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Distance Bounds for an Ensemble of LDPC
Convolutional Codes

Arvind Sridharan, Member, IEEE, Dmitri Truhachev, Member, IEEE, Michael Lentmaier Member, IEEE, Daniel J.
Costello, Jr., Fellow, IEEE, and Kamil Sh. Zigangirov, Fellow, IEEE

Abstract—An ensemble of -regular LDPC convolutional
codes is introduced and existence-type lower bounds on the
minimum distance L of code segments of finite length and on
the free distance free are derived. For sufficiently large constraint
lengths , the distances are shown to grow linearly with and the
ratio L approaches the ratio free for large . Moreover,
the ratio of free distance to constraint length is several times
larger than the ratio of minimum distance to block length for
Gallager’s ensemble of -regular LDPC block codes.

Index Terms—low-density parity check (LDPC) codes, LDPC
Convolutional Codes, free distance lower bounds, minimum
distance lower bounds

I. INTRODUCTION

LDPC block codes were first introduced by Gallager in [1].
Specifically, Gallager considered block codes described by
binary parity-check matrices having ones in each column
and ones in each row. We refer to LDPC block codes
with this property as -regular LDPC block codes. The
convolutional counterpart of LDPC block codes, LDPC convo-
lutional codes, was first proposed by Tanner in a 1981 patent
application [2] and specific constructions were independently
described in [3]. Other constructions for LDPC convolutional
codes have been presented in [4]-[5]. Both variants of LDPC
codes, block and convolutional, are defined by sparse parity-
check matrices and can be decoded iteratively with com-
putational complexity per bit per iteration independent of
block/constraint length.
LDPC convolutional codes have some advantages in com-

parison with LDPC block codes, especially for transmitting
streaming data [6]. Another desirable feature (for example in
Ethernet applications [7]) of LDPC convolutional codes is that
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the same encoder can be used to obtain a sequence of codes
of varying frame lengths with very good performance. Im-
plementation aspects of LDPC convolutional codes, including
termination, are discussed in [7]-[8]. It has also been proved,
using the same ensemble described here, that -regular
LDPC convolutional codes have better iterative decoding con-
vergence thresholds than comparable -regular LDPC
block codes [9][10].
We consider a class of -regular LDPC convolutional

codes with parity-check matrices (or, equivalently, syndrome
formers) composed of blocks of permutation ma-
trices. These codes are the convolutional counterparts of the

-regular LDPC block codes introduced in Appendix B
of [1] and in [11][12].
Encoding and decoding are carried out on blocks of symbols

(the number of symbols in a block depends on ). The code
structure makes an analysis of distance properties, similar to
that carried out in [12] for -regular LDPC block codes,
possible.
One way of characterizing the strength of a block code is its

minimum distance min. The well known (asymptotic) Gilbert-
Varshamov (GV) bound [13][14] guarantees, for sufficiently
large block lengths , the existence of linear block codes of
rate , , whose minimum distance is lower bounded
by a linear function of , i.e., min GV , where
GV is the GV coefficient. Analogously, Gallager proved
the existence of -regular LDPC block codes
satisfying the inequality min G for sufficiently
large block lengths [1]. The coefficient G can be
calculated numerically. For practically interesting and ,
G is several times smaller than the corresponding
GV coefficient GV . (Note that -regular LDPC
codes typically have rate .)
The convolutional counterpart of minimum distance is free

distance and the corresponding analog of the GV bound is
the Costello bound [15]. Costello proved the existence of
convolutional codes of rate , , with free distance
increasing linearly with constraint length, i.e., free C ,
for sufficiently large constraint lengths . For rate
codes, the coefficient C is about three and a half times
larger than GV .
In [16], the distance spectrum of a special ensemble of

-regular LDPC convolutional codes based on Markov
permutors with was analyzed, and a technique to
numerically calculate the distance spectrum of the codes in
the ensemble as a function of constraint length was described.
The results obtained in [16] suggest the existence of LDPC
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convolutional codes with free distance increasing linearly with
constraint length.
In this paper existence-type lower bounds on the minimum

weight of code segments of length , the th order segment
distance L, of -regular LDPC convolutional codes

in a permutation-matrix-based ensemble are derived.
Moreover, for the same code ensemble, we derive an existence-
type lower bound on the free distance free. In particular, we
prove that the th order segment distance is lower bounded by
the inequality L L for sufficiently large constraint
lengths . The values L are decreasing with and for any
are lower bounded by . We then prove that

the free distance of the codes satisfies free
def

LDPCC
1. Numerical results indicate that, for practi-

cally interesting and , the coefficient LDPCC is sev-
eral times smaller than the corresponding Costello coefficient
C , where the convolutional code rate .
This parallels the result of Gallager for -regular LDPC
block codes relative to the GV coefficient GV .
Consider, for example, the case. Based on numer-

ical evaluation of the bound on free distance, we find that
LDPCC . This is weaker than the Costello
coefficient C for rate codes. However,
LDPCC is about three and a half times larger than the
Gallager coefficient G for -regular LDPC
block codes. This essentially mimics the relationship between
the Costello bound (for convolutional codes) and the GV
bound (for block codes) noted above.
The analysis and bounding techniques used here are sig-

nificantly different from the traditional techniques for lower
bounding the free distance of conventional convolutional
codes [15][17]. The traditional techniques rely on the fact that
the weight at the beginning and the end of a code sequence
increases with constraint length. However, the ensemble of

-regular LDPC convolutional codes we investigate has
code sequences with negligible weight at either end. In fact,
most code sequences have their weight concentrated in the
middle. This fact significantly complicates the analysis of these
codes.
The paper is organized as follows. We start with the code

ensemble description in Section II. Section III presents the
main results, formulated in terms of two theorems: a segment
distance bound and a free distance bound. The theorems are
proved in Sections IV and V, respectively. A discussion of the
results is given in Section VI, and Section VII offers some
concluding remarks.

