Multifocal Visual Evoked Potentials (mfVEP) in Diabetic Patients with and without Polyneuropathy.

Lövestam Adrian, Monica; Gränse, Lotta; Andersson, Gert; Andréasson, Sten

Published in:
Open Ophthalmology Journal

DOI:
10.2174/1874364101206010098

2012

Link to publication

Citation for published version (APA):

Total number of authors: 4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Multifocal Visual Evoked Potentials (mfVEP) in Diabetic Patients with and without Polyneuropathy

Monica Lövestam-Adrian*, Lotta Gränse, Gert Andersson and Sten Andreasson

Department of Ophthalmology, University of Lund, Lund, Sweden

Abstract: Previously not shown this study support that mfVEP is an indicator of optic nerve neuropathy in diabetic patients and there could be a correlation between the optic nerve dysfunction and diabetic poly neuropathy. The early optic nerve involvement might explain some of the visual complain in this group of diabetic patients.

Purpose: To investigate the function of the visual pathway measured by mfVEP (multifocal Visual Evoked Potentials) in patients with diabetic retinopathy and neurophysiologically verified polyneuropathy

Subjects and Methods: Thirty-two diabetic patients with the same degree of diabetic retinopathy were classified with neurography regarding polyneuropathy and further examined with mfVEP. The mfVEPs of eighteen patients with polyneuropathy were compared to those of fourteen diabetic patients without polyneuropathy and to those of ten non-diabetic subjects.

Results: Diabetic duration, and the number of patients who had undergone panretinal photocoagulation for proliferative diabetic retinopathy were similar in the two patient groups, 29±13 vs 25±7 years, p=0.3.

Both groups of patients with diabetic retinopathy had significantly lower amplitudes in the mfVEP than the healthy subjects.

In addition the mfVEP amplitudes, which reflect selected areas of the visual function, were significantly reduced in the lower nasal quadrant in patients with neuropathy compared to patients without neuropathy.

Conclusion: The results indicate that mfVEP could be an indicator of optic nerve neuropathy in patients with diabetic retinopathy. The early optic nerve involvement might explain some of the visual complaints in this group of diabetic patients.

Keywords: Diabetic retinopathy, neuropathy, multifocal VEP (mfVEP).

INTRODUCTION

Diabetic retinopathy is usually considered as a vascular disease, known to cause vision loss and blindness [1]. Additionally, attention has been paid to the neurodegenerative aspects [2], and functional studies with pattern electroretinography (pERG) [3], and multifocal ERG (mfERG)[4] have been done.

Until recently the standard form of visual evoked potential (VEP) has been the objective method for measuring the function of the optic nerve and the visual pathways [5]. Since VEP reflects the total response from the visual pathways, the multifocal visual evoked potential (mfVEP) enhances our possibility to further evaluate the cortical responses on stimulation of localized retinal areas [6-8]. These developments of mfVEP give us new opportunities to evaluate the neurodegenerative component involved in the pathogenesis of diabetic retinopathy.

While several studies have focused on the correlation between retinopathy and nephropathy, the relationship between retinopathy and neuropathy is poorly documented, but half of all diabetic patients will experience neuropathy [9,10]. If neuropathy is an important component in the pathogenesis of diabetic retinopathy then patients with clinical polyneuropathy might demonstrate more deficits in the visual function measured with mfVEP.

The purpose of the present study was to determine whether diabetic patients demonstrate signs of changed neural function measured with mfVEP compared to normals and patients with the same degree of retinopathy with and without polyneuropathy.

METHODS

Subjects

Thirty-two consecutive diabetic patients with and without neuropathy and regularly attending the Medicine and Ophthalmology departments in Lund and Malmö were included. Ten healthy age similar volunteers with no previous eye disorder and a best corrected visual acuity (VA) of 20/20 were included for comparison. The right eye in each patient was examined. The research procedures were in accordance with institutional guidelines and the Declaration
Multifocal Visual Evoked Potentials (mfVEP) in Diabetic Patients

The study was approved by the Committee of Ethic at the University Hospital of Lund

Ophthalmological Examination and Grading of Retinopathy

The best visual acuity after correction was assessed using a Snellen Charts at a distance of 6.0 meter. The classification of retinopathy was based on findings from fundus photographs using a 45° Topcon camera including the three areas nasal, temporal and the central with stereo photo. The degree of retinopathy was based on three retinopathy levels as; no retinopathy, background retinopathy, and sight-threatening retinopathy. Sight-threatening retinopathy included clinically significant macular oedema and/or severe non-proliferative retinopathy according to definitions by the ETDRS [11], or clinically significant macular oedema and/or proliferative retinopathy. Proliferative retinopathy was considered most severe, followed by severe non-proliferative retinopathy and clinically significant macular oedema.

Eyes with clinically significant macular oedema with visual acuity over 0.2 and a duration not longer than 6 months were treated according to guidelines from the ETDRS [12], and eyes with proliferative retinopathy were treated according to DRS [13]. Only eyes without a visible cataract using a slit-lamp biomicroscopy were included in the study. The mean number of laser shots given was for macular edema 200 barely visible shots and for panretinal photocoagulation on average 1800 laser shots.

