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Introduction 

The human body is constantly exposed to microbes that usually only colonize 

the host harmlessly, but that may cause infectious diseases, sometimes 

leading to fatal outcomes. To control the resident colonizing microflora, as 

well as to fight pathogens, the human body has developed a variety of host 

defence mechanisms that in most cases effectively prevent the development 

of invasive microbial diseases. These defence mechanisms comprise physical 

or anatomical (skin, mucosal lining), mechanical (ciliated cells from the 

respiratory tracts, tight junctions) and biochemical barriers (tears or saliva 

containing antimicrobial lysozyme) as well as two inducible immune defence 

systems: the innate and the adaptive immune systems. These two systems 

are sequentially activated during infection and work cooperatively to eradicate 

the microbial agent. The innate immune system is the first line of host defence 

toward microbial infections, while the adaptive immune system is elicited later, 

about four to seven days post infection and includes a specific and long 

lasting immunity that is based on the rearrangement and the clonal expansion 

of a random repertoire of antigen receptors (TCR and BCR) on lymphocytes. 

In this review, we will focus on the early innate responses and the role of the 

Toll-Like Receptors (TLRs).  

The innate immune system gives protection to a broad variety of pathogens 

and is based on a limited repertoire of germ-line encoded receptors called 

pattern recognition receptors (PRRs) because they recognize conserved 

microbial components known as pattern-associated molecular patterns 

(PAMPs). The PRRs include among others the members of the Toll-Like 

Receptor (TLRs) family and the nucleotide-binding oligomerization domain 
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proteins (NOD-like receptors, NLRs) (5, 46). Here we will primarily discuss the 

role of TLRs in host protection against bacterial infections. 

 

The Toll-Like Receptors  

The Toll receptors are evolutionary conserved and homologous receptors are 

found in plants, insects, worms (Caenorhabditis elegans) and vertebrates. 

The first member of this family, named Toll was initially identified in the fruit 

fly, Drosophila melanogaster (10). This receptor has been shown to be 

responsible for the embryogenic dorsoventral development of fruit flies and to 

play an important role in the protection against fungi in adult flies (100). The 

Toll-Like Receptors (TLRs) are the mammalian homologues of Toll and 

totally, thirteen mammalian TLRs have been identified so far; ten human 

(TLR1-10) and twelve murine (TLR1-9 and 11-13) receptors, of which some 

are homologues (135).  

TLRs are type I transmembrane proteins that are characterized by an 

extracellular leucin rich domain (LRR) and an intracellular or cytoplasmic 

domain homologous to the interleukin-1 receptor (IL-1R) and therefore called 

Toll/IL-1 receptor (TIR) domain (3, 83). The homology between TLRs and IL-

1R is restricted to their cytoplasmic domain, while their extracellular domains 

are remarkably different. Whereas IL-1R has an immunoglobulin (Ig) -like 

structure, TLRs contain LRR. The LRR domains consist of 19-25 tandem 

repeats where each repeat has a length of 24-29 amino acids. These domains 

are responsible for the recognition of PAMPs from bacteria and parasites but 

also from fungi and viruses (1, 21, 66, 144, 165). At least one ligand for each 

TLR has been identified so far (Figure 1 and Table 1).  
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TLR4 is the most extensively studied PPR and it recognizes a variety of 

ligands (mannan from yeast, host heat shock proteins and fibrinogen and 

envelope proteins from virus, pneumolysin, a cytotoxin from Streptococcus 

pneumoniae) but is mostly known as the lipolysaccharide (LPS) receptor (74). 

TLR2 also recognizes a broad range of ligands, such as bacterial 

lipopeptides, yeast zymosan, parasite and viral proteins and lipoteichoic acid 

(LTA) from Gram-positive bacteria. The variety of ligands recognized is 

believed to be due to heterodimer formation of TLR2 with two other TLRs, 

TLR1 or TLR6, which can discriminate subtle changes in the ligand structure 

(19, 150, 154). The heterodimer of TLR1/TLR2 has been suggested to 

recognize triacylated lipoproteins, while TLR2/TLR6 recognizes diacylated 

lipoproteins (154, 155). TLR5 detects a conserved domain on flagellin 

monomers, the main structural protein that forms the flagella on Gram-

negative bacteria. Flagella are bacterial motor organelles responsible for 

virulence, chemotaxis, adhesion and invasion of host surfaces (61). TLR9 

recognizes nucleic acids such as hypomethylated CpG, motifs, which are 

common among prokaryotic DNA and absent in eukaryotic genomes (19, 63). 

Also, TLR9 has been shown to be activated by hemozoin, a heme containing 

degradation product of haemoglobin generated in erythrocytes infected by 

malaria parasites (32). TLR3, 7 and 8 recognize nucleic acids like TLR9, but 

single-stranded and double–stranded RNA rather than DNA (33, 145, 162). 

The expression of TLRs differ with cell types and cellular localization where 

some have been found to be expressed primarily extracellularly (TLR1, 2, 4, 

5, 6 and 11) and others intracellularly (TLR3, 7, 8 and 9) on numerous 
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myeloid cells (macrophages, dendritic cells, neutrophils, T and B cells) but 

also on non-myeloid cells (epithelial cells, fibroblasts).  