II. AN LDPC CONVOLUTIONAL CODE ENSEMBLE

A rate binary convolutional code can be defined
as the set of sequences

, satisfying the equality
, where the infinite syndrome former is given

1In addition to providing the intuitively pleasing result that its limit for
large approaches the free distance bound, the segment distance bound is
interesting in its own right as an indicator of the asymptotic performance of
LDPC convolutional codes that are decoded over a window of finite length
(see, for example, the pipeline decoder described in [3]).

by

. . .

s
. . .

...
s

. . .
...

s
...

. . .

. . .

. . .

(1)

and each is a binary matrix, s,
. If defines a rate convolutional code, the

matrix must have full rank for all time instants . In
this case, by suitable row permutations, we can ensure that
the last rows are linearly independent. Then the first
symbols at each time instant are information symbols and

the last symbols are the corresponding parity symbols.
The largest such that is a non-zero matrix for some
is called the syndrome former memory .
LDPC convolutional codes have sparse syndrome formers.

A -regular LDPC convolutional code is defined by a
syndrome former that contains exactly ones in each row
and ones in each column.
Let gcd denote the greatest common divisor

of and . Then there exist positive integers and
such that and and gcd .
We consider -regular LDPC convolutional codes defined
by syndrome formers with syndrome former memory

. For , the sub-matrices of
the syndrome former are

where each , ,
, is an permutation matrix. All other entries of
the syndrome former are zero matrices. Equivalently, each

, , is a binary matrix
where and . By construction,
it follows that each row of the syndrome former has
ones and each column ones. Let denote

the ensemble of -regular LDPC convolutional codes
obtained by choosing each permutation matrix in

independently and such that each of the possible
permutation matrices is equally likely. (Analogous to the codes
introduced in [3], the codes in the ensemble
are time-varying, but in contrast to [3], they are, generally
speaking, non-periodic.) Fig. 1 shows the syndrome former of
a -regular LDPC convolutional code in .
The syndrome formers in the ensemble have

syndrome former memory s independent of
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permutation
matrices

Fig. 1. Syndrome former for a code in .

while and depend on . This is different from the LDPC
convolutional codes considered in [3]–[5], where the codes
have varying syndrome former memories s, while and
are fixed. For the ensemble , as increases, i.e.,
as and increase, the syndrome formers become increasingly
sparse.

By virtue of their sparse parity-check matrices, the codes
in can be iteratively decoded using message
passing algorithms (e.g., belief propagation), and decoding
can be scheduled so as to obtain a continuous time pipeline
decoder [3]. At each time instant a block of received
symbols is input to the decoder and information
symbols are decoded and output from the decoder, where
is the code rate.

For the ensemble , the matrices consist
of two permutation matrices, denoted and

, and hence have rank equal to , i.e., the code rate is
. In this case, by permuting rows of the syndrome

former an equivalent rate ( ) code with
syndrome former memory at most can be obtained
(see Fig. 2). Since distance properties are unaffected by row
permutations, the distance bounds obtained for codes in the
ensemble are also valid for the equivalent

codes.

In general, however, there are at least dependent
columns in for any code in . Hence,
defines a rate code. The constraint

length2 of codes of is defined as

s

Thus the codes in the ensemble have constraint
length .
The syndrome formers of the -regular LDPC con-

volutional code ensemble described above have a structure
similar to that of the permutation-matrix-based -regular
LDPC block code ensemble described in [12]. The parity-
check matrices of the codes in the ensemble considered in
[12] are composed of permutation matrices, where
each permutation matrix is of size . Thus the parity-
check matrices are of size and have exactly
ones in each row and ones in each column. This ensemble
is a vanishingly small sub-ensemble of Gallager’s original
ensemble [1].
If gcd , i.e., and are rel-

atively prime, then the LDPC convolutional codes in
the ensemble have syndrome former mem-
ory s . The ensemble of memory zero

-regular LDPC convolutional codes so obtained is
equivalent to the block code ensemble considered in [12].
In [12], we show that asymptotically, i.e., as the block
length , almost all codes in the ensemble
have minimum distance satisfying Gallager’s bound3, i.e.,
min G .
A probability distribution is defined on the ensemble

as follows. Assume that all of the permuta-
tion matrices comprising the syndrome former of a code in

are chosen independently and such that each of
the possible permutation matrices is equally likely.

