LUND UNIVERSITY

Knowledge Representation for Learning How to Evaluate Partial Plans

Nowaczyk, Slawomir

Published in:

Proceedings of the 24th Annual Workshop of the Swedish Atrtificial Intelligence Society (SAIS-07)

2007

Link to publication

Citation for published version (APA):

Nowaczyk, S. (2007). Knowledge Representation for Learning How to Evaluate Partial Plans. In Proceedings of

the 24th Annual Workshop of the Swedish Atrtificial Intelligence Society (SAIS-07)

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/f0c25807-ca52-429c-b589-55c559304073

Download date: 29. Oct. 2025

Knowledge Representation for Learning How to Evaluate Parial Plans

Stawomir Nowaczyk
Lund University
Slawomir.Nowaczyk@cs.lth.se

Abstract

In this paper we present some ideas for knowledge repre-
sentation formalism suitable for rational agents whichrea
how to choose the best conditional, partial plan in any given
situation. In our architecture, the agent uses an incomplet
symbolic inference engine, employing Active Logic, to rea-
son about consequences of performing actions — including
information-providing ones. It utilises a simple planner t
create conditional partial plans, i.e. ones which do noesec
sarily lead all the way to the ultimate goal. Finally, a laam
module — based on ILP mechanisms — provides, from ex-
perience, knowledge on how to choose which of those plans
ought to be executed.

We discuss principles which should guide design of knowl-
edge representations in order to best fit the requirements of
learning process. Clearly, simply presenting all of agent’
knowledge to the ILP algorithm is very inefficient. On the
other hand, for many particular applications some very ef-
fective representations are known. We compare several ap-
proaches, analysing the tradeoff between amount of domain
specific knowledge provided and the quality of solutions ob-
tained.

In the experiments presented we used PROGOL for learn-
ing, and one of the conclusions of this paper is that some
algorithm better suited for the particular problem of eetlu

ing plans could significantly improve the competitiveneks o
domain-independent solutions.

Introduction

In our research we are interested in creating rational, au-
tonomous agents that are able to survive in a dynamic world.

One special case are “information-providing” actions and
plans, which allow an agent to greatly simplify subsequent
planning process — it no longer needs to take into account
the vast number of possible situations which will be incon-
sistent with newly observed state of the world. Thus, it can
proceed further in a more effective way, by devoting its com-
putational resources to more relevant issues.

Our goal is to create an agent able to function in an ad-
versary environment which it can only partially observe and
which it only partially understands. In order to succeed in
this, the agent must be allowed to experimentin a number of
episodes, learning from its mistakes and improving itself.

Active Logic, when used as a main logical formalism for
our agent, allows us to do many of those things. It was de-
signed for non-omniscient reasoners and we believe it is a
good reasoning technique for versatile agents. Moreower, w
require our agent to combine planning, deductive reasoning
and inductive learning with time-awareness. We believe tha
the interactions among those three aspects are cruciatfor d
veloping truly intelligent systems.

Thus, the agent we are discussing will create several par-
tial plans and reason about usefulness of each one — includ-
ing what knowledge can be acquired by executing it. Fur-
ther, it will judge whether it is more beneficial to begin exe-
cuting one of those plans immediately or rather to continue
deliberation. In other words, the agent will be performing
on-line planning and interleaving it with plan execution.

Moreover, we expect it to live significantly longer than
any single planning episode lasts, so it should generalise e
ery solution it finds. In particular, the agent needs to extra

In order to be practical, such agents need to be modelled asdomain-dependent control knowledge and use it when solv-

having limited computational resources, but they also need
to be aware of their own limitations and take them into ac-
count (Chonget al, 2002). To facilitate this, we use a for-
malism known as Active Logic, which characterises reason-
ing as an ongoing process, instead of focusing on a fixed
point of entailment relation.

