll+D = 1 

f ( D )  = (1 + D)O + (1 + D)3  

and the formal Laurent series in 1 + D is 

whose first nonzero term is 

[ f ( D ) ] l + ~ ( l  + L) )e l+D( f (D) )  = (1 + 0)'. 

For p = 1 + D + D2,  we have 

e I + D + D z ( f ( D ) )  '= 1, [f(D)]1+D+02 = D 
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and the formal Laurent series in 1 + D + 0' is simply 

f ( 0 )  = D(1+ D + D')1 

[f(D)I1+D+D2(1 + D + D 2 ) " 1 + D + D " ( f ( D ) )  

whose first and only nonzero term is 

= D(1+ D + D2)1. 

Example2: Let F = IF:! and 

r ( ~ )  = ( ~ 3  + 0 7 4 1  + D + 0". 

Then 

eD(r(D)) = 3 = delr(D) 
eD- l ( r (D) )  = -3 = -degr(D) 

el+D(r(D)) = 2 
e l + D + D z ( r ( D ) )  = -1 

and all other p-valuations are zero. It is easy to verify that 
the product formula holds. Also, [r(D)ID = [ r ( D ) l D - ~  = 
[7-(D)ll+D = 1 and [7-(D)11+0+02 = D. 

111. PREDICTABLE VALUATION 
PROPERTY OF RATIONAL MATFUCES 

In this section we first extend valuations to vectors of 
rational functions. Then we see that the concept of "orthog- 
onality" that was introduced into valuation theory by Monna 
[8] provides a natural generalization of the predictable degree 
property of rational matrices. 

If r ( D )  = (rl(D),...,rs(D)) is a vector of rational 
functions r,(D) E F ( D ) ,  then the p-valuation eP(r (D) )  is 
defined for all p E P* by the "box norm" [8], namely 

This generalizes the notion of the "greatest common divisor"; 
indeed, if r ( D )  is a set of polynomials, then the greatest 
common divisor of the set r (D)  is 

P E P  

DeJinition I :  A vector r ( D )  = ( r l ( D ) ; . .  , r s ( D ) )  of ra- 

In Section VI11 we will find that zero-freedom implies a 

We may generalize the definition of delay and degree to a 

tional functions is zero-free if eP(r (D) )  5 O for all p E P*. 

certain kind of invertibility. 

vector r ( D )  as follows: 

delr(D) = eD(r(D)) = min(delr,(D)) 

degr(D) = -eD-l ( r ( D ) )  = max{degr,(D)}. 

Properties i)-iii), appropriately generalized, continue to hold: 
i) ep( r (D) )  = 00, if and only if r ( D )  = 0; 

ii) e , (k (D)r(D))  = e P ( k ( D ) )  + e,(r(D)) for dl k ( D )  E 

iii) e,(r(D) + s ( D ) )  2 min{eP(r(D)), eP(s (D) ) ) .  

z 

2 

F ( D ) ;  

However, the product formula becomes an inequality, since 
for any i 

P t P '  P E P *  

We therefore define the defect of r ( D )  as the nonnegative 
quantity [2] 

defr(D)%f - eP(r(D))degp 
PE?* 

which can also be written as 

defr(D) = degr(D) - e P ( r ( D ) )  degp 
P E P  

= degr(D) - deg (gcdr(D)). 

In view of property ii) and the product formula, we have 
for all nonzero k ( D )  E F ( D )  

defk(D)r(D) = defr(D). 

Thus every nonzero vector in a one-dimensional rational vector 
space has the same defect. 

The residue vector [r(D)lP is defined as the vector of 
residues of r ( D ) p - " ~ ( ~ ( ~ ) )  modulo p.  Thus if eP(rZ(D) )  > 
eP(r(D)), then [rZ(D)lP = 0, even if r z ( D )  # 0. If r ( D )  
is expanded as a vector of formal Laurent series in p ,  then 
[ ~ ( D ) ] , p " p ( ~ ( ~ ) )  is the first nonzero term in the expansion. 

A generator matrix G ( D )  = (gZ3 ( D ) ) l l z l k ,  l l J l n  for a 
linear, time-invariant convolutional code C is a k x n matrix of 
causal rational functions gn3(D) E F ( D ) ,  1 5 z 5 5, I 5 j 5 
n, where F is a field and F ( D )  is the field of rational functions 
in the delay operator D over F .  (In behavioral system theory, 
the requirement that G(D)  be causal is sometimes dropped.) 
Without essential loss of generality, we assume from now on 
that G(D)  has full rank k .  The convolutional code generated 
by G ( D )  is 

c = { 4 D ) G ( D )  l4D)  E ww} 
where the input k-tuple u ( D )  ranges through the vector space 
of all k-tuples of formal Laurent series in D over F ,  denoted 
by F ( ( D ) ) .  We also write G ( D )  as 

G ( D )  = r(D)). 
Then the set of codewords in C can be written as linear 
combinations 

g k  ( D )  

4D) = u(D)G(D)  = C"z(D)Y,(D) 
2 

of the row vectors gZ ( D )  over F (  ( D ) ) .  Two generator matrices 
are equivalent if they generate the same code C. 

Recall that a code sequence v ( D )  in F((D))"  is rational 
if it is the formal Laurent series expansion in powers of D 
of a rational sequence in F(D)" ,  which we shall continue to 
denote as v(D).  The rational subcode C, of C is defined to 
be the set of all rational code sequences w(D) in C (which 
includes all finite code sequences). Since we have assumed 
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that G(D)  has full rank and thus has a right inverse G-'(D), 
it is clear that v(D) = u(D)G(D)  is rational if and only if 
u ( D )  is rational; i.e., 

C, = {u(D)G(D)  I u ( D )  E F ( D ) k } .  

Thus the rational subcode C, is simply a vector space over 
F ( D )  of dimension k ,  a subspace of E(D)".  

We can regard two k x n equivalent generator matrices 
G ( D )  and G'(D) as two different bases for the same rational 
vector space C,. Thus they are equivalent if and only if 
there is a k x k rational nonsingular matrix T ( D )  such that 
G ( D )  = T(D)G'(D) .  

Let G ( D )  = {g2(D), 1 5 i 5 k }  be a set of vectors 
g,(D) E F(D)%.  In view of properties ii) and iii), for any 
vector 

and any p E F'*, we have 

e, W)) 2 m y %  ( U 2  (D)g2 ( D ) ) )  (iii)) 

= min{e,(.z(q + e,(g2(D))). (ii)) 

Monna [8] defines the set G ( D )  to be p-orthogonal if equality 
holds for all rational k-tuples ~ ( 0 ) ;  i.e., if for all u ( D )  in 
F(D)'" we have 

.P(V(D)) = m2in{e,(u2(D)) + .P(%(D))). 

If G(D)  is p-orthogonal for all p in P*, then the set G ( D )  is 
called globally orthogonal. 

A k x n polynomial matrix G ( D )  = {g , (D)  E F[D]",  1 5 
i 5 k )  was said in [ 11 to have the predictable degree property 
(PDP) if for all v ( D )  = u(D)G(D) ,  where u ( D )  and v ( D )  
are polynomial vectors 

degv(D) = max{degu,(D) + degg,(D)}. 

Equivalently, in the terminology we are using here, G ( D )  has 
the PDP if for all w(D) = u(D)G(D)  

a 

eD-1 (v(D)) = min(eD-1 (.Z(D)) + eg-1 (g,(D)) j 

i.e., if G ( D )  is D-I-orthogonal. Hence, the PDP is naturally 
generalized as follows: 

Dejinition 2: A rational matrix G ( D )  E F ( D ) k x n  has the 
predictable degree property (PDP) if it is D-'-orthogonal. 

DeJinition 3: For any p E F'*, a rational matrix G ( D )  E 
F ( D)k  X n  has the predictable p-valuation property (PVP,) if 
it is p-orthogonal. 

Dejnition 4: A rational matrix G ( D )  E F ( D ) k X n  has the 
global predictable valuation property (GPVP) if it is globally 
orthogonal. 

We shdll see in Section VI1 below that the GPVP is an essen- 
tial property of canonical generator matrices of convolutional 
codes. 