III. LOWER BOUNDS ON SEGMENT DISTANCE AND FREE
DISTANCE

We seek a lower bound on the minimum weight of code
sequences having a non-zero segment of length at most ,
i.e., we lower bound the th order segment distance L. To
calculate or lower bound the th order segment distance for
the class of periodically time-varying codes, it is sufficient
to consider code sequences with starting positions within
one period (see [17]). However, in the most general case of
non-periodically time-varying codes, such as codes from the
ensemble , all possible starting positions must be
considered. This complicates the analysis.
To avoid cumbersome notation, we henceforth focus on the

case, i.e., the ensemble , though the same
technique can also be used more generally.
Consider sequences

2From (1), we see that s is the total number of code symbols
involved in the parity-check constraints at any time instant . This also
corresponds to the total number of encoder output symbols that directly
depend on a given block of information symbols (see, e. g., [8]). Finally,
the pipeline decoder described in [3] requires a processor that can exchange
messages among s code symbols. Thus it makes sense to define
the constraint length of an LDPC convolutional code as s ,
and we note that constraint length for LDPC convolutional codes plays a role
analogous to block length for LDPC block codes.
3This holds for small values of and .
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Fig. 2. Permuting rows of a syndrome former in .

, for , ,
with , i.e., sequences with a non-zero segment
of length at most . The sequence consists of at
most non-zero binary symbols. If is a code
segment, then at each time instant ,

contains an information block of length and
the corresponding length parity block .
For convenience we first define a segment distance measure

related to the starting position. The “local” th order segment
distance at time , L , of a code in is defined
as the minimum weight over code segments of the form

, . Observe that implies
. The th order segment distance L of a code in

is defined as L . Note that the segment
distance is a non-increasing function of .
This definition of the th order segment distance associated

with a syndrome former is analogous to the traditional defini-
tion of the th order row distance associated with an encoding
matrix [17]. In particular, for a time-invariant or periodically
time-varying convolutional encoder, the th order row distance
is defined as the minimum weight of code sequences having
a non-zero segment of length at most , where
is the encoder memory [17]. The symbols in the last time
instants of the encoder input sequence are determined so as to
force the encoder to the zero state.
We note that row distance is an encoder property, whereas

our definition of segment distance is a code property. 4 How-
ever, as with the definition of row distance, our definition
of segment distance also looks at weight properties of finite
length sequences. Further, the sequences used to determine
segment distance correspond to a row-truncated syndrome
former. This is similar to the traditional case, where the row

4We would like to thank an anonymous referee for pointing this out and
motivating the comparison between our definition of segment distance and
the traditional definition of row distance.

distance is calculated by considering sequences obtained from
a row-truncated generator matrix.
We are now ready to state and prove the main results of the

paper, given by the following two theorems. 5
Theorem 1: For any and any starting position , there

exists an such that for any , there exists a code
in with local th order segment distance L
lower bounded by

L L (2)

where is the constraint length of the code and is
given in (26). Further, for any , there exists an such that
for any , there exists a code in with th
order segment distance lower bounded by

L L (3)

Numerical techniques are needed to solve the max-min
problem in (26) to evaluate L for a given . We were able to
obtain L for values of up to . On the other hand, we
prove in Appendix IV that for any the value L .
For , the coefficient , which is only
slightly higher than .
The main idea of the proof is outlined as follows. First

we prove (2) and show that the fraction of codes in the
ensemble with L L tends to zero
with increasing . The key step is to obtain the probability
that a segment is a valid code segment. The parity-
check matrices of codes in are comprised of
blocks of independently chosen permutation matrices.
Hence this probability can be calculated using a technique
similar to the one described in [12]. As we shall see, the
probability depends not only on the overall weight of the
sequence but also on the weight of the individual

5For simplicity we state the theorems only for the case.
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components . This is
a key difference compared to the traditional lower bounding
techniques for convolutional codes ( [15][17]) and significantly
complicates the proof. Section IV presents the proof of (2),
the lower bound on local segment distance.
In order to extend the bound of (2) for the local th order

segment distance to obtain the general th order segment
distance bound of (3), we use a special expurgation procedure.
We expurgate code sequences leading to a local th order
segment distance less than L by fixing some information
symbols to be zero. This lowers the code rate but the loss
in rate tends to zero as tends to infinity. The expurgation
procedure is explained in more detail at the end of Section IV.
The second theorem provides a lower bound on the free

distance of codes in . The proof is not based on
bounding the segment distance and considers instead different
sets of low weight sequences. Evaluating the segment distance
bounds requires considering sequences of a fixed length,
possibly merging and diverging from the all-zero state several
times. However, for the free distance bound it is sufficient to
look at ”detours”, i.e., sequences diverging from the all-zero
state exactly once. For long sequences, the latter number is
significantly smaller than the former. Note also that it is the
overall weight of the sequence, regardless of its length, that is
of interest for evaluating the free distance. As in Theorem 1,
we start by bounding the “local” free distance and use the
same expurgation technique mentioned above to show that the
result is valid globally.
Theorem 2: There exists an such that for any ,

there exists a code in the ensemble with free
distance free lower bounded by

free
def

LDPCC (4)

As noted above, we prove in Appendix IV that L
for any , and we observe from numerical calculations that
the ratio L approaches the ratio as goes to infinity.
It also follows from the definition of segment distance that

L free for a given code. However, these facts along
with (3) do not imply (4), since for every , (3) is valid only
for greater than some , but there is no fixed , and
thus no fixed constraint length , for which (3) holds for all

. Thus a separate proof is required for Theorem 2.
Section V presents the proof of (4), the lower bound on free
distance.