Due to limited resources and the necessity to stay respon-
sive in a dynamic world, situated agents cannot be expected which we present our ideas.

to create a complete plan for achieving their goals. They
need to consciously alternate between reasoning, actihg an
observing their environment. In order to achieve this, in ou

ing subsequent, similar problem instances. To this end we
introduce an architecture consisting of three modulesciwvhi
we believe will allow combining state-of-the-art solutsn
from several fields of Artificial Intelligence, in order togr
vide the synergy of features our agent requires to achieve th
desired functionality.

In the next section we introduce an example domain on
In sectidmchitecture we
describe the organisation of our agent. The three follow-
ing sections introduce each of agent’s functional modules
in more detail: Deductor Actor and Learner. After that,

approach the agent creates short partial plans and executesve discuss some of tHeelated Worland finish with some

them, learning more about its surroundings in the process.

Conclusions

Wumpus

In this paper we will be using a simple game called Wum-
pus, the well-known testbed for intelligent agents (Russel
& Norvig, 2003), to better illustrate our ideas. The game is

very simple, easy to understand, and people have absolutely

no problems playing it effectively as soon as they learn the
rules. For artificial agents, however, this game — and other
similar applications, including numerous ones of prattica
importance — still remain a serious challenge.

The game is played on a simple square board. There are

two characters, the player and the Wumpus. The player
can, in each turn, move to any neighbouring square. The
Wumpus, in the simplest version of the game at least, does
not move at all. Position of the monster is not known to
the player, he only knows that it hides somewhere on the
board. Luckily, Wumpus is a smelly beast, so upon enter-
ing a square the player can immediately observe whether
the creature is in the vicinity or not. The goal of the game is
to find out the location of the monster, by moving through-
out the board and observing on which squares does it smell,
and to finally shoot the creature with a bow. However, if the

player enters the square occupied by the beast, he gets eate

and loses the game.

In order to understand the goal of our research, it can be
helpful to imagine the setting somewhat akin to @eneral
Game Playing Competitiorour agent is given some knowl-
edge about the domain and is supposed to act rationally from
the very beginning, while becoming more and more profi-
cient as it gathers more experience.

Agent Architecture

The architecture of our agent consists of three main func-
tional modules. Each of them is responsible for a different
part of agent’s rationality, but the overall intelligenseinly
achievable by the interactions of them alll.

The Deductormodule is the one responsible for classi-
cal “thinking”. It uses logical formalism based on com-
bination of Active Logic and Situation Calculus (as intro-
duced in Nowaczyk, 2006) in order to reason about conse-
guences of agent’s current beliefs. Based on domain knowl-
edge and previous observations, it analyses possiblenactio
and predicts what will be the effect of their execution. In
particular, it accounts for the fact that some actions may be
information-providing ones. We describe Deductor in more
details in the following section.

In addition to the typical reasoner functionality, the De-
ductor module also includes a simple planner, which gener-
ates partial, conditional plans applicable in agent’sagitn.

In our currentimplementation the planner is a trivial ond an
it simply generates all possible plans of a given length. We
are looking into a ways of hooking up a more efficient plan-
ner instead, but doing so is not trivial, since domain knowl-
edge in our case is, typically, expressed in a languagerriche
than what classical planners accept.

The second main modulBgtor, oversees Deductor’s rea-

execute. At the moment, the Actor relies on incompleteness
of the Deductor, and on the fact that the inference is guaran-
teed to always terminate. Only after this happens, the Actor
chooses the best plan. Our ultimate goal, however, is to have
it monitor the Deductor and estimate its reasoning progress
so that it can break the deliberation when a particularly in-
teresting plan has been discovered or when it decides that
nothing worthwhile is likely to be deduced anymore.

Finally, theLearneranalyses agent'’s past experience and
induces rules for estimating quality of plans. Results of
learning process are used both by the Deductor and by the
Actor. In particular, since the plans Deductor reasons fabou
are partial (i.e. they do not — most of the time — lead all
the way to the goal) it is very difficult, in general, to esti-
mate whether a particular plan is a step in the right directio
or not. Using machine learning techniques is one way in
which this could be achieved.

