
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Exploring the Software Verification and Validation Process with Focus on Efficient
Fault Detection

Andersson, Carina

2003

Link to publication

Citation for published version (APA):
Andersson, C. (2003). Exploring the Software Verification and Validation Process with Focus on Efficient Fault
Detection. [Licentiate Thesis, Department of Electrical and Information Technology].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/ab635f62-e32a-49a4-a43f-f1372b2d87cc

Department of Communication Systems
Lund Institute of Technology

Exploring the Software
Verification and Validation Process

with Focus on Efficient Fault Detection

Carina Andersson

ISSN 1101-3931

KFS AB

ISRN LUTEDX/TETS--1062--SE+134P

 Carina Andersson

Printed in Sweden

Lund 2003

Contact Information:

Carina Andersson
Department of Communication Systems
Lund University
P.O. Box 118
SE-221 00 LUND
Sweden

Tel: +46 46 222 33 19
Fax: +46 46 14 58 23
E-mail: carina.andersson@telecom.lth.se

This thesis is submitted to Research Board FIME – Physics, Informatics, Mathematics and
Electrical Engineering – at Lund Institute of Technology (LTH), Lund University, in partial
fulfilment of the requirements for the degree of Licentiate of Technology in Software Engineering.

Abstract

Quality is an aspect of high importance in software development projects.
The software organizations have to ensure that the quality of their
developed products is what the customers expect. Thus, the organizations
have to verify that the product is functioning as expected and validate that
the product is what the customers expect. Empirical studies have shown
that in many software development projects as much as half of the
projected schedule is spent on the verification and validation activities.

The research in this thesis focuses on exploring the state of practice of
the verification and validation process and investigating methods for
achieving efficient fault detection during the software development. The
thesis aims at increasing the understanding of the activities conducted to
verify and validate the software products, by the means of empirical
research in the software engineering domain.

A survey of eleven Swedish software development organizations investi-
gates the current state of practice of the verification and validation activi-
ties, and how these activities are managed today. The need for
communicating and visualising the verification and validation process was
expressed during the survey. Therefore the usefulness of process simulations
was evaluated in the thesis. The simulations increased the understanding of
the relationships between different activities among the involved partici-
pants. In addition, an experiment was conducted to compare the perform-
ance of the two verification and validation activities, inspection and testing.

In the future work, empirical research, including experiment results, will
be used for calibration and validation of simulation models, with focus on
using simulation as a method for decision support in the verification and
validation process.

Acknowledgements

This work was partly funded by VINNOVA under a grant for LUCAS –
the Center of Applied Software Research at Lund University.

Firstly, I would like to thank my supervisor, Per Runeson, for giving me an
opportunity to do my postgraduate studies in the Software Engineering
Research Group and for his guidance during these first years. I would also
like to thank my assistant supervisor, Thomas Thelin, for his support and
patience.

I am grateful to the co-authors of my papers and others who have
contributed to the research in this thesis.

I would like to thank my colleagues in the Software Engineering Research
Group, for an inspiring and supporting atmosphere.

I would also like to mention the colleagues at the Department of
Communication Systems, thanks for providing an excellent environment to
work in, and interesting, though sometimes endless, conversations during the
coffee breaks.

My thanks and hugs to my friends for giving me a joyful time when not
working. To “the girls”, what should I do without your crazy ideas for how to
spend a weekend? My life would be much more boring without our events,
even if these also cause both sweat and pain, and more often than not:
soaking clothes because of pouring rain. To the “horse friends” for two
reasons, our common interest that has grown to include several more, and for
challenging me to improve in an area outside the professional. To Jenny and
Louise, for listening even when I’m not in the best of moods.

I would like to thank my family, mum and dad for always being there for
me, my sisters, Eva and Irene for looking after me and never letting me forget
that there are different perspectives of life, and my brother Jan, without you I
never would had started my career in the technical domain.

Finally, my thanks to Jonas, for being my most devoted supporter during
the last two years.

9

Introduction 11

1. Research Focus . 14

2. Related Work . 19

3. Research Methodology . 26

4. Research Results . 32

5. Future Work . 37

6. References . 39

Paper 1: Test Processes in Software Product Evolution –
A Qualitative Survey on the State of Practice 43

1. Introduction . 44

2. Research Questions and Methodology . 45

3. Surveyed Organizations . 51

4. Observations . 54

5. Summary and Conclusions . 64

6. References . 66

Contents

10

Paper 2: Understanding Software Processes through
System Dynamics Simulation: A Case Study 69

1. Introduction .70

2. Method .71

3. Developing the Simulation Model .71

4. Results from the Simulation .79

5. Discussion .80

6. References .82

Appendix A .83

Paper 3: Adaptation of a Simulation Model Template for
Testing to an Industrial Project 85

1. Introduction .86

2. Environment .88

3. Method .91

4. Model and Simulation .94

5. Conclusions .103

6. References .104

Appendix A .105

Paper 4: An Experimental Evaluation of
Inspection and Testing for Detection of Design Faults 111

1. Introduction .112

2. Fault Detection Techniques .114

3. Experiment Planning .116

4. Operation .123

5. Analysis and Results .124

6. Discussion .129

7. Conclusions .131

8. References .132

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 11

Introduction

Today, software plays an important role in modern technology. A
substantial proportion of all products, both commercial products and
other application domains, contain some kind of software. And the trend
is that each product contains more and more software every year.

Independently of the field of application, one major factor is in focus
when using the software: the quality of the software product. With a
product quality below expectations the customers will shortly find a
substitute product that better satisfies his or her needs. Therefore, the
software development organizations are forced to assure that their
products are of acceptable quality, though not exceeding the budget and
still delivered on the agreed schedule. In the 60s, the so-called software
crisis was identified. The fact that the developed software was of low
quality, over budget, and behind schedule was considered in almost every
article on software engineering. This viewpoint has changed, saying the
practice in software engineering is doing pretty well [11]. Compared to
other engineering disciplines, e.g. the building trade, whose projects also
happens to be late and over budget, the software engineering discipline is
producing rather good results, in spite of the fact that this discipline is
much younger. However, there is still much to improve in the software
engineering field. As the software market expands and the customers
demand more complex systems, the problems still exist [10], [41]. Thus,
in the software engineering discipline, as well as in many other

Introduction

12 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

engineering disciplines, there are much to gain by further research and
improvements.

Of the three objectives, software quality, costs according to budget,
and delivery on time, this thesis concentrates on the first: software quality.
The quality control and assurance activities impel the organizations to
examine the developed artefact to ensure that it meets the desired quality.
Once the product is constructed, the quality has to be evaluated, i.e. the
organizations have to validate that the product is what the customers
requested, and verify that the product functions as expected.

The triangle in Figure 1, which the three objectives creates, with
quality, cost, and schedule, in each corner, visualizes that each objective is
dependent on the others. This thesis focuses on the importance of the
verification and validation process, and aims to increase the
understanding of the practices and activities that may be chosen to
examine the developed software artefacts and assure the product quality.
However, as the triangle illustrates, costs and schedule cannot be excluded
from the context, which also is shown in the research reported in this
thesis. The interest in a verification and validation activity is always
combined with the interest in its cost and consumption of time.

The first part of this thesis is an introductory part that summarises the
work. The introduction is organised as follows: in Section 1, the different
concepts addressed in this thesis are described. Furthermore, the research
focus and the purpose of the thesis are discussed together with the

Figure 1. The three objectives in software engineering.

Schedule

Quality

Cost

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 13

research questions. In Section 2, work related to the research in the thesis
is summarised. In Section 3, the practised research methodology is
discussed. The research results and the main contributions of this thesis
are discussed in Section 4, together with the threats to validity. In
Section 5, the plan for the future research is presented, impelled by the
results of this thesis.

The following papers are included in the thesis.

PAPER 1. Test Processes in Software Product Evolution –
A Qualitative Survey on the State of Practice

Per Runeson, Carina Andersson, Martin Höst

Journal of Software Maintenance and Evolution: Research and Practice,
15(1):41-59, 2003.

PAPER 2. Understanding Software Processes through System
Dynamics Simulation: A Case Study

Carina Andersson, Lena Karlsson, Josef Nedstam, Martin Höst, Bertil I Nils-
son

Proceedings of 9th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems, pp. 41-48, 2002.

PAPER 3. Adaptation of a Simulation Model Template for Testing to
an Industrial Project

Tomas Berling, Carina Andersson, Martin Höst, Christian Nyberg

Proceedings of 2003 Software Process Simulation Modeling Workshop, 2003.

PAPER 4. An Experimental Evaluation of Inspection and Testing for
Detection of Design Faults

Carina Andersson, Thomas Thelin, Per Runeson, Nina Dzamashvili

Proceedings of 2nd International Symposium on Empirical Software
Engineering, pp. 174-184, 2003.

In addition to the papers mentioned above, the author has contributed
to the following papers:

Introduction

14 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Understanding Software Processes through System Dynamics
Simulation: A Case Study

Carina Andersson, Lena Karlsson, Josef Nedstam, Martin Höst, Bertil I Nils-
son

Proceedings of 1st Swedish Conference on Software Engineering Research and
Practice, pp. 1-8, 2001. This paper is an earlier version of paper 2.

Verification and Validation in Industry – A Qualitative Survey on the
State of Practice

Carina Andersson, Per Runeson

Proceedings of 1st International Symposium on Empirical Software Engineering,
pp. 37-47, 2002.

How much Information is Needed for Usage-Based Reading?
– A Series of Experiments

Thomas Thelin, Per Runeson, Claes Wohlin, Thomas Olsson, Carina Anders-
son

Proceedings of 1st International Symposium on Empirical Software Engineering,
pp. 127-138, 2002.

Evaluation of Usage-Based Reading – Conclusions after Three
Experiments

Thomas Thelin, Per Runeson, Claes Wohlin, Thomas Olsson, Carina Anders-
son

To appear in Empirical Software Engineering: An International Journal, 2003.
This is an extended version of the paper above.

1. Research Focus

The research presented in this thesis is in the field of software engineering.
Software development does not solely consist of programming or
implementing code modules. Several more activities are necessary to
produce high-quality, maintainable software products. The research in
this thesis more specifically concerns the verification and validation
activities in the software development process.

1. Research Focus

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 15

A widely used representation of the practical development is the
waterfall model [34]. The fundamental development activities in the
waterfall model are represented by succeeding process phases, and in
principle is the result of each phase one or more artefacts. The
straightforward approach is useful in large software projects with well
defined requirements. However, the model is too inflexible, with distinct
phases, when the requirements are changeable. The basic idea of the
waterfall model is still used, though it has been refined to suit e.g.
incremental development, to support parallel activities.

Verification and validation are important parts of the software
development process. The verification and validation activities ensure that
the artefacts conform to the specifications and that the final product is
what was initially requested from the customers. This may start from the
first development phase, with analysis of the requirements, and proceed
during the development with reviews of design documents and code and
product testing. Ideally, the faults in a software product are discovered as
early as possible, to avoid expensive rework later on in the development
process. Costs to detect and correct faults grow dramatically when these
have propagated to later phases. Observations show that the costs of
correcting a fault in design and code phases is often 10 to 100 times less
expensive than if it is found during the test phases [1]. This is a major
driver for focusing the effort on detecting faults early in the development
process.

The verification and validation activities can be divided into two
different strategies, static and dynamic [38]. Static techniques do not
require that the system is executed and may be applied at all stages of the
development process. Static techniques may be applied as formal reviews
like inspections [9], or automatic analyses of the code of a system or
associated documents. However, to ensure that a program is operationally
correct also dynamic techniques, which mean that the system is executed
with test data, are necessary [13]. On the other hand, testing is only
possible when a prototype or an executable version of a program is
available.

Both static and dynamic techniques aim at detecting software faults1,
but it is not evident which faults are best found by which technique. Still,
faults can be injected into the software products at all stages in the

1. In this thesis a fault is defined as an incorrect step, process, or data definition included in any of
the developed products. A failure is an incorrect result during execution, i.e. occurs when a soft-
ware system does not behave as desired, and thereby reveals a fault [14].

Introduction

16 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

development process, and can also through the verification and validation
activities be removed from these. Table 1 shows examples of activities in
the development process in which faults are injected and removed.

To be most effective, the verification and validation activities must be
fully integrated in the development process. The V-model [34] is used for
structuring the software development process with several detailed steps,
guiding the developer through the software engineering process. The

name origins from the main shape of the model, which is designed as a V.
Figure 2 shows an example of a development process with its generic
products and activities as well as the corresponding verification and
validation activities. The left hand side of the model can be seen as the
waterfall model from requirements engineering, design definition, down
to implementation of program code [38], including subsequent
verification activities. The right hand side describes the testing activities,
unit tests, integration tests, system tests, and acceptance tests.

However, the V-model could also be considered as a product model,
rather than a process model. This since the model not necessarily defines
the sequence of the development steps in which the products are created.
Hence, the model is applicable to different types of development
processes, with parts developed in sequence, parallel, or incrementally.

An important aspect in the model is the relations between the artefacts
and the corresponding quality control activities, represented by the dotted
lines in Figure 2. The model expresses that the requirements have to be
consistent with the results of the corresponding tests, the high and low-

Table 1. Activities associated with fault injection and fault removal. Derived from
[18].

Development phase Fault injection Fault removal

Requirements Requirements gathering
process and the development
of specifications

Requirements
verification

Design Design work Design verification

Code
implementation

Coding Code verification

Integration Integration process Integration test

Unit test Bad fixes Testing itself

System test Bad fixes Testing itself

1. Research Focus

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 17

level design have to be consistent with their corresponding tests. Another
purpose with the model is that the relations between the developed
products should be maintained and an inspection can be conducted as
soon as an artefact, or part of an artefact, is created. A typical example is
inspection of code that is checked against the design document.

1.1 Terminology

Among the inspection and testing activities a variety of methods and
techniques exists. This section describes the techniques that are applied in
the research discussed in the following sections of the thesis.

Inspections [9] can be more or less formal. Walkthroughs are less
formal, with no additional effort for the participants than the main
inspection meeting, while more formal inspections require preparation
before the meeting. During the inspection the participants are provided
with guidelines, e.g. checklists, to assist the participants in the task of
finding faults. Other inspection techniques have been proposed, e.g.
reading techniques that focus on the inspected artefacts from different
perspectives [5] where the participants more actively produce some result.
Reading by stepwise abstraction is an example of an active reading
technique [24].

The testing techniques discussed in the thesis are either functional
testing or structural testing. Functional testing is based on the input and
the output of the program under test, without any internal knowledge of

Figure 2. V-model.

Code Verification

Integration Test Design Verification

Requirements Verification

Unit TestCode

System Test
Design

Requirements Acceptance Test

Introduction

18 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

the program. Examples of methods for functional testing are equivalence
partitioning, where the input are classified into representative sets, and
boundary-value analysis, which is a variant of equivalence partitioning
with the difference that the tested input are selected from the edges of the
sets [19]. The testing can also be termed requirements-based, i.e. the
software is tested based on the requirements without knowledge of the
low-level design or the code. Structural testing is based on the internal
program structure and is derived from the low-level design specification
or the code. Examples of methods for structural testing are control flow
analysis, e.g. statement coverage, where each statement in the program
under test should be executed at least once, and data flow analysis, which
focuses on how the data flow through a sequence of processing steps in
the program. Design-based testing, which has a design coverage goal, is an
example of a data flow method [37].

Another approach than testing is to provide fault tolerance in the
developed software. An example in this field is voting, which is used as
fault detection mechanism in N-version programming [37], [38]. Self-
checks are similar to the acceptance tests for recovery blocks and means
that each program component includes a test to check if the component
has executed successfully [37], [38].

1.2 Research Purpose

In many software development projects half of the projected schedule is
spent on verification and validation activities [8]. Therefore, the research
in this thesis aims at creating a better understanding of the verification
and validation process. The objective of the research is to explore the
current state of the practice, investigate verification and validation
techniques, and evaluate methods for visualizing relationships between
factors that both affect the process and the quality of the developed
product. Thus, the research scope in this thesis is limited to empirical
research on the verification and validation process, with a special focus on
the activities inspection and testing.

The research focus on exploring the verification and validation process
has impelled the research questions listed below. The questions are listed
in the order they are addressed in the thesis.

2. Related Work

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 19

RQ1. How do software organizations perform verification and validation?

RQ2. Can the understanding of the verification and validation process,
and its activities, be increased by simulations?

RQ3. How do inspections compare to testing regarding performance in
finding design faults?

To form a basis for the research in this thesis, the following section
describes related work in this area. Specifically research investigating the
verification and validation activities inspection and testing in relation to
each other is presented.

2. Related Work

The core questions in much of the empirical software engineering
research are investigating objects in terms of one or more of the three
objectives, quality, cost, or schedule. If several alternatives for conducting
a certain activity are available, which is the best one? If there is a best
alternative, can it be standardized to suit different organizations?
Regarding fault detection activities, an extensive amount of studies on
methods are conducted over the years, both methods for static analysis,
like inspections, and dynamic, like testing. Surveys, presenting the
strategies separately, can be found in [3], which describes the state-of-art
of inspections, and in [16], which describes empirical studies on testing.

The following summarises a survey of empirical work investigating
inspections and testing, with the scope limited to studies including
evaluation of both inspections and testing. The survey covers case studies,
simulation studies and experiments.

2.1 Case Studies

Several case studies, investigating inspections and testing, are reporting on
experiences from industry. These often have a comprehensive viewpoint,
though are not presenting any statistically guaranteed results. One
observed distinction from e.g. the surveyed experiments is that often
when the presented case studies evaluate the role of inspection vs. testing

Introduction

20 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

in finding faults, the inspection of other artefacts than code is mentioned.
Hence, inspections of documents, like requirements and design
specifications are also in focus.

The most addressed question in the case studies investigating
inspections and testing is a simplification of whether inspections are
worth spending effort on, compared to other fault detection activities.
Most literature present data supporting the claim that inspections are
more effective and specifically cost-effective for detecting and removing
faults than having the detection and removal of the same faults in the later
phases [18], [35]. The general opinion from several development
environments says that the use of inspections improves the product
quality and that inspections reduce the testing effort [1].

2.2 Simulation Studies

Simulation is another approach for creating an understanding of the
mechanisms affecting the development process. An implemented
computer model, calibrated with empirical data, can be executed,
simulating the real process behaviour. Empirical issues related to software
process simulations concern the analysis of the process data, as direct
input to the model or used for the model building, the model output
data, used as support for planning and management decisions, and the
model structure in the context of evaluating the efficiency of a process.

Hence, to use a simulation model, the model should be customized to
an organization, to ensure that the right metrics are used as input. The
published models do often follow a generic waterfall life cycle, presenting
either the whole development process, from requirements to system
testing, or chosen parts of it, like the unit test phase. The benefit of
simulation modelling is that to get an accurate model the activities have to
be clearly identified. Furthermore, dependencies, as well as the feedback
between various activities, have to be defined. The following summarized
simulation studies focus on inspection and testing. The models are
empirically validated with industry data.

Madachy: Madachy developed a dynamic simulation model (see
Section 3.2) of a development process with the aim to investigate the
inspection activities and their effects on cost, schedule and quality [25].
Inspections and system testing were assumed to be the only fault
detection activities in the modelled organization. The data collected from

2. Related Work

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 21

two projects was used for validation. In addition, data from the literature
[7] were used for calibration.

Findings: The simulation results were compared, and validated against
project data and other published data. These showed that the extra effort
required for inspections in the design and coding phase, is saved by the
reduced testing and integration effort. However, for too low fault rates,
inspections were not cost effective. The feedback effect of inspections,
which tends to reduce the fault generation rate, could also be seen in the
executions of the simulation model. The results also discussed the trade-
off for performing design inspections, code inspections, or both e.g. while
changing the values for the rework cost during testing.

Raffo and Kellner: Raffo and Kellner conducted a field study to evaluate
a specific process change [30]. The selected problem was to assess the
impact of creating unit test plans during the coding phase. Other
considered process changes included high-level and low-level design
phases, conducting unit testing before code inspection, and inspecting
only high-risk modules of the product at the design and code phase.
Hence, the studied process change consisted of a modification of the unit
test phase, requiring unit test plans to be developed during the coding
phase and also inspected during the code inspection.

Findings: The executions showed that the proposed process change
would lead to significant reductions in remaining faults, effort to correct
field detected faults, and project duration. They also showed that, at a
higher implementation cost, improving the inspections could be a more
effective process improvement than the creating unit test plans change.

Martin and Raffo: Martin and Raffo developed a hybrid model (see
Section 3.2) of a software development process [26]. The aim of the
simulation was to study the effects of having a pool of experienced
engineers and eliminating the unit test step. Changing the process to
remove the unit test involves a change to the activities composing the
process, modelled as discrete events. The higher experience among the
engineers will give feedback effects as lower fault injection rates, and
increase fault detection, which have to be represented by a system
dynamics model. Input data for the model were collected in a real-world
process over two years, while project managers estimated some data.
Model output variables of interest were the number of undetected faults,
and the effect on effort and duration, as results of the changes.

Introduction

22 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Findings: The results were statistically tested by a two-way ANOVA
[27]. To summarize the results, if implementing both changes, the project
duration and the effort would be reduced significantly, and the number of
undetected faults would decrease.

Development of process simulation models requires determining the
accurate input parameters, which could be representative distributions for
key project parameters, such as productivity, fault injection rates, task
effort, etc. The development also requires quantification of relationships
between the key parameters, which should be able to implement into a
model. Obviously, it is only simplistic models representing the real world,
and the model results are highly dependable on the accuracy of the input.
In the literature several suggested simulations models can be found,
though they are more seldom applied in a real-world environment, and
not validated with project data, since adequate data describing the
quantitative relationships are not often available.

2.3 Experimental Studies

Several experiments have investigated and compared the impact of
inspections and testing separately. Investigations on inspection, e.g. by
comparing different reading techniques [39], and on testing by
comparing the effectiveness of different test techniques [31].

The surveyed experiments from the last three decades do all include
some form of inspection and testing applied on code modules, compared
to each other.

Hetzel: Hetzel’s experiment from 1976, used 39 subjects, mostly students
with little programming experience, and evaluated three methods:
functional testing, a variation of structural testing, and code reading [12].

Findings: The experiment resulted in the same effectiveness for
functional testing and structural testing and significantly inferior result
for the code reading method.

Myers: The experiment of Myers from 1978 included 59 professionals as
subjects and compared three different approaches and variations thereof:
functional testing, structural testing, and team-based code walkthroughs/
inspections [28].

2. Related Work

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 23

Findings: The analysis concluded that the three methods were equally
effective in finding errors and that none of the methods, when used alone,
was very good. The author’s implication was that walkthroughs and
inspection is a supplement to testing, and not a replacement. On the
other hand, the walkthrough/inspection method was more costly, using
more labour, than the other methods. The detection of certain classes of
faults varied from technique to technique.

Basili and Selby: This experiment from the mid 1980’s also compared
three techniques: code reading by stepwise abstraction, functional testing
using equivalence partitioning and boundary value analysis, and
structural testing using 100 percent statement coverage [4]. 32
professional programmers and 42 advanced students were used as
subjects. The techniques were evaluated in three different aspects, fault
detection effectiveness, fault detection cost, and classes of faults found,
applied on four different programs of different software type.

Findings: In this experiment, it was concluded that each technique’s
effectiveness depended on the software type. Some evidence showed that
code reading detected more faults, though this was dependent on the
different subject groups.

Kamsties and Lott: This study from the 1990’s contributed with two
replications of Basili and Selby’s experiment, using the same experimental
design with some variations [17]. They changed the programs, language
and the associated faults. The first replication contained 27 subjects, the
second 15, both using students.

Findings: No statistical significance regarding the fault detection
effectiveness of the three techniques was obtained. Regarding cost-
effectiveness, functional testing was the best.

Roper et al.: This study reported on a replication of Kamsties and Lott’s
experiment, using 47 students as subjects [33].

Findings: The results supported Kamsties and Lott’s, i.e. no statistically
significance regarding fault detection effectiveness of the techniques was
obtained. They also concluded, as Basili and Selby did, that the
effectiveness depended on the programs, the software type, and also on
the type of faults in those programs. The third major finding showed that
the techniques were more effective when used in combination with each
other than when not.

Introduction

24 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Laitenberger: Laitenberger reports on a controlled experiment with code
inspection and structural testing [22]. This experiment differs from the
earlier ones in the sense that the 20 subjects, graduate students, applied
the techniques sequentially, as adopted in industry.

Findings: The experiment did not confirm that the two techniques
complement each other. On the contrary, faults missed in inspection were
often not detected in testing either. The first inspection even hindered the
effectiveness of structural testing and showed that the two techniques did
not focus on different fault classes.

So et al.: The authors conducted first an experiment comparing different
testing techniques on eight program versions and conducted then a
follow-up experiment, including inspections on five of the eight program
versions with 15 graduate students [37].

Findings: The results show that voting, the used testing technique,
which consisted of two components: requirements-based and design-
based testing, and inspections detected more faults than the other
methods, which were code reading by stepwise abstraction, self-checks,
and data-flow analysis. The results also indicate that voting, the testing
method and inspections were complementary to each other, i.e. faults
detected by one method was to a large portion not detected by the other
two methods.