IV. PROOF OF THEOREM 1

We first seek a lower bound on L for a particular starting
position . Without loss of generality, we can investigate code
sequences starting at time , i.e., of the form and
obtain a lower bound on L . For a segment , let

where is the Hamming
weight of , . Define the

matrix as in (5). If the segment is
part of a code sequence, then it must satisfy the
constraints imposed by the matrix . Fig. 3 illustrates

Fig. 3. Illustration of length segment and .

segment and the matrix for a randomly chosen
code in .
For any , , let be the probability in the

ensemble that satisfies the constraints (
equations) imposed by the sub-matrices ,
of , i.e., the th column of . Let be the
probability that is a valid code segment. Then

(6)

The sub-matrices of the syndrome former of a code
in are of size and are composed of
two permutation matrices. Hence each of the terms
, , can be calculated and bounded by

following the technique introduced in [12]. The details of this
technique can be found in Appendix I.
Let where

is the normalized Hamming weight of ,
, and let , ,
, where and are arbitrary constants.

Further, let and
, and , where is

an arbitrary constant, is a Hamming weight,
is a normalized Hamming weight, and is a time
index, and define the function as

(7)

where

(8)

In Appendix I we derive the probability that
an dimensional vector, , with a given weight
composition , satisfies a set of parity check constraints
imposed by permutation matrices. For , this probability
is given by (72), and for it is upper bounded by (76).
It follows from the definition of that ,
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. . . . . . . . . (5)

, for
, , and

. Hence, (72) and (76) imply that satisfies

(9)

(10)

(11)

(12)

(13)

For any code sequence we must have
and .

Hence it follows that and , i.e., the
first two and last two blocks of the code segment have
the same weight.
Now let

be a -dimensional vector of arbitrary constants and
be a -dimensional vector of normal-

ized Hamming weights6. Then from (6) and (9)-(13) it follows
that can be upper bounded as

(14)

where

(15)

6We note that the entries of and are now -dimensional
vectors. Also, in a slight abuse of notation, contains entries for time
units through , rather than through .

Fig. 4. Set of parameters and for calculating the function

Fig. 4 shows the parameters which are needed to calculate
, where it can be seen that and

are associated with the permutation matrices and
that comprise the matrix .

The expected number of code segments
having normalized weight composition in a code from
the ensemble is given by

(16)

Now using (14) we can obtain an upper bound on .
Lemma 1: For normalized weight compositions with

total normalized weight

def (17)

is upper bounded by
a)

(18)

b)

or (19)
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c)

(20)

where the functions and are given by

(21)

and is a vector of arbitrary constants.
Proof: See Appendix II.

We see that the function is the key compo-
nent in the upper bounds (18)-(20). If
for some , then the expected number of codes having
codewords with normalized weight composition goes to
zero, i.e., there are codes without the composition . Let
us define

def (22)

def (23)

and

def

if (24)

if (25)

if (26)

Finally, we note that is a continuous function and it
therefore follows from (24) that is the smallest positive
root of .
Now we can begin the proof of Theorem 1. We start by

proving
(27)

Let

i.e., is the set of normalized weight compositions
with total normalized Hamming weight . We then

show that, for an arbitrarily small ,

(28)

as 7. This implies the existence of a code without
any codewords of normalized weight smaller than , i.e.,

. (At the end of this section, using an expurga-
tion procedure and allowing for a negligible rate loss, we then
show that the th order segment distance .)
First we calculate the cardinality of , which is the

number of ways of representing an integer as a sum of
nonnegative integers, i.e.,

(29)

for .
Now consider one term of the sum in (28). Using

Lemma 1 b), (22), and (23), this can be upper bounded as

(30)

by replacing each term in the sum with the largest term. Now
upper bounding the right hand side of (30) using (29), we
obtain

(31)

(32)

Since we must consider only values of such that
, the first two terms within the square brack-

ets in (32) go to zero as . With respect to the third
term, we note that the function is negative between its two
roots and . Therefore, for the case when is bounded
away from , i.e., for some , as ,
there exists a positive constant such that .
In this case (32) is upper bounded by

(33)

as , where the two first terms inside the square brack-
ets go to as and stays constant independent of
.
For the case when goes to zero as , we need

the following lemma.
Lemma 2:

(34)

7The equal weight condition for the first two and last two blocks of a code
segment implies that all non-zero code segments of length must
have weight at least 2.
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where
def (35)

Proof: See Appendix III.
Now using Lemma 1 c), (22), (23), (29), and Lemma 2, we

obtain

(36)

(37)

(38)

(39)

(40)

(41)

where
def (42)

Observe that for ,

(43)

and (41) goes to zero as . (Note, however, that the
convergence is not exponential.)
Now by choosing , we can consider separately

the cases and . We
begin by splitting (28) into two terms as follows:

(44)

Using (41), the first term in (44) can be upper bounded as

(45)

as , where the second inequality in (45) is obtained
by overbounding the terms for by
the term. Also, using (33), the second term in (44) can
be upper bounded as

(46)

as , and (28) is proved.
Hence, for a fixed , we have shown that as

the expected number of code segments starting at with
normalized Hamming weight less than in the ensemble

tends to zero. Therefore, there exists a code in
the ensemble such that L .
For , the values can be calculated

numerically and are given in Table I. We observe that
rapidly decreases for small . On the other hand, for
the calculated values of stabilize at . In Appendix IV,
we prove that for any , and the numerical cal-
culations confirm that this lower bound is closely approached
for .