Analytical Techniques

HbA1c levels were analysed by ion-exchange chromatography using commercially available microcolumns (Bio-Rad, Richmond, CA) or by fast liquid chromatography (Kontron Instruments, Milan, Italy). The upper normal reference range for both methods is <5.3%.

Neurophysiology

To distinguish the diabetes group into two, with or without diabetic neuropathy, neurography was performed on one side in the following nerves: Motor conduction velocities, distal motor latencies, response amplitudes, and F-wave latencies in median and peroneal nerves; Sensory conduction velocities, distal motor latencies, response amplitudes, and F-wave latencies in median and peroneal nerves. The two first components in the response, similar to the P70 and N100 in the classic VEP as described by Betsuin et al. were identified and the peak-to-peak amplitude was measured (Fig. 1).

Responses were recorded with midline electrodes on stimulation of six segments in a defined central region (sector C) where the highest signal to noise ratio could be measured [18].

In addition the mfVEP amplitudes, which reflect the upper and lower nasal quadrant of the visual function and further responses of four nasal specific central segments with in previous study have demonstrated the highest signal-to-noise ratio (N1, N2, N3, N4) were analyzed (Fig. 2). The measurements were compared between the two diabetic groups as well as between the patients and the normal controls (Fig. 3) [9].

Statistical Methods

Mann- Whitney U-test for two independent samples was used since the distribution is skewed. To evaluate differences in proportions between groups, the Chi-square test was used. A significance level of <0.05 was considered significant. The calculations were made in SPSS for Windows version 16.0.
RESULTS

Patient Characteristics

Eighteen patients with diabetic retinopathy and neurophysiologically verified polyneuropathy and 14 patients with diabetic retinopathy but without neuropathy were included in the study. Age was similar between diabetic patients and non-diabetic control subjects, 53 ± 10 years vs 46 ± 7 years; p=0.052, and also between diabetic patients without neuropathy and non-diabetic patients 47 ± 9 years vs 46 ± 7 years; p=0.93.
Diabetic patients with neuropathy were older than diabetic patients without 59 ± 7 vs 47 ± 9 years; p<0.01, but diabetes duration was similar 29 ± 13 vs 25 ± 7 years; p=0.3, as was the mean level of HbA1c 7 ± 1% vs 6.6 ± 0.7%; p=0.3.

Diabetic Retinopathy and Visual Acuity

The degree of diabetic retinopathy and number of photocoagulated eyes did not differ between patients with and without neuropathy (Table 1).

Table 1. Diabetic Retinopathy in Patients with and without Neuropathy

<table>
<thead>
<tr>
<th>Retinopathy Degree</th>
<th>Neuropathy (n= 18)</th>
<th>No Neuropathy (n=14)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Eye</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Macular oedema</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Proliferative retinopathy</td>
<td>12</td>
<td>5</td>
<td>0.083</td>
</tr>
<tr>
<td>Left Eye</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Macular oedema</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Proliferative retinopathy</td>
<td>12</td>
<td>5</td>
<td>0.083</td>
</tr>
</tbody>
</table>

In patients with neuropathy 12/18 right eyes had sight-threatening retinopathy (i.e. macular oedema and/or proliferative retinopathy) vs 9/14 right eyes in patients without neuropathy, p= 0.89.

No difference was seen in the visual acuity of right eyes between patients with and without neuropathy, 0.9; 0.3-1.0 (md, range) vs 1.0; 0.4-1.0 (md, range); p=0.30.

Multifocal VEP in Diabetic Patients

The amplitudes of the responses from the central sector C, mediated by both uncrossed and crossed visual pathways, were similar in the two diabetic patient groups, as was the amplitude response from the nasal upper and lower quadrant sections (Table 2).

These two quadrants were further investigated in separated nasal sectors and within the diabetic group the amplitudes of the responses were lower in patients with neuropathy compared to patients without neuropathy (Table 2).

Table 2. Multifocal VEP in Diabetic Patients

<table>
<thead>
<tr>
<th>Amplitude (nV/ deg²)</th>
<th>Neuropathy (n= 18)</th>
<th>No Neuropathy (n=14)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Eye</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inion</td>
<td>8.2 ± 3.4</td>
<td>6.9 ± 4.4</td>
<td>0.19</td>
</tr>
<tr>
<td>Upper nasal quadrant</td>
<td>3.2 ± 1.4</td>
<td>3.3 ± 1.0</td>
<td>0.78</td>
</tr>
<tr>
<td>Lower nasal quadrant</td>
<td>4.6 ± 1.8</td>
<td>4.7 ± 1.7</td>
<td>0.93</td>
</tr>
<tr>
<td>N1</td>
<td>24 ± 16</td>
<td>35 ± 15</td>
<td>0.020*</td>
</tr>
<tr>
<td>N2</td>
<td>28 ± 18</td>
<td>37 ± 13</td>
<td>0.099</td>
</tr>
<tr>
<td>N3</td>
<td>20 ± 12</td>
<td>28 ± 10</td>
<td>0.054</td>
</tr>
<tr>
<td>N4</td>
<td>34 ± 27</td>
<td>50 ± 31</td>
<td>0.32</td>
</tr>
<tr>
<td>Left Eye</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inion</td>
<td>18 ± 25</td>
<td>24 ± 27</td>
<td>0.135</td>
</tr>
<tr>
<td>N1</td>
<td>21 ± 9</td>
<td>33 ± 15</td>
<td>0.008 **</td>
</tr>
<tr>
<td>N2</td>
<td>30 ± 19</td>
<td>38 ± 24</td>
<td>0.377</td>
</tr>
<tr>
<td>N3</td>
<td>24 ± 15</td>
<td>33 ± 13</td>
<td>0.045 *</td>
</tr>
<tr>
<td>N4</td>
<td>32 ± 20</td>
<td>40 ± 20</td>
<td>0.125</td>
</tr>
</tbody>
</table>