 

The Gram-positive TLR ligands 

Gram-positive bacteria have a thick multilayer cell wall consisting mainly of 

peptidoglycan, a polymer of carbohydrates (N-acetylmuramic acid and N-

acetylglucosamine) cross-linked through peptide bonds, that surrounds the 

cytoplasmic membrane (114, 137). The Gram-positive cell wall contains 

polyalcohols called teichoic acid, some of which are lipid-linked to form 

lipotechoic acids (Figure 2). Lipoteichoic acids (LTA) are anchored in the 

cytoplasmic membrane via lipid moieties whereas wall teichoic acids 

(WTA) are covalently bound to the peptidoglycan (Figure 2). Due to the 

presence of phosphodiester bonds between teichoic acid monomers, 

teichoic acids give the Gram-positive cell wall an overall negative charge. 

Many Gram-positive pathogens however, such as Streptococcus pyogenes 

and Streptococcus pneumoniae express teichoic acids that are D-

alanylated, decreasing the net negative surface charge thereby increasing 

resistance to cationic antibacterial peptides present in the host (93, 171). 

Teichoic acids of Streptococcus pneumoniae also contain choline residues 

providing binding sites for a series of choline binding proteins (54, 119). 

Purified WTA is not inflammatory whereas purified LTA is moderately 

inflammatory through its diacylated moiety being recognized by TLR2/TLR6 

(56, 64, 89, 141). Recent data however, suggest that lipoproteins of 
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Staphylococcus aureus might be more dominant TLR2 ligands as compared 

to LTA (58). 

 

The Gram-negative TLR ligands 

Gram-negative cell walls are more complex than their Gram-positive 

counterpart (Figure 2). They consist of a thin peptidoglycan layer adjacent to 

the cytoplasmic membrane and an outer membrane of lipopolysaccharides 

(LPS), phospholipids and proteins, which face into the external environment 

(39, 114).  

LPS, the main component of the outer leaflet of the outer membrane, is 

highly charged and confers an overall negative charge to the Gram-

negative cell wall. The chemical structure of the outer membrane LPS is 

often unique to specific bacterial strains (i.e. sub-species) and is 

responsible for many of the antigenic properties of these strains. The outer 

membrane of Gram-negative bacteria also contains channel proteins 

called porins that allow passive transport of many ions, sugars and amino 

acids across the outer membrane. The cytoplasmic and the outer 

membranes are separated by the periplasmic space, which contains the 

peptidoglycan layer (Figure 2). LPS, also known as endotoxin, is the most 

studied PAMP of Gram-negative bacteria (Figure 2) (39). This structure 

protects the bacteria from bile salts, hydrophobic antibiotics and complement 

activation and is crucial for bacterial survival. LPS is generally composed of 

an O-linked polysaccharide, which is attached to the lipid A moiety via the 

core polysaccharide (Figure 2). With the exception of Neisseria meningitidis, 
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LPS is crucial for the viability and growth of the bacteria (7, 48, 149). The 

classical lipid A has a mono or biphosphorylated disaccharide backbone, 

which has been acylated with fatty acids. Lipid A anchors LPS to the outer 

membrane via its fatty acids. The classical lipid A of E. coli is hexa-acylated. 

Lipid A is the active component of LPS. This component is probably the most 

potent immunostimulatory molecule of all the PAMPs and is responsible for 

most of the acute inflammatory response to bacterial LPS observed during 

toxic shock (161). The level of Lipid A acylation is critical to the 

immunostimulatory effects of LPS. Thus, penta-acylated LPS from a WaaN 

mutant of E. coli is much less potent than wild type (wt) LPS in eliciting a 

proinflammatory cytokine response from cultured uroepithelial cells (13, 14). 

Induction of innate immune responses by E. coli and purified LPS correlate 

with organ- and cell-specific expression of TLRs within the human urinary 

tract (13, 14).  

Not all Gram-negative bacteria express similar LPS and changes in the LPS 

and/or lipid A structure can occur during various environmental conditions, 

which can result in modulation of the host responses and may thereby confer 

specific advantages to certain bacterial species under changing environmental 

host conditions (39, 161). For example, LPS from Porphyromonas gingivalis, 

an oral anaerobic bacterium, is less potent in eliciting an innate immune 

response than LPS from E. coli (16, 17, 134). Also, clinical isolates of the 

gastric pathogen Helicobacter pylori expresses LPS that is penta-acylated 

and therefore not as immunostimulatory as LPS of many enteric commensals 

that produce hexa-acylated LPS (159). Furthermore, Salmonella is able to 

down regulate the endotoxicity of its LPS by a lipid A deacetylase (PagL), 
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which is under the global control of the PhoP/PhoQ regulon (84). However, 

not only acylation but also other modifications of the lipid A moiety (fatty acid 

composition, phosphate patterns) are crucial for host recognition (37, 85-87). 

LPS is recognized by TLR4 but TLR4 is not sufficient for the signalling (110). 

It also requires accessory proteins. LPS binds first LPS binding protein (LBP), 

which is an acute phase protein that circulates in the bloodstream and binds 

to glycosylphosphatidylinositol (GPI) linked co-receptor CD14, which is 

expressed on the cell surface. LPS is then transferred to a small accessory 

soluble protein, MD-2 that is also part of the TLR4 receptor complex (116). 

The Gram-negative cell wall also contains lipoproteins located either in the 

cytoplasmic or outer membrane. Particularly, lipoproteins from Borrelia 

burgdorferi, the agent of Lyme disease have been shown to activate 

inflammatory cells through TLR2 and TLR1 (25, 27, 30). 