In general, the ultimate goal of this architecture is to al-
low putting together state-of-the-art solutions from save
different areas of Artificial Intelligence. Despite mulgp
efforts, both ones done in the past and those still in pragres

ﬁhe vast majority of Al research is being done in specialised

subfields and — while such research is very important and
often greatly successful — it is this author’s belief that ne
ther of these subfieldalone can give us truly intelligent,
rational agents.

Deductor

In some sense, the Deductor forms the core of our agent,
since it performs the logical inference and directly reason
about knowledge. In particular, it is the module which anal-
yses both current state of the world and how it will change
as a result of performing a particular action. To this end, th
agent uses a variant of Active Logic, augmented with some
ideas from Situation Calculus.

Active Logic (Elgot-Drapkinet al, 1999) is a reasoning
formalism which, unlike classical logic, concerns {e-
cessof performing inferences, not just the final outcome
(fixed point) of the entailment relation. In particular, ead
of classical notion of theoremhood, AL hasheoremsi.e.
formulae which can be proven i steps This allows an
agent to reason abodifficulty of proving something, to re-
tract knowledge found inappropriate and to resolve contra-
dictions in a meaningful way, as well as makes it aware of
the passage time and its own non-omniscience.

To this end, each formula in AL is labelled with the step
number when it was derived. Therefore, thedus ponens
inference rule looks like this:

1o, =
i+1:p3
and means “if at stepformulaea anda = [are known,
then at step+ 1 formulag will be known.” Moreover, there
is a special inference ruIHfi%gggll), which allows an
agent to refer to the current moment and to explicitly follow

soning process and evaluates plans the latter has come upthe passage of time. A more in-depth description of Active
with. Taking into account the possible consequences of each Logic, and especially its way of handling time, can be found
of them, it tries to find out which is the most valuable one to in (Puranget al,, 1999).

Following ideas of (Nowaczyk, 2006) we have decided to
augment Active Logic with some concepts from Situation
Calculus (Reiter, 2001). In particular, in order to have the

for solving 3x3 Wumpus game has 13 steps (if we consider
all possible positions of the monster). This is not much, of
course, but it grows very fast as we increase the size of the

agent reason about changing world, every formulais indexed board or complicate rules of the game even slightly.

with current situation. Furthermore, since the agent needs
reason about effects of executing various plans, we aaditio
ally index formulae with the plan the agent is considering.
Therefore, a typical formula our agent reasons about looks
like this:

Knows(s,p, Neighbour(a2,b2))

and mean “an agent knows that after executing plan
situation s, squaresz2 and b2 will be adjacent” (we use
chess-like notation for naming squares, with letters desig
ing columns and numbers designing rows). This formula is
only mildly interesting, as its validity depends on neitker
norp, at least in the Wumpus domain. But:

Knows(s, p, "Wumpus(b2))

which means “an agent knows that after executing plan
situation s, Wumpus will not be orb2,” does obviously,
depend ons, since agent’s knowledge changes as it acts
in the world. It still does not, however, depend prnit-
self. Clearly, no new knowledge can be obtained by sim-
ply consideringsome plan (without actually executing it).

If an agentK nows(s, p, "-Wumpus(b2)), then it must also
Know(s, 0, ~-Wumpus(b2)), wheref) stands for an empty
plan'. Therefore, the really interesting formulae are the ones
like:

Knows(s, p, Wumpus(b3))VEKnows(s, p, Wumpus(c2))

which means “an agent knows that after executing plan
situations, it will eitherknow that there is Wumpus di3

or that there is Wumpus ar2”. As an example of reasoning
by cases and predicting action results, this is exactly ithe k
of knowledge that we are interested in agent inferring — it
doestell important things about quality of the plan being
considered. If all the agent knew before was:

Knows(s,), Wumpus(b3) V Wumpus(c2))

than clearly executing is useful. For a human “expert,”
suchyp looks like a good plan. The goal of our research is
to makean agentbe able to reason about plans in exactly
this way. It is our intuition, supported by preliminary expe
iments reported on in this paper, that creatimtpanain inde-
pendentActor module which would efficiently select good
plans by learning from experience using formulae like the
one above is possible.