In [2]  the high-order coefficient vectors [g2 (D)] h were 
defined as what we would call here the residue vectors 
[ g a ( D ) ] ~ - l ,  and it was shown that for the PDP to hold the 

matrix [G(D)]h consisting of these vectors must have full 
rank. The following natural generalization was proposed in 
[2, Appendix]: 

Definition 5: Given a rational matrix G ( D )  E F ( D ) k X n ,  
its p-residue matrix [G(D)lP E F[D]kX"  is the F[D],-matrix 
whose ith row is the residue vector [ga(D)lpr 1 5 z 5 k .  

The following theorem  hen gives a basic test for p- 
orthogonality: 

Theorem 1: For any p E P*, a rational matrix 

G(D)  = {g2(D) E J'(D)n, 15 i 5 k }  

has the PVP, (is p-orthogonal) if and only if its p-residue 
matrix [G(D)] ,  has full rank IC over F[D],. 

Pro08 In general, if v(D) = u(D)G(D) ,  where u ( D )  = 
(ul(D),...,uk(D)) and u 2 ( D )  E F ( D ) ,  15 i 5 k ,  then 

e,(vU(D)) 2 d 

d = m i n { e p ( o j )  + ep(gz(D))). 

where 

Let Z be the set of indices such that the minimum is achieved; 
i.e., 

z = (2 I e P ( ' L L z ( m  + ep(ga(D)) = 4. 
Then, if v ( D )  # 0, the f o r "  Laurent series expansion of 
v(D) in p may be written $ is  

v ( D )  = Vdpd + vd+lpd+l + . . . . 
G(D)  is p-orthogonal if and only if for all u ( D )  # 
0 e,(v(D)) = d; i.e., 'ud # 0. We may write the formal 
Laurent series expansions of the nonzero u 2 ( D )  and of the 
gz (D) as 

u2(D)  = [u2(D)],pep(U.(D)) + u p ( D ) ,  

g,(D) = [g,(D)],peP(gJD)) + gL1)(D), 

1 5 z 5 k 

1 5 i 5 k 

where for all i [uZ(D)lp $. 0, ep(u,"'(D)) > eP(u2(D)) ,  
[g,(D)], # 0, and ep(g~"(D>) > ep(g2(D)). Then the lowest 
order coefficient of v ( D )  is given by 

v d  = ~ [ t b ~ ( D ) l ~ [ s ~ ( D ) l ~ .  

If 'ud = 0, then the p-residue vectors [g2(D)], are linearly 
dependent over F[DIP and [G(D)lp does not have full rank. 
Conversely, if [G(D)lP does not have full rank over F[D],, 
then there exists some nonlrivial linear combination of rows 
that equals zero: 

2EZ 

where u2(D)  E F[D],; therefore, with the input sequence 

( I L 1 ( D ) p - e P ( 9 1 ( ~ ) ) ,  ,,(D)17-eP(g2(D)), . . . , 
uk(D)p-eP(gk (D))) 

we have d = 0 and Vd = 0, so 
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which implies that G ( D )  is not p-orthogonal. This completes 

This test involves only the determination of the rank of a 
k x n matrix [G(D)lP over the field F[D],, and is thus easy 
to carry out for any polynomial p of moderate degree. 

Remark: The authors of [13] dejine a rational matrix G(s )  
over the complex field to be “column-reduced at q” if G(q) has 
full rank. This is clearly equivalent to the predictable valuation 
property at p = s - q, although this is not explicitly stated in 

The following simple result is needed for the proof of our 
general canonicality theorem (Theorem 13): 

Lemma 2: For any p in P* , any k x n rational matrix G ( D ) ,  
and any k x k diagonal rational matrix A ( D )  with nonzero 
diagonal elements, G’(D) = A ( D ) G ( D )  has the PVP, if and 
only if G(D)  has the PVP,. 

Pro08 Since [G’(D)], = [A(D)]?,[G(D)lp,  the theorem 
0 

We will now develop several equivalent conditions for a 
generator matrix G(D)  = {g%(D), 1 i 5 k }  to have 
the GPVP (be globally orthogonal). The essential ideas are 
as follows. 

Each generator g, ( D )  generates a one-dimensional rational 
subspace C, = {u(D)g,(D) 1 u ( D )  E F ( D ) )  in which all 
nonzero vectors have a common defect, namely defg,(D). 
We shall define the external defect of G ( D )  as the sum of 
these generator (subspace) defects 

the proof. 0 

~ 3 1 .  

follows immediately from Theorem 1. 

k 

extdef G ( D ) e f  defg,(D). 

We shall show (Theorem 5) that extdef G(D)  is minimized 
among all generator matrices G ( D )  that generate a given 
code C if and only if G ( D )  has the GPVP. Furthermore, all 
such matrices G ( D )  have the same set of generator defects 

First, we state a technical lemma. Let Mk denote the set of 
all k x k submatrices M ( 0 )  of G(D) .  For all p in P*, define 
the p-valuation of G(D)  as [3] 

z = 1  

{defg,(D), 1 i I k } .  

and then correspondingly define the internal defect of G ( D )  by 

intdef G ( D ) z f  - e,(G(D)) degp. 
PEP’  

The following lemma states that intdef G ( D )  is invariant over 
all generator matrices for C [3]: 

Lemma 3: If G ( D )  and G’(D) are equivalent generator 
matrices, then intdef G ( D )  = intdef G’(D). 

Proof: If G(D)  and G’(D) are equivalent, then G’(D) = 
T ( D ) G ( D )  for some k x IC nonsingular rational matrix T ( D ) .  
The set ML of IC x k submatrices of G’(D) is then 

M i  { T ( D ) M ( D )  I M ( D )  E M k } .  

Since 
ep(det ( T ( D ) M ( D ) ) )  = e,(detT(D) detM(D))  

= e,(detT(D)) + e,(detM(D)) 

we have 

e,(G’(D)) = e,(detT(D)) + e,(G(D)) 

and therefore, using the product formula (since det T ( D )  # 0) 

intdef G’(D) = - ep(detT(D)) degp + intdef G ( D )  
P E P *  

= intdef G ( D )  . 0 

The next lemma shows that a linear combination of globally 
orthogonal vectors has at least as great a defect as any vector 
involved in the combination. 

Lemma 4: If a rational matrix G ( D )  = {gz(D), 1 5 i 5 k }  
has the GPVP, then for every 

k 

4D) = .u(D)G(D) = .;(D)g,(D) 
z = 1  

defv(D) 2 defg,(D) 

for all 3 such that u3(D)  # 0. 
Proof: If G ( D )  has the GPVP, then we have 

defv(D) = - eP(v(D)) degp 
P E P ’  

= - mye, (uz(D))  + e,(g,(D))) degp 
PEP’  

(GPVP) 

2 - ( .P (UJ(D) )  + eP(g,(D)))degp 

= - % ( g J ( m  degp (if u111D) # 0) 

= defg,(D). 0 

p t P ”  

(for any j ,  1 5 j 5 k )  

P€P* 

Remark: This lemma suggests that a globally orthogonal 
generator matrix for C may be constructed by the following 
greedy algorithm. For the first generator gl(D), choose any 
nonzero rational code sequence in C that has minimum defect. 
For the second generator g,(D), choose any rational code 
sequence in C not in the subcode C1 generated by gl(D) that 
has minimum defect. For g3(D), choose any rational code 
sequence not in the space spanned by the sets C1 and CS, where 
Cz is the subcode generated by g 2  ( D )  that has minimum de- 
fect, and so forth until k generators are chosen. (This algorithm 
in fact does work; this is straightforward to show from the 
fact that the similar algorithm given for polynomial matrices 
in Section IV works, by substituting “defect” for “degree.”) 
This algorithm may have first appeared in the system theory 
literature in [13], although, as already mentioned, its roots have 
been traced back as far as Wedderburn [15] and Gantmacher 

This remark suggests that the generator defects def gz ( D )  of 
a globally orthogonal generator matrix for C are invariants of 
C. The next theorem states this fundamental result and other 
related results. 

~ 7 1 .  
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Theorem 5: Let G(D) = {g2(D), 1 5 i 5 k }  be a 
k x n rational matrix of rank k and C be the convolutional 
code generated by G(D) over F ( ( D ) ) .  Then the following 
statements are equivalent: 

a) G ( D )  has the GPVP. 
b) For every p E P*, [G(D)lP is of full rank 5 over &'[DIP. 
c) For every p E P*, eP([G(D)lp) =;. 

e) extdef G(D) = intdef G(D). 
f )  extdefG(D) is minimal among all generator matrices 

which generate C. 
g) The set of defects {def g1 ( D ) ,  . . . , def gk ( D ) }  is equal 

to the set of defects of any other generator matrix for C 
that has the GPVP. 

a) U b) follows from Theorem 1. 
b) * c) is clear. 
c) U d). We again write the formal Laurent series expan- 

sions of the g,(D)'s as 

d) For every P E p*, e,(G(D)) = ca=l .P(S%(D)). 