 

Other bacterial ligands 

Peptidoglycan (PG) is a common component of both Gram-positive and 

Gram-negative bacteria (Figure 2). TLR2 has been reported to recognize PG 

however this is controversial. Indeed, it has been suggested that PG purified 

directly from bacterial cultures may contain contaminations (such as LPS, LTA 

or covalently bound lipoproteins), which can account for the TLR2-dependent 

inflammatory responses observed (49, 50, 160). Instead the intracellular 

NOD-like receptors (NLRs) have been shown to recognize muropeptides 

derived from the peptidoglycan. NLR-stimulating ligands have also been 

shown to synergize the proinflammatory effects of TLR ligands and vice versa 

(96). Since, the NLRs are intracellular, muropeptides need to reach them in 
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the cytosol for activation. It is therefore not surprising that the NLRs have 

been shown to play a particular role for defence against intracellular bacterial 

pathogens able to escape from the vacuolar compartment and replicate in the 

cytosol such as Shigella and Listeria monocytogenes (51, 95). The primarily 

extracellular pathogen Helicobacter pylori has been proposed to deliver 

muropeptides to intracellular NLRs via its Type IV secretion system encoded 

by the cag pathogenicity island, providing one explanation why cag positive H. 

pylori are more proinflammatory than strains lacking this island (167). 

Bacterial DNA contains hypomethylated CpG motifs, which are almost non-

existent in mammalian genomes. These CpG motifs are immunostimulatory 

via TLR9 recognition (19, 139). Since TLR9 is located intracellularly in the 

endosome, bacterial DNA must be taken up and transported to the endosome 

in order for it to interact with this receptor. Simultaneously, with the transport 

of CpG DNA from the early endosome to the endosome, TLR9 is recruited 

from the ER to CpG DNA-containing compartment (97). In the endosome, the 

double stranded DNA is cleaved into smaller single stranded CpG motifs that 

will be recognized by TLR9. It was also shown that a small proportion of TLR9 

is surface accessible on the plasma membrane after exposure to CpG DNA 

(97). 

Flagellin is the main subunit protein of the flagellum (20, 130). Different 

species of bacteria have different numbers and arrangements of flagella.  

For instance, Vibrio cholerae has only one flagellum while E. coli has 

several flagella expressed all around the bacteria and pointing in all 

directions. Flagellin monomers are recognized by TLR5 while the flagellum 

is not (61). The amino acid residues responsible for TLR5 recognition have 
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been defined and are located in a highly conserved region that is hidden in 

the flagellum but is accessible in the monomer (9, 148).  

Some bacteria-specific ligands have also been described, such as porins or 

toxins. Porins are proteins that are prevalent in the outer membrane of the 

Gram-negative bacteria, which act as a pore through which molecules can 

diffuse (Figure 2). Porins from Neisseria meningitidis, Haemophilus 

influenzae type b and Shigella dysenteriae have been shown to be 

immunostimulatory molecules (47, 108, 147). Porins from N. meningitidis are 

recognized by the heterodimer TLR1/TLR2, while the porin of S. dysenteriae 

signals via TLR2/TLR6 (131-133). It has been suggested that the low 

percentage of protein homology (31%) between neisserial and Shigella porin 

accounts for the difference in the TLR recognition specificity (108).  

Pneumolysin is a member of the thiol-activated cytolysin expressed by nearly 

all clinical isolates of Streptococcus pneumoniae (121). Pneumolysin has 

several functional domains responsible for adherence to epithelial cells, 

cytolysis and complement activation and is therefore an important virulence 

factor. It has been suggested that TLR4 recognizes pneumolysin (106).  

 

TLR signalling 

Upon recognition of their cognate ligands, TLRs dimerize and initiate a 

signalling cascade that leads to the activation of a proinflammatory response 

(3). Ligand binding induces two signalling pathways, one is MyD88-dependent 

and the other is MyD88-independent inducing the production of 

proinflammatory cytokines and type I interferons (IFNs) (Figure 3) (83). These 

two distinct responses are mediated via the selective usage of adaptor 



 11 

molecules recruited to the TIR domains of the TLRs after ligand recognition 

and binding. Four adaptor molecules have been identified so far, MyD88, TIR-

associated protein (TIRAP), also called MyD88-adaptor-like (Mal), TIR 

domain-containing adaptor protein-inducing IFNβ (TRIF) also known as TIR 

domain-containing molecule 1 (TICAM-1) and TRIF-related adaptor molecules 

(TRAM), also named TIR domain containing molecule 2 (TICAM-2) (120, 168, 

173-175). MyD88 and TIRAP are responsible for the induction of 

proinflammatory genes and TRIF and TRAM for the induction of the IFNs. 

One additional adaptor molecule has been found the sterile alpha and 

HEAT/Armadillo motifs (SARM). Its function in the TLR signalling is not fully 

understood, even though it was reported that it acts as a negative regulator of 

TRIF-dependent TLR signalling (29, 76). 

 

MyD88-dependent signalling 

All TLRs, except TLR3, signal through MyD88 (2). Upon ligand recognition, 

MyD88 is recruited and associates with the cytoplasmic domain of the TLRs 

via homophilic interaction between the TIR domains. Then IL-1R-associated 

kinase 4 (IRAK-4) and IRAK-1 are recruited and activated by phosphorylation. 