One more thing worth mentioning is the planner sub-
module. As we stated earlier, our agent creates conditional
partial plans. For example, if in an initial situation thesag
is on square:1 and it does not smell there, the total plan

!Since in our game the player has no way of changing Wumpus’
position, the actual validity of Wumpus(b2)” remains constant,
only agent’s knowledge is changing

Therefore, since having an agent create complete plans is
infeasible in many domains, we have decided to settle for
partial plans. In the experiments reported in this paper, we
consider plans of length one and two only. In order to make
plan evaluation more meaningful, we allow those plans not
only to be simple (sequential) but alsonditional i.e. to
have branches which depend on agent’s observations. It is
our intuition that such conditional plans will be, in many
domains, much easier to classify as either good or bad ones.

For example, with an agent on squate one simple plan
is “a2”, meaning “go tm2”, and another isd2a3”, meaning
“go to a2 and then go tm3”. A conditional plan could be
“a2 7al : 2", meaning “go toa2 and if it smells there go
back toal, else go forward t32”. In Wumpus domain it is
difficult to find a simple plan longer than one step which is
good, while finding a good conditional one is much easier.

Actor

The Actor module is an overseer of the Deductor and works
as a controller of the agent as a whole. In its ultimate form,
it is expected to do three main things. First, it should guide
the reasoning process by making it focus on the plans most
likely to be useful. Second, it should decide when enough
time has been spent on deliberation and no more interesting
results are likely to be obtained. Third, it should make deci
sions to execute a particular plan from Deductor’s repestoi

In this paper we have decided to focus more on the inter-
actions between learning and deduction, so Actor’s funetio
ality has been simplified significantly. The Deductor mod-
ule uses an incomplete reasoner which always terminates,
therefore Actor does not need to deciglieento begin plan
execution — it simply lets Deductor infer everything it can
about each of the available plans and chooses the best one
based on all the available information.

Learner

The ultimate goal of the learning module is to provide Actor
with knowledge about how to choose the plan to be executed
next, which plans are most likely to lead to good results (and
thus should be reasoned about) and when enough time has
been spent on deliberation and the agent should start acting

In the current setup we use the ILP algorithm called PRO-
GOL (Muggleton, 1995), since it is one of the best known
ones and its author has provided a fully-functional, puplic
available implementation. PROGOL is based on the idea of
inverse entailmerand it employs a covering approach simi-
lar to the one used by FOIL, in order to generate hypothesis
consisting of a set of clauses which cover all positive ex-
amples and do not cover any negative ones. An important
feature are mode declarations, where user specifies which
predicates can be used in the hypothesis being learned, as
well as their arity and argument types.

In our case, we were interested in learning, first of all, to
distinguish “bad” plans early, so that Actor can spot them

and instruct Deductor not to waste time deliberating about
them. In this section we describe our experiments on how
to represent Deductor’s knowledge base in a way accessible
to the PROGOL algorithm. In particular, our goal was to
analyse the relationship between quality of learning aed th
amount of domain specific knowledge put into data transfor-
mation between Active Logic and PROGOL.

The first major obstacle was the closed world semantics
used by PROGOL. In the Deductor, in order to deal with
incomplete knowledge the agent has about the world, we
had to employ open-world semantics — from the mere fact
that agent is unable to prove something it does not follow
that it is false.

As a data set we have used three example runs of a Wum-
pus game on a very small, 3x3 board. The player had, in
each case, considered 134 plans, which is the total number
of length 2 plans (both simple and conditional ones) in four
situations: the player started af, first moved ta:2, then to
b2, and finally toc3. In the first run, it noticed that it smells
on b2, and after moving t®3 and not dying, it figured out
that Wumpus is om2. The second and third runs were sim-
ilar, except Wumpus was at8 andcl, respectively.