Proof: 

g,(D) = p"P(gJD))[gz(D)lp +g;("(D), 

where [ g , ( m l P  # 0 and eP(92(1)(D)) > .P(S%(D)) for 

i = 1 7 . . . 

all i. Then 

G(D) = A(D)[G(D>lP + Gl(D)  

where A(D)  = diag{pep(gl(D)), . . . , p " ~ ( g k ( ~ ) ) }  andthe 
equivalence follows. 
U e). We have 

k 

extdefG(D) = defgi(D) 
i=l 

k 

P € P *  i=l 

But for all p in P*, extending the proof of c) U d), we 
have 

k 

i=l 

with equality if and only if c) holds. Thus 

extdefG(D) 2 - e,(G(D))degp 
P E P '  

= intdefG(D) 

with equality if and only if d) holds. 
U f). Follows immediately. 
U g). Let 

G'(D) = {gL(D), 15 i 5 k }  

be a generator matrix of C with the GPVP. Then there ex- 
ists a nonsingular k x k matrix A(D) such that G(D) = 
A(D)G'(D). Order the generators {gb(D),  1 5 i 5 k }  

so that defgi(D) 2 defg:(D) if j 2 i. For each g,(D) 
there is a unique expression 

n 

g,(D) := az,g:(D). 
j=1 

Let Z(z) be the largesl J such that ut3(D) # 0. Order 
g l (D) , . . . , gn (D)  such that Z(1) 5 Z(2) _< . . .  _< 
Z(k). Thus A ( D )  is in echelon form. Since A(D) is 
nonsingular, Z(j) = j, j = 1,. . . , IC. By Lemma 4 

defg,(D) 2 defg;(,)(D) = defg:(D). 

Thus 
k k 

extdefG(D) = defg,(D) 2 defg:(D) 
a=1 2=1 

= extclef G'(D). 

Therefore 

extdef G(D) = extdef G' (D) U def ga (0) = def g: ( D )  , 
i =  l , . . . , k  

{defgl(D), . ..,deFg,(D)) is an invariant of C. 0 
In summary, Theorem 5 shows that the external defect of 

G(D) is lower-bounded by the internal defect of G(D) (which 
by Lemma 3 is an invariant of C), that the lower bound is met 
if and only if G( D )  has the GPVP, and that the set of generator 
defects { def g2 ( D ) }  of a globally orthogonal generator matrix 
G(D) is an invariant of C. Thus for any code C there exists 
a set of parameters {v,(C), 1 5 i 5 k }  and v(C) = E, v2(C) 
such that v2(C) = defg,(D), i = l,...,IC and v(C) = 
extdefG(D) if and only if G(D) is a globally orthogonal 
generator matrix for C. In the next section we shall see that 
{v2(C), 1 5 i I k }  is the set of constraint lengths (controller 
indices) of the convolutional code (behavioral system) C, and 
that v(C) is the overdl con;rtraint length (minimal state space 
dimension) of C. 

Remark: The facts that the external defect is lower-bounded 
by the internal defect with equality iff the GPVP holds and 
that the indices v2(C) are invariants of C are the main results 
of [13]. 

IV. CANONICAL POLYNOMIAL GENERATOR MATRICES 

After discussing realizations and defining minimality and 
canonicality, we construct a canonical polynomial generator 
matrix G(D) for a convolutional code C using the elementary 
behavior-theoretic construction of [9]. 

A realization of a k x 11 generator matrix G ( D )  (a rate 
R = k/n encoder) is a kinput, n-output linear (over F )  
sequential circuit whose input/output (110) transfer function 
is G(D). The complexity of an encoder is measured by the 
number of its memory elements, which is the dimension of its 
physical state space. 

From the general principlies of realization theory (see, e.g., 
[9]), the dimension of the physical state space of any encoder 
for C is lower-bounded by the dimension 

v(C) = dimC(C) 
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of the minimal state space C(C), which is the quotient space 

q c )  = c/(c+ + c q  
where C+ = {v (D)  in C I delv(D) 2 O} is the subspace of all 
code sequences that “start” at time 0 or later, and C- = {v (D)  
in C I v ( D )  finite and degv(D) < O} is the subspace of all 
code sequences that “end” before time 0. We therefore define 
a minimal encoder as a generator matrix G ( D )  that can be 
realized with v(G) memory elements. Every code C has a 
minimal encoder [9]. 

The dimension p ( G ( D ) )  of a minimal realization of a given 
generator matrix G ( D )  may be determined by a straightfor- 
ward extension of this result, using ideas from behavioral 
system theory [19], [20]. Define the input‘output (UO) code 
generated by G ( D )  to be the set 

Cb = { ( 4 ~ ) , 4 D ) G ( D ) )  I4D)  in Jw9)kl 
of U 0  pairs { u ( D ) , % ( D ) G ( D ) }  generated by G ( D ) .  Then 
p ( G ( D ) )  (sometimes called the McMillan degree of G ( D )  
[22]) is the dimension of the minimal state space of Cb 

p (G(D) )  = dim C(Cb)  

Then there exists a realization of G ( D )  with physical state- 
space dimension p ( G ( D ) ) ,  and no realization of lesser di- 
mension. 

Since C is embedded in C b ,  it is clear that 

P(G(D)) 2 4 C )  

with equality if and only if G ( D )  is a minimal encoder for C. 
One method of realizing a rate R = k / n  generator matrix 

G ( D )  is to realize each of its generators g,(D) independently 
as a rate R = l / n  encoder, with the output simply being the 
sum of the k component outputs. Such a realization is said 
to be in controller canonical form. If each generator g,(D) is 
realized minimally with p(gz ( D ) )  memory elements, then a 
controller canonical form realization of G ( D )  requires a total 
of 

Fccf(G(D)) = p ( g 2 ( D ) )  
1<%<k 

memory elements. Thus 

p c c f ( G ( D ) )  2 p(G(D)) 2 .(C). 

A generator matrix G ( D )  will be called canonical if 
pc,f(G(D)) = v(C), which of course implies that G ( D )  
is minimal ( p ( G ( D ) )  = .(e)). 

If G ( D )  is polynomial, then each generator g , ( D )  has 
an obvious minimal realization with p(g,(D)) = degg,(D) 
memory elements arranged in a feedbackfree shift register. 
Therefore 

Pccf(G(D)) = C d e g g m .  
2 

Hence, a polynomial generator matrix G ( D )  is canonical if 

degg,(D) = .(Cl. 
l < z j k  

We now briefly describe a greedy construction of a canonical 
polynomial generator matrix G ( D )  for a convolutional code 
C, following the construction of 191 of a minimal encoder in 
controller canonical form for a general group code. (This con- 
struction generalizes straightforwardly to time-varying codes.) 
The construction produces a set {g , (D) ,  1 5 i 5 k }  of 
“shortest independent polynomial generators” for C such that 

degg,(D) = 4 C ) .  
l < z < k  

(The first construction of this kind was apparently that of Roos 
[211.) 

First define C[,,,,] for j’ 2 j as the subcode of C consisting 
of all code sequences that are zero outside the interval [ j ,  j ’] .  
C[,,,,] is a vector space over F with dimension denoted by 
dimC[,,,,]. If C is time-invariant, then C[,3,,~ is a time shift 
of C[o,31--31, so we may restrict our attention to the subcodes 

The construction goes as follows. Choose the first generator 
g1 (0) as a nonzero polynomial code sequence of least degree. 
Choose g2 ( D )  as a nonzero polynomial code sequence of least 
degree not in the rate R = 1/n code C1 generated by gl(D); 
choose g,(D) as a nonzero polynomial code sequence of least 
degree not in the rate R = 2/n code C2 generated by g1 ( D )  
and g2(D), and so forth, until a set G ( D )  = {g,(D), 1 5 z 5 
k }  of k generators has been chosen that generates C. 