Activated IRAK-4 phosphorylates IRAK-1, which subsequently associates with 

TNFR-associated factor 6 (TRAF6) (52). TRAF6 activates TGF-β-activating 

kinase 1 (TAK1). TAK1 phosphorylates IKK-β and MAP kinase kinase 6 (MKK 

6) leading to the degradation of IκB and thereby leading to the nuclear 

translocation of NF-κB which results in the induction of genes involved in 

inflammatory responses. Activation of the MyD88-dependent pathway results 

also in the activation of MAPKs such as p38 and JNK, which leads to the 
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activation of AP-1.  In addition to NF-κB and AP-1, the MyD88-dependent 

pathway can activate a third transcription factor IRF-5. Upon ligand 

stimulation, IRF-5 can also translocate into the nucleus and bind to IFN-

stimulated response elements (ISRE) motifs in the promoter region of 

cytokines genes. In addition to MyD88, TLR2 and TLR4 needs a second 

adaptor molecule, TIRAP/Mal in order to signal. It was recently demonstrated 

that TIRAP/Mal is recruited to the plasma membrane through its 

phoshatidylinositol 4,5-bisphosphate binding domain, where it then can 

promote delivery of MyD88 to activated TLR4 (77).  

TLR7 and TLR9 activation does not only lead to the induction of 

proinflammatory cytokines but can also cause the induction of IFN-α in a 

MyD88-dependent manner. This is specific to plasmacytoid dendritic cells 

(pDC) that are expressing high levels of TLR7 and TLR9 and are capable of 

producing high levels of IFN-α. Upon ligand stimulation, a complex consisting 

of MyD88, IRAK-4, IRAK-1 and TRAF6 is formed at the TIR domain of TLR7 

and TLR9 and then the transcription factor IRF-7 is also recruited to this 

complex. The activation of IRF-7 by phosphorylation leads to its translocation 

to the nucleus and induction of the IFN response. 

 

MyD88-independent signalling 

TLR3 and TLR4 activation triggers the induction of a type 1 IFN response 

leading to the induction of IFN-α and IFN inducible genes. While TLR3 

mediated signalling only requires the adaptor molecule TRIF, TLR4-mediated 

signalling needs in addition to TRIF another adaptor protein, TRAM. TRAM is 

considered as a bridging adaptor between TLR4 and TRIF. TRIF interacts 
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with both receptor-interacting protein 1 (RIP1) and TRAF6 and cooperatively 

with these two proteins activates NF-κB to induce expression of 

proinflammatory cytokines (35). Furthermore, TRIF activates also TRAF 

family members-associated NF-κB activator (TANK) binding kinase 1 (TBK1) 

via TRAF3. In turn, TBK1 phosphorylates directly two transcription factors, 

IRF-3 and IRF-7 allowing them to translocate in the nucleus and induce IFN-α 

and IFN inducible genes (136).  

In viral infections, the induction of Type 1 interferons has recently been shown 

to be primarily due to the recognition of double stranded RNA, which is a sign 

of replicating viruses. The retinoic acid inducible gene I (RIG-I) with its 

helicase domain has been demonstrated to be an essential regulator for 

double stranded RNA signalling, that results in the activation of the 

transcriptional factors NF-κB as well as IRF-3 (151, 176). 

 

TLR signalling regulation and immunomodulators 

The TLR signalling needs to be tightly regulated in order to be permissive for 

the resident microflora, to be restrictive for primary pathogens and to avoid 

excess inflammation, which can be deleterious for the tissue or organ (109). 

The first and most basic level of regulation is directly linked to the TLR cellular 

localization as described above. For instance, the intracellular location of 

TLR9 allows an increased recognition of endocytosed viral DNA but also 

prevents recognition of self-DNA (18). Furthermore, in organs like the gut, it 

was shown that normal primary enterocytes express low levels of TLR2 and 

TLR4, and the co-receptor MD-2 as well as the membrane-bound CD14 and 

that, in contrast to macrophages, TLR4 is not localized at the cell surface but 



 14 

rather at the Golgi apparatus requiring internalization of LPS via lipid rafts to 

activate signalling (70, 71). Expression of membrane bound CD14 is also 

absent from uroepithelial cells (62). 

Beside their cellular localization, TLR signalling can be modulated by the 

selective usage of the adaptor molecules recruited to the TIR domains of the 

TLRs after ligand recognition and binding. The intracellular signalling cascade 

is also negatively regulated at various levels either by protein phosphorylation, 

degradation, interaction with inhibitory adaptor molecules, or sequestration 

(40, 109). Some of the main players in this immuno-modulatory regulation are 

i) Suppressor of cytokine signalling 1 (SOCS-1) ii) Flightless I homologue 

(Fliih) iii) ST2 iv) Triad3A v) A20 vi) IRAK-M vii) IRAK-1c viii) a short form of 

MyD88 (MyD88s) and ix) ß-arrestin (26, 28, 31, 65, 91, 170, 180). MyD88s 

inhibits IL-1 and LPS-induced NF-κB activation. Indeed MyD88s acts as a 

dominant negative form of MyD88 and replaces formation of MyD88 

homodimers by MyD88s-MyD88 heterodimers. These heterodimers still recruit 

IRAK1 but inhibit phosphorylation of IRAK-1 via IRAK-4 and thereby inhibit 

downstream signaling (26). ST2L is a type I trans-membrane receptor 

composed of three extra-cellular Ig-like domains and an intracellular TIR 

domain that was shown to sequester MyD88 and Mal, but not TRIF or IRAK, 

which in turn negatively regulates IL-1R and TLR4-mediated signaling. 