In the experiment reported here, we have assumed the
agent has perfect knowledge about which plans (training ex-
amples) are potentially bad. It is possible since our reason
even if incomplete, is powerful enough to eventually dis-
cover whether there is any possibility of agent dying due to
executing a particular plan in a given situation. It is na th
most useful setup, however. We have made some prelim-
inary tests in a morsimulation-likecase, where an agent
executes a plan and observes whether it is a fatal one or not,
and learns based on that experience. The problem is that
the agent may just get lucky when executing a dangerous
plan. Even though PROGOL caters for the possibility of
noisy data, we have found its features rather insufficient fo
this concrete application.

Our first approach was to use as little domain-specific
knowledge as possible, so we have purposefully left PRO-
GOL mode declarations open for all background predi-
cates, since they can not be automatically extracted frem th
knowledge available to the agent. We have also decided not
to filter agent’'s knowledge in any way, except for remov-
ing Active Logic specific extensions and the axioms which
remain constant throughout all situations and all plake (li
geometrical relationships). The one point worth noting is
that we have introduced five predicatewdition, final,
finalSmell, final NoSmell andpassT hrough) describ-
ing the plan itself. They mean, respectively, “agent'siahit
position,” “agent’s final position” (for simple plans), “fh
position if it smells” and “final position if is doesn’t sméll
(for conditional ones), and “the square which the playek wil
pass” (for plans of length two or more).

We have run PROGOL ten times, with different numbers
of training examples. We started with one positive and one
negative example only, and kept increasing their numbers
up to 20 positive and 20 negative examples (using differ-
ent number of positives and negatives did not lead to any
interesting results). We present the accuracy achieved by
the learned hypothesis (an average of 50 trials) as the low-

1
0.95 -
0.9 - L
0.85 -
.. 08+ -
Q
g
3 0.75 +
Q
<
0.7 -
0.65 |
0.6 -
/oy - - — Without mode declarations
oss v .0 With mode declarations
: 7 — — Smelling onlly
—— Wumpus only
0.5 T T T T T T T T T
2 4 6 8 10 12 14 16 18 20

Number of examples

Figure 1: Results of learning

est curve (marked “without mode declarations”) in figure 1.
It can be easily seen that learning quality is too low to be
practically useful.

This resultis not really surprising as it is a well known fact
that specifying appropriate mode declarations is very impo
tant for PROGOL. Therefore, our next step was to provide
exactly them. The task of writing (by hand) the necessary
declarations is not particularly difficult for a user who end
stands the domain well, but it can be tiresome nevertheless.
In addition, requiring an expert to provide mode declaratio
for all predicates in the domain is somewhat pointless, as he
certainly has enough knowledge to only label those that are
actually appropriate for defining target predicate.

Because of that, in our second experiment we have pro-
vided mode declarations for the meaningful predicates.only
In particular, we have introduced three predicates deiscrib
the smelling phenomenomaybeSmells, knowsClear
and knowsSmell), as well as three predicates describing
the potential positions of the Wumpusi{ybeW umpus,
noWumpus andknowsWumpus), all with board squares
as arguments. As mentioned above, due to the closed-world
semantics of PROGOL we actually need three predicates to
describe all possibilities. As can be easily seen on figure 1
(curve marked “with mode declarations”), even such a small
amount of domain knowledge is enough to greatly improve
quality of learned hypothesis. We have again run the ex-
periment ten times, for different number of examples, and
present average accuracy of 50 trials.

It is also important to note that it is not necessary to
achieve 100% accuracy in our application. One interesting

2We do not, actuallyneedall three — two would be, theo-

retically, sufficient, but would make learning much moddiciifit
since good formulae would become more complex

feature of our learning setting is that false negatives ate n Finally, we would like to point out that PROGOL algo-
overly problematic: the point is to save some computations rithm, while a very efficient one, is rather poorly suited for
by discarding useless plans early, so if some bad plans arethe class of problems we face. It was enough as a proof of
not detected, the worst that can happen is that some com- concept and to show the general usefulness of learning as
putations will still be wasted. False positives, on the othe such, but our next step will be to find a different one, better

hand, are much more dangerous, since if an Actor removes adapted to the particular needs of evaluating plans.

a useful plan from considerations, the overall quality & th
solution can deteriorate. However, there is no way to expres
this distinction in PROGOL terms, so we have decided not
to separate accuracy into positive and negative parts.