To summarize the surveyed experiments, several of the papers finish
with calls for “replication of this study is necessary” and “further work on
this topic”. Deriving reliable results from one single experiment is not
very likely. It requires a large number of studies to provide a definitive
answer, no matter which discipline is in focus. Still, several of the
conducted experiments are replications of each other. From these and the
others the following can be concluded:

• There is no consistent evidence that one fault detection technique is
superior to the others.

• In most studies is it suggested that inspections and testing should be
applied in combination, though this is depending on the choice of
technique.

• There is no evidence that one technique is able to detect all existing
faults in an artefact exposed to the detection techniques.

2. Related Work

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 25

2.4 Conclusions from Related Work

Inspections and testing, as the two most important verification and
validation techniques, are activities that both researchers and practitioners
need to understand, on how to use them separately, but more importantly
how to combine them to achieve highest effectiveness.

The survey of the empirical studies comparing inspections and testing,
does not give a simple answer of how the techniques are related and how
to combine them most effectively. On the other hand, it is probably not
to be expected yet either. The following can be concluded from the
survey:

• Most of the controlled experiments focus on the inspection and
testing activities in isolation, and make theoretical comparisons
afterwards. The simulation studies, on the other hand, have to
include both activities to able to show the appropriate performance
of the modelled process.

• The case studies do all point towards higher effectiveness for
inspections, compared to testing, while the experiments not show
any evidence that a specific technique is superior to the other.

• Most, though not all, of the different studies conclude that
inspections and testing are complementary, even though the
classifications of faults are not the same. Both of the research
strategies case studies and experiments come to the conclusion that
inspection and testing detect different types of faults.

It is concluded that both techniques, inspections and testing, are
highly dependent on a number of factors, i.e. several parameters are of
interest, when comparing inspections and testing, which make it difficult
to draw any general conclusions from the examined studies. A single
statement about inspections and testing is not given very easily.

Since the studies often focus on the inspection and testing activities in
isolation, the theoretical comparisons are made afterwards. These
evaluations often lead to suggestions of applying the activities in
combination, rather than isolation. However, few studies do evaluate in
detail the activities in combination. How to combine the activities, and
how it will affect the product quality are rather unclear. More knowledge
has to be gained and the understanding of the relationships between
inspections and testing has to increase.

Introduction

26 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Hence, this knowledge has to be built, and an appropriate way is
empirical studies. Studies guided by all methodological strategies are
important, since they all are valuable in building a solid empirical
foundation.

In the next section, in order to investigate the listed research questions,
general empirical research methodology is discussed and the specific
techniques and means used in this thesis are described.

3. Research Methodology

Empirical research in the area of software engineering has evolved over the
last decades. Empirical studies in software engineering have become a key
approach for researchers who want to understand, evaluate and model the
techniques and methods being developed for software engineering. An
empirical study is basically a systematic observation, which lets the
researcher gain quantitative or qualitative evidence concerning the object
under study. Thus the research will allow for confirmation of theories and
hypotheses based on measurable observations rather than belief.

Even though the field has evolved, the empirical software engineering
research has been criticized for still being immature [36]. However, recent
guidelines for evaluating situations, methods and techniques are proposed
on from several directions [21], [42]. The research methodology is based
on the same principles that can be used in other areas, like social, medical,
and psychological research [32], but when criticized it is compared to
these more mature research fields. The software engineering field is
relatively young when compared to these research fields.

When considering research methodology in general, the first step in a
successful research study is often to state the research goal and research
questions. Thereafter, the research approach is chosen and an appropriate
study design decided upon. The chosen design will include the choice of
data collection methods and analysis methods. This section describes
common methodological approaches for research. Furthermore, the data
collection and analysis methods used in the studies in this thesis are
described.

3. Research Methodology

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 27

3.1 Methodological Approach

Two approaches are mentioned when discussing research strategy, fixed
and flexible research designs [32]. Fixed design refers to doing a large
amount of pre-specification about what to do, and how to do it, before
getting into the main part of the research study. The approach means that
the researcher needs to know exactly what to do, and collect all data
before starting to analyse it. The fixed design often relies on quantitative
data and statistical analysis, in contrast to flexible design, which also is
referred as qualitative design. The flexible design often results in
qualitative data, typically non-numerical, and much less pre-specification
is used; the design evolves as the research proceeds, and the data collection
and analysis are intertwined.

The purpose of the research can be classified into exploratory,
descriptive, explanatory, and emancipatory [32]. If the research aims at
seeking new insights and exploring what happens in situations not yet
well understood, it is classified as exploratory. The purpose is to assess
phenomena in a new light and generate ideas and hypotheses for future
research. Exploratory research is almost exclusively of flexible design. To
classify the research as descriptive, it requires extensive previous knowledge
of the situation, to portray an accurate profile of events or situations. The
descriptive research uses flexible and/or fixed design. Explanatory research
aims to explain a situation or problem, and the patterns relating to the
researched situation. It also aims to identify relationships between aspects
of the phenomenon being researched, by using flexible and/or fixed
design. Emancipatory research is used to create opportunities and the will
to engage in social action. The emancipatory research uses almost
exclusively flexible design. However, the purpose of a particular study may
be influenced by more than one of the four classifications, exploratory,
descriptive, explanatory and emancipatory, possibly all of them.

Dependent on the purpose of the research an appropriate investigation
type is chosen. Three major alternatives are recognized [20], [42], surveys,
case studies, and experiments [15].

Surveys: A survey is often referred to as a fixed design research strategy,
though can also be of flexible design. The central features of surveys are
the collection of data from a relatively large number of individuals, and
the selection of representative samples of individuals. Surveys are very
common in other areas, like social science, for example, for analysing

Introduction

28 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

voting intentions. Many of the variables that influence the studied field
are not controlled in a survey, as in other investigation methods. The
primary means of gathering data in a survey are interviews and
questionnaires. The results are analysed to be generalized to the sampled
population. Hence, the results from an investigation performed in one
organization are difficult to generalize to other organizations.

Case Studies: A case study is of a flexible design research strategy, focused
on the situation, individual, group, project or organization that the
researcher is interested in. Case study as a strategy is defined as using
several methods for data collection, where qualitative data most invariably
are collected, though; also quantitative data can be included. A case study
is an observational study, and the researcher does not have the same level
of control as in an experiment, i.e. there are confounding factors, which
are not entirely known or can be controlled, that may affect the result.
However, a case study is performed in a real context and not in a
laboratory, as experiments often are. On the other hand, a case study
might be harder to interpret. A case study can monitor the effects in a
typical situation under study, though cannot be generalized to every
situation.

Experiments: The experimental strategy is of the fixed design type. An
experiment is an extremely focused study, since only a few variables can be
handled. The purpose is to manipulate one or more variables and
controlling the others at fixed levels. An experiment is usually conducted
in a laboratory environment, with subjects assigned to different
treatments at random. One of the treatments, the control treatment, is
often the status quo, and the use of a new method or tool is compared
with the control treatment. The results from a formal experiment may be
easier to generalize than the results from surveys and case studies.
Though, for obtaining results that are broadly applicable across many
types of projects and processes, the context of the experiment is of high
importance.

Dependent on the chosen investigation type for the empirical study,
feasible methods for data collection and analysis are decided upon. The
following describes the methods used for the research in this thesis.

3. Research Methodology

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 29

3.2 Data Collection and Analysis

Without proper analysis and interpretation of the collected material, the
essence of the data will not be revealed nor be possible to communicate.
However, there might not be a clear point in time when the data
collection ends and analysis begins. Most often in a flexible design the
data collection and analysis are overlapping, which also may result in a
higher quality of both the collected material as well as the analysis. When
not focusing on confirming predefined solutions and initial
interpretations the overlapping may give new insights and alternative
explanations [29]. On the other hand, in a fixed design study, the analysis
is performed after all data are gathered.

The procedure for data collection can be chosen among a variety of
methods. The following focuses on the instruments that have been most
frequently used in the studies presented in this thesis.

The analysis of quantitative data can range from being simply
organized to being exposed for some complex statistical analysis.
However, qualitative data should also be systematically analysed.
According to Robson [32], there does not exist one single accepted
convention for qualitative analysis, in contrast to the existence of
established statistical methods for quantitative analysis.

Observations: Observations for data collection are typically used in
exploratory research, to observe what is going on in a certain situation,
and to watch the actions and behaviour of people. What has been
observed is then described, analysed and interpreted. Much research in
social science involves direct observations of humans, but also for example
experiments in software engineering represent a kind of controlled
observation.

The observation method used in this thesis is mainly of the type
participatory observation [6], [32], where the observer participates in the
group or situation under study. In papers 2 and 3 the researcher(s) have
participated in the daily work in the organization under study. Most
important with participatory observations is the awareness of the risk of
bias, i.e. that the observer loses the objectiveness. When observing an
organization, which the researchers themselves belong to, they have some
knowledge of how certain situations are handled and thereby they may
unintentionally overlook some aspects. On the other hand, the researchers

Introduction

30 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

often have a good understanding of the existing procedures in the
observed organization.

Interviews: One advantage with data collection through interviews is the
flexibility. The researcher has the possibility to follow up ideas, interpret
feelings and facial expressions and intonations of the interview subject
that written answers do not reveal. The answers given in a questionnaire
must be interpreted on their own, while in an interview attendant
questions can be given and the answers thereby catch more subtle
information. On the other hand, interviews are rather time consuming.
There are several necessary activities that should be conducted, the
preparation, the execution, and the processing of the data. It is also a
subjective technique, with risk of biases, both from the interviewer and
interviewees’ point of view.

The classification of different interview types can be shown on a scale
of structure, from one extreme, like the fully-structured interview, over the
semi-structured interview, to the other extreme, the unstructured interview
[32]. The more standardized the interview is, the easier is the processing
of the data. The fully-structured interview resembles a questionnaire or a
checklist, though includes also open-response questions. The semi-
structured interview has predetermined questions, but the interviewer can
change the order, as well as the wording of the question, and explanations
can be given. The unstructured interview has often a topic, which the
interviewer poses open questions about.

In this thesis, the performed interviews are of semi-structured and
unstructured types (papers 1, 2 and 3).

Content Analysis: A third method for data collection is review of written
documents. The content analysis in qualitative inquiry examines relevant
records and documents, with the focus to gather information and
generate findings that are useful. The analysis of what is in the documents
differs from observations and interviews in that it is indirect. Instead of
directly observing or interviewing, the content analysis is based on
existing documents. In this case the observer does not affect the
documents. In papers 2 and 3, data have mainly been collected from
existing documents. However, content analysis also includes analysing the
content of interviews and observations, and then the data are collected
directly for the purpose of the research. Content analysis has been used for
this purpose in papers 1 and 4.

3. Research Methodology

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 31

Simulations: Simulations can be used both as a data collection method
[32] and as an analysis tool, when experiments and real-world trials are
too expensive and difficult to conduct. In this thesis, simulations are
mainly used as support for the analysis. A model of the essential structure
of the situation of interest is designed and computer simulated, though it
is still only a model of the real world. Simulation of software development
processes can be used for extending the understanding of the
interdependencies between different activities in the process, or be used as
means for an organization to evaluate process changes, etc.

Simulations are classified in two different types, discrete-event and
continuous [23]. In discrete-event simulation, the state of the system is
changed only when certain events occur. In continuous simulations, also
referred to as system dynamics, the state changes continuously over time,
and the simulation model is designed by differential equations. The
discrete-event paradigm and system dynamics may also be combined as a
hybrid model [26]. In combination, the discrete event paradigm shows
specific process tasks and describes unique process artefacts, while the
system dynamics paradigm is better for representing the project
environment and the feedback loops that may exist in the project
environment.

System dynamics modelling and simulations have been used in paper 2
and 3 for increasing the understanding of the investigated processes. The
simulation in paper 2 also evaluated the usefulness of system dynamics
simulations, while paper 3 focuses on the understanding of the software
test process.

3.3 Validity

Although a research study has been conducted with reliable, well-defined
methods and techniques, the results and conclusions should be evaluated
and questioned. The validity should always be addressed. The researcher
is obliged to describe the used methodology and data collection
procedures in a sufficient level of details, and also how the researcher has
reached the presented conclusions from the data. This to ensure that the
quality of the conclusions can be assessed. The validity of a research study
can be evaluated from four perspectives [40].

Conclusion validity is concerned with the relationship between the
cause and the effect in the study, and answers e.g. the question whether
there is any relationship between the treatment and the outcome.

Introduction

32 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Internal validity is concerned with what really have had impact on the
resulting outcome of a study. If a relationship between the treatment and
the outcome is observed, the internal validity reflects if a particular
treatment really has caused a certain outcome. One example of threats to
the internal validity is the history effect, whether something has changed
in the participants’ environment, a change that is not part of the study.

Construct validity reflects whether the researcher measures what is
decided on. A threat to the construct validity concerns if it is possible to
generalize the results of an experiment to the underlying theory or
hypothesis.

External validity concerns the generalizability of the study. Results
obtained in a specific setting, or with a specific group of subjects, may not
be representative for other settings. For example, results from a study in a
laboratory setting can be difficult to generalize to other conditions, which
are not close to the laboratories.

For these four validity types there are always several possible threats.
Ideally, these threats are reduced as much as possible.

Threats to validity of the results in this thesis are discussed in
conjunction with the main contributions in Section 4 and separately in
each included paper.

4. Research Results

This section presents the main contributions of this thesis, related to each
research question. In addition, the main threats to validity that have been
addressed during the studies are discussed.

4.1 Main Contributions

The following reports on the main contributions of this thesis, related to
each research question.

RQ1. How do software organizations perform verification and validation?

A general view of how organizations perform their verification and
validation cannot be expressed. The procedures of different organizations
are most often too heterogeneous. Instead, the research aims at creating a
body of knowledge of how different organizations control and manage

4. Research Results

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 33

their activities, and investigates the organizational attributes that affect
the chosen procedures.

Paper 1 presents a qualitative survey investigating the state of practice
in 11 Swedish software development organizations. The survey was
conducted to increase the understanding of the state of the test process
practices in software industry. The data were collected by interviews in
software development departments at the participating organizations and
thereafter assessed and analysed. Paper 1 is an extension of a previous
published paper “Verification and Validation in Industry – A Qualitative
Survey on the State of Practice”, by Carina Andersson and Per Runeson,
[2]. This paper is referred to if more specific information on the practices
used in the surveyed organizations is desired. Furthermore, the case
studies in paper 2 and 3 have given a more extensive view of current
practices in these two investigated organizations.

In the survey it is concluded that larger organizations emphasized the
well documented verification and validation process as a key asset, while
the process was less visible in the smaller organizations. These
organizations relied more on experienced people among the employees
than on documentation. A threshold was observed somewhere between
30 and 50 developers in the organization. Organizations larger than this
breakpoint needed the process to guide and support the work, while in
organizations below, less formal means was sufficient.

The development among the surveyed organizations was either
incremental (internal release cycles of months) or daily build (internal
release cycles of days). Increments were used among more process-focused
organizations and daily build was more frequently utilized in less process-
focused organizations. Using incremental development or daily build
provides an opportunity to the organizations to start testing early during
the first developed increments with less functionality. Thus, the cycle time
for a release will be reduced since it allows testing in parallel with
development.

No specific approach for improvements, related to the used process,
could be identified among the surveyed organizations. The approach
taken depended on the persons involved, their background and
experiences. Test automation was regarded as an improvement area by
several of the organizations. Handling the legacy parts of the product and
related documentation presented a common problem in improvement
efforts for product evolution. The test automation was performed using
scripts for products with focus on functionality and recorded data for

Introduction

34 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

products with focus on non-functional properties. However, a key issue
regarding test automation is the tested product’s stability. There will only
be potential savings if the product is long-lasting or the automation
scripts are possible to use for a product line.

RQ2. Can the understanding of the verification and validation process,
and its activities, be increased by simulations?

The importance of understanding and specifically communicating the
verification and validation process and its activities are emphasized by
several organizations during the conducted survey (paper 1). Process
understanding and improvements are considered to be essential in
software industry in order to achieve cost effectiveness and short delivery
times.

In this thesis the use of simulation as a tool for increasing the
understanding of the process activities is investigated. Specifically, the
simulation paradigm system dynamics has been evaluated with respect to
its usefulness as a tool for visualizing different factors’ impact on the
process activities. The contributions to RQ2 are mainly based on the
research conducted in the studies reported in papers 2 and 3.

In paper 2, a simulation model was developed to evaluate its usefulness
in an industrial setting, and build a foundation for future simulation
modelling with the system dynamics paradigm. The model can be used
for relocating resources between different process phases, specifically the
requirements phase and a merged testing phase. The simulation results
show that moving more resources to the early phases of the modelled
project should have given reduced cycle time.

Paper 3 describes how a template model was created in order to
increase the knowledge of the code development and test processes for an
industrial organization. The template model was created from an existing
system dynamics model for the unit test phase. The paper shows how the
template model was adapted and extended to fit an organization. The
simulation model was applied for investigating the relationship between
fault prevention in the development phase and fault detection in the
various test phases. Data from a large contract-driven project were used in
a case study to calibrate the adapted and extended model, which included
code development and four test phases. Programmers and testers were
involved in the design of the model.

The results show that it is possible to use the introduced template
model and to adapt and extend it to a specific organization. It is also

4. Research Results

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 35

concluded that it is important to involve project members who contribute
to the model building. The process understanding of the participating
project members is increased due to their involvement.

The studies show advantages with process simulation using system
dynamics. As a tool the simulation models performed well by visualizing
feedback loops, which are difficult to understand without assistance.
Linear relations without feedback are often understandable and a line of
thought easy to follow. However, when the relations affect factors earlier
in the course of events and creating subsequent loops, a tool for
visualizing this behaviour is needed.

RQ3. How do inspections compare to testing regarding performance in
finding design faults?

As discussed in Section 1, a combination of different verification and
validation activities is means for achieving a high quality software
product, developed with low fault injection and exposed to effective fault
detection techniques.

The focus of this research question is on the combination of
inspections and testing as fault detection activities. The contribution to
RQ3 is mainly obtained from the study reported in paper 4, where
representatives of techniques for these activities were investigated and
compared. The techniques were evaluated in terms of the fault detection
capabilities, in a controlled experiment. Related work, experiments
combining the methods, has focused on fault detection on code artefacts,
while the work in this thesis emphasizes the importance of also
investigating and comparing the activities on a higher abstraction level.

In the study investigating inspection and testing, the efficiency and
effectiveness of the techniques for detection of design faults were
evaluated. The general results from this study show that the values for
efficiency and effectiveness are higher for the inspection technique and
that the testing technique tends to require more time for learning.
Although rework was not taken into account, i.e. the study included only
fault detection and isolation of the faults, inspections were more efficient
and effective. If rework was considered, the difference in efficiency would
probably be even higher, since the correction of the faults detected by
inspection is conducted earlier in the development process than the
corresponding task after detection by testing. However, a combination of
inspection and testing activities should be emphasized if the techniques
detect different faults. The study shows that some faults could be found

Introduction

36 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

by either one of the techniques, though this was not statistically
significant.

4.2 Threats to Validity

The contributions discussed in the previous section rely on the
conclusions drawn from the results of the studies, which are reported in
the included papers. Below, the main validity threats to these conclusions
related to each research question are discussed. Furthermore, the threats
to validity are discussed separately in each paper, together with a list of
strategies to reduce the threats.

General threats to the external validity of a survey of the type in paper
1 concern whether the sample of the study represent an appropriate
population. The sample chosen has diversity in several aspects, although it
is still a result from convenience sampling in that the organizations were
geographically located in southern Sweden. Threats to internal validity
might also affect the outcome of the survey. One threat concerns the
respondents. They may give different views of the reality depending on
their role in the surveyed organizations. In the reported survey, most
organizations had more than one respondent. The respondents ranged
from the roles of test managers and testers to project managers. As a
qualitative study there is potential for bias, from the researchers as well as
the respondents. This threat were countered by triangulation [32], i.e.
having multiple sources for the data, peer debriefing (having a reviewer
acting as a quality assurance person), and member checking (having the
material received from the respondents returned to them for review).

In the two simulation studies in papers 2 and 3, the major threat is
concerned with construct validity, i.e. whether the models represent the
modelled processes or not. The measure taken in these situations was to
have an iterative development of the models. As the models were projects
specific, representatives from the organizations of the modelled processes
validated the models in each iteration.

General threats in experimental studies, like the experiment that
evaluates two fault detection techniques in paper 4, often concern
external validity, i.e. whether the results are generalizable to other settings.
These might be reduced by choosing an appropriate design, and consider
the experimental environment and its subjects and objects. In this specific
study, a major threat concerned the construct validity. The difficult point
was in having the same faults to exist in two different artefacts, and that

5. Future Work

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 37

these faults still were representative for both artefacts. The faults used in
the study origin from the design document, and all were analysed
separately to ensure that they could propagate into the code without
detection.

5. Future Work

In all of the included papers, possible future research directions are
mentioned and in some detail discussed. There are methods and
techniques that can be improved and several of the suggested directions
may be further investigated. These issues are listed in each paper, and in
this section a more focused plan with accompanying research strategies are
presented.

Hence, the planned further research takes its starting point in the
previous work reported in this thesis, with focus on further evaluating
simulations as a method in software engineering research. The specific
research goal is to investigate simulation models as decision support in the
verification and validation planning. Though, the goal is also to apply the
simulation models as a tool to evaluate the benefits, and the trade-off
from different choices made during the planning. These goals will be
fulfilled by the means of empirical studies combined with the
development, building and usage of simulations models.

A plan for further research is presented below, together with purpose
and issues to reflect upon. The research plan is summarized in Table 2.

Table 2. Research plan

Research
step Description Research approach

1, 2 Development and validation of
simulation model in an educa-
tional environment.

Data collection: content analysis

Validation: sensitivity analysis,
literature survey

3 Evaluation of the simulation
model.

Data collection: interviews,
questionnaires, controlled
experiment

4 Extension of simulation model in
industrial environment, inte-
grated with reliability models.

Data collection: content analysis,
interviews

Evaluation: interviews

Introduction

38 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

1. Development of simulation model of a software development process
Based on a project in an educational environment, in a forthcoming
case study an extension of the template model from paper 3 will be
developed. Data will be collected by the means of content analysis
from previous conducted projects. The purpose of the study is to
investigate the factors that influence and have a major impact on
the final software product and the development process.

In the study, it will be investigated whether a process model,
visualizing the different process phases, is the most appropriate way
for modelling the software development; or if a product model,
visualizing the different artefacts (documents and code) and their
evolution is better. Advantages and disadvantages with each
approach will be reflected upon, with the aim of understanding the
range of situations where each is appropriate and convenient to
apply.

2. Validation of the simulation model
The simulation model, mentioned in step 1, will be validated with
data from previous projects. A substantial amount of data is
available from previously conducted projects in the same
educational environment, which makes it possible to conduct an
extensive analysis and validation of the model.

A literature survey of related work in the area will be conducted
to analyse which data and information are required for the model
validation.

3. Evaluation of the usefulness of the simulation model
It is of interest to investigate to what extent a simulation model can
assist project participants as the proposed decision support.
Therefore, the model will be qualitatively evaluated regarding
usefulness as a planning tool for the project managers. Data
collection will be conducted with questionnaires and interviews, to
obtain subjective opinions from project participants, compared to
the outcome after the projects are finished.

An experiment will be conducted as a complement to the
qualitative evaluation of the model. The experiment design will give
an opportunity to keep some variables controlled. Three treatment
groups will be arranged: one having access to the model for

6. References

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 39

planning, one group having access to average data from earlier
years’ projects, and one final control group without any assistance
in the planning phase.

Issues to further reflect upon are the possibilities an experiment
gives. It is possible to manipulate other factors of interest, e.g.
factors having impact on the status of the product at delivery from
developers to testers.

4. Development of simulation model in an industrial setting
Based on the evaluation of the previous model, this step will include
development of an extension of the model, to suit an industrial
setting. The extension will be based on data collected through
content analysis from an organization specific fault reporting
system and interviews with representatives from this organization.

Furthermore, the extension will be integrated with reliability
models. By integrating reliability estimates with the simulation
model, a tool for supporting the decisions regarding reliability
strategies is obtained. The tool will visualize the impacts of choices
on reliability, cost, and schedule. Hence, the purpose is to evaluate
the trade-off between reliability on the one hand, and cost and time
on the other.

In the following chapters, the papers in this thesis are presented.

6. References

[1] Ackerman, A. F., Buchwald, L. S., Lewski, F. H., “Software Inspections: An Effec-
tive Verification Process”, IEEE Software, 6(3):31-36, 1989.

[2] Andersson, C., Runeson, P., “Verification and Validation in Industry – A Qualita-
tive Survey on the State of Practice”, Proceeding of the 1st International Symposium
on Empirical Software Engineering, pp. 37-47, 2002.

[3] Aurum, A., Petersson, H., Wohlin, C., “State-of-the-Art: Software Inspections
after 25 Years”, Software Testing, Verification and Reliability, 12(3):133-154, 2002.

[4] Basili, V. R., Selby, R. W., “Comparing the Effectiveness of Software Testing Strat-
egies”, IEEE Transaction on Software Engineering, 13(12):1278-1296, 1987.

[5] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S.,
Zelkowitz, M. V., “The Empirical Investigation of Perspective-Based Reading”,
Empirical Software Engineering: An International Journal, 1(2):133-164, 1996.

