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Lower Bounds on the Probability 
of Deception in Authentication 

with Arbitration 
Thomas Johansson, Student Member. IEEE 

Abstract-This paper investigates a model for authentication 
in which not only an outsider, but also the transmitter or the 
receiver, may cheat. Lower hounds on the probability of success 
for different types of deception as well as on the parameters of 
secure authentication codes are derived. The latter bounds are 
shown to be tight by demonstrating codes in projective space 
that meet the hounds with equality. 

Index Terms-Authentication, authentication codes, arbitra- 
tion, information-theoretic bounds, unconditional security. 

I. INTRODUCTION 
HE purpose of conventional authentication codes is T to protect the transmitter and the receiver from 

active deceptions by a third party, the opponent. Two 
different types of attacks, impersonation and substitution 
attacks, are usually considered. A model for this scenario 
has been developed in [1]-[3], and several lower bounds 
on the probability of successful deception by the opponent 
have been derived. 

The model for conventional authentication is restricted. 
Because the transmitter and the receiver are using the 
same secret key, they should trust each other, which is not 
always the case in reality. The transmitter and the re- 
ceiver may not even know each other, in which case they 
definitely do not want to have to trust each other. In such 
a situation we may think of other types of deceptions like 
the transmitter sending a message and then later denying 
having set it or, conversely, the receiver claiming to have 
received a message that was never sent by the transmitter. 

Inspired by this problem Simmons introduced an ex- 
tended authentication model, here referred to as the 
authentication model with arbitration, [41, [51, or simply the 
A2-model. In this model, protection is provided against 
deceptions both from an outsider (opponent) and from 
insiders (transmitter and receiver). This model includes a 
fourth participant that is called the arbiter. The arbiter 
has access to all key information and, by definition, does 
not cheat. As in the study of conventional authentication, 
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we consider unconditional security, i.e., security against 
attacks performed with unlimited computating power. 

The purpose of this paper is to derive lower bounds on 
the probability of success for the different kinds of decep- 
tion that can be defined in authentication with arbitration. 
In Section I1 we define the model and give an example of 
an authentication code with arbitration, hereafter called 
A2-code. In Sections 111-V we derive lower bounds on the 
probability of success for each of the different kinds of 
deception. In Section VI these lower bounds are applied 
to derive bounds on the parameters of unconditionally 
secure A’-codes. In Section VI we show that the derived 
bounds are tight by constructing examples in projective 
geometry that meet these bounds with equality. 

We assume that the reader is familiar with the basic 
concept of information theory (see for example [61). As 
usual, H ( X )  denotes the entropy of the random variable 
X ,  and I ( X ;  Y )  denotes the mutual information between 
X and Y. 

11. THE MODEL OF AUTHENTICATION WITH 

ARBITRATION 
A brief description of the A2-model is given in this 

section. For a more detailed description, we refer to [4], 
which contains a thorough discussion of the different 
types of threats. 

The main components of the A’-model are shown in 
Fig. 1. It includes four different participants: the transmit- 
ter, the receiver, the opponent, and the arbiter. The trans- 
mitter wants to send some information, here called a 
source state, to the receiver in such a way that the 
receiver can both recover the transmitted source state and 
verify that the transmitted message originates from the 
legitimate transmitter. For this purpose, a source state S 
from the set 9’ of possible source states is encoded by the 
transmitter into a message M from the larger set A!’ of 
possible messages. The message M is subsequently trans- 
mitted over the channel. The mapping from 9’ to A? is 
determined by the transmitter’s secret encoding rule E,  
chosen from the set Zy of possible encoding rules. We 
may assume that the transmitter uses a mapping 
f :  9’ X 2TT +d. The mapping f satisfies 

f ( s ,  e,) = f ( s ’ ,  e , )  implies s = s’. (1) 

0018-9448/94$04.00 0 1994 IEEE 
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this message is not one of the messages that the transmit- 
ter could have generated due to his encoding rule. 

Attack R,: Impersonation by the receiver-the re- 
ceiver claims to have received a message from the trans- 
mitter. The receiver succeeds if this message could have 
been generated by the transmitter due to his encoding 
rule. 

Attack R, : Substitution by the receiver-the receiver 
receives a message from the transmitter, but claims to 
have received another message. The receiver succeeds if 
this other message could have been generated by the 
transmitter due to his encoding rule. 

Fig. 1. The model of authentication with arbitration. 

In other words, the source state can be recovered uniquely - -  
from a transmitted message. The mapping f is determin- 
istic, i.e., a source state cannot be mapped into several 
messages for a given encoding rule. In authentication 
theory, this is usually expressed as not allowing splitting. 
This restriction is made for simplicity and most of the 
results that will be derived are valid also for codes that 
use splitting. 

The opponent has access to the channel in the sense 
that he can either impersonate the transmitter and send a 
message or replace a transmitted message with a different 
one. The receiver must decide whether a received mes- 
sage is valid or not. For this purpose the receiver uses a 
mapping determined by his own secret encoding rule ER 
taken from the set g9 of possible encoding rules, which 
determines whether the message is valid or not, and if so 
also the source state. We may assume a mapping 
g:  A?‘ x i%’* + 9 U {reject), where 

P ( e , ,  e,) z 0, f(s, e,) = m implies g ( m ,  e,) = s. 

(2) 

For the receiver to accept all legal messages from the 
transmitter and to interpret them to the correct source 
state, property (2) must hold for all possible pairs (E,, ER). 
However, in general not all pairs (E,, ER)  will be possi- 
ble, i.e., have a positive probability to occur. 

The arbiter is the supervisory person who has access to 
all information, including E ,  and ER, but does not take 
part in any communication activities on the channel. His 
only task is to resolve possible disputes between the 
transmitter and the receiver whenever such occur. The 
arbiter is assumed to be honest. 

In the A2-model the following five types of cheating 
attacks are considered. 

Attuck I: Impersonation by the opponent-the oppo- 
nent sends a message to the receiver and succeeds if this 
message is accepted by the receiver as authentic. 

Attack S: Substitution by the opponent-the oppo- 
nent observes a message that is transmitted and replaces 
this message with another. The opponent is successful if 
this other message is accepted by the receiver as authen- 
tic. 