Related Work

Combination of planning and learning is an area of active
research, in addition to the extensive amount of work being

Encouraged by the success with mode declarations, we done separately in those respective fields.

have decided to perform two more experiments. In the back-
ground knowledge which we have identified as relevant for

the concept of bad plans, there were two separate compo-

nents: information about squares where it smells and in-
formation about squares on which Wumpus might hide. In
principle, each one of them contains, by itself, enough in-
formation to express target concept. Therefore, in thathir
experiment, we have only used predicatesybeSmells,
knowsClear andknowsSmell. As can be seen from curve
“smelling only” in figure 1, expressing the notion of bad
plans using only those three predicates proved too difficult
for PROGOL.

On the other hand, in our forth and final experi-
ment, PROGOL managed to learn to perfectly identify bad
plans using predicatesaybeWumpus, noWumpus and
knowsWumpus from as few as 30 examples chosen at ran-
dom. The learned definition of a bad plan looked like this:

badPlan < final(A), maybeWumpus(A).
badPlan <« finalSmell(A), maybeWumpus(A).
badPlan < passThrough(A), maybeWumpus(A).

It is interesting to note that as few as filand-chosen
example plans suffice for PROGOL to learn the correct def-
inition, which opens up interesting possibilities for areag
to selectlearning examples in an intelligent way.

Having established that successful learning is possible,
one more thing that should be shown is whether it is actually
useful In our implementation (which is designed for flexi-
bility of reasoning rather than its speed) analysing a com-

The first to mention is Dietterich & Flann (1995), which
presented results establishing conceptual similarities b
tween explanation-based learning and reinforcementdearn
ing. In particular, they discussed how EBL can be used to
learn action strategies and provided important theoratea
sults concerning its applicability to this aim.

There has been significant amount of work done in learn-
ing about what actions to take in a particular situation. One
notable example is Khardon (1999), where author showed
important theoretical results about PAC-learnability of a
tion strategies in various models. In Moyle (2002) au-
thor discussed a more practical approach to learning Event
Calculus programs using Theory Completion. He used
extraction-case abduction and the ALECTO system in or-
der to simultaneously learn two mutually related predigate
(Initiates and T'erminates) from positive-only observa-
tions. Recently, Konik & Laird (2004) developed a system
which is able to learn low-level actions and plans from goal
hierarchies and action examples provided by experts, mvithi
the SOAR architecture.

The work mentioned above focuses primarily on learn-
ing how to act, without trying to reach conclusions in a
deductive way. In a sense, the results are more similar to
the reactive-like behaviour than to classical planningesys
with important similarities to the reinforcement learning

One attempt to escape the trap of large search space has
been presented in DZeroski, Raedt, & Driessens (2001),
where relational abstractions are used to substantiallyoe
cardinality of search space. Still, this new space is stdjec
to reinforcement learning, not to a symbolic planning sys-
tem. A conceptually similar idea, but where relational rep-
resentation is actually being learned via behaviour clgnin

plete game of Wumpus takes (depending on monster’s real techniques, is presented in Morales (2004).

position) on the order of 15 hours. If the Actor knows how

to identify bad plans and forces Deductor to ignore them, the
total time drops down dramatically, to abai hours This

is a clear confirmation of our claim that knowledge gained
due to learning from experience can be very useful to im-
prove efficiency of reasoning.

Wumpus| Full time | Improved time| Time decreasg
position | (hours) (hours) (percent)
c2 16.07 h 4.41h 72.58%
a3 14.72h 5.52h 62.49%
cl 15.23h 7.18h 52.84%

Table 1: Usefulness of learning

Outside the domain of planning, there is a lot of important
research being done in the learning paradigm.

Recently, Colton & Muggleton (2003) showed several
ideas about how to learn interesting facts about the world,
as opposed to learning a description of a predefined concept.
A somewhat similar result, more specifically related to plan
ning, has been presented in Fern, Yoon, & Givan (2004),
where the system learns domain-dependent control knowl-
edge beneficial in planning tasks.