[6] Bell, J., Doing Your Research Projects (3rd ed.), Open U.P., 1999.
[7] Boehm, B. W., Software Engineering Economics, Prentice-Hall, 1981.

Introduction

40 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

[8] Brooks, F. P., The Mythical Man-Month (Anniversary ed.), Addison-Wesley Pub-
lishing Company, 1995.

[9] Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program Devel-
opment”, IBM Systems Journal, 15(3):182-211, 1976.

[10] Genuchten, van, M., “Why is Software Late? An Empirical Study of Reasons For
Delay in Software Development”, IEEE Transaction on Software Engineering,
17(6):582-590, 1991.

[11] Glass, R. L., “The Relationship Between Theory and Practice in Software Engi-
neering”, Communications of the ACM, 39(11):11-13, 1996.

[12] Hetzel W. C., “An Experimental Analysis of Program Verification Problem Solving
Capabilities as they Relate to Programmer Efficiency”, Comput. Personnel, 3(3):10-
15, 1972.

[13] Hetzel, B., The Complete Guide to Software Testing, John Wiley & Sons, 1988.
[14] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std. 610.12-

1990, IEEE Computer Society, 1990.
[15] Juristo, N., Moreno, A. M., Basics of Software Engineering Experimentation, Kluwer

Academic Publisher, 2001.
[16] Juristo N., Moreno A. M., Vegas S., “A Survey on Testing Technique Empirical

Studies: How Limited is Our Knowledge”, Proceedings of the 1st International Sym-
posium on Empirical Software Engineering, pp. 161-172, 2002.

[17] Kamsties, E., Lott, C. M., “An Empirical Evaluation of Three Defect-Detection
Techniques”, Proceedings of the 5th European Software Engineering Conference, pp.
362-383, 1995.

[18] Kan, S. H., Metrics and Models in Software Quality Engineering, Addison-Wesley
Publishing Company, 1995.

[19] Kit. E., Software Testing in the Real World: Improving the Process, Addison-Wesley,
1995.

[20] Kitchenham, B. A., Pickard, L. M., Pfleeger, S. L., “Case Studies for Method and
Tool Evaluation”, IEEE Software, 12(4):52-62, 1995.

[21] Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D. C., El
Emam, K., Rosenberg, J., “Preliminary Guidelines for Empirical Research in Soft-
ware Engineering”, IEEE Transactions on Software Engineering, 28(8):721-734,
2002.

[22] Laitenberger, O., “Studying the Effects of Code Inspection and Structural Testing
on Software Quality”, Proceedings of 9th International Symposium on Software Reli-
ability Engineering, pp. 237-246, 1998.

[23] Law, A. M., Kelton, W. D., Simulation Modeling and Analysis (3rd ed.), McGraw-
Hill, 2000.

[24] Linger, R. C., Mills, H. D., Witt, B. I., Structured Programming – Theory and Prac-
tice, Addison-Wesley, 1979.

[25] Madachy, R. J., “System Dynamics Modelling of an Inspection-Based Process”,
Proceedings of the 18th International Conference on Software Engineering, pp. 376-
386, 1996.

[26] Martin R., Raffo, D., “Application of a Hybrid Process Simulation Model to a
Software Development Project”, Journal of Systems and Software, 59(3):237-246,
2001.

6. References

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 41

[27] Montgomery, D. C., Design and Analysis of Experiments (3rd ed.), John Wiley &
Sons, 1991.

[28] Myers, G. J., “A Controlled Experiment in Program Testing and Code Walk-
throughs/Inspections”, Communications of the ACM, 21(9):760-768, 1978.

[29] Patton, M. Q., Qualitative Evaluation and Research Methods (2nd ed.), Sage Publi-
cations, 1990.

[30] Raffo, D. M., Kellner, M. I., “Analyzing Process Improvements Using the Process
Tradeoff Analysis Method”, Proceedings of Software Process Modelling and Simula-
tion Workshop, 2000.

[31] Reid, S. C., “An Empirical Analysis of Equivalence Partitioning, Boundary Value
Analysis and Random Testing”, Proceedings of the 4th International Software Metrics
Symposium, pp. 64-73, 1997.

[32] Robson, C., Real World Research (2nd ed.), Blackwell Publisher, 2002.
[33] Roper, M., Wood, M., Miller, J., “An Empirical Evaluation of Defect Detection

Techniques”, Information and Software Technology, 39(11):763-775, 1997.
[34] Royce, W. W., “Managing the Development of Large Software Systems”, Proceed-

ings of Western Electronic Show and Convention, pp. 1-9, 1970. (Reprinted in Proc.
of the 9th International Conference on Software Engineering, pp. 328-338, 1987).

[35] Russell, G. W., “Experience with Inspection in Ultralarge-Scale Development”,
IEEE Software, 8(1):25-31, 1991.

[36] Shaw, M., “The coming-of-Age of Software Architecture Research”, Proceedings of
the 23rd International Conference on Software Engineering, pp. 657-664a, 2001.

[37] So, S. S., Cha, S. D., Shimeall, T. J., Kwon, Y. R., “An Empirical Evaluation of Six
Methods to Detect Faults in Software”, Software Testing, Verification and Reliability,
12(3):155-172, 2002.

[38] Sommerville, I., Software Engineering (6th ed.), Addison-Wesley Publishing Com-
pany, 2001.

[39] Thelin, T., Runeson, P., Wohlin, C., “An Experimental Comparison of Usage-
Based and Checklist-Based Reading”, IEEE Transactions on Software Engineering,
29(8):687-704, 2003.

[40] Trochim, W. M. K., The Research Methods Knowledge Base (2nd ed.), Atomic Dog
Publisher, 2001.

[41] Whiting, R., “Development in Disarray”, Software Magazine, 18(12):20, 1998.
[42] Wohlin, C., Runeson, P., Höst, M, Ohlsson, M. C., Regnell, B., Wesslén, A.,

Experimentation in Software Engineering: An Introduction, Kluwer Academic Pub-
lisher, 2000.

42 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 43

PAPER 1

Test Processes in Software Product Evolution –
A Qualitative Survey on the State of Practice

Per Runeson, Carina Andersson, Martin Höst

Journal of Software Maintenance and Evolution: Research and Practice, 15(1):41-59, 2003.

Abstract

In order to understand the state of test processes practices in the software
industry, we have conducted a qualitative survey, covering software
development departments at 11 companies in Sweden of different size
and application domains. The companies develop products in an
evolutionary manner, which means, either new versions are released
regularly, or new product variants under new names are released. The
survey was conducted through workshop and interview sessions, loosely
guided by a questionnaire scheme.

The main conclusions of the survey are that the documented
development process is emphasized by larger organizations as a key asset,
while smaller organizations tend to lean more on experienced people.
Further, product evolution is performed primarily as new product variants
for embedded systems, and as new versions for packaged software. The
development is structured using incremental development or a daily build
approach; increments are used among more process-focused organizations
and daily build is more frequently utilized in less process-focused
organizations. Test automation is performed using scripts for products
with focus on functionality and recorded data for products with focus on
non-functional properties. Test automation is an issue which most
organizations want to improve; handling the legacy parts of the product

1

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

44 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

and related documentation presents a common problem in improvement
efforts for product evolution.

1. Introduction

Verification and validation activities take a substantial share of project
budgets. Early rules of thumb devoted 50% of the time schedule to
testing [8], and no great breakthroughs seem to have changed this
dramatically. An earlier survey, with a focus on lead-time consumption,
concludes that there is a significant shift of the main lead-time burden
from programming to integration and testing, when distributing systems
[7]. Verification and validation (V&V) are the activities performed during
a software development project to ensure that the right system is
developed (validation) and that the developed system is right
(verification) [5]; hence half of the time is spent checking that what is
done during the other half is correct. V&V activities primarily include
inspection and testing and in this survey, we focus on the testing part.

The high ratio of time and effort spent on verification and validation
seems to be particularly true for product evolution, where development
efforts from earlier releases of the product can be reused, but all
functionality has to be verified and validated in every release. In order to
understand the state of practice of the processes in industry, a qualitative
survey was launched, covering software development departments at 11
companies in Sweden of different size and application domains, all
evolving products continuously, either releasing new versions of existing
products, or new product variants. The survey is conducted through
workshop and interview sessions, loosely guided by a questionnaire
scheme. The departments range from 6 to 200 developers, in domains of
communications, image processing and support systems. In this paper,
these departments are referred to as “organizations.” They are selected
based on availability, but we ensured that there is sufficient variation with
respect to size, age and application domain, to draw relevant conclusions
based on the findings.

The methodology followed in the study is presented in Section 2 and
the surveyed organizations are briefly presented in Section 3. The
observations and the analysis are reported in Section 4 and finally, the
conclusions are summarized in Section 5.

2. Research Questions and Methodology

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 45

2. Research Questions and Methodology

The purpose of the survey is to investigate the current status of
verification and validation processes in software companies developing
systems in an evolutionary manner. However, as a qualitative survey is not
an objective study, but a view of the world seen from the researchers’
viewpoints, the approach to the survey as well as the specific research
questions are biased by the researchers. In order to enable critical reviews
of the observations and conclusions of the study, the viewpoints of the
researchers are reported here, leading to the research questions
investigated.

2.1 Researcher Viewpoints

Below, a few statements summarize the values of the researchers which
performed this investigation.

• Process focus. The documented process is an important means for
communication and capturing experiences. The communication
may regard tasks to perform and the progress of the development
project. Experience capturing may comprise historical time and
defect data, which require a process model as a reference. The term
process is here broadly defined to include a variety of methods and
other developmental support [17], while the documented process
refers to company development manuals and similar documents.

• Balance between process and people. All knowledge and experience
cannot be captured in a documented process. Software engineering
is hence heavily dependent on individuals. The process is assumed
to be more important for large organizations, while people are more
important for smaller organizations.

• Inspections. It is assumed, and to some extent empirically shown [2],
that inspections provide efficient means for early defect removal.
Inspections are also assumed to contribute to information spreading
within a project or an organization.

• Structured V&V. It is assumed that a structured approach to V&V
would help many organizations and improve their efficiency and
effectiveness [13].

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

46 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

• Product evolution. Products evolve through their life cycles, which
most often are longer than originally planned. Products evolve,
either as distinct releases of the same product, or as components in
new products in a product family fashion. It is assumed that this is
all too often an ad hoc process, both with respect to product and
process [6].

These viewpoints are further defined in terms of the set of interview
questions raised, and might impact unconsciously in the observations and
the interpretation of the observations. Hence this open presentation of
the view provides the readers with means to arrive at their own
interpretation.

2.2 Research Questions and Method

Based on the researcher viewpoints, and the questions pinpointed for this
special issue, we have addressed six research questions:

RQ1. How much is the documented process emphasized by the organiza-
tions?

RQ2. Are there any relations between the process emphasis and the charac-
teristics of the organizations or their products?

RQ3. Which criteria govern the selection of the process?

RQ4. Which kinds of evolutionary development exist among the organiza-
tions?

RQ5. How is the test automation tailored to support evolutionary develop-
ment?

RQ6. Which criteria guide the improvement of the process?

In order to address these questions, the survey is guided by qualitative
research methodology, hence using a flexible design [20]. This is not
intended to be in contrast to the need of quantitative research in software
engineering [12], [22]. Instead, the methodologies are expected to
complement each other. Quantitative methodology is better suited for
studies on, for example, specific methods or notations, while qualitative
methodology is better suited for broader studies that seek to present
overviews or more generalized information. The analysis of research
questions 1–3 and 6 is also reported by Andersson and Runeson [1], with

2. Research Questions and Methodology

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 47

more detailed observations, seen from a more general V&V process
viewpoint.

A general model for qualitative studies is shown in Figure 1. The data
in this study was (a) collected using unstructured interviews, to some
extent in the form of group interviews [20]. Data are recorded by two
researchers taking notes from the interviews2. Hence some data reduction
(b) was conducted during the observations. Further data reduction
occurred in a later step based on the topics selected for deeper analysis.
The data collection procedures are presented in more detail in
Section 2.3.

The observations were compiled into reports which were sent to the
interviewees for feed-back, who thus acted as critical reviewers. A third
researcher was also a critical reviewer in the analysis (d).

The analysis (c, e) was conducted by using a conceptually clustered
matrix [20]. Data was recorded in a matrix in columns related to the
issues in the interviews. The data analysis procedures are presented in
more detail in Section 2.4.

2. The interviews with organizations Phone and Security were recorded by only one researcher.

Figure 1. A general model for qualitative studies [15].

a,
Data Collection

b,
Data Reduction

c,
Pattern Finding

d,
Critical Review

e,
Creating Dimensions

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

48 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

2.3 Data Collection Procedures

The survey was conducted in two cycles. First, five organizations were
surveyed using the workshop format. The organizations attended a
workshop series, organized within a local software process improvement

network (SPIN)3. The attendants assigned themselves to the workshop
based on their interests. The attendants belonged to quality departments
or test departments, and most attendants were present at most workshop
meetings.

The workshop cycle was conducted as follows:

1. The workshop host presented the company V&V activities. The
hosts were free to present any topic, as long as they included a list of
strong and weak issues regarding their V&V process.

2. The researchers checked that a list of questions was covered [1] and
raised questions that were not voluntary addressed.

3. The researchers summarized the meeting in a report, which was
proof-read by the company representative.

4. The findings were analyzed, compiled into a joint report and fed
back to the organizations.

In the second cycle, another six organizations were surveyed using a
more direct interview format. Those organizations were approached by
the researchers and selected to achieve diversity with respect to size, age of
organization, and application domain. This cycle was conducted in a
similar manner, except that the only participants at the meeting were the
interviewees and the researchers. Finally, within the second cycle, one of
the first five organizations was interviewed again (Read, see Table 1), since
they were at a point of major process change at the time of the first
interview. The second interview was conducted six months later, when
some of the changes had been implemented.

2.4 Analysis Procedures

Data analysis was conducted in three cycles. First, the workshop data
collected was summarized in a rather informal report, for internal use

3. http://www.spin-syd.org

2. Research Questions and Methodology

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 49

amongst the workshop participants. Second, an analysis of the survey in
general was conducted, as reported in [1]. Thirdly, the analysis was
conducted towards the specific focus of test processes for evolutionary
software development. The analysis was mainly conducted by two
researchers, and a third researcher acted as a critical reviewer.

The procedures can be summarized as follows, with references to
Figure 1:

1. The data was structured in a matrix with rows for each participating
organization and columns representing different aspects covered
during the interview (b). The first set of columns were selected
from the areas in the questionnaire checklist (e). The data was pri-
marily taken from the compiled report and secondly from the origi-
nal notes from each interview.

2. The data in each column was then analyzed; categories were sought
and ranked with respect to different criteria (e).

3. The analysis was made based on the matrix; relations as well as lack
of relations were sought (c).

4. The analysis was cross-checked by a third researcher, acting as a crit-
ical reviewer of the procedures and the analysis (d).

2.5 Validity

In empirical studies, the concept of validity is central [20], [22]. The
validity analysis seeks to identify threats to the research’s validity, and
proposes actions to be taken to improve validity. Different models for
validity classification exist. Here we adhere to the model originally
presented by Lincoln and Guba [16], [20].

The model divides threats into validity in three broad headings,
reactivity, respondent bias and researcher bias. Reactivity and respondent bias
include the risk that the respondent acts differently than normally, for
example, acting differently due to the researchers’ presence, or answering
to fulfill the researchers’ expectations, instead of answering truthfully.
Researcher bias refers to the preconditions and assumptions the researchers
bring into the situation, which may affect, for example, data collection or
analysis.

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

50 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

To reduce threats to validity, different strategies can be implemented,
addressing different kinds of threats. A list of such strategies [20] for
dealing with different threats is presented below.

• Prolonged involvement means that the researcher follows the
respondents for a longer period of time, to get acquainted with the
studied environment. This strategy is not explicitly used in the cur-
rent study, although there is a long cooperation between one of the
researchers and the studied organizations in general within the local
network, reducing the threats of reactivity and respondent bias
while, on the other hand, increasing researcher bias.

• Triangulation means having multiple sources for the data. In the
current study, observer triangulation is used, i.e. two researchers are
present at almost all interviews. Furthermore, the interviews
include triangular questions: direct questions where the interview-
ees are asked how they perform their V&V, and indirect questions
where they are asked what is good and bad in their V&V process.

• Peer debriefing and support refers to having peers cross-check the
analysis and act as a coach to the researchers. This strategy was used
in this study, having two researchers in the data collection and anal-
ysis, and a third reviewer acting as a quality assurance person.

• Member checking means returning material to the respondents for
feed-back. This is used in the current study by reporting the results
back to the subjects of the study in writing and in seminars.

• Negative case analysis refers to “playing the devil’s advocate.” This
strategy is applied in the study, requiring the third researcher try to
find alternative cases as explanation to the variation observed in the
data.

• Audit trail means keeping full record of the activities during the
study. This is a weakness of the current study, as the interview mate-
rial is not tape-recorded. However, the researcher view is presented
(see Section 2.1), the investigation procedures are openly reported
(see Section 2.3 and Section 2.4), data collection is documented,
although not publicly available for confidentiality reasons.

The presented observations reflect the survey participants’ answers, i.e.
it is the organizations’ own picture which is presented, with a risk that it is
polished. The participants might have given answers, which may not

3. Surveyed Organizations

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 51

accurately reflect the situations at the associated organizations. However,
this risk is limited in the current study, as the participants had nothing to
gain from polishing the truth. Furthermore, within the software process
improvement network, where most of the surveyed organizations take
part, there is a tradition of openness between peers as well as towards the
researchers and other external sources. Hence, we cannot find any reason
that the survey participants would polish the truth, nor do we believe
there is a difference in this respect between the workshop and the
interview sessions.

3. Surveyed Organizations

Our sample in the survey comprised departments at 11 Swedish
companies. They represent a diverse selection of application domains,
product types and company characteristics, although they are not
systematically sampled from any larger distribution. As they sometimes
are just very small parts of large companies, we refer to them as
organizations. The surveyed organizations are listed in Table 1 in
decreasing size order, and referred to by pseudonyms for confidentiality
reasons. The terms used to characterize the organizations are defined
below.

3.1 Product Characteristics

The products developed by the surveyed organizations are characterized
along three dimensions.

The application domains of the surveyed organizations are of five kinds.

• Radar image processing means a radar system for surveillance of
large areas.

• Communication involves networked products as well as wireless
communication products.

• CASE tools refer to software tools for developing other systems,
either for general software systems, or for specific instances of sys-
tems including hardware components.

• Image processing means products which take pictures and analyze
them for different purposes.

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

52 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Table 1. Participating organizations.

O
rg

an
iz

at
io

na
l c

ha
ra

ct
er

is
ti

cs

A
ge

>2
0

~1
5

18 ~2
5

11 6 5 3 4 10 11

Si
ze

20
0

15
0

12
0

80 50 30 20 20 7 7 6

B
us

in
es

s
m

od
el

C
on

tr
ac

t

M
ar

ke
t

M
ar

ke
t

M
ar

ke
t

M
ar

ke
t

M
ar

ke
t a

nd
co

nt
ra

ct

M
ar

ke
t

M
ar

ke
t

C
on

tr
ac

t

C
on

tr
ac

t

C
on

tr
ac

t

C
us

to
m

er
ty

pe

D
ef

en
se

Pr
iv

at
e

B
us

in
es

s

B
us

in
es

s

B
us

in
es

s

Pr
iv

at
e

B
us

in
es

s

B
us

in
es

s

In
te

rn
al

In
te

rn
al

Su
bc

on
tr

ac
to

r

P
ro

ce
ss

 c
ha

ra
ct

er
is

ti
cs

A
ut

om
at

io
n

ap
pr

oa
ch

R
ec

or
de

d
da

ta

Sc
ri

pt
in

g

Sc
ri

pt
in

g

Sc
ri

pt
in

gb

Sc
ri

pt
in

g

N
on

e

R
ec

or
de

d
da

ta

R
ec

or
de

d
da

ta

R
ec

or
de

d
da

ta

Sc
ri

pt
in

g

N
on

e

Ev
ol

ut
io

n
st

ra
te

gy

V
ar

ia
nt

s

V
ar

ia
nt

s

V
ar

ia
nt

s

V
er

si
on

s

V
er

si
on

s

V
ar

ia
nt

s

V
ar

ia
nt

s

V
ar

ia
nt

s

V
er

si
on

s

V
er

si
on

s

V
er

si
on

s

P
ro

ce
ss

st
ru

ct
ur

e

In
cr

em
en

t

In
cr

em
en

t

In
cr

em
en

ts
a

D
ai

ly
 b

ui
ld

In
cr

em
en

t

D
ai

ly
 b

ui
ld

D
ai

ly
 b

ui
ld

D
ai

ly
 b

ui
ld

D
ai

ly
 b

ui
ld

D
ai

ly
 b

ui
ld

D
ai

ly
 b

ui
ld

P
ro

ce
ss

em
ph

as
is

++ + + ++ 0 - - - -- -- --

P
ro

du
ct

 c
ha

ra
ct

er
is

ti
cs

P
ro

du
ct

va
lu

e

N
on

-f
un

ct
io

na
l

Fu
nc

ti
on

al

Fu
nc

ti
on

al

Fu
nc

ti
on

al

Fu
nc

ti
on

al

N
on

-f
un

ct
io

na
l

N
on

-f
un

ct
io

na
l

N
on

-f
un

ct
io

na
l

Fu
nc

ti
on

al

Fu
nc

ti
on

al

Fu
nc

ti
on

al

P
ro

du
ct

ty
pe

E
m

be
dd

ed

E
m

be
dd

ed

E
m

be
dd

ed

Pa
ck

ag
ed

Pa
ck

ag
ed

E
m

be
dd

ed

E
m

be
dd

ed

E
m

be
dd

ed

Pa
ck

ag
ed

Pa
ck

ag
ed

Pa
ck

ag
ed

A
pp

lic
at

io
n

do
m

ai
n

R
ad

ar
 im

ag
e

pr
oc

es
si

ng

C
om

m
un

ic
at

io
n

C
om

m
un

ic
at

io
n

C
A

SE
 to

ol
s

an
d

co
nt

ro
l

C
A

SE
 to

ol
s

Im
ag

e
pr

oc
es

si
ng

Im
ag

e
pr

oc
es

si
ng

Im
ag

e
pr

oc
es

si
ng

Su
pp

or
t s

ys
te

m
s

Su
pp

or
t s

ys
te

m
s

Su
pp

or
t s

ys
te

m
s

Ps
eu

do
ny

m

R
ad

ar

Ph
on

e

N
et

w
or

k

A
ut

om
at

io
n

C
A

SE

R
ea

d

Se
cu

ri
ty

M
on

it
or

Pr
od

uc
t

Sa
le

s

Su
bS

al
es

a.
 O

ne
 o

pt
io

n
fo

r
pr

oj
ec

ts
.

b.
 T

ri
al

.

3. Surveyed Organizations

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 53

• Support systems are business information systems, intended to sup-
port different kinds of business.

The product type defines how the software is offered to the market.
Embedded software refers to software which is embedded in some sort of
equipment, including the hardware which the software runs on. Packaged
software is sold as a separate unit and is installed by the user on, for
example, a PC or workstation platform.

The product value may be functional or non-functional. A PC
application has primarily, for example, its value in the functions provided
to the user, not that the reliability of the software is very high. On the
contrary, in an embedded system, for example for image processing, non-
functional properties like the quality of the image or the speed of the
image transfer are of primary interest to the user, while the list of
functions in such a product is shorter.

3.2 Process Characteristics

The processes used in the surveyed organizations are characterized with
respect to four dimensions, which are further analyzed in Section 4.1
through Section 4.4:

The organizations emphasize the value of the documented process
differently. The organizations are classified in five classes (– –,–, 0, +, ++)
from no emphasize of a documented process to very much emphasis on
an extensively documented process.

The process structure is characterized as either daily build or
incremental. In daily build, all changes are made available to the whole
project on a daily basis; in incremental development, new versions
comprising a set of implemented functions are delivered to integration
and system testing at specified time interval, typically monthly.

 The evolution strategy is the strategy applied to develop new products,
either:

• new versions of a product are delivered at various intervals, generally
under a new version number (e.g. 1.3, 2.0).

• new variants of products are delivered, generally under a new name
(e.g. X200, X300).

The test automation approach used is either based on recorded data or
on scripts. Using recorded data means that input data to the product is

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

54 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

not taken from the real environment, but from an earlier execution of the
system in its environment. Using scripts means running programs that
execute the system under test, feeding events or input actions to the system.

3.3 Organizational Characteristics

The surveyed organizations are characterized according to four different
aspects.

Customers are either defense, business, private or internal. This
variation implies that different kinds of time constraints, market
requirements and business models are represented.

• Defense customers comprise large, long-term contracts between
customer and supplier.

• Business customers buy products on contract or off-the-shelf for
business use.

• Private customers buy products for private use off-the-shelf.

• Internal customers use products developed by another department
of the company.

Business models are either market, i.e. the products are offered to a wide
variety of customers, or contract, i.e. the product is developed and sold to
a specific customer.

The sizes of the organizations include all engineers involved in the
development, including test staff. The companies as such may be much
larger, but here only staff related to the product development departments
are counted.