Another molecule, Fliih has been shown to act as negative regulator by 

interacting with MyD88. SOCS-1 mediates Mal degradation and thereby 

negatively regulates TLR signaling (107, 118). Triad3A is a molecule that 

promotes the ubiquitination and degradation of TLR4 and 9 via binding the 

cytoplasmic domain of these two TLRs (31). IRAK-M is a negative regulator 
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that blocks IRAK-4 activation (91). Similarly, Toll-interacting protein (Tollip) 

interacts with IRAK-1 and suppresses autophosphorylation of IRAK-1 (180). It 

was suggested that Tollip regulates the intensity of the response to IL-1ß and 

LPS (38). IRAK-1c is a spliced variant of IRAK-1 that is non-functional 

because it cannot be phosphorylated by IRAK-4 but it maintains its ability to 

bind to MyD88 and TRAF-6. It therefore acts as a dominant negative form of 

IRAK-1. While ß –arrestin prevents oligomarization of TRAF6, which in turn 

inhibits the autoubiquitination of TRAF6; A20 removes the ubiquitin from 

TRAF6. However, both molecules inactivate the TLR signalling (170) (65). In 

addition, TLR signalling can be down-regulated by anti-inflammatory 

cytokines. For instance, it has been shown that transforming growth factor-ß, 

TGF-ß induces MyD88 degradation by the proteasome and suppresses the 

expression of TLR4 (117).  

 

TLR and Experimental infection models 

While in vitro studies have highlighted the role of TLR for the recognition of 

specific bacterial ligands, in vivo studies were necessary to elucidate the role 

of individual TLRs in the recognition of the whole bacterium that can carry 

several ligands simultaneously. This task was facilitated by the creation of 

knock out animals in the different components of the TLR signalling pathway 

(2, 67, 68, 74, 82, 150, 179). The model of choice was the murine model and 

TLR-deficient mice were profoundly used (4). In several instances, a 

deficiency in a single TLR has no significant effect on mice susceptibility to a 

pathogen even though it expresses the ligand for the missing TLR (6, 15, 24, 
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66). These findings are usually explained by the redundancy in the system 

with several TLRs recognizing ligands on a given pathogen. 

 

TLR1/2 and TLR2/6 

TLR2 has been regarded as being the primary Gram-positive TLR and 

indeed, TLR2 has been proven critical for host protection in murine models of 

bacterial infection such Staphylococcus aureus (53, 153) and Listeria 

monocytogenes (144, 158).  In a meningitis model of Streptococcus 

pneumoniae, TLR2 played a role as well, but in a pneumonia model, TLR2-

deficient mice were only marginally affected (6, 41, 42, 90, 92, 166). TLR2 

has also been shown to be important for Gram-negative infections such as 

due to Legionella pneumophila (12, 59) and Samonella  (23, 163). Using a 

calf model of gastroenteritis, it was recently demonstrated that Salmonella 

curli promote the inflammatory response in the bowel, and that the likely 

receptor for this class of bacterial amyloids was TLR2 (163). Also, in mice 

curliated E. coli were shown to mediate a more pronounced host response 

than non-curliated mutant bacteria as evidenced by a more significant blood 

pressure drop upon infection with curliated as compared to non-curliated E. 

coli (23). 

Not much information is available for the role of TLR1 and TLR6 in vivo (150). 

These two TLRs seem to be redundant or have a minor role in pneumococcal 

infections (6).  
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TLR4  

TLR4-deficient mice have been shown to be highly susceptible to many 

Gram-negative bacteria among others to Salmonella spp, Haemophilus 

influenzae and Klebsiella pneumoniae (169, 172). Several inbred mice such 

as C3H/Hej or C57BL10/ScN have been shown to naturally harbour mutations 

in TLR4 ORF, which render them highly susceptible to Gram-negative 

infections.  

Using a mouse model of experimental urinary tract infection (UTI), it was 

shown that TLR4 is required for the immune response, including neutrophil 

recruitment in order to clear uropathogenic E. coli (UPEC) from the mucosa 

(57, 138, 152). It was further demonstrated that in addition to LPS, the 

presence as well as the type of fimbriae expressed on the bacteria was 

necessary to trigger a TLR4-dependent response and neutrophil recruitment 

in the bladder. Indeed, LPS alone was not sufficient to trigger the immune 

response, as evidenced by the lack of response to infections by non-

fimbriated E.coli (45, 138). Interestingly, it is worth noticing that these fimbriae 

are also crucial for the initial attachment of the bacteria to the epithelial cell 

surfaces, which highlights the importance of co-receptors involved in the 

activation of a fully functional TLR signalling (81, 115). This might explain how 

a limited number of the TLRs can recognize such a broad number of bacteria. 

For some Gram-negative infections such as acute lung infections due to 

Pseudomonas aeruginosa, the role of TLR4 in host protection is not clear yet 

(43, 124, 125, 178). TLR4 has not only been suggested to play a role in host 

protection against Gram-negative bacteria but also against Gram-positive 

bacteria and one study showed that TLR4-deficient mice might be more 
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susceptible to Gram positive colonization by Streptococcus pneumoniae 

(106).  However, these data have not been confirmed by others (6, 24, 166).  

 

TLR5 

TLR5-deficient mice are unable to mount a response to purified flagellin, but 

are not more susceptible to Salmonella given intraperitoneally (ip) or to 

Pseudomonas aeruginosa given intranasally (in), possibly due to the 

activation of other TLRs (44). MUC1 (in humans) and Muc1 (in mice) are 

membrane bound mucins that interact with flagellin. Muc1-deficient mice were 

more capable of clearing Pseudomonas aeruginosa from the airways and had 

a more pronounced proinflammatory response as compared to wt mice, 

suggesting that Muc1 has an immunosuppressive effect in Pseudomonas 

infections of the airways by interfering with flagellin interaction with TLR5 

(103). 