L 1 2 3 4 5 10 16
2 1.65 0.85 0.66 0.56 0.51 0.51

TABLE I
NUMERICALLY CALCULATED VALUES OF .

Using the same argument as above, it follows that for all
possible starting positions , there exists a code in the ensemble

such that L . In order to prove
that the th order segment distance L , we still
need to show the existence of one single code such that
L for all possible starting positions . We prove
this using a special expurgation procedure.
Let , be the starting positions of all the

code segments of length with weight less than L
for some code in the ensemble , i.e., the local
segment distances L , for this code are upper
bounded by L . The above analysis shows
that, for a given starting position , the fraction of codes with
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L tends to zero with increasing . It follows
that there exists at least one code in the ensemble
such that the fraction of starting positions among all starting
positions with local segment distance L tends
to zero with increasing . Recall that any code segment

has at least one non-zero information bit in the
initial block of information symbols. Each of the low
weight code segments can then be expurgated by fixing at most
one of the non-zero information bits in the initial information
block to zero. (Note that the total number of information
symbols that are fixed to zero is no more than the total number
of low weight code segments.)
Fixing information symbols leads to a loss in rate. Since

both the fraction of starting positions and the number of low
weight code sequences tends to zero with increasing , the
fraction of fixed information symbols also tends to zero, and
the corresponding rate loss is negligible.
Hence, inequality (3) of Theorem 1, i.e.,

L (47)

follows, and Theorem 1 is proved.

V. PROOF OF THEOREM 2
For each particular code , the local free

distance at position is given by

free H (48)

where is the set of code sequences (detours)

such that the partial syndrome former encoder (see [8]) starts
in the zero state at time , ends in the zero state at time
(for some ), and does not pass through the zero state

in between. We note that any sequence from cannot
have more than five consecutive all-zero blocks; otherwise, the
zero state would be reached before the end of the sequence.
Moreover, the first two and last two blocks of a non-zero code
segment have the same weight. Finally, the global
free distance is given by

free free (49)

We now consider the set of all possible code sequences
in the ensemble having at most five consecutive

all-zero blocks and such that the weights of the first two and
last two blocks of a non-zero code segment are equal. Thus

for any code . By we
denote the subset of with sequences having weight , and
by we denote the set of corresponding normalized
weight sequences.
Without loss of generality, we can consider free . There-

fore, we will omit the index in the notation for the nor-
malized sequence set and write instead of .
The number of code sequences leading to free in
a random code is upper bounded by

(50)

where is the normalized weight sequence corresponding to
a code sequence . We will show that this upper bound goes
to zero as tends to infinity.
First, we estimate the cardinality of 8. Consider a

subset consisting of sequences from having
exactly nonzero elements, i.e. there are non-zero nor-
malized weights . The number of ways of distributing a
weight of among nonzero terms is . There can be
from to zeros between any two adjacent nonzero elements.
Thus

(51)

and the cardinality of is

(52)

Analogous to the proof of Theorem 1, we now separate
the terms in (50) corresponding to small from the terms
corresponding to large . Choosing

(53)

and splitting (50) into two sums, we obtain

(54)

Starting with the first term in (54), we use Lemma 1 c), (22),
(23), Lemma 2, and (53) to obtain

8Note that, for a given code segment length , the set , which

only allows detours, is much smaller than the corresponding set
(see (29)) which allows remergers.
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(55)

(56)

(57)

(58)

Now observing that for , (58)
can be written as

(59)

as .
To bound the second term in (54) we need the following

Lemma.
Lemma 3: Consider a normalized weight sequence

with nonzero elements such that

Then there exists an such that for any

(60)

where , and are positive constants.
Proof: See Appendix V.

Using Lemmas 1 a) and 3, the second term in (54) can be
written as

(61)

(62)

(63)

where the last inequality is obtained by replacing each term in
the sum by the largest term and upperbounding the number of
terms by . Now we continue upperbounding (63) and obtain

(64)

as , since the term dominates.
Hence the fraction of codes having local free distance
free goes to zero, and this is also valid for
any starting position . Now the expurgation procedure from
Theorem 1 can be used to prove the existence of a code with
global free distance free , and Theorem 2 is proved.

VI. RESULTS AND DISCUSSION
In order to calculate the segment distance to constraint

length ratio in Theorem 1 for small values of , we use
numerical methods to solve the max-min problem of (26)
and obtain . The symmetry condition , for

, can be shown to hold in the calculation of
. This re-

duces the number of variables by half and simplifies the
numerical evaluation of .
In Fig. 5 the ratio , a lower bound on the segment

distance to constraint length ratio L , is plotted as a
function of for . Observe that, for , the bound
has its maximum value of , i.e., the code segment
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Fig. 5. Lower bound on segment distance to constraint length ratio L as
a function of .

has weight . Also note that, for , the bound
reaches its minimum value of .
Fig. 5 shows that the lower bound on segment distance to

constraint length ratio is virtually unchanged from
to . In Fig. 6 we plot the ratio for the nor-
malized weight composition satisfying
that maximizes for (Fig. 6(a))
and (Fig. 6(b)), where the time index
represents distance from the middle block of the segment. We
see that the maximizing weight composition always satisfies