The age of the organizations reflect the number of years the surveyed
activities in each company have been active.

4. Observations

Observations and subsequent analyses regarding the test processes are
reported in this section. The observations are presented, structured
according to the research questions in Section 2.2.

4. Observations

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 55

4.1 Process Emphasis

During the workshop and interview sessions, discussions concerning the
test process proceeded from a general test process, according to Figure 2,
since all of the organizations had some model to follow, though not
always documented. All organizations were able to map their activities
into this general model, though with different degrees of formality. The
survey displayed a spectrum of process definitions, ranging from a very
well defined process at Radar to a very informal and unemphasized
definition at SubSales. Brief characterizations of each organization’s
process are presented in [1].

One clear observation from the survey is that a documented process is
considered an important asset among the large organizations, for testing
and for development in general, while smaller organizations rely more on
experienced individuals. Table 2 shows the relationships between
organization size and the degree of emphasis of the process.

This might be an obvious observation. However, some thresholds are
also observed with respect to size and process emphasis. Organizations
smaller than 10 developers have almost no process structure at all. They
rely on skilled and experienced people. Organizations of size 20-30 begin
to identify the need for more structure. They start defining templates and
some basic procedures. Organizations of size 50-100 rely on rather well
defined templates and common process step definitions. Organizations
larger that 150 stress the importance and value of well defined work
instructions.

The two organizations that emphasize the process the most are both
somewhat special. Automation is a part of a larger body and has processes
in common across the corporation. Radar has through its operations in

Figure 2. The general test process.

Module
testing Integration

testing System
testing Acceptance

testing

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

56 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

the defense domain for a long time maintained high requirements for well
documented processes.

A common opinion among the organizations is that it is important to
increase the visibility of the verification and validation process and allow
the members of the organizations to understand the importance of
verification and validation. Communicating the process is of high priority
and often a part of the ongoing improvement work.

In summary, there is a wide range of different attitudes towards the
value of the process (RQ1), and the most visible relation to the process
emphasis is the size of the organization (RQ2). There seems to be a
breakpoint somewhere between 30 and 50 developers in the organization,
over which the process is needed to guide and support the work, while
below the threshold, the inter-project communication is sufficient using
less formal means.

4.2 Process Selection

Some organizations have chosen an explicitly incremental development
process model [21]. Subsets of functionality are defined as increments to
allow better control over the projects and to reduce risks. Radar, Phone
and CASE have such models (see Table 3). In Network, the projects may
choose an incremental model as one of the options. Other organizations
have smaller, less defined increments, more towards the daily build

Table 2. Process emphasis versus number of developers.

Number of developers

Process emphasis 1-10 20-30 50-100 150-200

Emphasized ++ Automation Radar

+
Phone

Network

0 CASE

–

Security

Monitor

Read

Not
Emphasized

– –

Product

Sales

SubSales

4. Observations

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 57

principle [10], [18]. This kind of approach is used by Automation, Read,
Security, Monitor, and SubSales. Read and Phone have made pilot use of the
extreme programming concept [3] in single projects. Organizations with
more emphasized processes tend to use the incremental approach while
the less emphasized processes are of a more daily build character (see
Table 3). This relation is quite natural as incremental development
requires a more well-structured approach, while daily build is the bottom-
up solution to avoid big-bang integration problems. The exception,
Automation, has a tradition of using daily build for approximately 20
years; this policy was established when the company still was young and
small.
The incremental and daily build approaches both introduce evolutionary
product development into the internal development process as such. The
principles are the same, although the time scale is different (see Table 4).

Common to the approaches are that new versions are delivered to a
stakeholder at regular basis; in daily build, all changes are made available
to the whole project on a daily basis; in incremental development, new
versions comprising a set of implemented functions are delivered to
integration and system testing at specified time interval, typically
monthly. Product evolution implies new releases are delivered to the
market, typically once or twice a year. Using daily build or incremental
development provides the opportunity to start testing early on the earlier
increments with limited functionality, and thus reduce the cycle time for a
release since it allows testing in parallel with development.

Table 3. Process emphasis versus process structure.

Daily build Increment

Emphasized
[0, +, ++]

Automation Radar

Phone

CASE

Networka

Not
Emphasized

[–, – –]

Security

Read

 Monitor

Product

Sales

SubSales

a. One option for projects.

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

58 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Network has tried the incremental approach and found that it was not
profitable. The hand-over from development to testing became fuzzy, and
software which was not fully unit tested was delivered to system test.
Hence, they had to identify multiple failures which otherwise were
removed by the developers. The other organization using incremental
development did not experience such problems.

In summary, incremental development is used by organizations with
an emphasized process, while the daily build approach is primarily used
by organizations with less emphasized process (RQ3).

4.3 Product Evolution

All of the surveyed organizations develop products that evolve over time.
We have identified two distinct approaches to product evolution. Either
they release new versions of a product, or they deliver new variants of
products, see Table 6. Versions are marketed under the same product
name, but with a new extension (1.3, 2.0), while variants are marketed as
new products under a new name (X100, X300). The new versions and
variants must differ substantially from the earlier ones, in particular for
organizations with private or business customers as their market. The
motivation for buying a new product with embedded software, or
upgrading to a new release of packaged software must lie in added value
for the user, in terms of better non-functional properties or new
functionality. Upgrades are offered to the market, however, not bought by
every customer and thus multiple versions of the product have to be
supported.

In addition to the major releases, new versions of the software with
minor changes (polishing), can be developed. This is referred to as
“product care” by one of the interviewees. In the case of packaged
software, “patches” or “service packs” can be distributed to customers,
while in the case of embedded software, new versions of the software are

Table 4. Overview of evolutionary approaches.

Approach Description Time scale

Daily build New versions of the systems are delivered
internally

Day(s)

Incremental development New versions are delivered to integration Months(s)

Product evolution New versions of the system are delivered to
the market

0,5-1 Year

4. Observations

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 59

introduced in the production process gradually. Already delivered
products are updated only when very critical faults are detected.

In both the version and the variant cases, a large portion of the
software remains the same, and already invested test effort could be saved,
either by considering software components well tested “by use” or by
automating regression tests. The former approach involves a risk, clearly
illustrated by the Ariane 5 failure [11]. The latter approach is used by the
surveyed organizations to different extents, but in no case to a very large
extent.

It is concluded from the survey, that embedded products are mainly
developed using the variant strategy, while packaged software is mainly
developed using the version strategy, see Table 5. The first case is quite
natural, as long as downloading new software dynamically in embedded
products is not permitted to the user. The second case is not bound by
these kinds of technical constraints. However, there are indications that
changes are under way. In the Phone case, a new version of the software is
offered to the users of a specific model of an embedded product, and new
variants are planned to allow dynamic download of e.g. Java programs.
This trend is indicated by an arrow in Table 5. Further, the Sales/SubSales
product is built on a general software framework, which is intended to be
used as a basis for other variants of products, i.e. approaching the variant
approach for a packaged software product. This trend is indicated by the
second arrow in Table 5. More details on the different evolution
strategies are presented in Table 6.

Table 5. Product type versus evolution strategy.

Variant Version

Embedded Radar

Read

Security

Monitor

Phone

Network

–>

Packaged

<–

Automation

Product

Sales

SubSales

CASE

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

60 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

In summary, there are two kinds of evolutionary strategies, variants
and versions (RQ4), where the former is primarily used for embedded
products and the latter for packaged software, although the borderline is
under change. In addition, effort is spent on “product care.”

4.4 Test Automation in Product Evolution

Test automation is mentioned by most of the surveyed organizations as an
improvement area. Most organizations automate testing to some extent,
but they are not satisfied with the level of automation.

The automation approach is different, depending on the product
characteristics presented in Section 3.1. We concluded from the data that
there is a tendency towards believing that non-functional properties
constitute the key value of the embedded products, and that the

Table 6. Brief overview of evolution strategy for each company.

Radar Radar develops three variants of their product for three different customers.
From a software perspective, they are not managed as a product line [6].
Instead, the development chain was branched for each variant and is not
merged again. However, information about identified faults in one variant
are fed back to the development of the other variants.

Phone Phone uses the variant approach to develop new products. The same hard-
ware and software architecture is used in several variants of the product.

Network Network develops products using a planned product line approach [6]. They
develop products whose appearance and usage are quite different, while they
internally are built on the same hardware and software platform.

Automation
CASE

Automation and CASE both release new versions of their product regularly.
As the customers have to pay for the new release, or foresee problems with
the introduction of new releases, not all customers upgrade for every release,
implying that many subsequent releases have to be supported in parallel.

Read
Security
Monitor

Read, Monitor and Security have the same origin. The products of the three
organizations share processor and optical devices for image processing, while
the analysis algorithms and the functionality of the products are very differ-
ent. The common parts are rather stable and not further developed very
much any more, and are primarily considered a platform.

Product
Sales
SubSales

Product and Sales (and hence SubSales) deliver new releases of a software
package at pre-determined dates. The customer is internal or semi-internal,
thus avoiding the requirements of real market customers. In the Product case,
the delivery date is negotiable if the development runs out of time. In the
Sales case, features are negotiable but not delivery dates, as the system sup-
ports the sales department, and one frequent reason for a new release is that a
new price list is introduced from a certain date.

4. Observations

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 61

functionality constitute the key value of the packaged software (see
Table 7). The two exceptions, Phone and Network, where functionality
constitute the value for embedded products, are mature communication
products. In these domains, the characteristics are taken for granted by
the users, and the functionality constitute the competitive advantage for
new products. Hence the products are on the borderline of having their
focus on the functionality from the user point of view, even though the
developers still consider the non-functional properties to be of great value.

Two different approaches to test automation exist among the surveyed
organizations. Either the execution of features is automated by scripts
running the application, or the inputs to the systems exist as recorded data
from a real environment. Using scripts means running programs that
execute the system under test, feeding events or input actions to the
system. For example, the communication products are tested by running a
script which sends commands to the program, which in the operational
environment comes from the user. Using recorded data means that input
data to the product is not taken from the real environment, but from an
earlier execution of the system in its environment. For example, the image
processing products are tested using previously recorded images to
analyze.

Product value is connected to the type of automation approach chosen.
Table 8 shows an overview of approaches chosen by the organizations.
Products with functional focus are tested using scripts and products with
non-functional properties in focus are tested using recorded data.

Table 7. Product type versus product value.

Embedded Packaged

Non-functional Radar

Read

Security

Monitor

Functional Phone

Network

Automation

Product

Sales

SubSales

CASE

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

62 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Organizations that do not use an automation approach have, in most
cases, a good reason for not doing so.

• The Read product involves a feed-back loop, changing the parame-
ters for the data recording based on the analysis of the data, e.g. to
compensate for different light conditions. Hence, earlier recorded
data are not realistic enough to use as test data.

• SubSales is primarily responsible for module tests, while Sales is
responsible for the integration and system tests. There is a planned
improvement effort to run the automated tests also at the module
level.

Although most organizations already perform some form of automated
tests, this issue is among the mostly mentioned improvement area. A key
issue regarding automation, mentioned by Sales is product stability.
Investments in test scripts are large and are only worthwhile for a long-
lasting product or product-line.

In summary, there are two kinds of test automation among the
surveyed organizations, recorded data for products with focus on non-
functional properties and scripting for products with focus on
functionality (RQ5).

4.5 Test Process Improvement

Most of the surveyed organizations report an intention to improve the test
process, although the approach is not very structured, nor very much

Table 8. Product value vs. automation approach.

Recorded data Scripting None

Non-functional Radar

Security

Monitor

Read

Functional Product Phone

Network

Automationa

CASE

Sales

SubSales

a. Trial

4. Observations

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 63

emphasized. Examples of improvement initiatives are presented in
Table 9.

The improvement approaches taken are very different. The only
rationale for choosing a certain approach that we could observe during
the survey, is that the selection depends on the persons involved.

One specific issue observed in product evolution regarding process
improvement, is what happens when, for example, the requirements
specification is improved for the functionality of a new release, while the
requirements for the old parts remain badly specified as it is too costly to

Table 9. Brief overview of improvement initiatives for each company.

Radar Radar works on improving the efficiency of the system testing. Test planning
methods based on factorial designs [9], [4] are used and found efficient.
Improvement actions are driven by a joint university-industry research
project.

Phone Phone has recently turned towards incremental development to reduce risks
and allow flexibility in which functionality is delivered in certain products.
Testing can be started much earlier and thus identify integration problems
sooner.

Network The Network quality department makes process guidelines available to the
projects but does not require a specific approach be chosen. This liberal atti-
tude may be related to the fact that the company is not part of a larger corpo-
ration, like Radar and Phone are.

Automa-
tion

Automation has, based on the outcome of the workshop behind this survey,
initiated a project to store test cases in a database, together with some struc-
turing and test time information, to allow more efficient regression testing.
The initiative is taken by interested individuals.

CASE CASE has after its recent merger, produced a new and more structured set of
test documents. The new set is based on the best practices in the two merged
organizations.

Read Read has during the period of this survey, assessed their test process and
designed a new one. The person responsible for process improvement was in
a previous employment working on documenting and structuring the proc-
ess; hence he chose this approach in his new affiliation. However, as the com-
pany was restructured during the period, and reduced in size, only some
basic parts of the proposed process are introduced.

Security Security has used the Test Process Improvement (TPI) approach [14] to assess
their current status and find improvement areas.

Monitor
Product
Sales
SubSales

Monitor, Product and Sales/SubSales are working on hands-on improvement
actions, like document standards etc. The companies are the smallest and
have no tradition of working with defined processes or company standards.

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

64 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

update the requirements for the legacy part of the product. Testing based
on the requirements can then be improved for the new parts, while the
basis for the regression testing of the legacy part remains bad.

In summary, the approach chosen to process improvement is not based
on any of the observed characteristics, but seems to be ruled by the
involved persons’ background and experience (RQ6).

5. Summary and Conclusions

Verification and validation of software systems take a substantial share of
project resources as well as lead-time for a project. In product evolution,
this is assumed to be particularly true, as the old parts of the products
have to be regression tested to verify that they still work as intended with
new functionality added. In order to understand how the verification and
validation processes are constituted at organizations of different size and
different application domains, a qualitative survey was launched. As all of
the organizations perform product evolution, this is an aspect of
particular focus in the survey.

The first observation from the study is that there is a wide range of
attitudes towards the value of the process, and that larger organizations
tend to emphasize the process more than smaller organizations do. There
seems to be a breakpoint somewhere between 30 and 50 developers in the
organization with respect to the emphasis of the documented process
(RQ1 and RQ2).

The evolution approach taken among the organizations is either
incremental (internal release cycles of months) or daily build (internal
release cycles of day(s)). It is concluded that organizations which
emphasize the documented process use incremental development, while
organizations which have a less emphasized process use daily build (RQ3).
One organization differs from the pattern. This organization has been
using daily build for 20 years, and has turned towards more process
emphasis later during growth and mergers with other companies.

It is concluded that there are two different kinds of product evolution,
for embedded software and for packaged software (RQ4). New releases of
embedded software products constitute a new product in a product
family. The products are sold to new customers or to existing ones; in
both cases, a new “thing” is delivered to the customer. In the packaged
software case, new versions are mostly delivered as upgrades to existing

 Acknowledgement

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 65

customers or as new deliveries to new customers, although there are
indications of other combinations of the two. As all customers are not
willing to upgrade immediately, different versions have to be supported in
parallel. In addition to new variants and new versions, product care is
performed which implies minor changes to an embedded product or
patches to packaged software.

Test automation is considered an area where there are potential saving
in product evolution, and they are exploited to some extent (RQ5). We
have identified two kinds of test automation, recorded data automation
and scripting automation. It is concluded that products which focus on
non-functional properties are primarily tested using recorded data, while
products with a focus on functionality are tested using scripts for
automation. The two observed exceptions from this rule are both mature
products with a focus on non-functional properties, in which the users
take the non-functional properties for granted. Hence the products are on
the borderline and maintain their focus on the functionality from the user
point of view, even though the developers still consider the non-
functional properties be of greater value.

We can conclude from the survey that there is no observed relation
between the product characteristics, nor the process focus on which
approach is taken to improvement. It seems to be very much dependent
on the persons involved, their experiences and their personal viewpoints
(RQ6).

In summary, there are a set of specific issues regarding product
evolution observed among the surveyed organizations, although the
potential savings regarding, for example, regression testing are not fully
exploited. This paper, and the workshops and interviews behind it,
contribute to an increased awareness of the variation factors in product
evolution, a first step towards an improved test process for product
evolution.

Acknowledgement

The researchers are thankful to the participating companies for their
contribution. Thanks also to Daniel Karlström and Thomas Olsson at the
Department of Communication Systems at Lund University for
reviewing an earlier version of the analysis report and being involved in
discussions on the topic. Thanks to the reviewers and editors of the

Test Processes in Software Product Evolution – A Qualitative Survey on the State of Practice

66 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

special issue for valuable comments. This study was partially funded by
The Swedish Agency for Innovation Systems (VINNOVA) under grant
for The Center for Applied Software Research at Lund University
(LUCAS).

6. References

[1] Andersson, C., Runeson, P., “Verification and Validation in Industry – A Qualita-
tive Survey on the State of Practice”, Proceedings of the 1st International Symposium
on Empirical Software Engineering, pp. 37-47, 2002.

[2] Basili, V. R., Selby, R. W., “Comparing the Effectiveness of Software Testing
Strategies”, IEEE Transactions on Software Engineering 13(12):1278–1298, 1987.

[3] Beck, K., “Embracing change with Extreme Programming”, IEEE Computer,
32(10):70–77, 1999.

[4] Berling, T., Runeson, P., “Application of Factorial Design to Validation of System
Performance”, Proceedings of the 7th Annual IEEE International Conference and
Workshop on the Engineering of Computer Based Systems, pp. 318–326, 2000.

[5] Boehm, B., “Software Engineering: R & D Trends and Defence Needs”, Research
Direction in Software Technology (P. Wegner ed.), Cambridge, MA, MIT Press,
Chapter 19, 1979.

[6] Bosch, J., Design and Use of Software Architectures: Adapting and Evolving a Prod-
uct-line Approach, Addison-Wesley, 2000.

[7] Bratthall, L., Runeson, P., Adelswärd-Bruck, K., Eriksson, W., “A Survey of Lead-
Time Challenges in the Development and Evolution of Distributed Real-Time
Systems”, Information and Software Technology, 42(13):947–958, 2000.

[8] Brooks, F. P., The Mythical Man-Month, Addison-Wesley, 1975.
[9] Cohen, D. M., Dalal, S. R., Parelius, J., Patton, G. C., “The Combinatorial

Design Approach to Automatic Test Generation”, IEEE Software, 13(5):83–88,
1996.

[10] Cusumano, M. A., Selby, R. W., Microsoft Secrets: How the World’s Most Powerful
Software Company Creates Technology, Shapes Markets, and Manages People, Free
Press, 1995.

[11] European Space Agency, Ariane 5 flight 105 inquiry board report, No 33–1996,
http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf (last revisited 02-09-26).

[12] Juristo, N., Moreno, A. M., Basics of Software Engineering Experimentation, Klu-
wer Academic Publishers, 2001.

[13] Kit. E., Software Testing in the Real World: Improving the Process, Addison-Wesley,
1995.

[14] Koomen, T., Pol, M., Test Process Improvement, A practical step-by-step guide to
structured testing, Addison-Wesley, 1999.

[15] Lantz, A., Intervjuteknik (Interview methods – in Swedish), Studentlitteratur,
1983.

[16] Lincoln, Y. S., Guba, E. G., Naturalisitic Enquiry, Newbury Park and London,
1985.

6. References

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 67

[17] Lindvall, M., Rus, I., “Process Diversity in Software Development”, IEEE Soft-
ware, 17(4):14–19, 2000.

[18] McConnell, S., Rapid Development: Taming Wild Software Schedules, Microsoft
Press, 1996.

[19] Porter, A. A., Siy, H. P., Toman, C. A., Votta, L. G., “An Experiment to Assess the
Cost-Benefits of Code Inspections in Large-Scale Software Development”, IEEE
Transactions on Software Engineering 23(6):329–346, 1997.

[20] Robson, C., Real World Research (2nd ed.), Blackwell, 2002.
[21] Sommerville, I., Software Engineering, Addison-Wesley, 2001.
[22] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., Wesslén, A.,

Experimentation in Software Engineering: An Introduction, Kluwer Academic Pub-
lishers, 2000.

68 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 69

PAPER 2

Understanding Software Processes through
System Dynamics Simulation: A Case Study

Carina Andersson, Lena Karlsson, Josef Nedstam, Martin Höst, Bertil I Nilsson

Proceedings of 9th IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems, pp. 41-48, 2002.

Abstract

This paper presents a study with the intent to examine the opportunities
provided by creating and using simulation models of software
development processes. A model of one software development project was
created through means of system dynamics, with data collected from
documents, interviews and observations. The model was simulated in a
commercial simulation tool. The simulation runs indicate that increasing
the effort spent on the requirements phase, to a certain extent, will
decrease the lead-time and increase the quality in similar projects. The
simulation model visualizes relations in the software process, and can be
used by project managers when planning future projects. The study
indicates that this type of simulation is a feasible way of modelling the
process dynamically although the study calls for further investigations as
to how project or process managers can benefit the most from using
system dynamics simulations.

2

Understanding Software Processes through System Dynamics Simulation: A Case Study

70 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

1. Introduction

This study was performed in cooperation with Ericsson Mobile
Communications AB and is based on a development project carried out
in 1999.

As a step in the constantly ongoing work with quality improvements at
Ericsson this study was made to show if simulation can be used for
visualizing how different factors affect the lead-time and product quality,
i.e. number of faults. One of the most important factors that affect the
lead-time of the projects and the product quality is the allocation of
human resources to the different process phases. Thus, the focus of this
simulation study is on resource allocation.

Simulation is commonly used in many research fields, such as
engineering, social science and economics. That is, simulation is a general
research methodology that may be applied in many different areas.
Software process modelling and improvement is, of course, no exception
and simulation has started to gain interest also in this area. For example,
in [4] a high-maturity organization is simulated with system dynamics
models, and in [6] a requirements management process is simulated with
a discrete event simulation model. In [8] an overview of simulation
approaches is given.

There are several advantages of building and simulating models of
software processes. By simulation new knowledge can be gained that can
help to improve current processes. Simulation can also be used for
training and to enforce motivation for changes.

The objectives of the study that is presented here are to investigate if it
is possible to develop a simulation model that can be used to visualize the
behaviour of selected parts of a software process, and to evaluate the
usefulness of this type of models in this area. The objective of the model is
to identify relationships and mechanisms within a project. The study is
focused on the tendencies of the simulation results and not the
quantitative aspects.

The outline of the paper is as follows: In Section 2 the method used in
this study is described. Section 3 describes the execution of the simulation
study. Section 4 presents the results of the simulation and Section 5
discusses and summarizes the results of the study.

2. Method

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 71

2. Method

This project was designed as a case study. Case studies are most suitable
when data is collected for a specific purpose and when a subgoal of the
study is establishing relationships between different attributes. A main
activity in case studies is observational efforts.

With support from existing results in literature [3], [16], the research
approach was created in three consecutive steps: problem definition,
simulation planning and simulation operation. This methodology is
based on the process chain concept, but due to lack of enough available,
reliable data, the process in practice went into an interactive pattern.

In the first phase, problem definition, the problem was mapped. Then
through deeper definition and delimitation, an agreement was created
around the study’s purpose.

The main part in the second phase of the study, simulation planning,
was to identify factors influencing the product quality. The assigner of
this study wished to test the idea of using simulation models and this was
governing in the details of the study. This was natural as most of the ideas
to the quality factors were picked up from the organization’s project,
through interviewing the project staff and through documents. To add a
broader perspective, results and ideas were taken from software literature.
Influence diagrams were built including the different quality factors’
relation to each other, but primary their effects on lead-time and product
quality.

The third phase, operating the simulation model, started with
translating a small part of the theoretical model into the simulation tool.
A short test showed that the simulation tool worked properly. More
features were added from the theoretical model into the simulation tool
and more test runs were performed. The verification and validation of the
model was made stepwise through the input of the whole model into the
simulation tool, and the yardstick to compare with was given by
documents and discussions with the assigner.

3. Developing the Simulation Model

In the simulation domain there are two main strategies: continuous and
discrete modelling. The continuous simulation technique is based on
system dynamics [1], and is mostly used to model the project

Understanding Software Processes through System Dynamics Simulation: A Case Study

72 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

environment. This is useful when controlling systems containing dynamic
variables that change over time.

The continuous model represents the interactions between key project
factors as a set of differential equations, where time is increased step by
step. In the standard system dynamics tools, these interconnected
differential equations are built up graphically. A system of interconnected
tanks filled with fluid is used as a metaphor. Between these tanks or levels
there are pipes or flows through which the variables under study are
transported. The flows are limited by valves that can be controlled by
virtually any other variable in the model. Both this mechanism and the
level-and-flow mechanism can be used to create feedback loops. This
layout makes it possible to study continuous changes in process variables
such as productivity and quality over the course of one or several projects.
It is however more problematic to model discrete events such as deadlines
and milestones within a project [9], [10].