Attack T: Impersonation by the transmitter-the 
transmitter sends a message to the receiver and then 
denies having sent it. The transmitter succeeds if this 
message is accepted by the receiver as authentic and if 

We adopt the Kerckhoffian assumption that everything 
in the system except the choice of the actual encoding 
rules is public information. This includes the probability 
distribution of the source states and of the encoding rules. 
In all the possible attempts to cheat it is understood that 
the cheating person uses an optimal strategy when choos- 
ing a message, or equivalently, that the cheating person 
chooses the message that maximizes his chances of suc- 
cess. For the five possible deceptions, we denote the 
probability of success in each attack by PI,  Ps, P,, PR,, 
and PR,, respectively. The overall probability of deception is 
denoted by PD and is defined to be 

= p S ,  p,7 pR,, ‘ R , ) .  

The selection of the transmitter’s and the receiver’s 
encoding rules may be done in several ways. One choice is 
to let the receiver choose his own encoding rule ER and 
then secretly pass this on to the arbiter. In this case the 
arbiter constructs the encoding rule E,  and passes this on 
to the transmitter. Another choice for the setup is to do 
the other way around and a third approach is to let the 
arbiter construct both encoding rules. The fact that there 
are several different ways to construct the encoding rules 
will influence the definition of the probability of success 
in some of the attacks. 

Finally, we want to point out that the model does not 
cover all possible ways to cheat. An example of a dispute 
that is not solved in this model would be if the transmitter 
claims to have sent a message and the receiver claims that 
it was never received. The assumption that the arbiter is 
not cheating is also a major restriction and is something 
that could be removed if we want to consider a more 
extended model of authentication, [71, [SI. 

We now give an example of an unconditionally secure 
A2-code. 

Example 1: As an example of an A2-code we choose to 
show the Cartesian product construction for the simplest 
possible nontrivial case, i.e., Po = 1/2, taken from [41, [51. 
Assume there are two possible source states, P= {H,T}. 
The Cartesian product construction gives rise to the ma- 
trix shown in Table I. 

The protocol calls for the receiver to choose (or get 
from the arbiter) one of the 16 rows as the encoding rule 
ER. Assume for example that the row e, will be the 
receiver’s encoding rule. Then the receiver will accept the 
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TABLE I 
THE CARTESIAN PRODUCT CONSTRUCTION FOR 191 = 2 AND PD = 1 / 2. 

e2 e l l H H -  H H - - - T T -  T - T - - 

H H - - - T - T  

H H -  - - - T T  

H - H - T T - -  

H - H - T - T -  

H - H - - T - T  

H - H - - - T T  

- H - H T T -  - 

- H - H T - T -  

- H - H - T - T  

- H - H - - T T  

- - H H T T -  - 

- - H H T - T -  

- - H H - T - T  
I 

I -  - H H - - T T 

messages m,, m2,  m5, and m6 as authentic. The messages. 
m,, m2 will be interpreted as the source state H and the 
messages m5, m6 will be interpreted as the source state T. 
All the other messages are not authentic and will thus be 
rejected. 

The transmitter's encoding rule is a mapping that tells 
which message corresponds to the source state H and 
which message corresponds to the source state T. Here 
one of the messages m1-m4 corresponds to H and one of 
the messages m5-m8 corresponds to T. However, this 
choice must be made in such a way that the receiver 
accepts the messages as authentic and interprets them to 
the correct source state; see (2). In this example, the 
message that corresponds to the source state H must be 
m, or m2 and the message corresponding to the source 
state T must be m5 or m6. Thus there are four possible 
ways to choose E,, namely {H - m,, T ++ m5}, {H ++ 

m,, T m6}, {H - m2, T - m5}, and {H - m2,  T - 
m6}. Note that not all pairs ( E R ,  E T )  are possible. 

By inspection we can check that the probability of 
success for any kind of deception is 1/2 and thus PD = 

1/2 provided that the encoding rules are uniformly dis- 
tributed. The parameters of the A2-code is 

191 = 2, IAI + 8, \kYzl = 16, lkYyl = 16. 

If we assume the source states and the encoding rules all 
to be uniformly distributed, then by expressing the param- 
eters in terms of entropy we get H ( S )  = 1, H ( M )  = 3, 
H(ER)  = 4 and H(E,) = 4. We also observe that from 
the dependence between the keys we have 

z (ER;  E T )  = 2. 

111. ATTACKS BY THE OPPONENT 
In Section 111-V we derive lower bounds on the proba- 

bility of success for the different attacks in the A2-model. 
In this section we consider the two possible attacks by the 
opponent and we start by deriving two lower bounds on 
the probability of success for the impersonation attack. 

In this kind of deception the opponent simply sends a 
message and hopes for it to be accepted as authentic. The 
receiver determines if the message sent is authentic or not 
using his encoding rule e,. We define the authentication 
function x (m ,  e,) to be 

1, 
0, otherwise. 

if a source state s exists such that f ( s ,  e,) = m ,  
x ( m , e , >  = 
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When the opponent sends the message m, he is successful 
if and only if x(m,e,) = 1. From the definition of the 
impersonation attack by the opponent we can thus express 
the probability of success as 

PI = max P(m valid), (3a) 

P(m valid) = x ( m ,  e,)P(e,). (3b) 
ercg9 

Let P(m, e,, e,) be the given joint probability distri- 
bution in a system where the transmitter generates a 
message. An important property of the authentication 
function is that if x (m,  e,) = 0, then the probability dis- 
tribution P(m, e,) = 0. This is a fact because if P(m, e,> 
# 0, then m is a message that the transmitter might 
generate and therefore it must be authentic. This impor- 
tant property is used in the proof of the next theorem. 

Another important property stems from the definitions 
in (3a) and (3b). They show that PI depends only on the 
authentication function and on the distribution of the 
receiver’s encoding rules but not on the distribution of 
the messages that are to be transmitted. For conventional 
authentication this was first discovered in [9], where 
Simmons’ bound was strengthened. 

Thus we do not have to restrict ourselves to the given 

m 

Proofi The proof of the first inequality is based on 
the log-sum inequality [lo]; similar proofs are given in [9] 
and in [ l l ] .  The complete proof is given in the Appendix. 