, i.e., the normalized Hamming weights are
symmetrically distributed about the middle block. Also the
weight distribution of the maximizing weight composition

is largest in the middle and both ends have almost zero
weight.
The free distance of a convolutional code satisfies

free L (65)

where L is the th order segment distance, and the numerical
calculations of Fig. 5 indicate that the segment distance
decreases as a function of until the free distance is attained,
after which it stays unchanged at free. Further, we have shown
that both the th order segment distance and the free distance
are lower bounded by LDPCC , where
LDPCC for any and correspondingly large
(or, equivalently, ). This bound is weaker than the Costello
coefficient C for rate convolutional
codes. However, LDPCC is about three and a half times
larger than the Gallager coefficient G for

-regular block codes. Interestingly, for the general class
of rate codes, C is also about three and
a half times larger than the corresponding Gilbert-Varshamov
coefficient GV .
In Table II we compare the numerically calculated values of

the parameter LDPCC with G for the and
cases, and we see that the asymptotic distance bound

ratio for LDPC convolutional codes is more than three times
larger than for the corresponding LDPC block codes in both
cases.

−8 −6 −4 −2 0 2 4 6 80

0.002

0.004

0.006

0.008

0.01

0.012

−8 −6 −4 −2 0 2 4 6 80

0.002

0.004

0.006

0.008

0.01

0.012

L=9
L=11
L=13
L=15

L=10
L=12
L=14
L=16

Distance from middle block

Distance from middle block
(a)

(b)

Fig. 6. Weight distribution of the maximizing normalized weight vector
for different .

LDPCC G
(3,6) 0.0833 0.023
(4,8) 0.1908 0.0627

TABLE II
NUMERICALLY CALCULATED DISTANCE BOUNDS FOR LDPC BLOCK AND

CONVOLUTIONAL CODES ( LDPCC IS DEFINED ANALOGOUSLY TO

LDPCC , AS IN (4)).

In the case when and are relatively prime, the con-
volutional code ensemble has syndrome former
memory s and is identical to the block code ensemble
of [12]. Hence the th order segment distance and the free
distance in this case satisfy the same lower bound9, i.e., the
lower bound derived by Gallager for LDPC block codes. For
other values of and , obtaining upper bounds on
that permit an analytical evaluation of LDPCC becomes
more complicated, and a numerical solution of the max-min
optimization problem is also difficult to obtain.
The convolutional code ensemble is composed

of permutation matrices, and hence in any code there al-
ways exists a code sequence with weight of the form

with , where
is the -dimensional all-one vector. In fact, for all and
, such a code sequence with weight always exists

for any code in the ensemble . This limits the

9When and are relatively prime the constraint length of the
convolutional codes in equals the block length of the
codes considered in [12]. Hence, for such values of and , we have
min free G .
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asymptotic segment distance ratio and the free distance ratio
to LDPCC . This is a severe restriction for codes
with large . However, we can expurgate such code sequences
from the ensemble at the expense of a small loss in rate. For
example, in the case, we can fix the first information
symbol in each block to be a zero, so that the rate is reduced
to . In general, such low weight code sequences can
be avoided by fixing one information symbol in the first block
to zero.

VII. CONCLUSIONS
We have introduced an ensemble of LDPC convolutional

codes with syndrome formers comprised of permutation ma-
trices. Such code ensembles lend themselves to an analysis of
their distance and threshold10 properties. In particular, we can
derive lower bounds on the th order segment distance and the
free distance of these codes. We have proved that this ensemble
contains codes whose th order segment distance and free
distance increases linearly with constraint length. Further, for
the same , the numerically evaluated asymptotic free
distance to constraint length ratio LDPCC is several
times larger than the asymptotic minimum distance to block
length ratio obtained by Gallager for LDPC block codes. For
example, in the case, we show that LDPCC
free . This value is about three and a half times larger
than the corresponding coefficient min for
LDPC block codes.
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APPENDIX I
ENSEMBLE ANALYSIS

We calculate the probability that an dimensional vector,
, ,

satisfies the condition

(66)

where the matrix is given by

and the , are permutation matrices.
For the block code ensemble in [12] only the case
was needed. However, for the LDPC convolutional
code ensemble considered here, the cases , are
required. Thus, for the ensemble , the cases

, must be considered. Since the permutation matrices
comprising the syndrome formers in are chosen
independently and equally likely, we assume the same for the
matrices , i.e., they are chosen independently and take on
one of the possible values with equal probability.
Let , be the Hamming weight of the
dimensional vector . We say that has weight

composition . The Hamming weight
of the vector with weight composition is

.
If satisfies (66), then each of the constraint

equations defined by the columns of must include an even
number of ones, i.e., , from . Since
is composed of blocks of permutation matrices, a constraint
equation involves at most a single one from each

.
For the th constraint equation of , ,

we associate an -dimensional binary vector . The th
component of , , is one if a one from is
involved in the th constraint equation and is zero otherwise.
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Since any constraint equation involves an even number of ones,
can take on one of values.
Let denote the number of constraint equations involving

only zeros of . Then, let be the number of
constraints involving two ones, one from each of the vectors

and , and zeros from the other components
of . In general, let ,
denote the number of constraints involving ones, one
from each of the vectors and zeros from the
remaining components of . Observe that the
arguments of are distinct, i.e.,

. Further, is invariant to permuta-
tions of the arguments, for example,

. In other words, is a func-
tion of the set . To emphasize this fact,
we henceforth write for .
There exist different sets . Therefore the
function can take on values, not
necessarily distinct.
Now assume that . Then the number of ones in each

constraint equation is at most six. In this case, since the total
number of constraints is , we have11

(67)

Further, it follows from the definition of
that, for any ,

(68)

For any vector with weight composition ,

is called a constraint composition of if

and satisfy (67) and the six equations implied in (68).
To clarify some of the above notation we present a simple
example.
Example 1: Let and .