In the discrete model, time advances when a discrete event occurs.
Discrete event modelling is for example preferred when modelling
queuing networks. In its simplest form, one queue receives time-stamped
events. The event with the lowest time-stamp is selected for execution,
and that time-stamp indicates the current system time. When an event
occurs an associated action will take place, which most often will involve
placing a new event in the queue. Since time always is advanced to the
next event, it is difficult to integrate continually changing variables. This
might result in instability in any continuous feedback loops [9], [10].

Figure 1. Process description

Pr
e-

St
ud

y
Ph

as
e

Fe
as

ib
ili

ty
 S

tu
dy

D
es

ig
n

Ph
as

e

Im
pl

em
en

ta
ti

on
 P

ha
se

U
ni

t T
es

t P
ha

se

Sy
st

em
 T

es
t P

ha
se

A
cc

ep
ta

nc
e

Ph
as

e

C
on

cl
us

io
n

Ph
as

e

3. Developing the Simulation Model

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 73

To suit the purpose of this study, which is to visualize process
mechanisms, continuous modelling was used. The continuous model was
chosen in order to include systems thinking [13] and because it is better
suited than the discrete event model at showing qualitative relationships.

3.1 Problem Definition

The study is based on a process that is similar to the waterfall model [14].
The whole process is shown in Figure 1, but the simulation model was
focused on the requirements phase and the test phase. The other phases,
with dotted lines in Figure 1, were excluded to get a less complex model.
The requirements phase includes the pre-study phase and the feasibility
study phase. The test phase involves the unit, system and acceptance tests.
All these types of tests are included, since the data available did not
separate between test types and they overlapped in terms of time.

3.2 Simulation Planning

This step included identifying factors that affect the quality of the
developed software and the lead-time of the project. This was made
through interviews with project staff and based on information in
literature [5], [7].

The relevant project staff consisted in three persons with whom
discussions were held continually during the entire study. Among the
factors discovered during interviews, only those considered relevant to
software development processes were selected. The identified factors are
listed in Table 1. Discussions with concerned personnel pointed out the
most important factors in respect to both quality and lead-time. The
factors considered to affect quality and lead-time the most were chosen to
be included in the influence diagrams, see Figure 2. Influence diagrams
[12] for the requirements and the test phase were built to show how the
chosen factors affect the lead-time and the software quality. Each factor’s
importance for each phase was considered together with the relationships
between the factors. The influence diagram for the requirements phase is
shown in Figure 2. The factors in the influence diagram are further
explained below.

Understanding Software Processes through System Dynamics Simulation: A Case Study

74 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

• Amount of functionality is the estimated software functionality to be
developed.

• Amount of new market requirements is a measure of the change in
market expectations.

• Amount of requirements changes is a measure of the changes made in
the requirements specifications.

• Amount of review involves reviewing requirements specifications.

• Amount of rework is the effort spent on reworking both new and
inadequate requirements.

• Communication complexity is an effect in large project groups where
an increasing number of participants increases the number of com-
munication paths.

• Level of inadequate requirements is a measure of the requirements
specification quality.

• Level of personnel experience is a measure of knowledge of the current
domain.

Table 1. Factors that affect quality and lead-time.

Number of personnel in the project Amount of new market requirements

Level of personnel education Amount of requirements changes

Level of personnel experience Level of inadequate requirements

Level of personnel salary Amount of review

Level of personnel turnover Amount of rework

Communication complexity Level of structure in the project organiza-
tion

Geographical separation of the project Standards that will be adhered to e.g. ISO
and IEEE

Software and hardware resources Amount of software functionality

Environment, e.g. temperature, light, ergo-
nomics

Testing and correcting environment and
tools

Amount of overtime and workload Productivity

Level of schedule pressure Amount of program documentation

Level of budget pressure Level of reusable artefacts, e.g. code and
documentation

3. Developing the Simulation Model

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 75

• Level of schedule pressure is the effect of the project falling behind the
time schedule.

• Number of personnel is the number of persons working with require-
ments specifications in the project.

• Productivity is a measure of produced specifications per hour and
person.

• Time in requirements phase is the lead-time required to produce the
requirements specifications in this project.

It is beyond the scope for this paper to present all details of the
simulation model. In this paper the simulation model and related models,
such as influence diagrams, are presented in some detail for the

Figure 2. Influence diagram

Amount of
Requirement

Changes

Communication
Complexity

Level of
Inadequate

Requirements

Time in Requirement
Phase

Number of
Personnel

Level of
Personnel

Experience

Amount of
Functionality

Amount of
Review

Productivity

Level of
Schedule
Pressure

Amount of
Rework

Amount of New
Market

Requirements

Understanding Software Processes through System Dynamics Simulation: A Case Study

76 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

requirements phase. The requirements phase is by its nature more
intuitive and easy to understand than the test phase. For a presentation of
details of the complete simulation model with all related models refer to
[2]. For example, the influence diagram for the test phase is presented in
[2] and not here.

At the same time as the influence diagrams were constructed, causal-
loop diagrams were built to get a basic understanding of the feedback
concepts. Causal-loop diagrams are often used in system dynamics to
illustrate cause and effect relationships [1]. When examining these
relationships isolated, they are usually very easy to understand. However,
when they are combined into long chains of cause and effect, they can
become complex. The causal-loop diagrams increase the understanding of
these complex relations. Figure 3 illustrates how the schedule pressure
affects the time spent in the requirements phase. An increased schedule
pressure increases the error generation, due to a higher stress level. A high
error density increases the amount of necessary rework and thereby
increases the time in the requirements phase, which in turn increases the
schedule pressure. At the same time, high schedule pressure increases the
productivity because of its motivational role. Increased productivity
decreases the time spent in the requirements phase, which in turn
decreases the schedule pressure.

Information about the relationships between the factors in the causal-
loop diagram is shown by adding an “O” or an “S” to the arrows. An “O”
implies a change in the opposite direction, while an “S” implies a change
in the same direction.

Figure 3. Causal-loop diagram

Productivity

Schedule
pressure

Time

Error
generation

S

O

S

S

S

3. Developing the Simulation Model

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 77

3.3 Simulation Operation

The simulation model was built based on the knowledge gained from
creating influence diagrams and causal-loop diagrams. The idea behind
the model of the requirements phase is based on a flow of tasks, from
customer requirements to finished specifications. In the requirements
phase there is a transformation from uncompleted to completed tasks by
the production of specifications. A fraction of the specifications are not
acceptable and needs to be taken care of in the rework loop, see Figure 4.

The test phase in the model is based on the same idea as the
requirements phase and is built in a similar way. A flow of test cases is
performed, a certain percentage of the functionality has to be corrected
and retested, and the rest is supposed to be acceptable.

This basic model was built in the Powersim simulation tool [11] and
further developed with help from the factors in the influence diagrams.
Factors from the influence diagrams were added to the model in order to
affect the levels and flows. The causal-loop diagrams were also considered
during the development, to ensure that the model was adapted to systems
thinking.

To avoid getting a too complex model, all of the factors in the
influence diagrams were not included in the simulation model. Some
factors were included indirectly in the parameters in the model. These can
be extracted from the parameters and are thereby possible to affect from
the user interface, for example the communication complexity which is
included in the productivity. The construction was made step by step, by
adding a few factors at a time and then running the simulation. The

Figure 4. Basic model of the requirements phase.

Symbol description

Flow controlled
by a valve

Level that is
emptied and
filled by the
flows

Limitless des-
tination or
origin

Understanding Software Processes through System Dynamics Simulation: A Case Study

78 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

values of the parameters were taken from project documentation except
one that was taken from [7], Amount of new market requirements. This
parameter was not available in project documentation but the value from
[7] is an average from several software projects and was considered to be
valid also for this project. Some values were estimated by iteration and
verified by discussions with concerned personnel at the organization. The
verification of the simulation model was made through checking that the
amount of code that is used as an input to the model is the same as the
output amount of code. The verification also included comparing the
time in the simulation to the time according to the project
documentation to ensure that the estimations were correct.

The final model for the requirements phase is seen in Appendix A. The
flows in Figure 4 is the base of the final model, which is then further
developed. To get a measure of the quality of the specifications, another
flow was included, which counts the inadequate specifications. This
measure affects the amount of defect code that is produced in the design
and implementation phases which in turn affects the test phase. The
design and implementation phases are in the simulation model modelled
as a delay. A second flow is added to the basic model to terminate this
phase and start the following phases.

The rest of the additions to the basic model can be described in four
groups, where each group originates from the influence diagram.

• The first group, Lines of code and Functionality, describes the func-
tionality of the code to be developed. This group controls the
inflow to the phase.

• The second group is Percentage, Effort and Duration. The Percentage
allocates a percentage of the planned total effort to the requirements
phase and is controlled from the user interface. This makes it possi-
ble to study how the amount of resources in the requirements phase
affects the lead-time and quality.

• The third group, Productivity and Duration, controls the comple-
tion rate of the specifications. The Duration also affects the amount
of inadequate specifications because of the schedule pressure that
might increase during the project’s duration.

• The fourth group, Amount of rework and Functionality, decides how
much of the specifications that needs to be reworked after the
reviews.

4. Results from the Simulation

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 79

Note that some factors are part of more than one group, since these
affect more than one of the other factors.

4. Results from the Simulation

The final model was simulated to show how a relocation of resources to
the different process phases affects the quality of the software products
and the lead-time of the project. This model included both the
requirements phase and the test phase. The model was run several times
with different values of the percentage of the planned project effort, spent
on the requirements phase. The results are given in precise figures but
since there are a number of uncertainties they should be broadly
interpreted. For example, the results are uncertain because of the difficulty
in measuring the values of the included factors. It is the tendencies in the
results that are important and not the exact figures.

The simulation runs indicate that the effort spent on the requirements
phase has a noticeable effect on the lead-time of the project. The decrease
in days, when increasing the effort in the requirements phase, arises from
the increased specification accuracy. A more accurate specification
facilitates the implementation and decreases the error generation and will
result in a higher product quality from the start. This decreases the
amount of necessary correction work and thereby shortens the time spent
in the test phase. At a certain point the total lead-time will start to
increase again because the time in the test phase stops decreasing while the
time in the requirements phase continues to increase. The time in the test
phase stops decreasing because there is always a certain amount of
functionality that needs to be tested at a predetermined productivity. The
number of days in Figure 5 is the total lead-time for the whole project.

In the same manner, the quality increases when increasing the effort in
the requirements phase to a certain extent. The simulation runs indicate
that the quality optimum appears in the same area as the lead-time
optimum. The increase in quality originates from a higher specification
accuracy, which is explained above. However, if too much effort is spent
in the requirements phase, the quality will start to decrease again because
there is less effort left for design, implementation and test tasks.

As a step in the verification of the results, they were compared to
results in the software literature [7], [15]. This literature points at the

Understanding Software Processes through System Dynamics Simulation: A Case Study

80 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

same magnitude of effort in the requirements phase for a successful
project as the simulation results.

To summarize, the simulations indicate that there is an optimum for
both the quality and the lead-time. If the effort in the requirements phase
is lower than the optimal value, increasing it towards the optimum will
result in increased quality of the developed software and decreased lead-
time.

5. Discussion

One result of this study is a simulation model that visualizes different
relations in a software development process. A simulation of this kind can
contribute to enhancing the systems thinking in an organization. Thereby
it is easier for the members of the organization to understand the
relationships between the quality factors in the process.

The results from this kind of simulation shall not be interpreted
precisely since there, of course, are a number of uncertainties. It is the
tendencies and the behaviour in the results that are important and by
changing the parameters in the model it is possible to get a picture of how
the process mechanisms interact. This is a simplified model of the reality
and therefore there are a number of sources of uncertainty. The included
factors might not be the ones that affect the model the most, the assumed
relations between the factors might not be correct and the values of the
factors can be incorrectly estimated. However, the results, that there is an

Figure 5. Simulation results for the total lead-time.

540

570

600

630

8% 9% 10% 11% 12% 13%
Percentage of planned effort in the requirements phase

N
um

be
r

of
 d

ay
s

 Acknowledgement

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 81

optimum for the effort that is spent in the requirements phase, can be
intuitively expected for many projects in software organizations.

A simulation of this kind can also be used to increase the motivation of
the organization to work with quality issues and to increase the product
quality early in the project.

One part of the knowledge gained from simulations is received in the
model building process. The procedure to build the model forces the
participants to communicate their mental models and to create a
common image of the organization’s direction.

To summarize, it seems to be feasible to build and use this kind of
model for this kind of process. There are, however, a number of
uncertainties which are important to take into account when the results
are interpreted. This is a first model, based on one project, that needs to
be further elaborated in order to obtain a model that can be applied on
other projects. Thus, the model has not been empirically validated in real
projects after it was developed. As far as the authors know, the model is
not currently in use at Ericsson.

The impression after developing and getting feedback on the model is
that it is uncertain whether most knowledge is gained by developing the
model or using it. This is one of a number of issues that need to be further
investigated in the area of software process simulation.

The model could either be used, for example by a project manager, by
only changing the parameters, or it could be used by changing also the
structure of the model, for example by adding or deleting factors and
adding or deleting relationships between factors. It may be that users of
the models need to understand the internal structure of the model and
not only the interface to it. This would limit the choice of modelling
techniques, and it would for example mean that models with an internal
design, that is not easy to understand for the users of the models, would
not be suitable in all cases.

Acknowledgement

The authors would like to thank Wladyslaw Bolanowski and Susanne S.
Nilsson at Ericsson Mobile Communication AB for all their help with
this study. This work is partly funded by the Swedish Agency for
Innovation Systems (VINNOVA) under grant for Centre for Applied
Software Research at Lund University (LUCAS).

Understanding Software Processes through System Dynamics Simulation: A Case Study

82 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

6. References

[1] Abdel-Hamid, T., Madnick, S. E., Software Project Dynamics: An Integrated
Approach, Prentice Hall, 1991.

[2] Andersson, C., Karlsson, L., “A System Dynamics Simulation Study of a Software
Development Process”, CODEN:LUTEDX(TETS-5419)/1-83/(2001)&local 3,
Department of Communication Systems, Lund Institute of Technology, 2001.

[3] Banks, J., Carson, J. S., Nelson B. L., Discrete-Event System Simulation, Prentice
Hall, 1996.

[4] Burke, S., “Radical Improvements Require Radical Actions: Simulating a High-
Maturity Software Organization”, Technical Report CMU/SEI-96-TR-024, Soft-
ware Engineering Institute, Carnegie Mellon University, Pittsburg, USA, 1996.

[5] Fenton, N. E., Pfleeger, S., Software Metrics: A Rigorous & Practical Approach,
International Thomson Computer Press, 1996.

[6] Höst, M., Regnell, B., Natt och Dag, J., Nedstam, J, Nyberg, C., “Exploring Bot-
tlenecks in Market-Driven Requirements Management Processes with Discrete
Event Simulation”, Journal of Systems and Software, 59(3):323-332, 2001.

[7] Jones, T. C., Estimating Software Cost, McGraw-Hill, 1998.
[8] Kellner, M. I., Madachy, R. J., Raffo, D. M., “Software Process Simulation Model-

ling, Why? What? How?”, Journal of Systems and Software, 46(2-3):91-105, 1999.
[9] Martin, R., Raffo, D., “A Model of the Software Development Process Using both

Continuous and Discrete Models”, International Journal of Software Process
Improvement and Practice, 5(2-3):147-157, 2000.

[10] Martin, R., Raffo, D., “Application of a Hybrid Process Simulation Model to a
Software Development Project”, Proceedings of the Software Process Simulation Mod-
eling Workshop, 2000.

[11] Powersim Corporation, www.powersim.com, (last revisited 010903).
[12] Rus, I., Collofello, J. S., “Assessing the Impact of Defect Reduction Practices on

Quality, Cost and Schedule”, Proceedings of the Software Process Simulation Model-
ing Workshop, 2000.

[13] Senge, P. M., The Fifth Discipline, Random House Business Books, 1990.
[14] Sommerville, I., Software Engineering (6th ed.), Addison-Wesley, 1996.
[15] Stewart, R. D., Wyskida, R. M., Johannes, J. D., Cost Estimator’s Reference Manual,

John Wiley & Sons Inc, 1995.
[16] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., Wesslén, A.,

Experimentation in Software Engineering: An Introduction, Kluwer Academic Pub-
lisher, 2000.

 Appendix A

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 83

Appendix A

The simulation model of the requirements phase.

84 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 85

PAPER 3

Adaptation of a Simulation Model Template for
Testing to an Industrial Project

Tomas Berling, Carina Andersson, Martin Höst, Christian Nyberg

Proceedings of 2003 Software Process Simulation Modeling Workshop, 2003.

Abstract

Process understanding and improvements are essential in software
industry in order to achieve cost effectiveness and short delivery times.
One means of increasing process understanding and improvement is to
utilize software process simulation.

This paper describes how a template model was created in order to
increase the knowledge of the code development and test processes for an
industrial organization. The template model was created from an existing
system dynamics model for the unit test phase. The paper shows how the
template model can be adapted and extended to fit a similar organization.
The simulation model is applied for investigating the relationship
between defect prevention in the development phase and defect detection
in the various test phases. Data from a large contract-driven project were
used in a case study to calibrate the adapted and extended model, which
included code development and four test phases. Programmers and testers
were involved in the design of the model.

The results show that it is possible to use the introduced template
model and to adapt and extend it to a specific organization. We can also
conclude that it is important to involve project members who contribute
to the model building. The process understanding of the participating
project members is increased due to their involvement.

3

Adaptation of a Simulation Model Template for Testing to an Industrial Project

86 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

1. Introduction

Simulation involves experimentation with a model of a system instead of
the system itself. Usually the model of the system is implemented in a
computer program. Some reasons for the increasing interest of using
simulations in industry are:

• It might be dangerous to experiment with the system. If for exam-
ple the system is a nuclear power plant, experimentation with a new
control system is not allowed until it is simulated.

• The system might not exist. If for example a new aircraft is con-
structed, it is best to evaluate its performance using simulation
before actually building it. It would be too expensive to build sev-
eral different aircraft and measure their performance.

• Before changing an organization it is advisable to simulate the new
organization to see if it meets the demands put on it.

The models used in simulation usually consist of a state description
and a number of rules that describe how the state is changed with time,
given a certain environment. The rules of change can be differential or
difference equations.

Usually a distinction is made between discrete event simulation and
continuous simulation [11]. In discrete event simulation the state of a
system is changed only when certain events occur and is not changed
between these events. A typical example is a queuing system where the
state is the number of customers in the queue and the events are arrivals of
customers and departures of customers. An example of a continuous
simulation is when the air pressure around an aircraft is simulated as a
function of time. Usually differential equations are used to describe state
changes in models used for continuous simulation. It is also possible to
combine discrete event simulation and continuous simulation, which is
usually called hybrid simulation, see for example Donzelli et al. [7], and
Martin et al. [13].

In software engineering the main reasons for using simulations of
software processes are for the purpose of strategic management, planning,
control and operational management, process improvement and
technology adoption, understanding, and training and learning [1], [10].
In a software development project the effect of a process change in the
code development or the test phases can be difficult to predict or it can be

1. Introduction

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 87

difficult to prioritize work in the different phases during time pressure, for
example. A simulation model is appropriate to use in these cases. The risk
of changing processes in the running projects in order to learn about it
and to implement new ideas is too high, since it would lead to longer
delivery times and high costs. A simulation model is used without any risk
and with a relatively low cost.

The focus of this study is to enhance the modelling of the code
development and test phases, for any organization, in order to understand
the current software development process and to facilitate for future
improvements to these processes. A system dynamics model with a code
development phase and a test phase has been developed, which can be
used as a template for other organizations to simulate these phases. The
paper describes how this template model can be extended and adapted to
suite the software development process in an organization.

The template model has been extended and adapted at Ericsson
Microwave Systems AB, Sweden, to facilitate process improvements.
Specifically the resources used, the distribution of undiscovered defects in
the different test phases, and the cost of finding defects in different phases
were studied.

The main research questions of this study are:

• What key tasks, primary objects, and vital resources, in the simplest
case, are needed in a simulation model in order to investigate for
example the resources used, the distribution of undiscovered defects
in different phases, and the cost of finding defects in different
phases?

• How can such a template model be adapted and extended to a spe-
cific organization?

The template model in this study is based on the study by Collofello et
al. [6], who modelled and simulated a unit test phase. The idea of viewing
the unit test phase as two flows, a testing flow and a detection flow
originates from Collofello et al., and in this study the model is further
generalized.

Modelling and simulation of the code development and test phases
have been performed in other studies. Analysis of the test process has for
example been performed by Raffo et al. [14] in which the impact of a
process change was simulated. The process change involved the
implementation of unit test plans and the simulation result showed that
the process change would be successful. Madachy et al. [12] have

Adaptation of a Simulation Model Template for Testing to an Industrial Project

88 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

simulated the peer review model in an organization to investigate the
dynamic project effects of performing inspections. The code development
and test phases are parts of this model. The simulation results helped the
planning and performance of peer reviews. Andersson et al. [2] simulated
the requirements specification and test phases and specifically analysed
the resource allocation in the different activities to decrease the project
cycle time. The models used in these studies are specific for the examined
organizations in contrast to the general model presented here.

In this paper a continuous simulation model is used. A discrete event
simulation can also be used for this purpose. The discrete event
simulation technique has for example been used to model a specific
requirements management process for identification of overload
situations [8].

The paper is structured as follows. The organization, developed
products, and process are described in the environment part in Section 2.
The method used is presented in Section 3 and the model and simulation
is reported in Section 4. Conclusions are presented in Section 5.

2. Environment

2.1 Organization and Developed Products

The study is performed at Ericsson Microwave Systems AB, where radar
systems are developed. The systems are large and complex with hard real-
time constraints. The systems are divided into sub-systems, which are
integrated at several levels, both hardware and software wise.

The products are delivered on contract. There are therefore relatively
few customers compared to broad market products.

2.2 Process

The organization follows an incremental software development process.
In each development step, called increment, functionality is added to the
previous one. The functionality is added in a manner so that the system is
always executable. The first increment contains only basic functionality
and the last increment contains all functions.

In each increment the following development phases are included:

2. Environment

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 89

• System requirements specification

• Sub-system level 1 requirements specification (see Figure 1 for the
different sub-system levels)

• Sub-system level 2 requirements specification

• Code development and unit test

• Sub-system level 2 verification

• Sub-system level 1 verification

• System integration

• System verification

System acceptance tests with the customer are performed after the last
increment. Table 1 presents the development phases included in the case
study and the personnel performing it.

The sub-system level 1 requirements specification phase is performed
by design engineers and the sub-system level 2 requirements specification
phase is performed by programmers. These two phases are not included in
the simulation study.

The sub-system is developed by approximately 4 programmers on
average. The sub-system is divided into units, which are tested separately.
The unit tests are developed and executed at the same time as the code
development for the system. When the programmers have completed the
code development and the unit tests are executed without failures the
code is frozen in a unique revision and the next phase, sub-system level 2
verification, is performed. In sub-system level 1 verification, which is the
next phase, the sub-systems at level 2 are integrated and verified into one
sub-system at level 1. When this phase is completed the sub-system at

Figure 1. The sub-system level 2 in the study in relation to the whole system.

Sub-system level 2

Sub-system level 2

Sub-system level 2

Sub-system level 1

System

Sub-system level 1

Adaptation of a Simulation Model Template for Testing to an Industrial Project

90 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

level 1 is delivered to the independent test engineers. In the system
integration phase the testers integrate the sub-system level 1 with several
other sub-systems at level 1. When the integration phase is conducted the
next phase, system verification, is performed. In the system verification
phase the system is verified by the testers. When the system has been
verified and defects have been corrected or postponed, the development
of the increment has been completed.

Several increments can exist at the same time, but in different phases,
i.e. the next increment can start before the previous is completed. Figure 2
shows an example of development phases and increments in an
incremental development process. Figure 1 shows the sub-system level 2
in the study in relation to the whole system.

The organization also follows a formal review process for all
documents. All necessary documents are defined in the formal
incremental software development process.

Table 1. Development phases in the study and the personnel performing it.

Development phase Personnel

Code development and unit test Programmers

Sub-system level 2 verification Programmers

Sub-system level 1 verification Programmers

System integration Independent testers

System verification Independent testers

Figure 2. An example of development phases and increments in an incremental
development process.

 Requirements
specification

Code
deve l opment

Sub-system level
1 verification Sub-system level

2 verification
System
integration

Increment 1
Increment 2
Increment 3
Increment 4

System
verification

Time

3. Method

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 91

3. Method

In order to answer the research questions, the idea of implementing a
template model, and adapting and extending it to a specific organization
is examined. Building the simulation model was an iterative procedure
with a continuous contact with the programmers and testers in the
modelled project. The close co-operation with the programmers and
testers resulted in discussions on both model purpose, and model
structure. The development procedure can be described in several steps,
where feedback from the programmers and testers was received in every
step.

The first step concerned specifying the purpose, model scope, result
variables, process abstraction, and input parameters. This was performed
according to a guideline of Kellner et al. [10]. These aspects were
identified in order to specify what to simulate.

The purpose of the simulation study is to enhance the understanding of
the code development and testing phases, specifically the resources used,
the distribution of undiscovered defects in the different test phases, and
the cost of finding defects in different phases. When the understanding
has increased the simulation model can be used for process improvement
and technology adoption in the code development and test phases.