 

TLR7   

TLR7 recognizes viral ssRNA and so far, no bacterial ligands have been 

found. It is, however, possible that this receptor could have an indirect effect 

on susceptibility to bacterial infections. The artificial TLR7 ligand R-848 has 

been reported to induce increased endothelial adhesiveness, resulting in a 

transient depletion of local peripheral blood leukocytes in mice (55). 

Leucopenia is a common feature of many viral infections and may lead to 

increased susceptibility to secondary bacterial infections (101, 104, 164). 

Gunzer et al. postulated that TLR7-induced leucopenia could contribute to 

increased susceptibility to secondary bacterial infections (55).  



 19 

TLR9  

Little is known about the contribution of TLR9 in protection against bacterial 

infections. Based on their CG dinucleotide content in DNA, different bacteria 

are more or less prone to induce TLR9 (36). Both Pseudomonas aeruginosa 

and Mycobacterium tuberculosis have high CG dinucleotide contents, while 

Streptococcus pneumoniae and Staphylococcus aureus have low. TLR9 has 

been shown to cooperate with TLR2 in protection against M. tuberculosis in 

mice (15). Compared to wt, TLR2 or TLR9-deficient mice were only slightly 

more susceptible to infection with M. tuberculosis. The TLR9-deficiency was 

associated with impaired responses of IL-12p40 and IFNγ in vivo and in vitro. 

In comparison to TLR2 or TLR9 single knock out animals, TLR2/9 double 

knockout mice (DKO) were more susceptible to mycobacterial infection. 

Higher bacterial numbers were observed in the lungs and spleen of these 

animals, and there were histopathological signs of severe inflammation in the 

lungs. Cytokine responses were also more attenuated in TLR2/9 DKO mice 

than in the single knock out animals. Our group has recently shown that TLR9 

protects against infection with an invasive strain of S. pneumoniae in mice (6, 

8). In contrast to mice lacking MyD88, TLR9-deficient mice were able to 

control bacterial proliferation in the upper respiratory tract and could mount an 

inflammatory immune response in the lungs (6, 8). However, TLR9 was 

crucial to clear the infection in the lungs at the very early stage of infection, 

i.e. before 8 h post infection. In vitro, bone marrow-derived macrophages from 

TLR9-deficient mice could respond to most TLR ligands (LPS, lipidA, 

Pam3Cys4) as well as whole bacteria, but not to CpG DNA. They were also 

impaired in their ability to take up and kill pneumococci. Also, resident alveolar 
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macrophages isolated from TLR9-deficient mice were defective in bacterial 

uptake, suggesting that the increased susceptibility to pneumococcal infection 

was due to a deficient clearance of bacteria in the lower respiratory tract early 

in infection. Whether or not this defect is due to a defective response to CpG 

containing bacterial DNA or to an inherited phagocytosis defect of TLR9-/- 

macrophages remains to be elucidated (6, 8). 

In addition, TLR9 activation has been shown to participate in the pathology of 

P. aeruginosa keratitis in mice and be important for killing of the bacteria (75). 

TLR9 is also reported to be essential for the immunomodulatory effects of 

Proprionebacterium acnes (78).  

 

TLR11 

Very recently, murine TLR11 was demonstrated to protect against 

uropathogenic E. coli (UPEC) (179). It was shown that knock out mice had a 

10 000 fold higher bacterial burden in the kidney as compared to wt mice, but 

there was no difference in the bladder. It was suggested that while TLR11 

plays a crucial role in the protection of the kidney from ascending UPEC, it 

plays only a minor role in the bladder where UPEC is also recognized by 

TLR2 and TLR4 (see section above). The E. coli ligand involved in the 

activation of TLR11 has not yet been identified. Interestingly, the human 

TLR11 is probably non-functional due to a stop codon in its open reading 

frame (ORF) and it has been speculated that the absence of a functional 

TLR11 signalling toward UPEC would be the reason why humans are 

specifically susceptible to urinary tract infections (179). However, this 

speculation remains questionable.  
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Recently, Toxoplasma gondii profilin, a small actin-binding protein involved in 

polymerization of actin was shown to activate murine dendritic cells via TLR11 

(123). Hence, TLR11 like TLR5 might be the only TLRs known to use 

microbial protein sequences as ligands. 

 

Immune evasion 

Many bacterial pathogens have evolved strategies to dampen host 

inflammatory responses such as by altering LPS as already discussed above 

(72, 73). Salmonella enteritidis serotype Typhi causes systemic disease unlike 

Salmonella enteritidis serotype Typhimurium that causes local inflammatory 

disease in the intestine. Serotype Typhi unlike serotype Typhimurium 

expresses a capsule known as the Vi-antigen. It has been suggested that the 

Vi-antigen has an immunosuppressive effect evading innate immune 

recognition of serotype Typhi in the intestinal mucosa promoting systemic 

spread of the bacteria (126). The important human pathogens Campylobacter 

jejuni, Helicobacter pylori, and Bartonella bacilliformis produce subclasses of 

flagellins that do not act as an agonist for TLR5 (9). Enteric pathogens such 

as Shigella spp, Salmonella spp, and Yersinia spp owe a major part of their 

virulence to a specialized secretion system (Type III), allowing the delivery of 

effector proteins into host cells, with different perturbing effects on host cell 

functions. Recent data show that many effectors have potent anti-

inflammatory effects. For example, YopJ of Yersinia has recently been shown 

to be an acetyl transferase that modifies critical amino acid residues on 

MAPK6 and IKKβ thereby preventing their phosphorylation, and ability to 

activate the MAPK and NF-κB pathways (113). Other Type III secretion 
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effectors target protein degradation. Thus, OspG of Shigella has been shown 

to be a kinase that owes its anti-inflammatory effects to binding to a subset of 

ubiquitinated E2 (ubiquitine-conjugating) enzymes, including those involved in 

the degradation of I-κB, thereby preventing translocation of NF κB to the 

nucleus (88). It may seem strange that Shigella causing dysentery, the 

prototype of an acute inflammatory infection of the bowel, needs an anti-

inflammatory strategy in its weapon arsenal, but recent data suggest that this 

pathogen make use of pro-inflammatory as well as anti-inflammatory 

approaches during different stages in the infectious cycle. 