0 
The last lower bound (5 )  is essentially a weaker result 

than the first lower bound (4). However, the last bound 
gives an important insight in the dependence between the 
probability of success in an impersonation attack and the 
encoding rules due to the transmitter and the receiver. 
From ( 5 )  we see that PI is lower bounded by an expres- 
sion that depends on the information that the transmitter 
and the receiver have in common. In the case of conven- 
tional authentication the transmitter and the receiver 
share the same key and ( 5 )  would coincide with Simmons’ 
bound, since if E = ER = E,, we have -Z(ER; E T )  + 
we see that (4) coincides with the strengthened Simmons’ 
bound in 191. 

The second attack from the opponent that can occur is 
a substitution attack. In this kind of deception the oppo- 
nent observes a message on the channel and then replaces 
this with another message, hoping for this other message 
to be accepted as authentic. The receiver determines if 
the received message from the opponent is valid or not. 

In the substitution case, define the authentication func- 
tion X(m’, m, e,) to be 

Z(ER; E,IM) = - H ( E )  + H ( E I M )  = -Z(E: M ) .  Also, 

1, 

0, otherwise. 

if m‘ is authentic for the receiver’s encoding rule e,  given 

that m was authentic and also that g(m’, e,) f g ( m ,  e,), x(m’,m,e,)  = 

distribution, but can apply the definitions (3a) and (3b) to 
any pair ( M , E R ) ,  where M is a random variable that 
represents a valid message and ER is the receiver’s encod- 
ing rule. Since ER is the receiver’s encoding rule, the joint 
probability distribution P(m, e,) for the pair ( M ,  ER)  must 
have the same marginal distribution P(e,)  as the one 
given for the receiver’s encoding rule. Also, since M 
occurs only when it is a valid message, we must have that 
if x ( m ,  e,> = 0, then P(m, e,> = 0. 

With these properties in mind we state the following 
theorem. 

Theorem I :  For an impersonation attack of type I the 
probability of success is lower bounded by 

9 (4) p > 2 - i n f I ( M ; E R )  
I -  

where the infimum is taken over all possible values of the 
probability distribution P(m, e,) such that 

i) the marginal distribution P(e,)  is the same as for 
the given system, 

ii) the property that if x ( m ,  e,) = 0, then P(m, e,) = 0 
still holds. 

Alternatively, PI is lower bounded by 
p I -  > ~ P ~ ( E R ;  ET)+I (ER;  ETIM). ( 5 )  

Clearly, if the opponent replaces the message m with h, 
then he is successful if and only if X(m’, m, e,) = 1. From 
the definition of the substitution attack by the opponent, 
the probability of success may be expressed as 

Ps = P ( m )  maxP(m’ validlm) ] ( 6 4  
m& [ m‘ 

P(m‘ validlm) = x(m’,  m ,  e,)P(e,lm). (6b) 

The given system has a probability distribution 
P(m, e,, e,). Assume that the system has at least two 
different source states. We now introduce a new random 
variable M‘ that only takes values M ’  = m‘ such that 
X(m’, m, e,)  = 1. This simply means that m‘ is an authen- 
tic message that does not correspond to the same source 
state as the message m. It is now possible to construct a 
joint probability distribution P(m’, m, e, ,  e,)  such that 
P(m,e,) is the distribution given in the system and such 
that if X(m’, m, e,) = 0, then the probability distribution 
P(m‘, m, e,) = 0. 

For the substitution attack by the opponent we state 
the following theorem. 

Theorem 2: For a substitution attack of type S the 
probability of success is lower bounded by 

ere89? 

, (7) p > 2 - i n f  l ( M ’ ;  E,IM) 
s -  
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where the infimum is taken over all possible values of the 
probability distribution P(m’, m, e,) such that 

i) the marginal distribution P(m, e,) is the same as for 
the given system, 

ii) the property that if X(m’, m ,  e,) = 0, then 
P(m‘, m,  e,) = 0 holds. 

Alternatively, Ps is lower bounded by 

p s -  > ~ - I ( E R ; E T I M ) .  (8) 

We can see that in this case the probability of success 
in a substitution attack by the opponent is lower bounded 
by an expression that depends on the secret information 
shared between the transmitter and the receiver after the 
observation of one transmitted message. 

IV. ATTACKS BY THE TRANSMITIER 
We now consider the impersonation attack from the 

transmitter. In this kind of deception the transmitter 
sends a message that could not have been generated using 
his encoding rule ET. The transmitter succeeds in his 
attack if the receiver accepts the message as authentic. 

In this case, we define the authentication function 
x(m,  e,, e,) to be 

Let d e , )  be the number of authentic messages for the 
receiver’s encoding rule e,. We will assume that 
mine,Egs n(e,) > ISI. This guarantees that for each of the 
receiver’s encoding rules there is at least one message for 
which x ( m ,  e,, e,) = 1. The system has a given probability 
distribution P(e,, e,) on the encoding rules. Assume that 
the random variable M only takes values M = m such 
that x ( m ,  e,, e,) = 1. Then a joint probability distribution 
P(m, e,, e,) exists such that P(e,, e,) is the distribution 
given in the system and for which we have that if 
x(m,  e,, e,) = 0, then the joint probability distribution 
P(m, e,, e,) = 0. 

For impersonation by the transmitter we then state the 
following theorem. 

Theorem 3: For an impersonation attack of type T the 
probability of success is lower bounded by 

(10) 

where the infimum is taken over all possible values of the 

(1,  if a source state s exists such that g(m,  e,) = s 

but f(s, e,) # m ,  i 0, otherwise. 
x ( m ,  e,, e,) = 

The transmitter now succeeds in his attack when sending 
the message m if and only if x ( m ,  e,, e,) = 1. 

Example 2: Consider the Cartesian product construc- 
tion given in Example 1. Assume that the transmitter’s 
encoding rule is the mapping { H  m,, T - m5}. This 
gives four possible encoding rules for the receiver, namely 
e,, e,, e5, and e6. Assume that the transmitter sends the 
message m2 to the receiver as his attack. Since X(m,, e,) 
= 1, x(m,, e,) = 1, x(m,, e,) = 0, and ~ ( m , ,  e,> = 0, 
he will be successful in two cases out of four and if the 
encoding rules are uniformly distributed we have by sym- 
metry PT = 1/2. 