* P>0.05, ** P> 0.01, *** P> 0.001.

Diabetic Patients Compared to Non-Diabetic Subjects

The amplitudes of the responses from a central region (previous described as sector C), the upper and lower nasal quadrants and the response amplitudes from the segments N1-N4 of the right eye was significantly lower in diabetic patients compared to healthy volunteers (n=10) (Table 3, Fig. 4).

Comparing diabetic eyes not previously laser treated (n=11) with non diabetic eyes demonstrated lower amplitudes in diabetic eyes in upper nasal quadrant (9±10 vs 18±5 nV/ deg²; p=0.048), lower nasal quadrant (5±2 vs 22±7 nV/ deg²; p=0.001) and central region (8±4 vs 61±24 nV/ deg²; p=0.001).

Table 3. Multifocal VEP in Patients with and without Diabetes

<table>
<thead>
<tr>
<th>Amplitude (nV/ deg²)</th>
<th>Diabetic Patients (n= 32)</th>
<th>None Diabetics (n=10)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Eye</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inion</td>
<td>7.8 ± 3.7</td>
<td>60.8 ± 24.2</td>
<td>0.000***</td>
</tr>
<tr>
<td>Upper nasal quadrant</td>
<td>3.2 ± 1.3</td>
<td>17.7 ± 5.5</td>
<td>0.000***</td>
</tr>
<tr>
<td>Lower nasal quadrant</td>
<td>4.6 ± 1.7</td>
<td>22.2 ± 6.9</td>
<td>0.000***</td>
</tr>
<tr>
<td>N1</td>
<td>29 ± 16</td>
<td>55 ± 31</td>
<td>0.000***</td>
</tr>
<tr>
<td>N2</td>
<td>32 ± 16</td>
<td>69 ± 56</td>
<td>0.012*</td>
</tr>
<tr>
<td>N3</td>
<td>24 ± 11</td>
<td>56 ± 60</td>
<td>0.001***</td>
</tr>
<tr>
<td>N4</td>
<td>36 ± 25</td>
<td>68 ± 42</td>
<td>0.000***</td>
</tr>
<tr>
<td>Left Eye</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inion</td>
<td>21 ± 26</td>
<td>28 ± 11</td>
<td>0.002**</td>
</tr>
<tr>
<td>N1</td>
<td>26 ±13</td>
<td>56 ± 45</td>
<td>0.002 **</td>
</tr>
<tr>
<td>N2</td>
<td>34 ± 21</td>
<td>68 ± 42</td>
<td>0.001***</td>
</tr>
<tr>
<td>N3</td>
<td>28 ± 15</td>
<td>62 ± 30</td>
<td>0.000***</td>
</tr>
<tr>
<td>N4</td>
<td>35 ± 20</td>
<td>57 ± 30</td>
<td>0.012*</td>
</tr>
</tbody>
</table>

* P>0.05, ** P> 0.01, *** P> 0.001.

DISCUSSION

During the last years several authors have pointed at neuropathy being an important component in the pathogenesis of diabetic retinopathy [2,4,19]. Muller cells and neurons are known to express vascular endothelial...
growth factor in vivo in diabetes [20] and electrophysiologic tests are affected early in diabetes, preceding clinical signs of retinopathy [4,21]. Furthermore, prolonged latencies of VEP responses in diabetics without retinopathy have been demonstrated as a sign of neurodegenerative involvement [22]. In accordance to this, patients with clinical neuropathy, which also influence higher levels of CNS [23] might demonstrate more deficits in the mfVEP recordings than patients without neuropathy, but with the same degree of retinopathy. and VEP latencies has been demonstrated [22]. In the present study, diabetes duration was similar in patients with and without neuropathy and can not have influenced the results.

CONCLUSION

The results of this study suggest that mfVEP could be an indicator of neurodegenerative influence on bipolar cells and of optic nerve neuropathy in patients with diabetic retinopathy and that there is a correlation between this dysfunction and diabetic neuropathy. This neurodegenerative influence and optic nerve involvement might explain some of the visual complaints in this group that cannot be explained by retinopathy alone.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

Multifocal Visual Evoked Potentials (mfVEP) in Diabetic Patients

Received: June 27, 2012
Revised: October 8, 2012
Accepted: October 12, 2012

© Lövestam-Adrian et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.