It is easy to see that the degrees degg,(D) are uniquely 
defined by C (cf. [2], [9]); in fact, they are the constraint 
lengths (or controller indices) of C, denoted by 

uz(C) def degg,(D), 1 5 z 5 k .  

It is also clear (cf. [2], 191) that 

C[O,,], j 2 0. 

.l(C) 5 .z(C) 5 . . ’  5 .iC(C); 
ep(g2(D)) = 0 for all p in P (else g,(D) would not 
be the shortest polynomial generator not in Cz-l), 1 I 
i 5 k; 
the dimension of C[o,,l is the total number of time shifts 
D”g,(D) of generators g,(D) such that m 2 0 and 
degD”g,(D) = m + vz(C) 5 j ;  i.e., 

dimCp,] = max(0,g - vz(C) + l}. 
l<z<k 

Given the dimensions dimCp,] for all j 2 0, this defines 
a system of equations that has a unique solution, viz., the 
degrees {.,(e), 1 5 i 5 k } .  

These results are summarized in the following theorem [2]: 
Theorem 6: The degrees {vl(C) 5 uz(C) 5 . . . 5 v k ( C ) }  

of a rate R = k / n ,  linear, time-invariant convolutional code 
(behavioral system) C are the unique integers that satisfy the 
following equations for all j 2 0: 

dimCp,] = max(0,g - vz(C) + I}. 
l<z<k 

Furthermore, the minimal state-space dimension of C is 
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Finally, there exists a canonical polynomial generator matrix 
G(D)  for C with 

degg,(D) = v2(C), 15 i I k 

and a polynomial generator matrix for C is canonical if and 
only if 

degg,(D) = vz(C), 15 i 5 k .  

Moreover, the components of each g, ( D )  constructed above 
are relatively prime. Therefore, defg,(D) = degg,(D). It 
follows immediately from Theorem 5 that for any generator 
matrix G’(D) = {gL(D), 1 5 i 5 k }  of C having the GPVP, 
defg:(D) = vz(C), 1 5 i 5 k. 

Example 3 [4]: Let C be the rate R = 2/3 convolutional 
code over F2 generated by G ( D )  = {gl(D),g2(D)}, where 

g1(D) = (1 + D ,  D ,  1) 
g2(D) = (1 + D2 + 0 3 ,  1 + D + D2 + 0 3 ,  0). 

The shortest nonzero polynomial code sequence is g1 (D) ,  so 
vl(C) = 1. The next shortest code sequence not dependent on 
gl(D) has degree 2; e.g., 

g/2(D) = D2g,(D) +g2(D) = (1, 1 + D + D2,  D 2 )  

so v2(C) = 2. The minimal state space of C thus has dimension 
v ( C )  = 3. A canonical polynomial generator matrix for C is 

The following theorem shows that canonical polynomial 
generator matrices must have the global predictable valuation 
property. (Example 4 of the next section shows that the GPVP 
alone does not assure that G(D)  is canonical.) 

Theorem 7: A polynomial generator matrix G ( D )  = 
{g,(D), 1 5 i 5 k }  is canonical if and only if G ( D )  
has the global predictable valuation property (GPVP) and 
eP(ga(D)) = 0, 1 5 i 5 k ,  for all p E P. 

Proo$ Assume that G(D) is canonical. Since g,(D) is 
polynomial, eP(g,(D)) 2 0 for all p E P. Suppose that 
ep (g, ( D ) )  > 0 for some p E P. Then g, ( D )  / p  is a polynomial 
code sequence with degree less than degg,(D) = v,(C). 
Replacing g2 (0) in G( D )  by g, ( D )  / p  we obtain a generator 
matrix G’(D) with p,,f(G’(D)) < p,,f(G(D)) = v(C), a 
contradiction. Hence, eP(g2(D)) = 0 for all p E P. 

Suppose that the p-residue matrix [G(D)],  does not have 
full rank for some p E P*. Then, as in the proof of Theorem 
1, there is some nontrivial linear combination 

G’(D) = {gl(D),g;(D)}. 

where ui(D) E F[D],. By the proof of Theorem 1, G ( D )  is 
not p-orthogonal. We conclude that if G ( D )  is canonical, then 
G ( D )  has the GPVP. 

Conversely, let G(D)  be a polynomial generator matrix 
G ( D )  = {gi(D), 1 5 i 5 k }  for C such that eP(gi(D)) = 
0 for all p in P and G(D) has the GPVP. Let vi = 
deggi(D), 1 5 i 5 k. We shall show that the dimensions of 
the subcodes C p j l ,  j 2 0, are determined by the parameters 
{vi, 1 5 i 5 k }  as in Theorem 6, which will imply that 

degg,(D) = v2(C), 1 5 i 5 k ,  and, thus, that G ( D )  is 
canonical. 

The subcode C[o,31 is the set of all polynomial w(D) in C 
with degv(D) 5 j. Now, let v ( D )  = u(D)G(D) .  By the 
GPVP and the fact that eP(g,(D)) = 0 for all p in P, we have 
for all p in P 

.P(’U(D)) = min{eP(u%(D>> + eP(gz(D))) 

= min{ el, (U% ( D ) ) }  

so ep(v (D) )  2 0 for all 1) in P if and only if for all i 
eP(u,(D)) 2 0 for all p in P; i.e., v ( D )  is polynomial if 
and only if for all i ,  uZ(D) is polynomial. Furthermore, by the 
PDP, the degree of v ( D )  is given by 

degv(D) = max{degu,(D) + degg,(D)}. 
2 

Thus deg v ( D )  5 j if and only if deg U, ( D )  5 j - v,, 1 5 
i 5 k. It follows that 

dimCp31 = max(0,g - v, + I}. 
l < z < k  

Therefore, by Theorem 6, G ( D )  is canonical. 0 
Remark: Theorem 7 foreshadows the general criterion for 

canonicality to be given in Theorem 13 below. To see that 
Theorem 7 is the specialization of Theorem 13 to polynomial 
generator matrices, note that if gz(D) is polynomial then 
eP(gz(D)) 2 0 for all p in P and e p 1 ( g 2 ( D ) )  5 0. 
Therefore, the following statement is equivalent to Theorem 7: 
“A polynomial generator mairix G(D)  is canonical if and only 
if G ( D )  has the GPVP and ep(gz(D)) 5 0 for all p in P*.” 

Example 3 (cont.): Let G(D)  be as before. Since 

[G(D)],-l does not have full rank. It follows that G ( D )  does 
not have the predictable degree property and, hence, G ( D )  is 
not canonical. 

v. MINIMAL GENERATOR MATRICES 

We have defined a rational generator matrix G(D) to be 
minimal if the minimal staie-space dimension p(G(D) )  is 
equal to v(C). In this section we give necessary and sufficient 
conditions for a rational generator matrix G ( D )  to be minimal. 

From the definition of minimality, G ( D )  is minimal if 
and only if a minimal realization for the I/O code Cb = 
{ (u (D) ,u (D)G(D)}  has the same dimension as a minimal 
realization for the code C = {u (D)G(D)} .  

From the construction of the previous section, a minimal 
realization for the U0 code C b  can be constructed from a 
set of “shortest independent generators” gp(D) for C b .  The 
degrees of such a set of generators must sum to p(G(D) ) ,  the 
dimension of a minimal realization of Cb. 

The idea of the following theorem is that a realization 
for C can be obtained froin a minimal realization for Cb,  
by projecting the “output” (u (D) ,u (D)G(D) )  of Cb onto 
its second component, u(D)G(D) .  We denote this projection 
by the map P: Cb --f C. We shall show that this yields a 
minimal realization of C if and only if the restrictions of the 
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generators {g,b(D)} are a set {g , (D)}  of “shortest independent 
generators” for C. 

Define the span of a set of f ( D )  of formal Laurent series in 
D as the interval from index of the first nonzero component 
of f ( D )  to the index of the last nonzero component, if there 
is one, or to infinity otherwise. In other words, if f(D) is 
rational, then 

[delf(D), degf(D)],  if f ( D )  is finite 
if f ( D )  is infinite. span f ( D )  = { [delf(D),ml,  

Then observe that 

spanu(D)G(D) 5 span (u (D) ,  u ( D ) G ( D ) )  

with equality if and only if 

spanu(D) c spanu(D)G(D). 

The following theorem shows that G ( D )  is minimal if and 
only if these span inclusions hold with equality for all rational 
input sequences u(D) .  