The model scope was confined to the development and testing phases.
The requirements specification phases were excluded from the model's
boundary for the reason that faults in the requirements specifications are
only indirectly causing defects in the code, through the programmers'
knowledge and skills. If the code would have been generated
automatically from the requirements specifications the requirements
specification phases would have been included. Even though the
requirements specification phases are not unique parts of the model, they
could be included as input parameters at the development, and testing
phases.

The simulation of an industrial project was performed for one
increment, see Figure 2, i.e. a portion of a life cycle, in one project.

The result variables in the project simulation included defect
distribution between the phases, resources used in the phases, and an
estimated cost of finding defects in different phases.

The process abstraction part is the key contribution of this paper. The
main research questions presented in Section 1 yield the process
abstraction. The key tasks, primary objects, and vital resources according

Adaptation of a Simulation Model Template for Testing to an Industrial Project

92 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

to Table 2 were identified as the simplest case for the template model. The
idea of viewing the unit test phase as two flows, a testing flow and a
detection flow originates from Collofello et al. [6]. The template model is
built from this idea.

This template model can be adapted and extended with further key
tasks, primary objects, and vital resources to suite the industrial
environment.

The key tasks, primary objects, and vital resources in the industrial
simulation included in this study were adapted and extended according to
Table 3. This adaptation and extension is directly related to the
organization process, described in Section 2.2.

The key tasks are the activities relevant to the model purpose, while the
primary objects are the project artefacts, believed to affect the result
variables. Vital resources could also be the hardware used for code
development and testing, but this was not included in this industrial
simulation.

A case study by Berling and Thelin [4] of the verification and
validation activities in the organization served as a baseline for the
important factors and the expected behaviour of the simulated system. In
their study, the trade-off between inspection and testing, in terms of faults
found and resources used were investigated in the organization. Data

Table 2. Key tasks, primary objects, and vital resources for the template
model.

Key tasks Primary objects Vital resources

Code development Incoming work in KLOC Programmers

Testing of code Defects in code Testers

Table 3. Key tasks, primary objects, and vital resources for the industrial
environment in this study.

Key tasks Primary objects Vital resources

Code development and unit test Incoming work in KLOC Programmers

Sub-system level 2 verification Defects in code Testers

Sub-system level 1 verification

System integration

System verification

Rework of defects, i.e. corrections

3. Method

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 93

from their study were used to calibrate and validate the adapted
simulation model.

The input parameters are defined in accordance with the desired result
variables and the process abstraction. In the template model the in-
parameters were defined according to Table 4.

In the industrial simulation included in this study the template model
was extended with further in-parameters. Most of the in-parameters in
the industrial setting are constants, defined by the model user before the
simulation model is executed, while others are varying over time. The
input parameters are described in more detail in Appendix A.

With the simulation purpose, the model scope, the result variables, the
key tasks, and the input parameters in mind the template model was
adapted and extended to a first draft on paper. The draft model only
consisted of qualitatively affecting relationships, and was without
weighting and quantitative relationships.

To ensure the validity of the draft model, feedback was received from
programmers and testers on the included in-parameters and relationships.
Walkthroughs of the model were performed. Their comments mainly
concerned definitions and effects of in-parameters and cost aspects of
finding defects in different phases. Test coverage was for example one in-
parameter added to the model after comments from the programmers and
testers.

According to the programmers’ and testers’ comments the model was
revised and thereafter transformed into the simulation tool. A visual
description was chosen in order to enhance the understanding of the
model, and to ease the calibration of the model, which continuously was
performed with assistance from programmers and testers.

The development of the model extended from the template model,
with few affecting factors, to a more detailed and project specific model

Table 4. The in-parameters in the template model.

Input parameters

Incoming work

Programmer resource

Tester resource

Coding method

Testing method

Adaptation of a Simulation Model Template for Testing to an Industrial Project

94 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

with more relationships and inter-dependencies. As a result of the study
by Berling and Thelin [4] the factor “Low-level design” was added to the
model. This factor became apparent when faults found in the real system
were classified and analysed, i.e. faults were injected in the real system due
to an inadequate low-level design for the sub-system.

In addition to the walkthroughs with programmers and testers, and
using their estimates based on their past experiences, calibration of the
simulation model was performed with real project data, see Section 4.2
for a description. If project data are not available statistical data from
literature can be used initially, see for example Jones [9].

The opportunity to further develop the model still exists, either to
include or exclude activities, if these are assumed to affect the output, or
to make changes to adapt the model for another development project.

4. Model and Simulation

4.1 Template Model

The template model, including only the necessary key objects in the
simplest case, is presented in Figure 3. This model consists of one module
for code development, module A, and one module for test, module B.
The arrow in Figure 3 corresponds to undiscovered defects, which are
transferred from module A to module B. With the template model the
user can simulate the number of injected defects during code
development and the number of detected defects during testing as well as
used resources and the time for development and testing. When the
template model behaviour is understood by the user, the model can be
extended and adapted to reflect the industrial setting. This is described in
the next section.

Figure 3. The template model with one development phase and one test phase

Module A
Code
development

Module B
Unit test

4. Model and Simulation

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 95

The code development module, module A, is modelled according to
Figure 4. The model user estimates the following input parameters:

• The incoming work

• The number of programmers

• The average number of injected defects per day per programmer

• The average produced number of KLOC per day per programmer
with the coding method

The values of the input parameters can be estimated by project
measures, reported statistics, or best estimates from experienced
programmers and testers. The lower flow in Figure 4 corresponds to the
coding rate, which is determined by the number of programmers and the
average KLOC per day produced per programmer. The number of KLOC
in incoming work together with the coding rate determine the number of
days it takes to complete the code. The upper flow in Figure 4
corresponds to the defect injection rate during coding, which is
determined by the coding rate and the injected number of defects per
KLOC by the programmers, due to the coding method. The output from
the module is the number of undiscovered defects in the code, which is
transferred to undiscovered defects in module B, unit test, when module
A has been completed.

Figure 4. The development module, module A, in the template model.

Defect Injection Rate During Coding

Undiscovered Defects

Code Method DI

Coding Rate

Completed Code

Code Method CR
Programmer Resource

Incoming Work

Module A: Code development

To Module B
Undiscovered
Defects

Adaptation of a Simulation Model Template for Testing to an Industrial Project

96 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

The formulas used in module A are:

The Coding Method is divided into Coding Method CR for the
coding rate, in which the unit is KLOC/day, and Coding Method DI for
the defect injection rate, in which the unit is the number of defects/
KLOC. The input parameters in module A and their units are listed in
Table 5.

The test module, module B, is modelled according to Figure 5. The
incoming work, the number of testers, the average number of detected
defects per day per tester, and the average number of KLOC tested per
day per tester with the test method is estimated by the model user. The
lower flow in Figure 4 corresponds to the testing rate, which is
determined by the number of testers and the average KLOC tested per
day per tester. The number of KLOC in incoming work together with the
testing rate determine the number of days it takes to test the code. The
upper flow in Figure 5 corresponds to the defect detection rate, which is
determined by the testing rate and the detected number of defects per
KLOC with the test method. The output from the module is the number
of undiscovered defects in the code. The formulas used in module B are:

The Test Method is divided into Test Method TR for the testing rate,
in which the unit is KLOC/day, and Test Method DD for the defect
detection rate, in which the unit is the number of defects/KLOC. The

Table 5. Input parameters in module A.

Input parameter Unit

Incoming work KLOC

Programmer resource Number of programmers

Coding Method CR KLOC/day

Coding Method DI Number of defects/KLOC

CodingRate CodingMethodCR ProgrammerResource×=

DefectInjectionRateDuringCoding CodingRate CodingMethodDI×=

TestRate TestMethodTR TesterResource×=

DefectDetectionRate TestRate TestMethodDD×=

4. Model and Simulation

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 97

detection rate is independent of the number of faults in the code. This
was chosen for practical reasons.

The input parameters in module B and the units are listed in Table 6.
The number of tested KLOC per day is more difficult to estimate than for
example the number of tested requirements per day. The unit number of
tested KLOC per day is used anyway in order for the test method to be
estimated in number of defects per KLOC in the upper flow. The unit in
the upper flow would otherwise be the number of defects per
requirement, which is also a difficult unit. A suggestion for the model user
is to approximate that each requirement is of equal size in KLOC. A
model extension with the input parameter test coverage, for example, can
be performed by measuring test coverage by the number of requirements
tested, and then approximating the corresponding number of KLOC
tested. This approximation is used in this industrial simulation.

Figure 5. The test module, module B, in the template model.

Table 6. Input parameters in module B.

Input parameter Unit

Incoming work KLOC

Test resource Number of testers

Test Method TR KLOC/day

Test Method DD Number of defects/KLOC

Defect Detection Rate

Discovered Defects

Test Method DD

Test Rate

Completed Test

Test Method TRTest Resource

Incoming Work

Module B: Test Phase

To Module B
Undiscovered
Defects

Undiscovered Defects

Adaptation of a Simulation Model Template for Testing to an Industrial Project

98 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

4.2 Simulation with an Adapted Model in an Industrial
Setting

The template module described in Section 4.1 was implemented,
extended and adapted in the organization described in Section 2. The in-
parameters listed in Table A1 in Appendix A were considered important
for module A. The major adaptations in module A are the inclusion of
unit tests in the development phase and the extension of in-parameters to
the code rate and defect injection rate, see Figure 6. The unit test is
included in module A, since it is developed and executed in parallel with
the code development in the same phase, see Section 2. The in-parameters
listed in Table A2 in appendix A were considered important for module
B.

The major adaptations in module B from the template model are the
extension of a rework flow and the extension of in-parameters to the test
rate and defect detection rate, see Figure 7. The rework flow was added in
order to estimate resources and time for the corrections of defects.
Module B was also extended with a defect injection flow, due to the fact
that new defects could be injected in the system during defect correction,
see the flow from the cloud in the upper part of Figure 7. The arrow from
Defect Rework Rate to Injected Defects due to Rework is added in order
to control the number of new injected defects, which is dependent on the

Figure 6. Module A in the extended and adapted model in the industrial setting.

4. Model and Simulation

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 99

number of corrected defects. The flow from Undiscovered Defects A to
Undiscovered Defects B1 is added in order to transfer the Undiscovered
Defects from module A to module B when module A is completed. The
arrows from Undiscovered Defects A, Undiscovered Defects B1, and
Incoming Work B1 to Test Resources B1 are added in order to start
module B when the Undiscovered Defects have been transferred from
module A to module B. The arrow from Detected Defects B1 to
PrResource Rework controls that programmer resources are only
correcting defects if defects are discovered. The test coverage is controlled
by multiplying the Incoming Work with the percentage of test coverage in
module B.

The model was also extended with a modified module B for each
testing phase, according to the software development process described in
Section 2. The model for the industrial setting includes four modules of
type B, according to Figure 8. The modules of type B are identical, but
the parameters’ values differ between the modules to reflect the situation
in each phase. Defects from other sub-systems at level 1 and 2 are not
included in this study.

The model in-parameters were adjusted to correspond to a real
increment in a project with the programmers’ and testers’ viewpoint on
the magnitude of the parameters. The data, which were used to calibrate

Figure 7. Module B in the extended and adapted model in an industrial setting.

Adaptation of a Simulation Model Template for Testing to an Industrial Project

100 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

the model, were taken from a problem reporting system, a personnel time
logging system, and the number of lines of code from project data, as well
as experiences from the programmers and testers. For more details on
these data see [4]. The results of the simulation are presented in Figure 9.

The upper graph in Figure 9 shows the number of undiscovered
defects in the different phases. The first steadily growing curve
corresponds to the defect injection during coding and unit test. The
decrease of the number of undiscovered defects in the test phase curves
corresponds to the discovered defects during the test phases. The low
increase of undiscovered defects in the test phase curves (see third
description in upper part of Figure 9) is due to a low injection rate of new
defects in the project during defect corrections. The verification phase in
this increment was not performed. The undiscovered defects are therefore
not reduced in the last curve, in this case. The model was calibrated to
correspond to the real time scale and to the number of defects in the
increment. The programmers and testers adjusted the in-parameters to
simulate a process change to see how the model worked. The simulation
results reflected the simulated change in the number of detected defects in
the different phases.

The middle graph shows the number of persons, i.e. resources used in
the different phases. The presented resources also include the
programmers doing rework during defect corrections. The times in which
the resources are zero are due to the model implementation. In this model
the transfer of undiscovered defects from one module to another is
completed before the next module testing is initiated. The model can be
further developed in this respect.

The lower graph shows an estimate of the cost of detecting defects in
the various phases. The cost of finding and correcting a defect, in the
adapted model, is modelled to be increased for each test phase. This
corresponds to the increased cost of performing all test phases again for
the corrected defect. The actual flow or performance of new corrected
releases of code, due to defect corrections, is not simulated in the model.
The largest cost curve in the lower graph is due to the undiscovered

Figure 8. Adapted and extended model in an industrial setting.

 Module A
Code
development
and unit test

Module B
Sub-system
test level 2

Module B
Sub-system
test level 1

Module B
System
integration

Module B
System
verification

4. Model and Simulation

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 101

defects, which were not found in this increment. The cost of finding
defects in different phases is difficult to estimate, since each defect can
cause different costs. Various approximations and definitions can be used.
In this case the cost of finding faults in different phases were
approximated with a fictitious value of 10 for the first testing phase, 20
for the next, and so on. The total cost, which is not shown in Figure 9, of
all the found and not found defects in the different phases yields a good
estimate for a process change in terms of costs.

4.3 Validation

The adapted model was validated with a sensitivity analysis [3]. In the
sensitivity analysis the output variables Number of faults, and Calendar
time were measured for module A when changing the input parameters
Code Method Code Rate, Programmer Resource, Unit Test Percentage,
Code Method Defect Injection, and Incoming work at “extreme values”.

Figure 9. Results from the simulation model in the industrial setting.

A
B1

B2

B3 B4

Programmer Resources Coding

TB1
PB1

TB2

PB2

TB3

PB3
TB4

PB4

B1 B2
B4

Cost Undiscovered Defects

B3

Defect injection during
coding and unit test

Discovered defects
during testing

Injection of new defects
during code rework

Test phase verification is not
performed in this increment

Adaptation of a Simulation Model Template for Testing to an Industrial Project

102 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

The parameter Code Method Code Rate includes the parameters
PrSystKnowledge CR, SystComplexity CR, QualityReqSpec&FuncDescr
CR, PrExperience CR, and CodeMethod CR. The parameter Code
Method Defect Injection includes the parameters PrSystKnowledge DI,
SystComplexity DI, QualityReqSpec&FuncDescr DI, PrExperience DI,
and CodeMethod DI. This simplification can be performed since these
parameters technically are summarized into one parameter in the model.

The “extreme values” of the parameters were chosen by selecting a
reasonably high and low value in a range for which the model is used. The
number of programmers was for example 2 in the lower limit and 8 in the
upper limit. The sensitivity analysis was performed with a full factorial
design [5] for module A, which results in 32 runs (5 parameters with 2
levels). The factorial design analysis showed that the number of injected
faults are dependent on, and only on, the parameters Code Method
Defect Injection, and Incoming work, and in fact Code Method Defect
Injection*Incoming work. This is a correct behaviour of the simulated
system. The validation of the Calendar time showed that the Unit Test
Percentage had been incorrectly implemented, since the calendar time
increased when the unit test was reduced. The model was corrected and a
validation was performed a second time with a correct behaviour for all
parameters.

The validation of module B was performed with the parameters Test
Method Test Rate, Test resource, Test Method Defect Detection,
Programmer Resource Rework, Incoming work, Rework Method, and
Injected Defects due to rework. A simplification of the parameters Test
Method Test Rate, Test Method Defect Detection, and Rework Method
was performed, similarly as for module A. The output variables were the
number of detected faults, the number of days for rework, and the
number of test days. These output variables are used for the calculation of
costs etc. A fractional factorial design with 16 runs was performed. This
means that first-order effects cannot be separated from third-order
interactions, but effects of third-order interactions are not considered
likely in this case, thus not affecting the result. When choosing the
“extreme values” for module B, certain relationships between parameters
set limitations. For example the test rate (KLOC/day) could not be
greater than the incoming work (KLOC) if the time step is set to 1 day.
The analysis of the fractional factorial design showed that the model
behaved correctly for all parameters and output variables.

5. Conclusions

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 103

5. Conclusions

In this study a template model has been developed and evaluated. The
template model has been specialised into a model that is adapted to a
specific industrial project. We have found that it is possible to use the
template model when a specific model is derived, and that it is possible to
derive the specialised model as it was done in the presented case study. We
have also seen that it is important to involve representatives from the
project. In the case that is presented, the representatives came from the
project that was simulated, and we believe that this is a feasible way in
cases where this is possible. The programmers and the testers had many
important suggestions and corrections in the work with the specific
model.

It is also concluded that a thorough analysis of project data, yielding
information regarding resources used, faults found etc. in the phases
facilitate the model building and validation.

During the feedback-session it was found that the programmers and
testers were interested and they thought that they had gained
understanding of the process because of this work. We therefore believe
that the model describes issues that are important, and that it is a good
representation of the real process.

We believe that it is possible to use the template model in
organisations that are similar to the studied organisation. It is probably
possible to adapt the model in the same way as in this study, if the project
does not differ very much.

Further work includes more experimentation with the template model.
For example, the organisation in the case study is planning to use the
adapted and extended model in more increments.

Acknowledgement

The authors would like to thank our colleagues at Ericsson Microwave
Systems AB Maria Jonsson, Reine Larsson, Magnus Larsson, Carl-Ejnar
Bergh, and Thomas Svensson for their contribution to this work.

This work was partly funded by The Swedish Agency for Innovation
Systems (VINNOVA), under a grant for the Centre for Applied Software
Research at Lund University (LUCAS).

Adaptation of a Simulation Model Template for Testing to an Industrial Project

104 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

6. References

[1] Abdel-Hamid, T., Madnick, S., Software Project Dynamics: An Integrated Approach,
Englewood Cliffs, New Jersey, Prentice Hall, 1991.

[2] Andersson, C., Karlsson, L., Nedstam, J., Höst, M., Nilsson, B. I., “Understand-
ing Software Processes through System Dynamics Simulation: A Case Study”, Pro-
ceedings of 9th IEEE International Conference and Workshop on the Engineering of
Computer-Based Systems, pp. 41-48, 2002.

[3] Banks, J., Handbook of Simulation, John Wiley & Sons, 1998.
[4] Berling, T., Thelin, T. “An Industrial Case Study of the Verification and Validation

Activities”, Proceedings of 9th International Software Metrics Symposium, pp. 226-
238, 2003.

[5] Box, G. E. P., Hunter, W. G., and Hunter, J. S., Statistics for Experimenters: An
Introduction to Design, Data Analysis, and Model Building, Wiley-Interscience,
1978.

[6] Collofello, J. S., Zhen Yang, Tvedt, J. D., Merrill, D., Rus, I., “Modeling Software
Testing Processes”, Proceedings of the 15th IEEE International Phoenix Conference on
Computers and Communications, pp. 289-293, 1996.

[7] Donzelli, P., Iazeolla, G., “Hybrid Simulation Modelling of the Software Process”,
Journal of Systems and Software, 59(3):227-235, 2001.

[8] Höst, M., Regnell, B., Natt och Dag, J., Nedstam, J., and Nyberg, C. “Exploring
Bottlenecks in Market-driven Requirements Management Processes with Discrete
Event Simulation”, Journal of Systems and Software, 59(3):323-332, 2001.

[9] Jones, T. C., Estimating Software Cost, McGraw-Hill, 1998.
[10] Kellner, M. I., Madachy, R. J., Raffo, D. M., “Software Process Simulation Model-

ing: Why? What? How?”, Journal of Systems and Software, 46(2-3):91-105, 1999.
[11] Law, A. M, and Kelton, W. D., Simulation Modeling and Analysis (3rd ed.),

McGraw-Hill, 2000.
[12] Madachy, R., Tarbet, D. “Case Studies in Software Process Modeling with System

Dynamics”, Software Process Improvement and Practice, 5(2-3):133-146, 2000.
[13] Martin, R., Raffo, D. “Application of a Hybrid Process Simulation Model to a

Software Development Project”, Journal of Systems and Software, 59(3):237-246,
2001.

[14] Raffo, D. M., Kellner, M. I., “Analyzing Process Improvements Using the Process
Tradeoff Analysis Method”, Proceedings of the Software Process Simulation Modeling
Workshop, 2000.

 Appendix A

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 105

Appendix A

Table A1. Important in-parameters for module A in the extended and adapted
model.

Input parameters module A Measure

Programmers’ System Knowl-
edge Code Rate

Consider the characteristics in Table A3 below “Pro-
grammer participation in reviews”, “Number of years
with total system”, “Number of years with sub-sys-
tem”, and “Used system in laboratory environment”.
Estimate a measure on the reduced or increased pro-
duction of KLOC/day, due to level of system knowl-
edge.

System Complexity Code Rate Consider the characteristics in Table A3 below “Com-
mon components”, “Sub-system's control”, and
“Other sub-systems’ control”. Estimate a measure on
the reduced or increased production of KLOC/day,
due to level of system complexity.

Quality of Requirements Specifi-
cations and Functional Descrip-
tions Code Rate

Consider the characteristics in Table A3 below “Docu-
mentation status”, “Review of documents”, and
“Faults in documents”. Estimate a measure on the
reduced or increased production of KLOC/day, due to
level of quality of requirements specifications and
functional descriptions.

Programmers’ Experience Code
Rate

The programmers’ experience as a programmer and
with the language used. Estimate a measure on the
reduced or increased production of KLOC/day, due to
level of programmers’ experience.

Coding Method Code Rate The number of produced KLOC/day. Estimate a
measure of the number of produced KLOC/day per
programmer, due to the coding method used.

Programmer Resource for Cod-
ing

The number of programmers for the sub-system devel-
opment.

Amount of Incoming Work
(KLOC)

Lines of uncommented code.

Programmers’ System Knowl-
edge Defect Injection

Consider the characteristics in Table A3 below “Pro-
grammer participation in reviews”, “Number of years
with total system”, “Number of years with sub-sys-
tem”, and “Used system in laboratory environment”.
Estimate a measure on the number of injected defects/
KLOC, due to level of system knowledge.

Adaptation of a Simulation Model Template for Testing to an Industrial Project

106 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

System Complexity Defect Injec-
tion

Consider the characteristics in Table A3 below “Com-
mon components”, “Sub-system’s control”, and
“Other sub-systems’ control”. Estimate a measure on
the number of injected defects/KLOC, due to level of
system complexity.

Quality of Requirements Specifi-
cations and Functional Descrip-
tions Defect Injection

Consider the characteristics in Table A3 below “Docu-
mentation status”, “Review of documents”, and
“Faults in documents”. Estimate a measure on the
number of injected defects/KLOC, due to level of
quality of requirements specifications and functional
descriptions.

Programmers’ Experience Defect
Injection

The programmers’ experience as a programmer and
with the language used. Estimate a measure on the
number of injected defects/KLOC, due to level of pro-
grammers’ experience.

Unit Test Effectiveness The number of defects/KLOC discovered by unit test.

Coding Method Defect Injection
Rate

The number of injected defects/KLOC. Estimate a
measure of the number of injected defects/KLOC per
programmer, due to the coding method used.

Table A2. Important in-parameters for module B in the extended and adapted
model.

Input parameters module B Measure

Testers’ System Knowledge Test
Rate

Consider the characteristics in Table A3 below “Tester
participation in reviews”, “Number of years with total
system”, “Number of years with sub-system”, and
“Used system in laboratory environment”. Estimate a
measure on the number of tested KLOC/day, due to
level of system knowledge.

System Complexity Test Rate Consider the characteristics in Table A3 below “Com-
mon components”, “Sub-system’s control”, and
“Other sub-systems’ control”. Estimate a measure on
the number of tested KLOC/day, due to level of sys-
tem complexity.

Table A1. Important in-parameters for module A in the extended and adapted
model.

Input parameters module A Measure

 Appendix A

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 107

Quality of Requirements Specifi-
cations and Functional Descrip-
tions Test Rate

Consider the characteristics in Table A3 below “Docu-
mentation status”, “Review of documents”, and
“Faults in documents”. Estimate a measure on the
number of tested KLOC/day, due to level of quality of
requirements specifications and functional descrip-
tions.

Testers’ Experience Test Rate The testers’ experience. Estimate a measure on the
number of tested KLOC/day, due to level of testers’
experience.

Test Method Test Rate The number of tested KLOC/day. Estimate a measure
of the number of tested KLOC/day per tester, due to
the test method used.

Test Resource The number of testers in the test phase.

Incoming Work The number of KLOC of the sub-system to be tested.

Test Coverage The % of code tested. (Multiplied with incoming
work in the model)

Testers’ System Knowledge
Defect Detection

Consider the characteristics in Table A3 below “Tester
participation in reviews”, “Number of years with total
system”, “Number of years with sub-system”, and
“Used system in laboratory environment”. Estimate a
measure on the number of detected defects/KLOC,
due to level of system knowledge.

System Complexity Defect
Detection

Consider the characteristics in Table A3 below “Com-
mon components”, “Sub-system’s control”, and
“Other sub-systems’ control”. Estimate a measure on
the number of detected defects/KLOC, due to level of
system complexity.