 

Polymorphisms, immunodeficiency and susceptibility to infections 

In contrast to mice, little is known about the role of the human TLRs in resistance 

to bacterial infection. Studies on genetic polymorphisms in humans showed that 

single nucleotide polymorphisms (SNP) could result in an altered susceptibility to 

infectious or inflammatory disease (142). The Arg677Trp polymorphism of 

TLR2 was found to be associated with leprosy in a Korean population and 

with susceptibility to tuberculosis in a Tunisian population (22, 79, 80, 105). 

Another TLR2 SNP, Arg753Gln, was suggested to protect from the 

development of late stage of Lyme disease (LD) caused by Borrelia 

burgdorferi via a reduced TLR2/TLR1 signalling. In this study, 155 patients 

with diagnosed LD were compared with healthy controls to investigate the role 

of heterozygocity of this specific SNP and it showed that the Arg753Gln SNP 

was present at lower frequency in patients suffering from LD especially in late 

stage LD patients as compared with matched healthy controls (140). Two 

SNPs have been described for TLR4, Asp299Gly and Thr399Ile that account for 
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hypo-responsiveness to inhaled LPS as well as for increased susceptibility to 

septic shock during infections with Gram-negative bacteria (69). For instance, 

homozygotes of the TLR4 (Asp299Gly) polymorphism were significantly more 

frequent among patients with osteomyelitis, a bone infection mostly caused by 

Staphylococcus aureus but also by Gram-negative bacteria (112). A stop codon 

polymorphism (TLR5 392STOP) in the ligand recognition domain of TLR5 is 

associated with susceptibility to pneumonia caused by Legionella 

pneumophila, a flagellated bacterium (60). Recently, SNP haplotype for the 

IRAK-1 gene, Leu522Ser found in Caucasians, was suggested to be associated 

with a more severe clinical course and outcome in sepsis as well as an increased 

mortality (11). Primary immunodeficiency diseases, which represent a group of 

primarily single-gene disorders of the immune system, are known to 

predispose patients to invasive disease. Indeed, patients with IL-1 receptor-

associated kinase 4-deficiency (IRAK-4) as well as NF-kB essential 

modulator-deficiency (NEMO) were more prone to develop severe pyogenic 

bacterial infections (34, 94, 122, 123). Both IRAK-4 and NEMO are involved in 

the Toll-IL-1R signalling pathway leading to NF-κB activation upon microbe-

TLR recognition. Both these defects impaired the TLR signalling.  However, a 

recent study on Caucasian patients with invasive pneumococcal disease and 

controls for the known Arg579His, Pro631His and Arg753trp polymorphisms 

in TLR2 and the Asp299Gly polymorphism in TLR4 observed no association 

between TLR2 and TLR4 polymorphisms and invasive pneumococcal 

infections (111).  
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TLR and the intestinal microflora 

Colonization of the intestine is initiated soon after birth. Throughout life the 

intestinal microflora needs to be tightly regulated, and it occurs via 

mechanisms that are poorly understood. It is believed that intestinal bowel 

disease (IBD) is the consequence of a dysregulation between the microflora 

and the host innate immune system. In mice, the small intestinal epithelium 

develops tolerance to LPS soon after birth due to the exposure of exogenous 

endotoxin. Interestingly, this tolerance development was considerably delayed 

in mice delivered through Caesarean sections as compared to vaginal 

delivery (102). Hence, responsiveness of the normal intestinal epithelium is 

actively repressed, by repeated exposure to PAMPS provided by the 

microflora as well as by food intake. A disturbance of anti-inflammatory and 

immunosuppressive mechanisms in the gut is believed to lead to colitis driven 

by a hyper responsiveness to the commensal flora. TLR signalling may have 

a dual role in gut homeostasis since it was shown to be required for 

commensal-dependant colitis in IL10-deficient mice but not in mice deficient in 

IL2 (127-129). The mechanisms by which the intestinal microflora suppresses 

inflammatory signalling may be dependant on the non-invasive nature of 

these organisms, as it was recently reported that activation of TLR9 located in 

the apical surface domain resulted in tolerance to TLR activation, whereas 

activation of TLR9 in the basolateral region, only reachable by invasive 

bacteria caused immune activation (98, 99). 
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Concluding remarks 

Even though a wealth of data are available on TLR signalling in response to 

bacterial ligands, we need to know much more about the integrated 

responses that occur when intact bacteria are infecting the host. In the years 

to come we will learn more about different mechanisms by which primary 

bacterial pathogens can modulate or suppress innate immune responses by 

interfering at different levels with TLR signalling, and how opportunistic 

pathogens may take advantage of for example host responses to viral 

infections to gain access to deep tissue from local sites. The negative feed 

back loops controlling the extent and duration of innate immune responses to 

microbes is probably crucial for controlling the commensal flora without 

inducing inflammatory disease and need to be examined in much more detail. 