Theorem 8: A rational generator matrix G ( D )  is minimal 
( p ( G ( D ) )  = .(e)) if and only if for all rational input 
sequences u ( D ) ,  spanu(D) 5 spanu(D)G(D). 

Pro08 Since we assumed that generator matrices have 
full rank, the projection map P : Cb + C is bijective. It 
follows that for all j 2 0 the dimensions of the vector spaces 
Cb,31 and P(C~o,31)  are equal. Now P(Cb,31) is a subspace of 

dimCFo,J1 = dimP(CF0,,]) 5 dimCpjl 

for all ,J’ 2 0, which from Theorem 6 implies that vz(C) 5 
.,(eb), 1 5 z 5 k ,  with equality if and only if dimClo,31 = 
dimCp,] for all j 2 0. 

Now dimCb,31 = dimC[o,31 if and only if P(CFo,ll) = C[o,31, 
or, equivalently, if and only if spanu(D)G(D) C_ [0,3] implies 
span (u (D) ,u (D)G(D) )  C [0,g], or, again equivalently, if 
and only if spanu(D)G(D) c [ O , j ]  implies spanu(D) C 

Thus if spanu(D) 2 spanu(D)G(D) for all rational input 
sequences u ( D ) ,  then dimCb,ll = dimC[o,,l for all j 2 0, 
so by Theorem 6 v,(C) = .,(eb), 1 5 z 5 k ,  which 
implies that v (C)  = .(eb)). The realization of Gb(D) in 
controller canonical form has .(eb) = .(C) memory elements. 
Considering the k inputs and the last n outputs of this 
realization we get a realization of G ( D )  in u(C) memory 
elements, which implies that p(G(D) )  = v(C). 

Conversely, suppose that spanu(D)G(D) does not cover 
spanu(D) for some rational u(D) .  If u(D)G(D) is infinite, 
then this can be true only if delu(D)G(D) > delu(D). 
Multiplying through by a common denominator of the com- 
ponents of u(D)G(D) ,  we find a finite u(D)G(D)  such that 
delu(D)G(D) > delu(D). If there is a finite u(D)G(D)  
such that spanu(D)G(D) does not cover spanu(D), then 
there is a polynomial u(D)G(D)  with delu(D)G(D) = 0 
and degu(D)G(D) = 3 (say), with the same property. 

so u(D)G(D) 6 P(Cb,31), which implies that dimCFo,,] < 
dimC[o,ll. Hence, from Theorem 6, U ( @ )  > .(e). But 

0 

C[0,31> so 

[0,31. 

Then, a(D)G(D)  E C[O,,] but (u (D) ,u (D)G(D) )  e cpO,J], 

.(eb) = p ( G ( D ) ) ;  therefore, G(D) is not minimal. 

Remark I :  A more general concept of a generator matrix 
exists in behavioral system theory, in which the input-output 
pairs ( u ( D ) ,  u (D)G(D) )  need not be causally related-i.e., 
it is not required that delu(D)G(D) 2 delu(D) for all 
u(D) .  Theorem 8 remains valid in this more general setting. 
If the causality condition delu(D)G(D) 2 delu(D) is im- 
posed, then Theorem 8 implies that if G ( D )  is minimal then 
delu(D)G(D) = delu(D) for all u(D) .  

Remark 2: Theorem 8 may be straightforwardly extended 
to the case in which C is linear but not time-invariant. Then 
a canonical set of generators for C consists of sets of shortest 
independent generators g[,,,,] ( D )  E C .  An input/output system 
is minimal if and only if it associates with each such generator 
an input sequence U[~,,/](D) such that spanu[,,,,](D) c 

Remark 3: Theorem 8 is closely related to the minimality 
criterion of [20] (and could have been derived from it>. 
According to [20], a realization of a time-invariant group 
code can be nonminimal in only three ways: ij if there is an 
infinite nontrivial state sequence (not the zero state sequence) 
that produces an all-zero output sequence; ii) if there is a 
nontrivial transition from the zero state (not to the zero state) 
that produces a zero output; iii) if there is a nontrivial transition 
to the zero state (not from the zero state) that produces a zero 
output. Condition i) corresponds to a case in which there is an 
infinite input u ( D )  that produces a finite output u(D)G(D) 
(the “catastrophic” case); condition iij corresponds to a case 
in which there is an input u ( D )  that produces an output 
u(D)G(D)  with delu(D)G(D) > delu(D); and condition iii) 
corresponds to a case in which there is a finite input u ( D )  that 
produces a finite output u(D)G(D)  with degu(D)G(D) < 
degu(D). It is easy to see that spanu(D)G(D) does not 
cover spanu(D) if and only if one of these three conditions 
is satisfied. 

SPanq3,f](D) = [ij’l. 

Example 4: The 1 x 1 generator matrix 

G ( D )  = D 

clearly has the GPVP but does not satisfy the condition of 
Theorem 8; hence, it is not minimal and thus not canonical. 
Indeed, if G ( D )  = r ( D )  for any nonzero rational r ( D ) ,  then 
by the product formula G(D) is minimal if and only if T(D) 
is a unit. 

Theorem 9: A rational generator matrix G(D) is minimal 
if and only if any one of the following conditions holds: 

a) For all u ( D )  E F ( D ) k ,  if v ( D )  = u(D)G(D) then 
spanu(D) C spanv(D). 

b) Given a canonical polynomial generator matrix 
Gcp(D) = {g , (D) ,  1 5 i 5 k }  for the code C generated 
by G ( D ) ,  if {uz (D) ,  1 5 z 5 k }  are the input k-tuples 
such that u,(D)G(D) = g,(D),  1 5 i 5 k ,  then u z ( D )  
is polynomial with 

c) ’-For all u(0)  E F(D)‘“, if v(D) = u ( D ) G ( D ) ,  then 
ep(v(D))  5 e p ( u ( D ) )  for all p E %’*. 
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Proof: We prove the theorem by first observing that a) 
is only a reformulation of Theorem 8. Then we show that a) 
+ b) + c) + a). 

a) + b). If (uz ( D ) ,  g2 (0)) is an input/output pair, then by 
assumption span ( u z ( D ) )  & span (g,(D)),  which implies 
that a,(D) is polynomial (so ep(u , (D))  2 0 for all 
p E P )  and 

deg U 2  ( D )  I deg 9, ( D )  = v2 (Cl. 

b) + c). Since G,,(D) is canonical polynomial it follows 
from Theorem 7 that e,(g,(D)) = 0, 1 5 i I k ,  for 
all p E P. Since u,(D), 1 5 i 5 k ,  are all polynomial, 
ep(uz (D) )  2 0 for all p E P. Therefore 

e p ( % ( q )  2 e*(g,(D)),  1 I i I I C ,  for all p E P. 

For p = D-I 

e~-l(u,(D)> = -degpL,(D) 2 -degg,(D) 

= eD-l(g,(D)),  1 5 i 5 k .  

Hence 

e,(u,(D)) 2 ep(g,(D)), 

Let u ( D )  E F(D)' and w(D) = pr(D)G(D). We can 
express 

1 5 i 5 I C ,  for all p E P*. 

k 

W(D) = C%(D)Y,(D) 
,=1 

where u,(D) E F ( D ) .  Then 
IC 

w(D) = C u . ( D ) u z ( D ) G ( D )  = u(D)G(D).  
z = 1  

Since G ( D )  is of full rank k 
k 

Ui(D)Ui(D) = u ( D ) .  
i=l 

Therefore, for all p E P* we have 

e,(@)) 2 ,Igk(%(.(Lt(W + e P ( % ( m  

2 l q a l k  min {.P(.Z(D)) + eP(gz(D))) = e,(w(D)) 

where the last equality follows from the fact that G,,(D) 
is canonical and thus has the GPVP. 

c) + a). Now 

delu(D) = eD(u(D))  2 eD(w(D))  = delw(D) 

so span (u(D))  begins not earlier than span (w(D)) .  
If w(D) is infinite, then clearly span(u(D)) c 
span(w(D)). If w(D) is finite, then for some 1 2 0, 
we can assume that v(D)D' E F[DIn. Therefore, 
ep(w(D)D')  2 0 for all p E P. We have v (D)D1  = 
u(D)D'G(D).  From b), we deduce that ep(zl(D)D') 2 
0 for all p E P. Hence, u(D)D' E F[DIk. Then 

deg (u(D)D' )  = -eg-I (u(D)D' )  
5 -eD-l ( v (D)Dz)  = deg (w(0 )D ' )  

so degu(D) 5 degw(D). Hence, span(u(D)) C 

Example 3 (cont.): Let G ( D )  = {g,(D),g,(D)) and 
G'(D) = {g , (D) ,gk(D)}  be as before, with G'(D) canonical. 
Then the input sequences, u l ( D )  and 212(D) such that 
u l (D)G(D)  = g l ( D )  and 752(D)G(D) = gL(D) are 

span (w(D)), and the proof is completed. 