Quality of Requirements Specifi-
cations and Functional Descrip-
tions Defect Detection

Consider the characteristics in Table A3 below “Docu-
mentation status”, “Review of documents”, and
“Faults in documents”. Estimate a measure on the
number of detected defects/KLOC, due to level of
quality of requirements specifications and functional
descriptions.

Testers’ Experience Defect
Detection

The testers’ experience. Estimate a measure on the
number of detected defects/KLOC, due to level of
testers’ experience.

Test Method Defect Detection The number of detected defects/KLOC. Estimate a
measure of the number of detected defects/KLOC per
tester, due to the test method used.

Table A2. Important in-parameters for module B in the extended and adapted
model.

Input parameters module B Measure

Adaptation of a Simulation Model Template for Testing to an Industrial Project

108 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Programmers’ System
Knowledge Defect Rework

Consider the characteristics in Table below “Program-
mer participation in reviews”, “Number of years with
total system”, “Number of years with sub-system”, and
“Used system in laboratory environment”. Estimate a
measure on the number of reworked defects/day, due
to level of system knowledge.

System Complexity Defect
Rework

Consider the characteristics in Table below “Common
components”, “Sub-system’s control”, and “Other sub-
systems’ control”. Estimate a measure on the number
of reworked defects/day, due to level of system com-
plexity.

Quality of Requirements Specifi-
cations and Functional Descrip-
tions Defect Rework

Consider the characteristics in Table below “Docu-
mentation status”, “Review of documents”, and
“Faults in documents”. Estimate a measure on the
number of reworked defects/day, due to level of quality
of requirements specifications and functional descrip-
tions.

Programmers’ Experience Defect
Rework

The programmers’ experience as a programmer and
with the language used. Estimate a measure on the
number of reworked defects/day, due to level of pro-
grammers’ experience.

Code Structure Defect Rework The degree to which the code is well-structured and
well-documented. Estimate a measure on the number
of reworked defects/day, due to level of code structure.

Programmer Resource for
Rework

The number of programmers for the sub-system devel-
opment. Since the rework is performed in a later phase
it is not a conflict with the programmer resource for
coding in the model. The measure should reflect the
average number of programmers used for rework.

Rework Method Rework Rate The number of reworked defects/day. Estimate a meas-
ure of the number of reworked defects/day per pro-
grammer, due to the rework method used.

Defect Injection Rates During
Code Rework

Estimate the % of defects that lead to new defects.

Table A2. Important in-parameters for module B in the extended and adapted
model.

Input parameters module B Measure

 Appendix A

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 109

Table A3. Characteristics for a number of in-parameters in the extended and adapted
model.

Characteristics Measure

Programmer participation in
reviews

Important documents for code development is
reviewed.

Number of years with total sys-
tem

Number of years of work with total system, in order to
know the purpose, structure etc. of the system.

Number of years with sub-sys-
tem

Number of years of work with sub-system, in order to
know the purpose, structure etc. of the sub-system.

Used system in laboratory envi-
ronment

The programmer or tester has used the system in labo-
ratory environment.

Common components The use of common components affects the complex-
ity.

Sub-system’s control The sub-system’s control and effect on other sub-sys-
tems.

Other sub-systems’ control The degree to which the sub-system is controlled and
affected by other sub-systems.

Documentation status The degree to which important documents (require-
ments specifications and functional descriptions) are
complete, i.e. if important parts are missing.

Review of documents The amount of review and the appropriateness of
reviewers.

Faults in documents The degree of faults found in important documents
(requirements specifications and functional descrip-
tions) after release.

Tester participation in reviews Important documents for testing is reviewed.

110 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 111

PAPER 4

An Experimental Evaluation of Inspection and
Testing for Detection of Design Faults

Carina Andersson, Thomas Thelin, Per Runeson, Nina Dzamashvili

Proceedings of the 2nd International Symposium on Empirical Software Engineering,
pp. 174-184, 2003.

Abstract

The two most common strategies for verification and validation,
inspection and testing, are in a controlled experiment evaluated in terms
of their fault detection capabilities. These two techniques are in the
previous work compared applied to code. In order to compare the
efficiency and effectiveness of these techniques on a higher abstraction
level than code, this experiment investigates inspection of design
documents and testing of the corresponding program, to detect faults
originating from the design document. Usage-based reading (UBR) and
usage-based testing (UBT) were chosen for inspections and testing,
respectively. These techniques provide similar aid to the reviewers as to
the testers. The purpose of both fault detection techniques is to focus the
inspection and testing from a user's viewpoint. The experiment was
conducted with 51 Master’s students in a two-factor blocked design; each
student applied each technique once, each application on different
versions of the same program. The two versions contained different sets of
faults, including 13 and 14 faults, respectively. The general results from
this study show that when the two groups of subjects are combined, the
efficiency and effectiveness are significantly higher for usage-based
reading and that testing tends to require more learning. Rework is not

4

An Experimental Evaluation of Inspection and Testing for Detection of Design Faults

112 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

taken into account, thus the experiment indicates strong support for
design inspection over testing.

1. Introduction

Verification and validation are conducted to detect faults throughout the
development of a software product. The process of verification and
validation takes a large share of the development cost in a software
project. Verification aims at checking that the system as a whole works
according to its specifications and validation aims at checking that the
system behaves according to the customers’ intentions. The main types of
activities for verification and validation are inspections [6] and testing [7].
Software testing cannot be conducted until the software product is
implemented; hence it is conducted in the later phases of software
development. Since faults need to be found early to avoid costly rework,
software inspections are conducted before the product has been
implemented.

Inspection and testing are the most common techniques for fault
detection in software artefacts, and several empirical studies have
investigated these techniques [1], [11]. In order to compare inspections
and testing, industrial case studies [4], [5] as well as experiments [13] have
been conducted. However, the experiments compared the effectiveness of
testing and inspection of code, i.e. the subjects of these experiments
applied inspection or testing on the same software artefacts [2], [12], [13],
[16]. These experiments focus on comparing code inspections with
functional and structural testing. The results are summarized by
Laitenberger [13], and suggest that several fault detection techniques
should be applied to achieve software of high quality.

Reading techniques for software inspections have been evaluated
empirically and several improvements have been proposed [1]. Reading
techniques have been proposed and evaluated [23], for example,
perspective-based reading [3]. Another promising reading technique is
usage-based reading (UBR) [21], which has been empirically evaluated in
three studies [22]. It is concluded that UBR is an effective and efficient
reading technique. UBR focuses on the user’s viewpoint, much in the
same way as usage-based testing (UBT) [14], using use cases as the guide
for reviewers.

1. Introduction

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 113

Several testing techniques have been empirically evaluated [11], [15]
and also compared with inspections [2], [20]. UBT is one of these test
techniques, which focuses on the users’ needs with the main purpose to
estimate the reliability of the software [17]. The information used in UBT
stems from the intended usage of software, and different usage profiles
may be designed. In this study, the information used as input for UBT is
translated from use cases. The use cases represent the intended usage of
the software and are easily translated into test cases and thus provide usage
information to UBT.

Since fault detection techniques are effort consuming, knowledge of
how to combine inspection and testing is important. Hence, the aim of
this study is to investigate software inspections (applying UBR) and
testing (applying UBT), on a higher abstraction level than code in
software engineering. In order to investigate this, a controlled experiment
was conducted to study the effects of UBR on a design document and
UBT on the corresponding programs, i.e. the faults that exist in the
design documents have propagated into the code. The general research
question addressed in this paper is:

• What is the impact of the two fault detection techniques (UBR and
UBT)? – The goal of the experiment is to investigate how many
faults and what faults the fault detection techniques find.

The main result of the experiment indicates that inspections of design
documents are significantly more effective and efficient than trying to
find the faults in the test phase. In particular if the rework costs are
considered, the potential gains are larger with the inspection technique.
This result confirms related research in the area of verification and
validation, although most other research is focused on the code instead of
the design.

The remainder of this paper is structured as follows: The two
techniques used in the experiment for inspection and testing, usage-based
reading and usage-based testing, are described in Section 2. In Section 3
the planning of the experiment and its pilot study is explained in detail,
while we in Section 4 present how the experiment was conducted. In
Section 5 the experiment results are presented. In Section 6 the results
and findings, and lessons learned are discussed, and also related to
previous work in this area. Section 7 gives a summary and conclusions of
this study.

An Experimental Evaluation of Inspection and Testing for Detection of Design Faults

114 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

2. Fault Detection Techniques

Software testing and inspections have the same main goal, which is to
detect faults. These methods are the main corrective strategies in software
development and are used to increase the quality of the software products.
Much research has been conducted isolated in these areas. There are only
few empirical studies investigating the trade-off between inspections and
testing, and how these corrective methods complement each other in the
best possible way [13].

Although both fault detection techniques are used to find faults, a
significant difference exists between inspection and testing. When a tester
observes an anomalous behavior, a failure has been detected and then the
tester needs to isolate the fault causing the failure [8]. On the other hand,
when a reviewer detects a fault in the document, no isolation is needed
since the root of cause is already detected. In this paper, these definitions
of faults and failures are used to denote observation of test result (failures)
and inspection result (faults), respectively.

The fault detection techniques used in this paper are both focused on
finding faults, critical for the usage of the software system. UBR is used as
the reading techniques in the preparation phase of the inspection and
UBT is used as the testing technique. The aim of these methods is to
focus on the users’ needs throughout the development. Hence, UBR and

Figure 1. The connection between the fault detection techniques compared in the
empirical study.

Requirements

Design

Implementation

Module

Testing

U
sa

ge
-B

as
ed

 T
es

tin
g

U
sage-Based Reading

Prioritized
Use Cases

Prioritized
Test Cases

Testing

2. Fault Detection Techniques

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 115

UBT are two complementary fault detection techniques in the
software development. The relationship between UBR and UBT is shown
in Figure 1.

Both these methods are focused on detecting the most critical faults
from a user’s viewpoint. UBR provides reviewers with prioritized use
cases, and UBT provides testers with prioritized test cases. During an
inspection, reviewers manually “execute” the use cases and thereby find
faults. During testing, the test cases are executed on the implemented
code to detect failures. Before utilizing UBR and UBT, three activities
have to be conducted:

• Development of use cases – Use cases are preferably developed in
the beginning of a software project. These use cases can then be
used for all inspection activities in the same project. However, if use
cases are not used, it is shown that it is only necessary to develop the
title and purpose of the use cases in order to utilize UBR [22].

• Prioritization of use case – The use cases should be prioritized
before the inspection is conducted. The prioritization can be per-
formed pair-wise comparison by a user, group of users or some per-
son who represents and understands the users needs.

• Translation of use cases into test cases – The test cases need to be
translated from natural language to the test language used. This
means that the same information is used for inspecting as well as
testing.

After the prioritization of the use/test cases, UBR and UBT are
performed in four basic steps, described in detail by Thelin et al. [24]:

1. Start with the use/test case with the highest priority.

2. Check the software according the use case (UBR) or the output
from the testing (UBT).

3. Ensure that the software artefact fulfils the goal of the use/test case,
and report the issues found.

4. Select the next use/test case and repeat from 2 until the time is up,
or all use/test cases are covered.

UBT is focused on the user, much in the same way as UBR. UBT was
developed before UBR with the purpose to focus on the users and to

An Experimental Evaluation of Inspection and Testing for Detection of Design Faults

116 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

estimate the reliability [14], [17]. In fact, UBR was developed based on
UBT. In this study, the prioritized use cases were used to develop the test
cases. Hence, the input information to the fault detection techniques was
equal.

3. Experiment Planning

The planning of the experiment involved defining the hypotheses to be
tested (Section 3.1), and setting up the experiment artefacts (Section 3.2).
The planning also involved a pilot study (Section 3.3), selecting the
subjects to participate in the main study (Section 3.4), and choosing an
appropriate experimental design and defining variables and analysis
methods (Section 3.5). Threats to validity have been considered before
and after the experiment (Section 3.6).

3.1 Purpose and Hypotheses

The purpose of the experiment is defined as follows:
Analyze the detection of design faults using inspection and testing,

for the purpose of evaluation,
with respect to their effectiveness and efficiency,
from the point of view of researchers,
in the context of Master’s students, and a scaled-down system from a real
application domain.

Specifically, we want to compare the use of Usage-Based Reading [21]
and Usage-Based Testing [14] as presented in Section 2. UBR is a
technique that requires the reviewers to go deeper into the design and
really understand it, compared to UBT, which concentrates on the input-
output. Hence, we expect UBR to be at least as effective and efficient as
UBT in detecting the faults. In other words, the null hypotheses is that
there are no differences between the techniques:

• H0 Eff – There is no difference in efficiency (i.e. found faults per
hour) between the reviewers applying UBR and the testers applying
UBT.

• H0 Rate – There is no difference in effectiveness (i.e. rate of faults
found) between the reviewers applying UBR and the testers apply-
ing UBT.

3. Experiment Planning

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 117

• H0 Faults – There is no difference in faults found, i.e. the reviewers
applying UBR do not find different faults than the testers applying
UBT.

The alternative hypotheses are defined in favour of the UBR, i.e.:

• Ha Eff – Reviewers applying UBR are more efficient than testers
applying UBT.

• Ha Rate – Reviewers applying UBR are more effective than testers
applying UBT.

• Ha Faults – Reviewers applying UBR and testers applying UBT find
different faults.

In order to compare relevant constructs, we do not include
development or rework time in the data collection. This would give better
credit for the UBR technique, as it is applied earlier in the development
cycle, but since we only have anecdotal data on the rework effort needed,
this is discussed outside the experiment analysis. In the UBR case, we
measure the time spent and faults found by reading a design specification
guided by a set of prioritized use cases. In the UBT case, we measure the
time spent and failures found by analyzing the output traces from the
execution of a set of functional test cases. The usage scenarios of the test
cases are the same as those of the use cases in UBR.

3.2 Experiment Artefacts

The experiment is based on material originally developed for a
verification and validation course in software engineering at Lund
University in Sweden [21]. The artefacts are reviewed and the code is also
tested to obtain as high quality as possible. The application domain is a
management system for a taxi fleet, including functionality for managing
customer orders and dispatching them to an available taxi. The
experiment material consists of five documents in structured text, see
Figure 2: one requirements document, one design document (9 pages,
2300 words), one use case document with 12 use cases, one set of 12 test
cases and finally the corresponding set of test output traces. These are
presented in the form of MSC diagrams (Message Sequence Charts) [9],
and contain the interaction between the user and the taxi management
system.

An Experimental Evaluation of Inspection and Testing for Detection of Design Faults

118 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

The requirements document, the use case document and the design
document were used in previous experiments at Lund University [22].
The test cases and the test output traces were developed for this
experiment. There is also code for the implemented system, but it is not
presented to the subjects. Only the outputs from the tests of the code
were available to the subjects in the test output traces.The system and its
artefacts are available in two versions, referred to as version A and B, with
13 and 14 faults, respectively, which give rise to corresponding failures
which are possible to observe in the test output traces. The two sets of
faults are analyzed and considered to have the same distribution of faults
regarding type and severity. The faults were selected among the 38 faults
in the design document used in earlier experiments [22]. In addition,
three and four new faults of similar types were inserted in the versions
respectively to achieve two different sets of artefacts. The faults in the
design document were selected so that they probably might remain in a
system after coding, if no design inspections were performed. Hence, the
same faults that appear in the design document are causing the failures in
the test output traces. Five of the faults in version A have the same
originating error as five faults in version B, i.e. the two version have an
intersection equal to these five faults, although they appear differently in
the design and the test output traces.

In addition to the system documents, a questionnaire for self-
assessment was used to collect data about the experience of the subjects,
and report forms for inspection and testing for time and fault reporting

Figure 2. Overview of the experiment artefacts. R means used by UBR and T means used
by UBT. A and B refer to the different versions of the artefacts.

Design

UBR UBT

Report

Ques-

DesignReq’s

Use Cases Test Cases

T

Output
T

tionnaire

R, T

Form

R, TR, T

Test
Output

Code
Code

A

B

R

R, T

A
B

T

A

B

3. Experiment Planning

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 119

was handed out. For more details on the artefacts and the system, refer to
[21].

3.3 Pilot Study

A pilot study was conducted in November 2002, with 25 students of their
third year of software engineering Bachelor’s programme at Lund
University. A smaller version of the experiment was carried out to evaluate
the experiment procedures, like methods of data collection, to ensure that
the questions in the self-assessment questionnaire were understandable
and unambiguous, and that the introduction given before the experiment
was adequate. The study was organized over one day, with an
introductory part of the fault detection techniques of approximately 20
minutes and an experiment session of 3 hours. The students had
participated in previous courses working with taxi management systems
and had good domain knowledge. Therefore, no general introduction to
the system and its documents was given. The self-assessment was
delivered and filled out by each participant a few weeks before the
experiment session and was analyzed to capture each student’s knowledge
and experience. Since no major differences were found, the students were
thereafter randomly divided into two groups, each group having one
treatment, UBR or UBT, to apply during the experiment.

The analysis of the pilot study showed that the introduction of the
fault detection techniques may have been more focused on the inspection
technique, while the students applying the testing technique asked more
questions during the experiment session. During the real experiment,
which was conducted a month later, the introduction and practice of the
detection techniques were separated, i.e. one introduction hour was given
for each technique. The self-assessment questionnaire was also revised
after the pilot study to avoid ambiguity, by the means of generally
decreasing the answer alternatives from 5 to 3. Only one version of the
system was used in the pilot study, containing 10 faults. The analysis of
these faults compelled a change and revision of some faults, in order to get
faults that in a natural manner could be injected into the code from the
design without being detected during implementation. The results from
the pilot study were not further analyzed.

An Experimental Evaluation of Inspection and Testing for Detection of Design Faults

120 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

3.4 Subjects

The real experiment was conducted a month after the pilot study. In this,
the main experiment, 51 fourth-year Master’s level students at Blekinge
Institute of Technology in Sweden participated as subjects. The
experiment was included as a training part of another course in software
verification and validation.

The course is a part of the Master’s program in software engineering
and focuses on aspects of software inspections, software testing, software
reliability and analysis as well as empirical methods that can be used to
evaluate software processes and new technologies. The educational
purpose of the experiment was to provide the students with an
opportunity to try out UBR and UBT, as well as to demonstrate how
empirical methods can be used to evaluate and compare the two different
techniques.

The students are considered to be rather experienced in software
engineering. As part of their education they have received extensive
theoretical and practical training in the software engineering domain. The
students have participated in a series of software engineering projects,
which are run in cooperation with industry. The aim of the projects is to
simulate the challenges that are typical for software projects in industry.
The projects are complex and require advanced technical skills. As a result
of the project work, the students are motivated to deliver a software
system according to customers’ requirements and with a focus on software
quality. This provides a basis to assume that the experience of the students
can be considered similar to fresh software engineers working in industry.

3.5 Design

The experiment applied a two-factor blocked design [10], combining two
fault detection techniques and two versions of a system and its artefacts
(referred to as versions A and B). The single difference between the
versions, were that they contained different sets of faults. The design
yielded two groups, and every subject applied each detection technique
once, but with a different version for each occasion, as shown in Table 1.
To avoid any order effects, the two groups were assigned to different
orders of applying the techniques. A practical constraint aroused, after a
version had been used in a session in the experiment. There was a risk that
the faults were made public and other subjects may have access to them.

3. Experiment Planning

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 121

For this reason, the first session of the experiment used only version A,
and the second session, version B.

Variables: The experimental design has the independent variables of the
two fault detection techniques, UBR and UBT, and the two versions of
the program, version A and version B. The experience of the students is
the controlled variable, while several dependent variables were examined
and the following measures were collected: the number of faults detected
by each subject, number of subjects that found each fault, and the time
used for preparation and fault detection.

Analysis Methods: We analyzed the experiment data with descriptive
statistics and statistical tests. The significance level for rejecting the
hypotheses was set to 0.05 for all tests. Since the collected data did not
follow any normal distribution we applied the Wilcoxon signed-rank test,
a nonparametric equivalent to the paired two-group t-test, to evaluate the
efficiency and effectiveness (HEff and HRate) for each group of subjects
[19]. Efficiency is defined as the number of faults found divided by the
total time spent and effectiveness (fault rate) is defined as faults found
divided by the total number of existing faults. A chi-square test was used
to test HFault [19].

3.6 Threats to Validity

When conducting an experiment, there are always threats to the validity
of the results. Depending on the purpose of the experiment, some threats
are more critical than others. The purpose of the current study is to
compare two approaches for fault detection, i.e. inspection and test, and
the focus is the relation between the two, not on generalization. Hence,
the threats to internal and construct validity are the most critical. When
trying to generalize the results to another domain, the external validity
becomes more important [25].

Table 1. Two-factor blocked design.

UBR UBT

Ver A Group 1 Group 2

Ver B Group 2 Group 1

An Experimental Evaluation of Inspection and Testing for Detection of Design Faults

122 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

The threats to conclusion validity are considered small. Robust
statistical techniques are used, measures and treatment implementation
are considered reliable. Similar, or the same instruments are used in
several experiments and the specific instances of the instruments were
tried out in the pilot study. The two sessions of the experiment were
conducted on adjacent days, thus reducing the risk of knowledge
spreading between subjects. In addition, one version of the documents
was used on the first day and the other was used the second to prevent
knowledge about the specific faults to spread. The subjects were randomly
assigned to groups and it was checked that the groups were balanced in
terms of experience and skills via the self-assessment questionnaire.

Concerning internal validity, there is a limited risk of rivalry between
groups since both groups applied both techniques to different artefacts.
The maturity effect, i.e. that the subjects performed differently when they
have gained some experience in the techniques, is possible to analyze,
since both groups applied both techniques in different orders. Only one
subject in each group dropped out after the first day, hence the mortality
rate is low. 13 subjects did not complete at least one of the given tasks
during the experiment sessions and these data points are excluded from
the analysis. There is a risk that the five identical faults, which existed in
both program versions, is not reported during the second day. The
students were told that there should not exist the same faults in both
versions, so they have probably not been searching for these faults
specifically. However this is considered as a small risk, since the faults
appear in different forms depending on detection technique.

Threats to construct validity are reduced by having the use cases and the
test cases based on the same scenarios. Thus, both groups have the same
information, although in different forms. Further, both groups have
access to the same requirements specification. The threat to the construct
validity is for the testing method that it is paper-based, rather than
computer-based as testing normally is, thus making the testing less
dynamic. On the other hand, making the testing computer-based require
more training to get into the test environment.

Concerning external validity, the use of students as subjects is a threat.
However, the students are fourth year Master’s students in software
engineering, hence more representative than freshmen students [18].
Additional threats to the external validity are the artefacts used in the
experiment, which are in the smaller range for a real-world problem, even
though they describe a real-world problem. For the results to be valid in a

4. Operation

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 123

real world setting it is also required that the design documents during the
following implementation not are exposed to change management.

4. Operation

The experiment was conducted in December 2002 and was organized in
two sessions over two days. The first day started with a general
introduction to the Taxi management system. According to the self-
assessment, which was conducted a few weeks earlier, the students’ skills
and previous experience did not differ very much; therefore the students
were randomly divided into two groups, referred to as groups 1 and 2.
Each group attended an introduction and practice for the fault detection
technique they were going to use the first day. During the practice was the
fault detection technique applied on a minor system. The experiment
session was conducted during the afternoon, with the subjects conducting
the inspection and testing individually. Though, the subjects were during
the experiment sessions free to take breaks whenever they wanted.
However, they were asked to not discuss the detection techniques and the
faults they had found. The second day the groups received the
introduction and practice in the technique they had not used the day

Table 2. Schedule for the experiment.

Time Group 1 Group 2

Day 1
(10.15 a.m. -
11.00 a.m.)

45 min.
General introduction to the Taxi

Management System

Day 1
(11.15 a.m. -
12.00 a.m.)

45 min.
Introduction to

UBR
Introduction to

UBT

Day 1
(13.15 p.m. -
17.00 p.m.)

3 h 45 min. Preparation and Fault Detection

Day 2
(9.15 a.m. -
10.00 a.m.)

45 min.
Introduction to

UBT
Introduction to

UBR

Day 2
(10.15 a.m. -
13.00 p.m.)

2 h 45 min. Preparation and Fault Detection

An Experimental Evaluation of Inspection and Testing for Detection of Design Faults

124 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

before, and took afterwards part in the second day’s experiment session,
see schedule in Table 2. The subjects were told that they could leave the
room when they considered themselves finished with the assigned tasks,
or when the time was up. However, none was under time pressure during
the first day’s session. The second day, the students were more acquainted
with the documents and one hour less was planned for the experiment
session.

5. Analysis and Results

This section examines the findings of the experiment. To analyze the
impact of the two techniques, two sets of data were collected: the faults
found and the time spent. The evaluation of the subjects’ reported faults,
with respect to whether it was a fault or not, were conducted by the
researchers. Any false positives (reported issues that are not in fact faults)
were ignored in the subsequent analysis.

5.1 Preparation and Fault Detection Time

The subjects logged the time for preparation and fault detection time.
During preparation time they read though the documents. The mean
time and standard deviation values are presented in Table 3. Generally the
students used more time, when applying UBT, both for preparation and
fault detection, compared to applying UBR. During the second day the
students were more acquainted to the documents and the system, and less
time was used for both techniques, both in preparation and fault

Table 3. Preparation and fault detection times (minutes).