In the human setting, we will obtain a much deeper understanding of 

inflammatory bowel disease, its relationship to the intestinal microflora, how 

PAMPs are recognized by the intestinal mucosa, and how tolerance is 

developed. In the nasopharynx we are still far from understanding why as 

many as 60% of all preschool children may carry a potentially devastating 

pathogen, Streptococcus pneumoniae in this locality with only a small number 

of children coming down with invasive pneumococcal disease. Are those 

children carrying particular haplotypes affecting TLR signalling or are they 

being infected by more virulent pneumococcal strains or are these children 

temporally affected in their innate immune responses by other infections? 

Since most bacterial infections in humans, at least in the developed world, are 

caused by opportunistic rather than primary pathogens we need to shift our 
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attention much more to the former group of organisms, and study how host 

innate immune functions normally confine these opportunists to local sites. 
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Table 1:  TLRs and bacterial ligands   
    

TLR Microbial Ligands Species Ref. 
TLR1/TLR2 
 
 
 

Triacylated lipopeptides 
 
 
 

Bacteria and 
mycobacteria 

 
 

(30, 146, 155) 

TLR2 
 
 
 
 
 
 

Lipoteichoic acids (LTA) 
 
 
 
 
 
 

Gram-positive 
bacteria i.e 

Staphylococcus 
aureus, 

Streptococcus 
pneumoniae etc 

 

(56, 89, 141) 

 

Atypical Lipopolysaccharides 
(LPS) 
 
 
 
 

Gram-negative 
bacteria i.e 

Phorphyromonas 
gingivalis 

 
 

(17, 134) 

 

Porins 
 
 
 
 
 
 

Gram-negative 
bacteria i.e 

Neisseria sp, 
Shigella sp, 

Haemophilus 
influenzae 

 

(108, 131, 132) 

 

Peptidoglycan (PG) 
 
 
 
 

Gram-positive and 
negative bacteria 

 
 

(143, 177) 

 

Lipoarabinomannan 
 
 
 

Mycobacteria 
 
 
 

(157) 

TLR2/TLR6 
 
 
 

Diacylated lipopeptides 
 
 
 

Mycoplasma 
 
 
 

(25, 146) 

 

Lipoteichoic acids (LTA) 
 
 
 

Group B 
streptococci 

 
 

(64) 

TLR4 
 
 
 

Lipopolysaccharides (LPS) 
 
 
 

Gram-negative 
bacteria 

 
 

(156) 

TLR5 
 
 
 

Flagellin 
 
 
 

Flagellated Gram-
positive and 

negative bacteria 
 

(61) 

TLR9 
 
 
 

CpG 
 
 
 

Gram-positive and 
negative bacteria 

including 
mycobacteria 

(19) 
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TLR11 
 
 
 
 

? 
 
 
 
 

Uropathogenic E. 
coli 

 
 
 

(179) 
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Figure Legends 
 

Figure 1: Schematic representation of the Toll-IL-1R superfamily.  

IL-1 receptor (IL-1R) and the Toll-Like Receptors (TLRs) share a common 

signalling pathway via recruitment of an adaptor molecule to their homologous 

cytoplasmic domain called TIR (Toll/IL-1 receptor domain). The extra cellular 

domain of the IL-1R has an immunoglobulin (Ig)-like structure while TLRs 

have leucine rich repeat motifs (LRR). The extra-cellular domains of TLRs, the 

LRRs, are responsible for the recognition of PAMPs. 

 

Figure 2. Schematic pictures of Gram positive and Gram negative cell wall in 

relation to TLR recognition. 

In the Gram-positive and Gram-negative bacterial cell walls, the inner 

membrane (IM) or cytoplasmic membrane is composed of a double layer of 

phospholipids and lipoproteins (LP). A thick layer of peptidoglycan (PG) 

covers the IM of Gram-positive bacteria while a thinner layer is found in the 

periplasmic space (PS) in Gram-negative bacteria. In Gram-positive bacteria, 

lipotechoic acids are attached via its lipid-moiety anchored to the 

cytoplasmic membrane. In Gram-negative bacteria, an additional membrane, 

the outer membrane (OM) mainly composed by lipopolysaccharide (LPS), 

phospholipids, proteins (i.e. porins) and lipoproteins (LP) covers the PS.  

 

Figure 3: TLR signalling 

Ligand binding to their cognate TLRs induces two signalling pathways, the 

MyD88-dependent and the MyD88-independent pathways. Four adaptor 

proteins (MyD88, TIRAP/Mal, TRIF and TRAM) selectively activate these two 
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signalling pathways leading either to the production of proinflammatory 

cytokines or type I interferons (IFNs).  
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TIR: Toll-IL-1 Receptor domain 

TIR 

IL-1R 
IL-18R 

TLR1…11 

TIR 

IL-1receptor 
family 

Toll-like receptor 
family 

membrane 

LRR Ig 

LRR: leucine rich repeats  
(19-25 repeats of 24-29aa) 

Toll-IL-1R superfamily 

Fig. 1 

Ig: Immunoglobulin-like domain 
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Gram-positive bacteria Gram-negative bacteria 

    

 
 
 

 

    

 
 
 

 

    

 
 
 

 

    

 
 
 

 

    

 
 
 

 

    

 
 
 

 

    

 
 
 

 

    

 
 
 

 

Porin 
LTA 

PG 

LPS 

PG 

Protein 

IM: inner membrane 
PS: periplasmic space 
OM: outer membrane 
PG: peptidoglycan 
LTA: lipoteichoic acid 
LPS: lipopolysaccharide 
LP: lipoprotein 

Fig. 2 

OM 

IM IM 

PS LP 
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Fig. 3 