In this case, each of the vectors , , is a five
dimensional vector. Let the vectors be

11We omit the arguments and write since, in this case, we have a one
from each of the six components of .

Hence, has weight composition .
Suppose now that , with

Since , the vector associated with the th
constraint equation, , is a six dimensional vector.
The first constraint equation involves a one from each of the
vectors , and . Hence, .
Similarly, we obtain

The third constraint equation involves no one’s from ,
and hence . The second and fifth constraint equations
involve one’s from and , so . In fact, this
is the only non-zero term in the set . The first
constraint equation involves ones from , and .
This is the only non-zero term in the set ,
and we have . The fourth constraint equa-
tion involves a one from each of the vectors , .
Hence . Now we have

so that (67) is satisfied. Similarly, it can be checked that the
six equations implied in (68) are also satisfied.
Let . If has constraint composition

then it follows that
of the vectors , are the all-zero

vector
For each set , of the vectors have
ones only in positions and
For each set , of the
vectors have ones only in positions , and
of the vectors are the all-one vector

For any constraint composition

there are in total
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possible vectors . Let

represent the set of possible constraint compositions of .
Note that is only a function of the weight composition
of , i.e., . For a given weight composition

, there are in total

(69)

possible vectors , where the summation in (69) is over the
set of possible constraint compositions. The formulas (67)-(69)
can be similarly extended to other values of . In the general
case, the probability that satisfies (66) is given by the
following lemma.
Lemma 4: The probability that a vector

with weight composition satisfies
(66) is

(70)

Proof: Consider an arbitrary vector with weight com-
position . For a fixed and , there are
ways of choosing the permutation matrix .
Since the number of possible is equal to and each
of the permutation matrices can be chosen in ways, we
obtain

which results in (70).
For the case , we must have . Thus ,

, and therefore in this case (69) simplifies to

(71)

Hence we have

(72)

In general, however, the function has a complex
structure. Therefore we obtain an upper bound on
by first upper bounding .
Lemma 5: The function is upper bounded by the

inequality

(73)

where is as defined in (8), , is
the normalized Hamming weight of the vector , and the
are arbitrary constants, .
Proof: We present the proof for the case, but general-
ization to other values of is straightforward. Multiply each
of the terms in (69) by

(74)

where each is an arbitrary constant. Observe that this does
not change the sum in (69) by virtue of the constraints of
(68). To obtain an upper bound on , we sum over all
constraint compositions

satisfying (67) but not necessarily (68). The multinomial
theorem [18], (69), and (74) together imply that

(75)

and (73) follows from (8) and (75).
From Lemmas 4 and 5 we obtain the upper bound

(76)

where is as defined in (7).

APPENDIX II
PROOF OF LEMMA 1

From (14) and (16) we have

(77)

where for we can use the inequalities (see [19])

(78)
and

(79)

Observing that , we obtain

(80)
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and

(81)

for . Thus (78) and (79) can be simplified to

(82)

and

(83)

For ,

(84)

and therefore (82) and (83) are valid in this case as well.
Now consider only and such that . Let us

enumerate them with one index . We assume that there are
such normalized weights, . The corresponding
weights are , , .
Substituting (82) and (83) into (77) and recalling the equal
weight condition for the first and last two blocks of , it
follows from (21) that

(85)

which implies (18). In order to find the maximum of the
product term we consider a simple optimization problem: for
variables , , find the maximum of

the product . It is easy to show that all should be
equal to maximize (otherwise, instead of , , one
would take , ), and the maximum is

. We are left with

(86)

Now recalling that and (the maximum
possible total weight), we see that (86) implies (19). Moreover,
noting that , , and

we see that the maximum of (86) is reached when
, and it follows that

(87)

which implies (20).

APPENDIX III
PROOF OF LEMMA 2

Before proving Lemma 2, we derive some important prop-
erties of the function defined in (22). First, we note
from (21) and (15) that the function consists
of several terms. Although depends on the
entire set , only the term at time in
depends on the variables , , . Thus,
the minimization can be carried out
individually for each of the terms in .
After some reorganization of terms, and recalling the equal

weight condition for the first and last two blocks of , it
follows that we can represent as

(88)

where the functions , and are defined as

def

(89)

def

(90)

def (91)

and we see that for any .
Proposition 1: For any such that ,

,

(92)

(93)

Proof: A proof is given in [12].
Corollary 1: Consider a normalized weight composition

such that, for each , the sum of six
consecutive terms , , , satisfies

(94)

Then
(95)

Proof: We consider (88) and apply the bounds from
Proposition 1 to every term on the right hand side. For
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we obtain

(96)

since (94) implies

where is approximately equal to the smallest positive
root of (note that is the value of G
obtained by Gallager for (3,6) LDPC block codes). The term

can be upperbounded as

(97)
since (94) implies

where is approximately equal to the smallest posi-
tive root of . Analogously, we can show that

. Finally, since the terms and
cannot be positive, (95) follows.