The case of a cheating transmitter is modeled in the 
following way. Consider the transmitter as an opponent 
who has access to the encoding rule ET. A receiver 
accepts messages according to the above authentication 
function. Thus, the transmitter is successful when sending 
the message m if and only if x ( m ,  e,, e,) = 1. Since the 
key setup in the A2-model includes a possibility for the 
transmitter to construct his own encoding rule, we must 
be aware of the fact that the definition of the probability 
of deception will be different from the case of substitution 
by the opponent. Here we must instead maximize over the 
transmitter’s encoding rules. For the impersonation attack 
by the transmitter the probability of success is expressed 
as 

max P(m validle,) , @a) 1 

joint probability distribution P(m, e,, e,) such that 

the given system; 

P(m, e,, e,) = 0 still holds. 

i) the marginal distribution P(e,, e,) is the same as for 

ii) the property that if x ( m ,  e,, e,) = 0, then 

Alternatively, PT is lower bounded by 

(11) 

From the second inequality we see that the probability 
of success is lower bounded by an expression depending 
on the transmitter’s uncertainty about the receiver’s en- 
coding rule. 

V. ATTACKS BY THE RECEIVER 
This section considers the last two types of deceptions, 

i.e., the impersonation attack and the substitution attack 
by the receiver. We start with the impersonation attack. 

In this kind of deception the receiver claims to have 
received a message from the transmitter. The receiver 
succeeds in his attack if this message could have been 
generated by the transmitter due to his encoding rule ET. 

Example 3: Consider again the Cartesian product con- 
struction given in Example 1. Assume that ER = e, and 
that the receiver tries to claim that he received a message 
corresponding to source state H. He then must choose 
one of the two messages m, and m2. For the transmitter, 
only one of these messages corresponds to source state H 
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and if the receiver picks the wrong one he will not be 
successful. Thus, the probability of success is 1/2.  

The last type of deception to consider is the substitu- 
tion attack by the receiver. In this kind of deception the 
receiver has received a message from the transmitter, but Define the authentication function x(m,  e,) to be 

if m is authentic for the receiver’s encoding rule e,, 
otherwise. 

x(m,e , )  = (il 
If the receiver claims to have received m, he succeeds in 
his attack if and only if x ( m ,  e,) = 1. This case of a 
cheating receiver is modeled in the following way. 

Consider the receiver as an opponent who has access to 
the encoding rule E,. Now imagine another receiver who 
is only accepting messages that can be generated by the 

claims to have received another message. The receiver 
succeeds in his attack if this other message is a message 
that could have been generated by the transmitter due to 
his encoding rule E,. 

We define the authentication function x(m’, m, e,) to 
be 

( 1, if a source state s’ exists such that f(s’, e,)  = m’ 
given that a source state s exists such that 

x(m’ ,  m ,  e,)  = ^I ~ 

f t s ,  e,) = m I 0, otherwise 
and also that m # m‘, 

transmitter, or equivalently accepts messages due to the 
above defined authentication function. Thus the receiver 
is successful when sending the message m if and only if 
x ( m ,  e,) = 1. 

The model includes a possibility for the receiver to 
choose the encoding rule himself. Thus, from the defini- 
tion of receiver’s impersonation attack, the probability of 
success is exmessed as 

max P ( m  validle,) 

P(m validle,) = x ( m ,  e,)P(e,le,>. (1%) 
er€,% 

We introduce the random variable M that only takes 
values M = m such that x ( m ,  e,) = 1. Consider a joint 
probability distribution P(m, e,, e,)  such that P(e,, e,) is 
the distribution given in the system and such that if 
x(m,  e,) = 0, then the joint probability distribution 
P(m, e,) = 0. One such distribution is the distribution 
given in the system when we consider M as the message 
that the transmitter generates. 

For impersonation by the receiver we state the follow- 
ing theorem. 

Theorem 4: For an impersonation attack of type R, the 
probability of success is lower bounded by 

where the infimum is taken over all possible values of the 
joint probability distribution P(m,  e,, e,) such that 

i) the marginal distribution H e , ,  e,) is the same as for 
the given system, 

ii) the property that if x(m,  e,) = 0 then P(m, e,) = 0 
still holds. 
Alternatively, PRO is lower bounded by 

(14) 

If the receiver receives m but claims to have received m‘, 
he succeeds in his attack if and only if ,y(m’, m, e,) = 1. 
This case of the receiver cheating is modeled in the 
following way. 

Consider the receiver as an opponent who has access to 
the encoding rule E, and has observed a message m from 
the transmitter. The receiver tries to replace this message 
with another message m’. Imagine another receiver who 
only accepts messages that can be generated by the trans- 
mitter. The receiver will be successful when sending the 
message m‘ if and only if x(m’, m, e,)  = 1. 

As before, the receiver may have the possibility of 
choosing his own encoding rule. From the definition of 
the substitution attack by the receiver, we express the 
probability of success as 

P(m’ validlm, e,) = x(m’,  m ,  e,)P(e,lm, e,). 
e t e g 7  

(1%) 

Assume that 19’1 2 2. Introduce the random variable 
M‘ that only takes values such that x(m’, m, e , )  = 1. We 
then construct a joint probability distribution 
P(m’, m, e,, e,)  such that P(m, e,, e,) is the distribution 
given in the system and such that if x(m‘,  m, e,) = 0, then 
the probability distribution P(m’, m, e,) = 0. 

For the substitution attack we state the following theo- 
rem. 

Theorem 5: For a substitution attack of type RI the 
probability of success is lower bounded by 

p > 2-inf I ( M ’ ;  E J I M ,  E, )  
RI - 9 (16) 

I 
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where the infimum is taken over all possible values of the 
joint probability distribution P(m’, m, e,, e,)  such that 

i) the marginal distribution P ( m ,  e,, e,) is the same as 
for the given system, 

ii) the property that if ~ ( m ’ ,  m,  e,) = 0,  then 
P(m’, m, e,) = 0 still holds. 