Since ul ( D )  and 212 (0) an: polynomial, and 

degw(D)  = 0 < v1(C) = 1 
degu2(D) = 2 = v2(C) 

it follows that G ( D )  is minimal, although not canonical. 
Remark 1: As we shall see in Section VIII, condition b) is 

essentially a condition that iS(D) must be globally invertible. 
Remark 2: Condition c) can be characterized as a zero- 

free property; the p-valuation of an output sequence cannot 
be greater than the p-valuation of the input sequence that 
generated it, for any p in P*. 

Remark 3: Theorem 9 yields a simple proof of the well- 
known fact [l] that a systematic generator matrix G ( D )  is 
minimal. A systematic generator matrix is one that embeds the 
input k-tuple u(D)  in the output n-tuple w(D), so that we may 
write w(D) = (u (D) ,p (D) ) ,  where p ( D )  is a "parity check" 
(n  - k)-tuple. It is obvious that spanu(D) C spanv(D); 
or, equally, that eP(w(D))  I eP(u (D) ) ,  since e,(w(D)) = 

mini% (4D)) , eP MD)) 1 I e, (4D)). 

VI. CANONICAL RATIONAL RATE 
R = 1/n GEVERATOR MATRICES 

We now derive the simple and well-known conditions for a 

A generator matrix for a rate R = l / n  convolutional code 
rate R = l /n generator matrix to be minimal [I], [22].  

C consists of a single rational generator g(D) ;  then 

By our definition of canonicality, a rate R = 1/n generator 
matrix g ( D )  is canonical if and only if it is minimal. 

We may write g ( D )  uniquely as 

where 
a) n ( D )  is the polynomial product np p " ~ ( ~ ( ~ ) )  over those 

b) d ( D )  is the polynomial product n p p - e p ( g ( D ) )  over 

c) g'(D) i s  a polynomial n-tuple with ep(g'(D)) = 0 for 

Clearly, g'(D) is uniquely defined up to multiplication by 
units. 

p E P such that e P ( g ( D ) )  > 0; 

those p E P such that eP(g(D)) < 0; 

all p E P. 
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Theorem 7 implies the following well-known theorem [ 11: 
Theorem 10: The minimal state-space dimension of a rate 

R = 1/n code C generated by a single generator g(D) is 
v(C) = defg(D). The generator g’(D) = ( d ( D ) / n ( D ) ) g ( D )  
defined above is a canonical polynomial generator matrix for 
C with degg’(D) = .(e). 

Proof: By Theorem 7, g’(D) is a canonical polynomial 
generator matrix for C, since eP(g’(D)) = O for all p in P 
and the GPVP holds trivially. Therefore, v(C)  = degg’(D). 
Furthermore 

degg’(D) = defg’(D) = -eD-l (g’(0)) 

since ep(g’(D)) = 0 for all p in P, and 

defg(D) = def ( n ( D ) / d ( D ) )  + defg’(D) 
= defg’(D) = .(e). 0 

It then follows from our minimality test that: 
Theorem 11: A rational rate R = l /n  generator matrix 

g(D) = (n(D)/d(D))g’(D) is minimal (and thus canonical) 
if and only if n ( D )  = 1 and degd(D) 5 degg’(D). 

Pro08 The input to g(D) that generates g’(D) is u ( D )  = 
d ( D ) / n ( D ) ;  u (D)  is polynomial if and only if n(D)  = 1 
and, then, spanu(D) C spang’(D) if and only if degd(D) 5 

Corollary 12: A rational rate R = 1/n generator matrix 
g(D) is minimal if and only if ep(g(D)) 5 0 for all p E P*. 

U 
Proof: Again write g(D) = (n(D)/d(D))g’(D), where 

eP(g’(D)) = 0 for p E P. Assume that g(D) is minimal, then 
by Theorem 11 n ( D )  = 1 and degd(D) 5 degg’(D). Since 
eD-l(g‘(D)) = -degg’(D), we have 

deg 9‘ ( D ) .  0 

%(9(D)) = ep(9” + ep(n(D)) - e,(d(D) 
5 0 fo rp  E P 

5 0. 
eD-l(g(D)) = eD-I(g’(D)) + eD-1 (n(D)) - e D - I ( d ( D ) )  

Conversely, if ep(g(D)) 5 0 for all p E P*, then 

e , (n(D) /d(D))  = e,(g(D)) - .P(9’(D)) 5 -ep(g’(D)) 

Hence 

e,(n(D)/d(D)) 5 0 for p E P 

which implies n ( D )  = 1, and 

eD-1 (n(D) /d(D))  I degg’(D) 

which implies deg d ( D )  5 degg’(D). 0 
Corollary 12 foreshadows Theorem 13 in the next section. 

VIX. CANONICAL RATIONAL GENERATOR MATRICES 

We recall that a rational generator matrix G ( D )  = 
{g,(D), 1 5 i 5 k }  is canonical if pccf (G(D))  = .(e), 
where 

Pccf(G(D)) = P(SZ(D)) 
l s z l k  

is the sum of the dimensions p(g,(D)) of minimal independent 
realizations of each of the generators g,(D), and v(C) is the 
minimal state-space dimension of the code C. A canonical gen- 
erator matrix thus specifies a minimal realization in controller 
canonical form. 

We shall give canonicality tests for a rational generator 
matrix G ( D )  that generalizes Theorem 7 (for polynomial 
generator matrices) and Corollary 12 (for rate R = 1/n 
rational generator matrices). 

The equivalence of statements a) and c) in the following 
theorem, first stated in [5] ,  corrects the assertion of [2] and 
[3] that G(D)  is canonical if and only if it has the GPVP. 

Th.eorem 13: Let G ( D )  be a k x n rational matrix of rank 
k and C be the convolutional code generated by G(D) over 
F ( ( D ) ) .  Then the following statements are equivalent: 

a) G ( D )  is canonical. 
b) ep(gz(D)) 5 0, 1 5 i 5 k ,  for all p E P*, and 

c) ep(g2(D)) 5 0, 1 5 i 5 k ,  for all p E P*, and G ( D )  
extdefG(D) = .(e). 

has the GPVP. 
Proo$ 

a) e b). Clearly, G ( D )  is not canonical if a generator 
g,(D) can be replaced by a generator gi(D) such that 
p(g: (D))  < p(g,(D)), while generating the same code. 
If ep(g,(D)) > 0 for some z and for some p in P*, 
then by Corollary 12 g,(D) is not minimal for the rate 
R = 1/n code that it generates, and can be replaced by 
a minimal generator g:(D) for the same code, so G ( D )  
cannot be canonical. Hence, if G ( D )  is canonical, then 
g,(D) is minimal as a rate R = l / n  generator, and by 
Theorem 10 

P(S,(D))  = defg,(D). 

.(Cl = Pccf(G(D)) = defg,(D). 

It follows that if G ( D )  is canonical, then 

l < z < k  

Conversely, if eP(g2(D)) 5 0, 1 5 z 5 k ,  for all p in 
P*, then by Corollary 12 and Theorem 10 each generator 
g, (D)  can be realized with def g , ( D )  memory elements. 
If moreover 

E 

C d e f g i ( D )  = .(e) 
2 = 1  

then G ( D )  can be realized in controller canonical form 
with v(C)  memory elements, so G(D)  is canonical. 

c). Let the rows of G ( D )  be g l (D) , . . .  ,gk(D). As 
in Section VI, we may write each generator uniquely as 

b) 

9,(D) = ( ~ z ( ~ ) / d z ( D ) ) g i ( D )  

where g:(D) is polynomial with ep(g/,(D)) = 0 for p 
in P and 

deggl(D) = defg:(D) = defg,(D). 