Proposition 2: For any such that ,
,

(98)

(99)

where is defined in (35).
Proof: From numerical calculations of for

, we determine that it is upper bounded by

Then we lower bound using Proposition 1 to
obtain (98). Function is upper bounded in the same way.

We now note that the smallest positive root of is
slightly larger than , and we define f

def . For
f , the function .

Proposition 3: For any combination such that
, ,

(100)

(101)

and

(102)
Proof: We can write

(103)

where the first inequality in (103) follows from Proposition 2
and the second from the convexity of the function . The
same argument holds for . For , we make use of
the fact that for .
Proposition 4: For any positive integer and

such that , ,

(104)

Proof:

(105)

Proof of Lemma 2: Starting with (88) and upper bounding
each term on the right hand side using Proposition 3, we obtain

(106)

(Note that every normalized weight belongs to exactly
three terms in (88), and hence appears in the inequal-
ity exactly three times for each and .) Now Proposition 4
implies that

(107)

which, along with (23), leads directly to (34).

APPENDIX IV
A LOWER BOUND ON

Proposition 5: For defined in (25), and for any ,

(108)
Proof: Consider an arbitrary such that

and subdivide this sequence into tuples of length six. There
can be at most three 6-tuples whose sum

f
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Now assume that there are exactly three such 6-tuples,

and

and consider the set of time instants

max

(109)

Observe that max . Using numerical optimiza-
tion we can show that

max

(110)

For any other 6-tuple,

and it follows from Proposition 2 and the fact that f
is slightly less than the smallest positive root of that

, and the same holds for and
. Combining these results into (88) we obtain

(111)

If there are two, one, or zero “high-weight” 6-tuples whose
sum

we can use the same arguments to show (111). Since (111)
holds for any such that , (108)
follows from (25).

APPENDIX V
PROOF OF LEMMA 3

Proposition 6: There exists an such that for any
and any f ,

(112)

where
(113)

Proof: To find maximum of the function

def

(114)

we calculate its first and second derivative as follows:

(115)

(116)

By looking at the sign of , we observe that
is decreasing in the interval and increasing in the
interval f . Moreover,

(117)

and

f

(118)

for large . Therefore, has exactly one root in the in-
terval f . This root corresponds to the point of minimum
for , and the maximum is achieved on the boundary for

or f. For these values of , we obtain

(119)

f (120)

and for large the first expression, which coincides with the
right hand side of (112), is greater.
Now we define the function

def

(121)

where is the set of positions corresponding to nonzero
values of in the 6-tuple . We also define

and analogously, where in these cases
denotes the set of positions corresponding to nonzero values
in the 2-tuple or 4-tuple , respectively.
Corollary 2: Consider a 6-tuple such that

f . Then there exists an
such that for any ,

(122)

Proof: Consider . From Proposi-
tion 2, Proposition 6, and the convexity of the function ,
it follows that

(123)
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where the last two inequalities hold for large enough .
Similar arguments lead to the bounds on and .
Additionally, we note that

(124)

as , which leads to the next corollary.
Corollary 3: Consider a 6-tuple such that

f . Then, for large
enough,

f (125)
Proof: First we use Proposition 2 to obtain

(126)

Then, following the same procedure as in the proof of Propo-
sition 6, we find that achieves its maximum at one of
the boundary points, either or f. Using this maximum,
which is a negative constant, as an upper bound, and making
use of (124), we obtain (125).
Proof of Lemma 3: It follows from (88) and the definition of

that

(127)

where we note that each time unit is included three times in
the sum on the right hand side of (127). Now we consider
three different cases.
Case 1: There exists a 6-tuple such

that .
We follow the same procedure as in the proof of Proposi-

tion 5 and consider the set of indices max in (109). By max
we denote the total number of nonzero elements in the
6-tuples , for all max. (If the 6-tuples
overlap, we count repetitions of overlapping elements.) If all
elements in the 6-tuples indexed by max are nonzero,
then max attains its maximum value . Using the

numerical optimization result of (110), it follows that

max

max

max

(128)

max
def (129)

where the last inequality holds for large enough and we
have used the fact that for all and .
Now, for max, we use the bound from

Corollary 2 to obtain

max (130)

max

max

Combining (129) and (130) and substituting into (127) gives

max (131)

max (132)

where again we note that each non-zero element will
appear three times in the sum on the right hand side of (127)
and is chosen large enough to guarantee that
. Since the middle term on the right hand side of (132)
is negative, and , and max are positive constants, (60)
follows.
Case 2: Case 1 is not true, but there exists at least one pair
, such that .
We consider the 6-tuple containing and use Corollary 3

to obtain

f
def (133)

for large enough. For the other terms we use Corollary 2,
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resulting in

(134)

(135)

and (60) again follows.
Case 3: for all , .
By we denote the set of index pairs correspond-

ing to the largest elements , where is chosen such that

(136)

and . The remaining index pairs we denote
by . Now using (106) we can write

(137)

(138)

We use now Proposition 4 to upper bound the first term
of (138) and the linear bound to upper bound the
second term of (138), which gives

def (139)

where the second inequality follows from (136) and the fact
that for all .
Finally, we use Proposition 6 to bound the third term, which

gives

(140)

where the last inequality follows from the fact that
and for large enough. Now we combine

(138), (139), and (140) to obtain

(141)

and (60) again follows.
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