Alternatively, PR, is lower bounded by 

p R ,  > - ~ - H ( E T I M , E R ) .  (17) 

For the attacks by the receiver, the probability of suc- 
cess depends on the uncertainty about the transmitter’s 
key for the receiver. For the impersonation attack R,  we 
observe that to have a good protection, the transmitter 
must give away a lot of information about his key to the 
receiver. This is an analog to the impersonation attack I ,  
where the transmitter/receiver must give away informa- 
tion about the common part of their keys. Considering 
multiple use of the codes, this determines the amount of 
new key entropy that has to be added for each use. 

VI. COMBINATORIAL LOWER BOUNDS 
After having obtained lower bounds on the probability 

of success for each type of deception, we are now ready to 
give some combinatorial lower bounds on the number of 
encoding rules and on the number of messages that are 
necessary in an A’-code. 

We distinguish between two different types of A’-codes. 
Recall that d e , )  is the number of authentic messages for 
the receiver’s encoding rule e,. We define an A2-code to 
be degenerate if (SI = 1 or min,, E gg d e , )  = (SI. For the 
authentication codes that only have one source state the 
whole concept of substitution is not relevant since substi- 
tution is not possible. The degenerate A2-codes that have 
mine,+g9 d e , )  = IS1 have PRO = 1 and hence these codes 
are not very interesting either. 

In the following we exclude the degenerate A’-codes. 
Under this assumption there exist distributions for the 
system such that all lower bounds that have been derived 
are valid. However, the strong lower bounds of Theorems 
1-5 may use different joint probability distributions for 
obtaining maximum. Consider instead the simplified lower 
bounds of Theorems 1-5. These bounds depend only on 
the probability distribution P ( m ,  e,, e,) given in the sys- 
tem and can thus be used simultaneously. If we assume a 
system with given probability distribution P ( m ,  e,, e,), 
then all the simplified lower bounds are valid for this 
distribution. We intend to combine these bounds to ob- 
tain lower bounds on the number of messages and on the 
number of encoding rules, which we refer to as combina- 
torial bounds. 

Recall that in general not all pairs (ER ,  E T )  will be 
possible. Therefore, consider the set of possible pairs 
(ER,ET) and denote this set by o g y .  This is the 
private information that the arbiter may want to store. 

Assume that we want to construct an A*-code such that 
the probability of deception is at most l /q ,  Po I l/q.  

Assume also a uniform probability distribution on the 
source states. Let the number of source states for a 
symmetric source be 191. Then we have the following 
lower bounds on the number of encoding rules and on the 
number of messages. 

Theorem 6: An A’-code for 9 must satisfy 

IZ3l 2 ( P / P S P J 1 ,  

1871 2 ( P , P S P R ~ P R , ) - ~ ~  

189 8yl 2 (p/pspTpRnpR,)-l  9 

(v’ffl 2 (p /pR0)- ’ /9 / .  

In particular, if the overall probability of deception is 
Po = l /q,  then 

1891 2 q 3 ,  

1871 2 q4,  

Ig9 O 8yl 2 q 5 ,  

1.44 2 q’19l. 

Proofi Using the bounds (51, (8), and (11) we have 
PIPsPT 2 2 - H ( E ~ ) .  Since H E R )  I log Ig9l we have 

1891 2 2 H ( E R )  2 ( P / P S P T ) p l .  

Thus if Po = l /q,  we get Ig9l 2 q 3 .  
For the number of encoding rules for the transmitter 

we use the bounds (5),  (81, (14), and (17). We have 
PIPsPRoPRl 2 2 - H ( E ~ ) .  Since H E T )  I log IZYYl we have 

1871 2 2 H ( E T )  2 (P/PsPRnPR,)-’. 

Particularly if Po + I/q, we get IgFl 2 q4. 
For the set g3 0 87 we use the bounds (51, (81, (111, 

(14), and (17). We obtain PIPsPTPR,PR, 2 2pH(ER3E1). 
Since H ( E R ,  E T )  I log (g9 0 gFI, we have 

189 @ 871 2 2 H ( E R ’ E T )  2 (P/P&PTPR,lPR,)-l.  

If pD = ~ / q ,  we get 0 ~ “ y l 2  q5.  
Finally, the lower bound valid on the number of mes- 

sages is proved. First we note that ( 5 )  can be rewritten as 
PI 2 Using this inequality and (14), 
we get p1pRn 2 or 

2I(M,ET) 2 ( P  P ) - l .  
1 Rn 

Now use the fact that H ( M ( E T )  = H ( S )  = log 191. This 
gives 

2 H ( M )  2 ( P I P R , l ) - l l P l .  

Since H ( M )  I log IAI, we have lv’ffl 2 (P,PR,)-’I9l. If 
0 

We continue by giving some definitions related to the 
derived bounds. In [4] Simmons defined an authentication 
code to be equitable if the probabilities of success for all 
types of deception are the same, i.e., if PI = Ps = P, = 

pD = l /q,  we also get IA’( 2 q 2 ( A .  
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e3 

e4 

e5 

e6 

e ,  

e8 

TABLE I1 
AN EQUITBLY PERFECT A’-CODE FOR 191 = 2 AND Pn = 1 / 2. 

H - H - T - T - 

H - H - - T - T 

- H - H T - T - 

- H - H - T - T 

- - H H T T - - 

- - H H - - T T 

\ 

Fig. 2. The connection between the variables in Construction I. 

P,, = P,,. We define an authentication code that permits 
arbitration to be perfkt if 

1 
1891 = ~ 

‘1 ‘S ‘T 

and 

Also we define an A’-code to be equitablyperjkt if for 
Po = l / q  we have Ig’l = q3 and lgyl = q4. 

We end the section with a note on the Cartesian 
product construction obtained by applying the combinato- 
rial bounds. 

Example 4 (Example 1, Continued): In Example 1 we 
gave an example of an A2-code using the Cartesian prod- 
uct construction for the case Po = 1/2. Let us examine 
the parameters of this code and compare them with the 
combinatorial lower bounds derived in this section. For 
19’1 = 2 and Po = 1 /2  we found before that in the Carte- 
sian product construction the cardinality parameters were 
Id1 = 8, lZ91 = 16, and IZJ = 16. However, Theorem 6 
gives the bounds lZ91 2 8, lZyl 2 16, and I 

We see that the number of encoding rules for the 
receiver does not meet the lower bound of Theorem 6 
with equality and thus this construction is not perfect due 
to the combinatorial lower bounds. Indeed, it is possible 
to find a construction that is equitably perfect for the case 
19’1 = 2 and PD = 1/2. We use the reduced matrix shown 
in Table I1 instead. 