If A ( D )  is the k x k diagonal matrix with nonzero 
diagonal elements d ,  ( D )  /n, ( D )  , then 

G’(D) = A(D)G(D). 
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It follows from Lemma 2 that G'(D) has the GPVP 
if and only if G(D) has the GPVP. Furthermore, the 
external defect of G'(D), namely the sum of the degrees 
of its generators, is equal to the external defect of G(D). 

Suppose that ep(g,(D)) 5 0, 1 5 i 5 k ,  for all p in 
P*, and extdefG(D) = .(e). The polynomial matrix 
G'(D) = A(D)G(D) then has eP(gi(D)) = 0, 1 5 i 5 
k ,  for all p in P,  and degg:(D) = defg,(D). It follows 
that 

extdefG'(D) = defg:(D) 
l<z<k 

= degg,(D) = .(Cl 
l < z < k  

and therefore G'(D) is canonical. By Theorem 7, G'(D) 
has the GPVP, and therefore G ( D )  must have the GPVP. 

Conversely, if ep(g2(D)) 5 0, 1 5 i 5 k ,  for all p in 
P*, and G(D) has the GPVP, then G'(D) has the GPVP 
by Lemma 2, so by Theorem 7 G'(D) is canonical, and 

v(C) = deggl(D). 
l<z<k 

Thus the external defect of G(D) is equal to .(e), so 
0 

Remark 1: Since a canonical generator matrix G(D) has 
defects {defg,(D), 1 5 i 5 k }  equal to those of an equivalent 
canonical polynomial generator matrix G,,(D), it is clear that 
Gcp(D) can be obtained from G(D) simply by multiplying 
each generator g2 (D) by 

by c) G ( D )  is canonical. 

& ( D )  = n p-"P(9%(D)) 

P E P  

(the least common multiple of the denominators of 
{ g Z 3 ( D ) ,  1 5 j 5 n}). More generally, since any generator 
matrix G ( D )  with the GPVP has defects equal to those 
of an equivalent canonical polynomial generator matrix 
G,, ( D )  , G,, (0) can be obtained from G( D )  by multiplying 
each generator g2 (0) by 

d,(D)/n,(D) = n p-ep(gJD)) 

P E P  

since if g:(D) = (d,(D)/n,(D))g,(D), then ep(g:(D)) = 0 
for all p E P and 

degg:(D) = defg',(D) = defg,(D) = v 2 ( C ) .  

Remark 2: Theorem 13 shows that canonicality is the in- 
tersection of two independent properties, global orthogonality 
(the GPVP), and minimality. Global orthogonality ensures 

x d e f g i ( D )  = v(C) 
i 

but as Example 4 ( G ( D )  = 0) shows, it does not ensure that 
each g , (D)  can be realized with defgi(D) memory elements. 
The minimality condition of Corollary 12, eP(gi(D)) 5 0 for 
all p in P*, ensures that each generator gi(D) can be realized 
with defgi(D) memory elements and thus is a minimal 
encoder for the one-dimensional code that it generates. 

VIII. MINIMALITY ANI) INVERTIBILITY VIA THE IFT 

In this section we will use the invariant factor theorem 
(IFT) [23] with respect to both F[D]  and F[D-'] to show 
the equivalence of minimality and global invertibility. 

First we state the extended invariant factor theorem (IFT), 
sometimes called the Smith-McMillan canonical form [22]: 

Theorem 14 (Extended Invariant Factor Theorem): Let 
G(D) be a full-rank k x n rational matrix, where k 5 n. 
Then G(D) may be written as follows: 

G(D) = . q ) r ( D ) B ( D )  

where A ( D )  and B ( D )  are, respectively, k x k and n x n 
matrices with unit determinants, and where r ( D )  is a diagonal 
matrix with diagonal elements r Z ( D ) ,  1 5 i 5 k ,  called 
the invariant factors of G(D) relative to the ring F[D] .  The 
invariant factors are uniquely determined by G(D)  as follows: 

% ( D )  = &(D)/Az-l(D) 

where &(D)  = 1 by convention and 

min {eP (det M ,  ( D ) )  IM, ( D I E M ,  } A,(D) = n P 
P E P  

where M ,  is the set of i x i j  submatrices of G ( D ) ,  1 5 i 5 k .  
Consequently 

k 

For all p 
property 

i=l 
k 

ep(Yi(D)) '= e p ( a k ( D ) ) ,  p E p. 
i=l 

in P,  the invariant factors satisfy the divisibility 

ep(rz(D)) 5 ep(r2+l(D)),  15 2 < k .  

It is easy to show that if G(D)  is regarded as a matrix over 
F(D- l ) ,  then the invariarit factors T2(D-l )  of G ( D )  with 
respect to F[D-'] have the same p-valuations as the invariant 
factors -y2(D) for all p in P except for D. Therefore, it makes 
sense to define the p-valuations of the invariant factors of 
G ( D )  for all p in P* and all i by 

YD,z = eD(r,(D)), i f p = D  

rP,, = ep(r , (D))  =: eP(T2(D-')), 
YD-1,2 = eD-l(Tz(D- l)), if p = D-l 

otherwise. 

If we define &(D-')  = 1 and 

a, (D-1) = pnlln{ep (det M% ( D - ' ) )  I i K  (0-l ) E M ,  1 

PE'P*\{D) 

then 

To simplify the computation of these p-valuations for small 
generator matrices we define aP,0 = 0 for all p in P* and 
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and then we have for all p in P* and 1 5 i 5 k c) + a). Assume that G ( D )  has an F[D]-inverse G-'(D), 
and let v ( D )  = u(D)G(D)  be any sequence in C. Then 
u ( D )  = v (D)G- l (D) ,  SO yp,z = Sp,% - S p , z - l ,  

which implies 

k 

hp,k y p , z .  
z=1 

Remark: We can now recognize that for p E P 

ep(G(D))  = min{ep(detAlk(D)) 1 Mk(D)  E M k }  

= e p ( & ( D ) )  = Jp,k 

and 

e p l ( G ( D ) )  = min{eD-l(detMA(D)) I Mk(D)  E A4,} - 
= eD-l(ak(D-')) = SD-l,k. 

Thus the internal defect can be computed directly from the 
p-valuations of the invariant factors of G(D)  by 

intdef G ( D )  = - Sp,kdegp 
P E P "  

/ k  \ 

Now we have a theorem that shows the equivalence of a 
criterion for minimality in terms of invertibility [24], [4] to 
the global zero-freedom of the invariant factors of G(D).  

Theorem 15: For a full-rank rational k x n matrix G(D) ,  
the following are equivalent: 

a) G ( D )  is minimal. 
b) yp,k 5 0 for all p in P*. 
c) G ( D )  has an F[D]-inverse and an F[D-']-. inverse. 

Pro03 We prove a) + b) 3 c) + a). 
+ b). If G ( D )  is minimal, then Theorem 8 implies 
that a polynomial output sequence u(D)G(D) must be 
generated by a polynomial input sequence u ( D ) ,  and 
an antipolynomial output sequence u(D-')G(D-l)  
must be generated by an antipolynomial input se- 
quence U @ - ' ) .  Let G ( D )  = A ( D ) r ( D ) B ( D )  be 
an invariant factor decomposition of G(D);  then 
G-'(D) = B-l (D) l? l (D)A- l (D)  is a right inverse 
of G(D) ,  where A- ' (D)  and B-'(D) are polyno- 
mial since A ( D )  and B ( D )  have unit determinants. 
Suppose yp,k > 0 for some p in P. Then the input 
u ( D )  = ( O , O , .  . . , l / p ) A - l ( D )  is nonpolynomial 
(since u ( D ) A ( D )  is nonpolynomial), but u(D)G(D)  
is polynomial, contradiction. Using the IFT with respect 
to F[D-'] ,  we can show a similar contradiction if 

+ c). For p in P, if ' yp ,k  5 0, then yp,z 5 0, since by 
the IFT yP,+ 5 y p , k  for z 5 k. Hence, if Tp,k 5 0 for 
all p in P, r - ' ( D )  is polynomial, and then G-'(D) = 
B-l(D)r-l(D)A-l(D) is the desired polynomial right 
inverse of G(D) .  Similarly, if also yD-l,k 5 0, then 
r-'(D-') is antipolynomial, and the IFT with respect 
to FID-l] yields an F[D-']-inverse of G(D). 

y D - l , k  0. 

i) u ( D )  is finite if v ( D )  is finite; 
ii) delu(D) 2 delv(D). 

iii) dega(D) 5 degw(D). 
Similarly, if G ( D )  has an F[D-']-inverse, then 

Conditions i)- iii) imply that spanu(D) C spanv(D), 
which by Theorem 8 implies that G(D)  is minimal. 0 

Remark 1: The conditions i)- iii) of the last part of the 
proof may be related to the conditions of the minimality test 
of [20] as follows. Condition ii) holds for all v ( D )  in C if and 
only if y p , k  5 0 for p = D ,  and is equivalent to the condition 
that no nontrivial zero-output state transition starting from the 
zero state occurs in the minimal state realization of G(D) 
when it is used as a state realization of C. Similarly, condition 
iii) holds for all v ( D )  if and only if ' y p , k  5 0 for p = D-', 
and is equivalent to the condition that there is no nontrivial 
zero-output state transition ending in the zero state. Finally, 
condition i) holds for all v ( D )  if and only if yp,k 5 0 for all 
other p E P*, and is equivalent to the condition that there is no 
nontrivial infinite zero-output state path (the "noncatastrophic" 
condition). 