Version A Version B

Technique UBR UBT UBR UBT

m
ea

n

preparation 18.5 22.2 5.6 9.3

fault detection 95.3 118.6 67.9 82.0

total 113.8 140.8 73.5 91.3

st
d.

 d
ev

. preparation 8.4 10.2 4.2 6.8

fault detection 20.4 21.4 16.2 27.3

total 24.4 24.9 14.8 28.7

5. Analysis and Results

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 125

detection. Both treatment groups were using approximately 35% less total
time the second day compared to the first day.

5.2 Efficiency and Effectiveness

Values of efficiency and effectiveness for each technique were calculated as
described in Section . In the Wilcoxon signed-rank test, subjects that had
not completed the given tasks in one of the treatments were excluded
from this analysis, which gave a total of 18 subjects in group 1 and 20
subjects in group 2.

Firstly, the results for efficiency and effectiveness were analyzed
without concern to other factors like the different program versions and
the two groups. The box plots in Figure 3 show efficiency for UBR and
UBT, with better results for the subjects applying UBR. Figure 4 shows
the values of effectiveness for the two techniques, also with better results
for subjects applying UBR. The statistical significance of these results
were tested and show that both for efficiency and effectiveness are
statistical significant difference obtained, with p-values <0.001 and 0.010,
respectively.

Figure 3. Efficiency for UBR and UBT. Figure 4. Effectiveness for UBR and UBT.

UBR UBT

0

1

2

3

4

5

6

7

8

9

10

Efficiency

F
a

ul
ts

 fo
un

d
pe

r h
ou

r

UBR UBT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Effectiveness

F
au

lts
 fo

un
d

/ T
ot

al

An Experimental Evaluation of Inspection and Testing for Detection of Design Faults

126 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

To investigate the possible influence of the program versions on the
results of efficiency and effectiveness, statistical tests comparing version A
and version B were conducted. The test on effectiveness does not show
any difference between the two versions (p-value = 0.435), confirming
that the versions are comparable, with faults that have the same degree of
difficulty to be found. The test on efficiency shows higher value for
version B (p-value <0.0001), which was expected, as this is the version
used the second day. During the second day the subjects were more
familiar with the documents and thereby they used less time.

To investigate the influence of the two groups of subjects, the results
from Figure 3 and Figure 4 were separated for group 1 and 2. Figure 5
shows box plots of the efficiency of each technique, black boxes show
UBR and the grey boxes show UBT, from left to right group 1 and group

Figure 5. Effectiveness for group 1 and
2. The black box plots show
UBR, while the grey show
UBT.

Figure 6. Efficiency for group 1 and 2.
The black box plots show UBR,
while the grey show UBT.

Table 4. P-values for the null hypotheses of efficiency and effectiveness.
(S) means significant at a 0.05 level.

Efficiency Effectiveness

Group 1 0.327 0.145

Group 2 <0.001(S) <0.001(S)

Group 1 Group 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Effectiveness

F
au

lts
 fo

un
d

/ T
ot

al

UBR
UBT

 Group 1 Group 2

0

1

2

3

4

5

6

7

8

9

10

Efficiency

F
au

lts
 fo

un
d

pe
r h

ou
r

UBR
UBT

5. Analysis and Results

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 127

2. The plots for group 1 show no differences in the median value, though
with somewhat higher standard deviation for UBT. For group 2 UBR
outperforms UBT. Figure 6 shows box plots of the effectiveness of each
technique, with similar results, i.e. group 1 has again no major difference
in the median value, but still with higher standard deviation for UBT. For
group 2 the value for effectiveness is higher for UBR than UBT.

To investigate the significance of the treatments, the hypotheses were
tested as described in Section 3.5. For group 1, there was no statistical
significance regarding differences between applying UBR or applying
UBT, see p-values in Table 4. For group 2, however, statistical significance
was obtained, in favour for hypotheses Ha Eff and Ha Rate, i.e. subjects
applying UBR are more efficient and effective than those who apply UBT.

5.3 Faults

The found faults were analyzed in order to evaluate whether there are any
differences when using the two techniques. As the number of subjects for
each technique was different, we have used the percentage of subjects
detecting the faults rather than the number in absolute terms. Figure 7
shows the distribution of subjects applying UBR and subjects applying
UBT that have found a certain fault existing in version A. In order to

Figure 7. Percentage of subjects detecting
each fault in version A.

Figure 8. Percentage of subjects detecting
each fault in version B.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13

Fault number

F
ou

nd

UBR-A

UBT-A

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fault number

F
ou

nd

UBR-B

UBT-B

An Experimental Evaluation of Inspection and Testing for Detection of Design Faults

128 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

analyze whether the reviewers and testers detected different faults when
applying the two techniques (hypothesis HFault), a chi-square test was
used. The result of the chi-square test for version A shows that for the first
experiment session, the reviewers and the testers found different faults
(p=0.024).

The faults in version B were analyzed by the same method as above.
The distribution for the faults in version B that each treatment found is
shown in Figure 8. The result of the chi-square test for version B shows,
however, not statistical significant difference (p=0.083) at the chosen level
of significance.

As mentioned in Section 3.2, five identical faults, in terms of type and
position, existed both in version A as well as version B. The distribution
for these faults found by each treatment, presented in Figure 9, shows
from left to right UBR-A, UBT-B, UBT-A, and UBR-B, i.e. the first two
bars show group 1, in the order they applied the techniques, while the
third and fourth bars show group 2 in the order they applied the
techniques.

A chi-square test was used again to investigate if different faults were
found by each technique, though this does not show statistical significant
difference between the treatments (p = 0.3927).

Figure 9. Percentage of subjects finding the five faults that existed in both versions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5

Fault number

F
ou

nd

UBR-A

UBT-B

UBT-A

UBR-B

6. Discussion

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 129

6. Discussion

In this section we discuss the results of the experiment and the practical
implications of the results. The hypotheses of the experiment are
summarized as follows:

• HEff – Usage-based reading is significantly more efficient than
usage-based testing, without influence of other factors such as
groups and versions of artefacts. However, when separating the data
for the two groups, the results for group 1 does not show any signif-
icant difference, while the results for group 2 show that usage-based
reading is significantly more efficient than usage-based testing.

• HRate – Usage-based reading is more effective than usage-based test-
ing, without influence of other factors. When separating the two
groups, the results for group 1 does not show any significant differ-
ence, while the results for group 2 show that usage-based reading is
significantly more effective than usage-based testing.

• HFault – The subjects find different faults when applying the tech-
niques on version A. When applying the techniques on version B
the statistical test does not show any statistical difference.

In summary, the inspection technique is better than the testing
technique, although there are differences between the two groups. The
results for group 1 only, which applied UBR the first day and UBT the
second day, show that the two techniques perform similarly. However, the
results for group 2, which applied UBT the first day and UBR the second
day, show significant differences, in favour of UBR, both regarding
efficiency and effectiveness. The results for UBR for the two groups are
rather stable, also compared to previous experiments on UBR [22],
independently of whether this was the first treatment applied or the
second.

The performance for UBT is noticeable improved for group 1, which
applied this treatment as the second one, compared to group 2’s
performance for UBT, which was applied as the first treatment. This is
possibly related to that the subjects during the second day were more
acquainted with the documents. The differences between the groups can
be interpreted as the learning curves for the two techniques are different,
i.e. longer for UBT. It is indicated by higher values of efficiency for the

An Experimental Evaluation of Inspection and Testing for Detection of Design Faults

130 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

second day, applying the techniques on version B, though it is specifically
for UBT that the efficiency values are improved.

The difference between the two techniques cannot be explained by
that the two versions of the system are different. The statistical tests show
that the fault detection effectiveness is similar for the two versions, while
the efficiency is higher for version B. This is expected since the subjects
used version B during the second day and were hence more familiar with
the documents and thereby used less time, but they still had the same
fault rates.

The third hypothesis, whether the techniques find different faults or
not, was rejected for version A (p=0.024), but not for version B
(p=0.083). This implies that we interpret this as the techniques are
complementary, and both useful for finding different faults, however
some faults can as easily be found by either one of the techniques.

The results for the five faults, which were present in both versions have
been analyzed to ensure that they have not influenced the results in any
way. The statistical tests show no significant difference between the
techniques or the groups, and the fault rates for these faults are not higher
during the second day. We interpret this, as the faults do not have any
resemblance when finding them in the design document during
inspection compared to when finding them in the test output traces
during testing. We did tell the subjects that there should not exist the
same faults in both versions, so they have probably not been searching for
them specifically on the second day. The risk that they thereby should not
report them is considered very small since they generally reported on a
very high number of what they considered as faults. Roughly counting,
two third of the reported faults were false positives.

When considering the cost-effectiveness of UBR and UBT, the time
used for development of use cases, prioritization of these, development of
test cases and execution of these, and rework, are not taken into account
in the analysis. The preparation activities were all conducted in advance
and the time spent is not included in the analysis. However, we assume
the test case generation and execution require more time than the
preparation of use cases for inspection, which is in favour of the usage-
based reading technique. In particular, since inspection enables earlier
fault detection when applied already to the design document, rework
costs are reduced, as time is not wasted on first implementing the faulty
design and then correcting it later when the faults are found in test.

7. Conclusions

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 131

Previous work in this area has most often been concerned with
inspection and testing of code, of which some results are summarized in
[13]. The most general pattern is that the techniques find different faults,
and hence should be used as complements. Industrial case studies also
report benefits from inspection [4], [5]. However, earlier experiments are
not focused on design inspection versus functional test as this study.

7. Conclusions

This paper reports an experiment on two fault detection techniques,
usage-based reading (UBR) and usage-based testing (UBT), conducted
with 51 Master’s students in December 2002. The results show that UBR
is significantly more effective and efficient than UBT. The results are
slightly different for the two experiment groups but the overall results are
in favour of UBR. The results indicate that it takes longer to learn the
UBT. Comparing the techniques independently of program versions,
UBR is significantly better than UBT both in terms of efficiency as
effectiveness. The experiment also investigated whether different faults
were found by the two techniques. One group shows statistically
significant differences while the other does not. If the techniques find
different faults, it implies that they should be used as complements.

Given that the results can be replicated and generalized, we conclude
that this study provides evidence that usage-based reading for design
inspections are more effective and efficient than usage-based functional
testing. This holds for the fault detection as such, which is the focus of
this paper. When taking the rework costs into account, the potential gains
are larger with the inspection technique since it is possible to apply earlier
in the development cycle.

Further work should include further experimentation to replicate the
results. One focus could be on which types of faults are found by the
different techniques. This would give better answers to whether the two
techniques find different types of faults or not, and could facilitate the
decisions of how to combine inspection and testing, and answer the
question about how to reduce these effort consuming activities.
Furthermore, conducting an experiment with the testing treatment in a
dynamic test environment would reduce the threat to construct validity of
having the paper-based approach. However, this would also complicate
the treatment and might give rise to an even slower learning curve.

An Experimental Evaluation of Inspection and Testing for Detection of Design Faults

132 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

An experiment on an inspection technique and a testing technique is
described in this paper, with the main purpose of evaluating and to get
knowledge of how to combine these verification and validation
techniques. One experiment is not enough to answer this question.
However, where no other experimental evidence is available, our results
may represent a data point, which can be used to direct future work in
this area.

Acknowledgement

This work was partly funded by The Swedish National Agency for
Innovation Systems (VINNOVA), under a grant for the Center for
Applied Software Research at Lund University (LUCAS). We thank the
students that participated in the experiment.

8. References

[1] Aurum, A., Petersson, H. and Wohlin, C., “State-of-the-Art: Software Inspections
after 25 Years”, Software Testing, Verification and Reliability, 12(3):133-154, 2002.

[2] Basili, V. R. and Selby, R. W., “Comparing the Effectiveness of Software Testing
Strategies”, IEEE Transaction on Software Engineering, 13(12):1278-1296, 1987.

[3] Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S. and
Zelkowitz, M. V., “The Empirical Investigation of Perspective-Based Reading”,
Empirical Software Engineering: An International Journal, 1(2):133-164, 1996.

[4] Berling, T. and Thelin, T., “An Industrial Case Study of the Verification and Vali-
dation Activities”, Proceedings of the 9th International Symposium on Software Met-
rics, 2003.

[5] Conradi, R., Marjara, A. S., and Skåtevik, B., “Empirical Study of Inspection and
Testing Data”, Proceedings of the 1st International Conference on Product Focused
Software Process Improvement, pp. 263-284, 1999.

[6] Fagan, M. E., “Design and Code Inspections to Reduce Errors in Program Devel-
opment”, IBM Systems Journal, 15(3):182-211, 1976.

[7] Hetzel, B., The Complete Guide to Software Testing, John Wiley & Sons, 1988.
[8] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-

1990, Corrected Edition February, 1991.
[9] ITU-T Z.120 Message Sequence Charts, MSC, ITU-T Recommendation Z.120,

1996.
[10] Juristo, N. and Moreno, A. M., Basics of Software Engineering Experimentation,

Kluwer Academic Publisher, 2001.

8. References

Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection 133

[11] Juristo N., Moreno A. M. and Vegas S., “A Survey on Testing Technique Empirical
Studies: How Limited is Our Knowledge”, Proceedings of the 1st International Sym-
posium on Empirical Software Engineering, pp. 161-172, 2002.

[12] Kamsties, E. and Lott, C. M., “An Empirical Evaluation of Three Defect-Detec-
tion Techniques”, Proceedings of the 5th European Software Engineering Conference,
pp. 362-383, 1995.

[13] Laitenberger, O., “Studying the Effects of Code Inspection and Structural Testing
on Software Quality”, Proceedings of 9th International Symposium on Software Reli-
ability Engineering, pp. 237-246, 1998.

[14] Musa, J. D., “Operational profiles in software-reliability engineering”, IEEE Soft-
ware, 10(2):14-32, 1993.

[15] Reid, S. C., “An Empirical Analysis of Equivalence Partitioning, Boundary Value
Analysis and Random Testing”, Proceedings of the 4th International Software Metrics
Symposium, pp. 64-73, 1997.

[16] Roper, M., Wood, M. and Miller, J., “An Empirical Evaluation of Defect Detec-
tion Techniques”, Information and Software Technology, 39(11):763-775, 1997.

[17] Runeson, P. and Regnell, B., “Derivation of an Integrated Operational Profile and
Use Case Model”, Proceedings of the 9th International Symposium on Software Reli-
ability Engineering, pp. 70-79, 1998.

[18] Runeson, P., “Using Students as Experiment Subjects – An Analysis on Graduate
and Freshmen Student Data”, Proceedings of the 7th International Conference on
Empirical Assessment & Evaluation in Software Engineering, pp. 95-102, 2003.

[19] Siegel, S. and Castellan, N. J., Nonparametric Statistics for the Behavioral Sciences,
McGraw-Hill, 1988.

[20] So, S. S., Cha, S. D., Shimeall, T. J. and Kwon, Y. R., “An Empirical Evaluation of
Six Methods to Detect Faults in Software”, Software Testing, Verification and Reli-
ability, 12(3):155-172, 2002.

[21] Thelin, T., Runeson, P. and Regnell, B., “Usage-Based Reading – An Experiment
to Guide Reviewers with Use Cases”, Information and Software Technology,
43(15):925-938, 2001.

[22] Thelin, T., Runeson, P., Wohlin, C., Olsson, T. and Andersson, C., “How Much
Information is Needed for Usage-Based Reading? – A series of Experiments”, Pro-
ceedings of the 1st International Symposium on Empirical Software Engineering, pp.
127-138, 2002.

[23] Thelin, T., Runeson, P. and Wohlin, C., “An Experimental Comparison of Usage-
Based and Checklist-Based Reading”, IEEE Transactions on Software Engineering,
29(8):687-704, 2003.

[24] Thelin, T., Runeson, P. and Wohlin C., “Prioritized Use Cases as a Vehicle for Soft-
ware Inspections”, IEEE Software, 20(4):30-33, 2003.

[25] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B. and Wesslén, A.,
Experimentation in Software Engineering: An Introduction, Kluwer Academic Pub-
lishers, 2000.

134 Exploring the Software Verification and Validation Process with Focus on Efficient Fault Detection

Reports on Communication Systems

101 On Overload Control of SPC-systems
Ulf Körner, Bengt Wallström, and Christian Nyberg, 1989.
CODEN: LUTEDX/TETS- -7133- -SE+80P

102 Two Short Papers on Overload Control of Switching Nodes
Christian Nyberg, Ulf Körner, and Bengt Wallström, 1990.
ISRN LUTEDX/TETS- -1010- -SE+32P

103 Priorities in Circuit Switched Networks
Åke Arvidsson, Ph.D. thesis, 1990.
ISRN LUTEDX/TETS- -1011- -SE+282P

104 Estimations of Software Fault Content for Telecommunication Systems
Bo Lennselius, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1012- -SE+76P

105 Reusability of Software in Telecommunication Systems
Anders Sixtensson, Lic. thesis, 1990.
ISRN LUTEDX/TETS- -1013- -SE+90P

106 Software Reliability and Performance Modelling for Telecommunication Systems
Claes Wohlin, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1014- -SE+288P

107 Service Protection and Overflow in Circuit Switched Networks
Lars Reneby, Ph.D. thesis, 1991.
ISRN LUTEDX/TETS- -1015- -SE+200P

108 Queueing Models of the Window Flow Control Mechanism
Lars Falk, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1016- -SE+78P

109 On Efficiency and Optimality in Overload Control of SPC Systems
Tobias Rydén, Lic. thesis, 1991.
ISRN LUTEDX/TETS- -1017- -SE+48P

110 Enhancements of Communication Resources
Johan M. Karlsson, Ph.D. thesis, 1992.
ISRN LUTEDX/TETS- -1018- -SE+132P

111 On Overload Control in Telecommunication Systems
Christian Nyberg, Ph.D. thesis, 1992.
ISRN LUTEDX/TETS- -1019- -SE+140P

112 Black Box Specification Language for Software Systems
Henrik Cosmo, Lic. thesis, 1994.
ISRN LUTEDX/TETS- -1020- -SE+104P

113 Queueing Models of Window Flow Control and DQDB Analysis
Lars Falk, Ph.D. thesis, 1995.
ISRN LUTEDX/TETS- -1021- -SE+145P

114 End to End Transport Protocols over ATM
Thomas Holmström, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1022- -SE+76P

115 An Efficient Analysis of Service Interactions in Telecommunications
Kristoffer Kimbler, Lic. thesis, 1995.
ISRN LUTEDX/TETS- -1023- -SE+90P

116 Usage Specifications for Certification of Software Reliability
Per Runeson, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1024- -SE+136P

117 Achieving an Early Software Reliability Estimate
Anders Wesslén, Lic. thesis, May 1996.
ISRN LUTEDX/TETS- -1025- -SE+142P

118 On Overload Control in Intelligent Networks
Maria Kihl, Lic. thesis, June 1996.
ISRN LUTEDX/TETS- -1026- -SE+80P

119 Overload Control in Distributed-Memory Systems
Ulf Ahlfors, Lic. thesis, June 1996.
ISRN LUTEDX/TETS- -1027- -SE+120P

120 Hierarchical Use Case Modelling for Requirements Engineering
Björn Regnell, Lic. thesis, September 1996.
ISRN LUTEDX/TETS- -1028- -SE+178P

121 Performance Analysis and Optimization via Simulation
Anders Svensson, Ph.D. thesis, September 1996.
ISRN LUTEDX/TETS- -1029- -SE+96P

122 On Network Oriented Overload Control in Intelligent Networks
Lars Angelin, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1030- -SE+130P

123 Network Oriented Load Control in Intelligent Networks Based on Optimal Decisions
Stefan Pettersson, Lic. thesis, October 1996.
ISRN LUTEDX/TETS- -1031- -SE+128P

124 Impact Analysis in Software Process Improvement
Martin Höst, Lic. thesis, December 1996.
ISRN LUTEDX/TETS- -1032- -SE+140P

125 Towards Local Certifiability in Software Design
Peter Molin, Lic. thesis, February 1997.
ISRN LUTEDX/TETS- -1033- -SE+132P

126 Models for Estimation of Software Faults and Failures in Inspection and Test
Per Runeson, Ph.D. thesis, January 1998.
ISRN LUTEDX/TETS- -1034- -SE+222P

127 Reactive Congestion Control in ATM Networks
Per Johansson, Lic. thesis, January 1998.
ISRN LUTEDX/TETS- -1035- -SE+138P

128 Switch Performance and Mobility Aspects in ATM Networks
Daniel Søbirk, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1036- -SE+91P

129 VPC Management in ATM Networks
Sven-Olof Larsson, Lic. thesis, June 1998.
ISRN LUTEDX/TETS- -1037- -SE+65P

130 On TCP/IP Traffic Modeling
Pär Karlsson, Lic. thesis, February 1999.
ISRN LUTEDX/TETS- -1038- -SE+94P

131 Overload Control Strategies for Distributed Communication Networks
Maria Kihl, Ph.D. thesis, March 1999.
ISRN LUTEDX/TETS- -1039- -SE+158P

132 Requirements Engineering with Use Cases – a Basis for Software Development
Björn Regnell, Ph.D. thesis, April 1999.
ISRN LUTEDX/TETS- -1040- -SE+225P

133 Utilisation of Historical Data for Controlling and Improving Software Development
Magnus C. Ohlsson, Lic. thesis, May 1999.
ISRN LUTEDX/TETS- -1041- -SE+146P

134 Early Evaluation of Software Process Change Proposals
Martin Höst, Ph.D. thesis, June 1999.
ISRN LUTEDX/TETS- -1042- -SE+193P

135 Improving Software Quality through Understanding and Early Estimations
Anders Wesslén, Ph.D. thesis, June 1999.
ISRN LUTEDX/TETS- -1043- -SE+242P

136 Performance Analysis of Bluetooth
Niklas Johansson, Lic. thesis, March 2000.
ISRN LUTEDX/TETS- -1044- -SE+76P

137 Controlling Software Quality through Inspections and Fault Content Estimations
Thomas Thelin, Lic. thesis, May 2000
ISRN LUTEDX/TETS- -1045- -SE+146P

138 On Fault Content Estimations Applied to Software Inspections and Testing
Håkan Petersson, Lic. thesis, May 2000.
ISRN LUTEDX/TETS- -1046- -SE+144P

139 Modeling and Evaluation of Internet Applications
Ajit K. Jena, Lic. thesis, June 2000.
ISRN LUTEDX/TETS- -1047- -SE+121P

140 Dynamic traffic Control in Multiservice Networks – Applications of Decision Models
Ulf Ahlfors, Ph.D. thesis, October 2000.
ISRN LUTEDX/TETS- -1048- -SE+183P

141 ATM Networks Performance – Charging and Wireless Protocols
Torgny Holmberg, Lic. thesis, October 2000.
ISRN LUTEDX/TETS- -1049- -SE+104P

142 Improving Product Quality through Effective Validation Methods
Tomas Berling, Lic. thesis, December 2000.
ISRN LUTEDX/TETS- -1050- -SE+136P

143 Controlling Fault-Prone Components for Software Evalution
Magnus C. Ohlsson, Ph.D. thesis, June 2001.
ISRN LUTEDX/TETS- -1051- -SE+218P

144 Performance of Distributed Information Systems
Niklas Widell, Lic. thesis, February 2002.
ISRN LUTEDX/TETS- -1052- -SE+78P

145 Quality Improvement in Software Platform Development
Enrico Johansson, Lic. thesis, April 2002.
ISRN LUTEDX/TETS- -1053- -SE+112P

146 Elicitation and Management of User Requirements in Market-Driven Software Development
Johan Natt och Dag, Lic. thesis, June 2002.
ISRN LUTEDX/TETS- -1054- -SE+158P

147 Supporting Software Inspections through Fault Content Estimation and Effectiveness
Analysis
Håkan Petersson, Ph.D. thesis, September 2002.
ISRN LUTEDX/TETS- -1055- -SE+237P

148 Empirical Evaluations of Usage-Based Reading and Fault Content Estimation for Software
Inspections
Thomas Thelin, Ph.D. thesis, September 2002.
ISRN LUTEDX/TETS- -1056- -SE+210P

149 Software Information Management in Requirements and Test Documentation
Thomas Olsson, Lic. thesis, October 2002.
ISRN LUTEDX/TETS- -1057- -SE+122P

150 Increasing Involvement and Acceptance in Software Process Improvement
Daniel Karlström, Lic. thesis, November 2002.
ISRN LUTEDX/TETS- -1058- -SE+125P

151 Changes to Processes and Architectures; Suggested, Implemented and Analyzed from a
Project viewpoint
Josef Nedstam, Lic. thesis, November 2002.
ISRN LUTEDX/TETS- -1059- -SE+124P

152 Resource Management in Cellular Networks -Handover Prioritization and Load Balancing
Procedures
Roland Zander, Lic. thesis, March 2003.
ISRN LUTEDX/TETS- -1060- -SE+120P

153 On Optimisation of Fair and Robust Backbone Networks
Pål Nilsson, Lic. thesis, October 2003.
ISRN LUTEDX/TETS- -1061- -SE+116P

154 Exploring the Software Verification and Validation Process with Focus on Efficient Fault
Detection
Carina Andersson, Lic. thesis, November 2003.
ISRN LUTEDX/TETS- -1062- -SE+134P