For this matrix we have lZ91 = 8. The transmitter will 
have as encoding rule one of the four messages m,;.., m4 
to transmit H and one of the four messages m5;--,  m8 to 
transmit T.  Thus lkYFl = 16. The encoding rules are cho- 
sen in such a way that the receiver accepts the messages 
that the transmitter can generate. If the receiver’s encod- 
ing rule is fixed there are four possible choices for the 
transmitter’s encoding rule. Thus the number of possible 
choices for the pair (ER, E,) is 32. It is also possible to 
check that Po = 1/2.  

VII. SOME CONSTRUCTIONS AND EXAMPLES 
A natural question to ask is if (infinite) classes of 

perfect or equitably perfect A2-codes exist. In this section 
we show that they do by constructing perfect and equi- 
tably perfect A’-codes in the projective space, [12], in the 

1 
P l = P s = P R o = P R  = -  

I q’  

1 
P, = - 

q +  1 ’  

Proog Let us start by proving the cardinality parame- 
ters. The source states are the points on a fixed line L. 
The number of points on any line is q + 1. Thus 19’1 = q 
+ 1. The messages are all planes intersecting the line L 
in a point. This is the same as all planes not containing 
the fixed line L. The total number of planes is q3 + q2 + 
q + 1 and the number of planes containing the line L is 

I = q3 + 4’. The receiver’s encoding rules 
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are all points not on L. Since the number of points is 
q3 + q2 + q + 1, we have that 1K91 = q3 + q2 .  The trans- 
mitter’s encoding rules are all lines having empty intersec- 
tion with the fixed line L. The total number of lines is 
( q 2  + 1Xq2 + q + 1). The number of lines intersecting in 
a point on L is q2  + q + 1 and one of them is L itself. 
Since a line ( #  L )  cannot intersect L in two points there 
are ( q  + 1Xq2 + q )  + 1 lines that have nonempty inter- 
section with L. From this we conclude that 18’1 = q4. 

Next we compute the probability of success for the 
different kinds of deception. We assume the encoding 
rules to be uniformly distributed. 

Impersonation by the Opponent, I: The opponent simply 
sends a message, which is a plane intersecting the line L 
in a point. This message is accepted by the receiver as 
authentic only if the encoding rule ER, which is a point, 
lies on the plane. The number of points on a plane is 
q2 + q + 1 and in this case one of them is on L. Since the 
number of possible ER’s in a message is the same for all 
possible messages the opponent can do no better than to 
choose an arbitrary message. Then we have that the 
number of ER’s accepting the message as authentic is 
q2 + q and the total number of the receiver’s encoding 
rules is q3 + q2. Thus 

Substitution by the Opponent, S: The opponent has ob- 
served a message M and now he replaces this with an- 
other message M‘. If the plane M intersects the line L in 
the point S then the message M’ must intersect L in 
another point S‘ or otherwise both messages correspond 
to the same source state and the substitution attack would 
by definition not be successful. The best strategy for the 
opponent is to choose M’ in such a way that the intersec- 
tion between M and M’ is as large as possible. But 
M n M’ is always a line, not intersecting L,  containing 
q + 1 points. Since the number of possible ER’s for a 
given message is q2 + q we have 

Impersonation by the Receiver, R,: The receiver claims 
to have received a message M from the transmitter. The 
receiver succeeds in his cheating if the transmitter’s en- 
coding rule E,  lies on the plane M .  The receiver can do 
no better than to choose an arbitrary M containing his 
own encoding rule ER. The number of possible E,’s for a 
message M given ER is the number of lines on the plane 
M not intersecting L and containing the point ER. This 
number is q, since the number of lines on M containing 
ER is q + 1 and exactly one of them also contains the 
point on L. The total number of E,’s for a given ER is 
the number of lines containing the fixed point ER and not 
intersecting L. This number is q2 since the number of 

lines through a point is q 2  + q + 1 and q + 1 of them 
will intersect L in a point. Then we have 

9 1  
R u  q2  4 

p = - = - .  

Substitution by the Receiver, R I :  The receiver has re- 
ceived a message M but claims to have received another 
message M‘. The two planes M and M’ must intersect L 
in different points or the substitution attack by the re- 
ceiver will not be successful. Then M n M‘ will be a line, 
not intersecting L and the two messages will only have 
one possible ET in common. The number of possible E,’s 
on M is q and thus we have 

1 
PR = - .  

I 4  
Impersonation by the Transmitter, T: The transmitter 

sends a message M that does not contain his encoding 
rule E,  and hopes for the receiver to accept the message 
as authentic. The transmitter knows that ER is a point on 
the given line E,. Thus, the message M is chosen such 
that it contains as many points of the line ET as possible, 
but not E,  itself. But then it can only contain one point 
since otherwise E,  would be included. The number of 
points on the line E,  is q + 1. Thus we have 

1 
P, = ~ 

q + l ‘  
Finally we verify that the A2-code is perfect by checking 

0 
Example 5: We here give a small example of how Con- 

struction I works in PG(3, E,). We have 15 points, 35 lines, 
and 15 planes in PG(3,[F2). The points are numbered 
1;.., 15. The fixed line L is the line L = (1,2,3). Thus the 
source states are the points 1, 2, and 3. The messages are 
the 12 planes not containing L. The receiver’s encoding 
rules are the points 4;.., 15 and the transmitter’s encod- 
ing rules are the 16 lines (4,11,15), (4,10,14), (4,9,13), 
(4, 8, 12), (5 ,  11, 14), (5 ,  10, 1-51, (5, 9, 1% (5 ,  8, 13), 
(6, 11, 13), (6, 10, 13, (6, 9, 13, (6, 8, 14), (7, 11, 121, 
(7,10,13), (7,9,14), (7,8,15). The authentication matrix 
for the receiver is shown in Table 111. Note that the rows 
are now the messages and the columns are the receiver’s 
encoding rules. It can be checked that PI = Ps = PR, = 

PR, = 1/2 and P, = 1/3. 
We now make a modification in Construction I in order 

to obtain an equitable A2-code. 
Construction 11 (Construction I, Modified): Fix a plane 

H and a line L on H in PG(3, Fq). The points on L are 
regarded as source states. The transmitter’s encoding rule 
is a line E,  not intersecting L. The receiver’s encoding 
rule ER is a point on the line E ,  and not on the plane H. 
As before, the message will be the unique plane M = 

(E,, S )  obtained by joining the line E ,  and the point on 
L corresponding to the source state S. Also, the receiver 
only accepts messages containing the point ER. 