Remark2: Statement b) in Theorem 15 may be stated as: 
"all invariant factors of G ( D )  are zero-free'' (see Definition 
1). This test requires computing only the sets of k x F and 
(k - 1) x ( k  - 1) minors of G(D) .  

Remark 3: The fact that a rational matrix is zero-free at p 
if and only if its inverse is pole-free at p is identified as a 
"generalized Bezout test" in [13]. So this theorem might be 
called a "global generalized Bezout test." 

Example 5: Let 

be a generator matrix over F2. Then the 1 x 1 minors of 
G ( D )  are {1,0, D ,  l}, and the 2 x 2 minor is the determinant 
det G ( D )  = 1. The greatest common polynomial divisor of 
the 1 x 1 minors is 1, so Sp,1 = 0 for all p E P. However, 
the maximum degree of the 1 x 1 minors is 1, so it follows 
that S D - I , ~  = -1. Since detG(D) = 1 we have Sp,2 = 0 for 
all p E P*. Therefore 

so G ( D )  is not globally zero-free and not minimal. 

unique inverse 
Indeed, G ( D )  does have an F[D]-inverse, namely, its 

but G-'(D) is not an FED-lI-matrix, so G ( D )  has no 
F [D- 'I-' inverse. 

Example 6 151: Let 
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be a generator matrix over IF2. The greatest common divisor 
of the 1 x 1 minors of G(D) is A,(D)  = 1/(1 + D3) and 
that of the 2 x 2 minors is A 2 ( D )  = 1/(1 + D3) .  Therefore, 
y2(D) = Az(D)/Ai(D) = 1. 

G(D) can also be written as a rational matrix in D-l,  viz., 
1 

D- 
1+D-1+D-2 

1 1+Dz1 
1 

G ( D )  = 

We have, similarly, 
- 
Al(D-1) = 1/(1+ 0 - 3 )  

and - 
A2(D-’) = 1/(1+ F3). 

Therefore, we also have y2(DP1) = 1. Thus yp,2 = 0 for all 
p E P*. By Theorem 15, G ( D )  is minimal. 

We shall now see that conditions b) and c) of Theorem 15 
are equivalent to a more general global invertibility condition, 
as follows. Let P’ be any proper subset of P*, and define the 
ring R(P‘) as 

(We exclude P’ = P*, since then by the product formula 
R(P*) is merely the set of degree-zero polynomials and 0: 
R(P*) = {g (D)  = go I go E F}.)  Then R(P’) is a principal 
ideal domain whose primes are the elements of PI, and F ( D )  
is the field of quotients of P’. Examples are: 

a) If P’ = P*\{D-l}, then R(P’) = F[D]. 
b) If P’ = P*\{D}, then R(P’) = F[D-’]. 
c) If P’ = P*\(D,D-l}, then R(P’) is the ring of 

finite sequences, sometimes called the set of Laurent 
polynomials, denoted by F[D,  D-l] .  

d) If P’ = { D } ,  then R(P’) is the ring of causal rational 
functions; i.e., R(P’) is the set of rational functions 
which when expanded as formal Laurent series in D 
are in the set F [ [ D ] ]  of formal power series in D. 

e) If PI = {p} for any p E P*, then R(P’) is the set 
of rational functions which when expanded as formal 
Laurent series in p over F[DIp are in the set of formal 
power series in p over F[D],, which we denote simply 

The invariant factor theorem holds over any such ring R(P’), 
and the invariant factors yp,, for every prime p E P’ are 
unchanged from those defined above. It follows from Theorem 
15 that G(D) is minimal if and only if G(D) has an R(P’)- 
inverse for every such proper subset P’ C P*: furthermore, if 
{P‘”)} is any collection of subsets of P* whose union is P*, 
then G ( D )  is minimal if and only if G(D) has an R(P(”))- 
inverse for every P(n) in that collection. For example: 

Corollary 16: A rational k x n generator matrix G(D) is 
minimal if and only if 

a) G ( D )  has both an F[D]-inverse and an R({D-’})- 

b) G ( D )  has an F [ D ,  D-l]-inverse, an F[[D]]-inverse, and 

c) For all p E P*, G(D) has an R({p})-inverse (i.e., a 

by F[bll. 

inverse (i.e., a rational F[[D-l]]-inverse). 

an ~ [ [ ~ - l ] ] - i n v e r s e .  

rational F [  [p]]-inverse). 0 

Thus we may say that G(11) is minimal if and only if G ( D )  
is globally invertible. 

Remark: It is easy to see that G ( D )  is noncatastrophic (the 
output u(D)G(D)  is finite if and only if the input u ( D )  is 
finite) if and only if G ( D )  has a finite right inverse (i.e., 
an F [ D ,  D-’]-inverse). Corollary 16 shows that noncatas- 
trophicity is necessary but not sufficient for minimality (e.g., 
G(D)  = D is noncatastrophic but nonminimal). Compare 
the “wrapping input property” of Fornasini and Valcher [25], 
which is equivalent to noncatastrophicity for one-dimensional 
Laurent polynomial generator matrices. 

Example 7: Let G ( D )  be. the 2 x 2 matrix 

Then the sets S k  of p-valuations &,k of IC x IC minors for 
p = D- l , D , l +  D ,  . . .  are 

61 = { -2,0,0,...} 

62 = { -1 ,1,0, .  . .} 

71 = {-2,0,0,...} 

7 2  = { I ,  1 ,0 , .  . .}. 

which implies that the sets ‘yk of invariant factors y p , k  are 

Therefore, G ( D )  has a finile F [ D ,  D-l]-inverse and is thus 
noncatastrophic, but G ( D )  does not have either an F[D]- or 
an F[D-l]-inverse. Indeed, the unique inverse of G ( D )  is 

IX. I)ISCUSSION 

This paper shows that canonicality is the intersection of two 
independent properties: minimality and the global predictable 
valuation property. 

Minimality is identified with the absence of any zeros, 
including at D- l ;  with global invertibility; or with the prop- 
erty that the output always “covers” the input, in the sense 
that eP(a(D)G(D)) 5 eP(a(D) )  for all p E P* and thus 
spanu(D) G spanPr(D)G(D). 

The GPVP is identified with the property that the residue 
matrix [G(D)lP has full rank for all p E P*, and with the 
property that the external defect of G(D)  is equal to the 
internal defect of G(D), which is the minimal state-space 
dimension .(e). A minimal generator matrix need not have 
the GPVP, and a matrix with the GPVP need not be minimal. 

From a vector space viewpoint, a globally orthogonal basis 
G(D) = {g , (D) ,  1 5 i 2: I C }  corresponds to a canonical 
decomposition of a rational vector space C, into a direct sum 
C, = C1 + Cz + . . . + Ck of one-dimensional subspaces C, of 
minimal defect, where we regard the defect def C, of a one- 
dimensional space C, as the common defect of its nonzero 
vectors. To obtain a canordcal basis, we select any vector 
g , (D)  from each subspace C, that can be realized with defC, 
memory elements. To obtain a canonical polynomial basis, we 
select the essentially unique (up to units) polynomial vector 
g:(D)  in each C, whose degree is equal to defC,. 
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