The messages will still be all the planes intersecting the 
line L in a point. For this construction we state the 
following theorem. 

that P,P,P, = IERJ1 and PIPsPRT,PR1 = IETIp’. 
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(1,4,5,10,11,14,15) 

(1,4,5,8,9,12,13) 

(1,6,7,10,11,12,13) 

(1,6,7,8,9,14,15) 

(2,4,6,8,10,12,14) 

Message (2,4,6,9,11,13,15) 

(2,5,7,8,10,13,15) 

(2,5,7,9,11,12,14) 

(3,4,7,8,11,12,15) 

(3,4,7,9,10,13,14) 

(3,5,6,8,11,13,14) 

(3,5,6,9,10,12,15) 
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1 1 - - - ~ 1 1 - - 1 1  

1 1 - - 1 1 - - 1 1 - 

- - 1 1 - ~ 1 1 1 1 - 

- - 1 1 1 1 -  - - - 1 1  

2 - 2 - 2 ~ 2 - 2 - 2 

2 - 2 - - 2 - 2 - 2 - 2 

- 2 - 2 2 ~ 2 - - 2 - 2 

- 2 - 2 - 2 - 2 2 - 2 

3 - - 3 3 - - 3 3 - - 3 

3 - - 3 - 3 3 - - 3 3 

- 3 3 - 3 - - 3 - 3 3 - 

- 3 3 - - 3 3 - 3 - - 3 

TABLE I11 
DECODING MATRIX FOR CONSTRUCTION 1 IN PG(3, E,). 

Receiver‘s encoding rule 

4 5 6 7 8 9 10 11 12 13 14 15 

1 

9 
P,= -. 0 

Pro08 The cardinality parameters will remain the 
same as for the first construction except for the receiver’s 
encoding rules. They are now all points not on the plane 
H. Thus the number of ER’s is q3.  Let us determine the 

The construction that was given can be used for any 
number of source states such that 191 2 q + 1 and if all 
messages not used are erased, the construction is still 
equitably perfect. 

probability of success for the different kinds of deception. 
Impersonation by Opponent, I: The opponent sends the 

plane M .  Since M n H is a line that intersects L in a 
point, we have that the number of possible ER’s on M is 
4’. The number of E R ’ S  is q3 and thus 

Substitution by the Opponent, S: The opponent replaces 
the message M with M‘ and the messages intersect L in 
different points. Now M n M’ is a line and this line 
intersects H in a point. Thus there are q possible ER’s 
both on M and M’. But the number of ER’s on M is q’, 
so 

VIII. CONCLUSIONS AND OPEN PROBLEMS 
The main results in this paper are the information-the- 

oretic lower bounds on the probabilities of success for the 
different kinds of deception, from which we have been 
able to derive lower bounds on the number of encoding 
rules and on the number of messages that are necessary 
in an A’-code. We have also shown that the combinato- 
rial bounds are tight by constructing A’-codes in projec- 
tive space which meet the bounds with equality. The 
results obtained show many similarities with established 
results in conventional symmetric authentication. They 
can be interpreted as a generalization of known results for 
symmetric authentication systems to corresponding results 
for asymmetric authentication systems. 

Many interesting problems are left open. As the recent 
development in conventional authentication has shown, it 
is possible to construct authentication codes where the 
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I ( M ; E , )  2 P(m> 
m 4  

source state space grows exponentially with the number of 
keys if we allow Ps to be slightly greater than Pr, [131. 
This is of great practical relevance since we are mostly 
interested in authenticating long messages. It is of interest 
to see if any of these ideas can be applied to A2-codes. 
Other interesting problems would be to characterize per- 
fect A2-codes in terms of combinatorial designs and to 
examine how A2-codes are related to secrecy. For the 
latter, we see no obvious way of including secrecy without 
increasing the key size. 

APPENDIX 
PROOFS OF THE THEOREMS 

The proofs that follow are based on some common inequali- 
ties. These inequalities are first stated. The most important is 
the Log-Sum Inequality. 

Lemma 9 (Log-Sum Inequality): For arbitrary nonnegative 
numbers {aL}:= 1, {bJ!= we have 

p ( e , l m ) x ( m , e , >  
e r = g 9  

where a = Cy='=,a,, b = C:=,bi. Equality holds if and only if 
aib = bia for i = 1,2;.., n. 

Proof: See [ 101. 0 
The second inequality that is used is Jensen's Inequality. 
Lemma 10 (Jensen's Inequality): Let g(x) be a convex function 

on an interval (a,  b )  and x,, x 2 ; . . ,  x ,  are arbitrary real numbers 
a <xi  < b and wI,w2;..,wn are positive numbers with Cw, = 1. 
Then 

P ( e , l m ) x ( m ,  e,) 
e r = g 9  .log 

t n  \ n 

g c wjx; I w;g(x;). l i= ,  J 
Equality holds if and only if g(x,) takes the same value for each 
i for which wi > 0. 

Proof: See [14]. 0 
This inequality will be used with the fact that -log x is a 

convex function for x > 0. 
The last inequality is the simple fact that taking a maximum 

results always in something that is greater than or equal to 
taking the mean value. 

Lemma 11: Let g ( x )  be a function on an interval (a ,  b )  and 
x,, x2;.., x, are arbitrary real numbers a < xi < b and 
wl ,  w2;.., wn are positive numbers with Ewj = 1. Then 

We now prove the theorems. 
Proof of Theorem I :  We prove the first part of Theorem 1. 

The proof is based on the log-sum inequality, [lo]; similar proofs 
are given in [9] and [11]. By definition we have 

The summation over the receiver's encoding rules can now be 
restricted to all e, for which x(m,  e,) = 1, since x(m, e,) = 0 
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We now have the following. 
Lemma 12: The probability of success for a general attack P, 

is lower bounded by 

where the infimum is taken over all possible values of the joint 
distribution P(m,, e,, w )  such that 

i) the marginal distribution P(e,, 0) is the same as for the 

ii) the property that if ,y(m,, e,, w )  = 0, then P(m,, e,, w )  

Proofi The proof is similar to the one given in the imper- 

given system, 

= 0 still holds. 

sonation case. By definition we have 

The summation over the receiver’s encoding rules is restricted to 
all e, for which x(m,, e,, w )  = 1, since x(m,, e,, w )  = 0 im- 
plies that P(e,lm,, w )  = 0 when P(m,, w )  # 0. We equiva- 
lently write 

Using the log-sum inequality this is rewritten as the inequality 

Since P ( m , ,  w )  # 0 we have t h a t  C e x E  
P(e,lm,, w>x(m, ,  e,, 01 = 1 and C, E gxP(e,l w ) x ( m , ,  e,, w j  
= P ( m ,  valid1 w). The inequality reduces to 

Z(M,;E,lfl> 2 - P ( w )  P(m,lw> 
O t  n m x d x  

P ( 0 ) Z O  

. log P ( m ,  validlw). 

Using Lemma 11 and Lemma 10 we get 

log P, = log ( P ( w ) [  max P ( m ,  validlw) 
W E R  m, 

P ( 0 ) Z O  
\ 

1) 
1 

2 log [ P ( w ) [  P ( m , l w ) P ( m ,  validlw) 

2 .(U)[ P(m,lw)log P ( m ,  validlo) 

2 - I (M,;  E,IR>. 

w t n  m x d x  
P ( W ) # O  

W E  n m x d x  
P(UJ)#O 

We obtain the bound P, 2 2-r(Mr;Exln). Going back to (18a) 
and (18b) we can see that P, depends only of two different 
things, x(m,, e,, w )  and P(e,, w). Thus we can consider any 
possible distribution P(m,, e,, w )  such that it leaves the marginal 
distribution P(e,, w )  invariant and such that if x(m,, e,, w )  = 0, 
then P(m,, e,, w )  = 0. We strengthen the bound by taking the 
infimum over all these possible distributions. 

The existence of a joint distribution P(m,, e,, w )  such that i) 
and ii) hold must be checked whenever this lemma is used. 0 

This lemma immediately gives the first part of the remaining 
proofs. To make things clear, we also prove Theorem 1 again, 
now giving the full proof. 

Proof of Theorem 1: Choose M, = M ,  E,  = E,, and R = 0. 
Lemma 12 gives the result. The existence of a joint distribu- 

tion P ( m ,  e,) such that i) and ii) hold is clear from the one given 
in the system. 

For the second inequality, we consider the given joint distribu- 
tion P ( m ,  e,, e , )  in the system. The message M is generated by 
the transmitter due to his encoding rule E,. Thus the generated 
message M and the receiver’s encoding rule ER are independent 
when ET is given and we have P(mle,,e,) = P(mle,). As a 
consequence we get 

Z ( M ;  E,) = Z(E,; E,) + Z(E,; E,IM). 

The given distribution is valid in (4) and if it is used instead of 
taking the infimum we have 

P I -  > ~ - I ( M ; E R )  = 2-I(ER;E,)+I(ER;E,IM). 0 

Proof of Theorem 2: Choose M ,  = M’, E, = E,, and Cl = M .  
Lemma 11 and Lemma 12 give the result. The existence of a 

joint distribution P(m’, m, e,) such that i) and ii) hold must be 
checked. If for every receiver’s encoding rule e,, there are at 
least two valid messages corresponding to different source states, 
then such a distribution exists. Thus we must have IS( 2 2. 

For the second inequality, consider the joint distribution 
P(m’, m, e,, e,), as above. Here both i) and ii) in (7) hold. Since 
M‘ is generated from the pair M ,  E,, it is independent of ER 
and we have P(m’lm, e,, e,) = P(m’lm, e,). From this indepen- 
dence we derive 

Z(M’; ERIM) I ( E R ;  ETIM) + Z(ER; ETIM’, M I .  
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Thus we can modify the lower bound of (7) in the following way: 

p > 2-/(M‘,E,IM) s -  
- - 2-/(ER,I]T1M)+I(EK,fJlM’.M) 

> - 2-I(EK9ET1M). 0 
Proof of Theorem 3: Choose M, = M ,  E, = ER, and R = E,. 
Lemma 12 gives the result. W e  now check the existence of a 

suitable distribution. Assume that the receiver’s key e, and the 
transmitter’s key e, is given and P(e,,  e,) # 0. Then there must 
exist at least one  message m such that x ( m ,  e,, e,)  = 1. This will 
be true if the number of messages accepted by the receiver as 
authentic due  to  his encoding rule e, is larger than the number 
of source states. This must hold for all possible keys at the 
receiver and thus min, E gg d e , )  > IS(. 

T o  prove (11) we observe that all valid distributions in (10) 
have the same marginal distribution P(e,,  e,) as the distribution 
given in the system. If we use one  of these distributions in (10) 
we have 

p > ~ - H ( E , ~ E J ) + H ( E , ~ M , E J )  > - ~ - H ( F R I E , ) .  
T -  

The bound is valid for the given distribution of the encoding 
rules. 0 

Proof of Theorem 4: Choose M, = M ,  E, = E,, and R = ER. 
Lemma 12 gives the result. It is obvious that a distribution 

exists, such that i) and ii) in the theorem hold. 
For the second inequality, simply choose the joint distribution 

P ( m ,  e,, e,) as for the given system. This distribution is valid in 
0 

Proof of Theorem 5: Choose M ,  = M‘, E, =E,, and R = 

Lemma 11 and Lemma 12 give the result. Similarly as in the 
proof of Theorem 2 a distribution, such that i) and ii) in the 
theorem hold, exists if IS1 2 2. 

T o  prove (17) we observe that all valid distributions have the 
same marginal distribution P(m, e,, e , )  as the one  given in the 
system. Using one  such distribution in (16) we have 

(13) and thus the inequality holds. 

( M ,  ER). 

p > ~ - H ( E I  IM, E,)+H(E,IM’,M, a,) > - ~ - H ( F I  IM, E R ) .  
RI - 

The bound is valid for the given distribution. 0 
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