From another point of view, Khardon & Roth (1995,
1997) presented a framework for learning done “specifically
for the purpose of reasoning with the learned knowledge,”
an interesting early attempt to move away fromléegrning
to classifyparadigm, which appears to dominate the field of
machine learning.

Yet another track of research focuses on (deductive) plan-

ning, taking into account incompleteness of agent’s knowl-

edge and uncertainty about the world. Conditional plans,

generalised policies, conformant plans, universal plaas a

the terms used by various researchers (Cimatti, Roveri, &

Bertoli, 2004; Petrick & Bacchus, 2004; van der Hoek &
Wooldridge, 2002; Bertoli, Cimatti, & Traverso, 2004) to

denote in principle the same idea: generating a plan which

is “prepared” for all possible reactions of the environment

Chong, W.; O’Donovan-Anderson, M.; Okamoto, Y.; and Perlis
D. 2002. Seven days in the life of a robotic agentGIBFC/JPL
Workshop on Radical Agent Concepts

Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformanaphing
via symbolic model checking and heuristic searcArtificial
Intelligencel59(1-2):127-206.

Colton, S., and Muggleton, S. 2003. ILP for mathematical dis
covery. In13th International Conference on Inductive Logic
Programming

This approach has much in common with control theory, as Dean, T., and Wellman, M. P. 199Rlanning and ControlMorgan

observed in Bonet & Geffner (2001) or earlier in Dean &

Kaufmann.

Wellman (1991). We are not aware of any such research that pjetterich, T. G., and Flann, N. S. 1995. Explanation-bdsach-

would attempt to integrate learning.

Conclusions

We have presented an architecture for rational agents that

combine planning, deductive reasoning, inductive leaynin

and time-awareness in order to operate successfully in a dy-
namic environment. Our agent creates conditional, partial

ing and reinforcement learning: A unified view. Ilmternational
Conference on Machine Learnintj76-184.
DZeroski, S.; Raedt, L. D.; and Driessens, K. 2001. Retafio
reinforcement learningVlachine Learningd3(1/2):7-52.
Elgot-Drapkin, J.; Kraus, S.; Miller, M.; Nirkhe, M.; and #is, D.
1999. Active logics: A unified formal approach to episodia-re
soning. Technical Report CS-TR-4072, University of Mangla

plans, reasons about their consequences using an extensiorrern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-#jzec

of Active Logic with Situation Calculus features, and em-

ploys ILP learning to generalise past experience in order to

distinguish good plans from bad ones.

In this paper we report on our initial experiments with us-
ing PROGOL learning algorithm to identify bad plans early,
in order to save agent the (wasteful) effort of deliberating
about them. We analyse how the quality of learning de-
pends on the amount of additional, domain-specific knowl-

edge provided by the user. Finally, we show that successful
learning can result in a dramatic decrease of agent’s reason

ing time.

Several ideas for future work have been mentioned

throughout the text, for example the need for a more effi-
cient planner, the ability of Deductor to prioritise most in

teresting plans, allowing an agent to estimate its own rea-
soning progress and to consciously choose between deliber-

ation and acting, finally, learning rules for helping an Acto

choose the best plan. We want to reiterate, however, that

our next step will be to find learning algorithms better sdiite

control knowledge from random walks. International Con-
ference on Automated Planning and Scheduling

Khardon, R., and Roth, D. 1995. Learning to reason with a re-
stricted view. InWorkshop on Computational Learning Theory

Khardon, R., and Roth, D. 1997. Learning to reasdournal of
the ACM44(5):697—725.

Khardon, R. 1999. Learning to take actionglachine Learning
35(1):57-90.

Konik, T., and Laird, J. E. 2004. Learning goal hierarcHiesn
structured observations and expert annotationsl_n

Morales, E. F. 2004. Relational state abstractions fofeetement
learning. InICML-04 Workshop on Relational Reinforcement
Learning

Moyle, S. 2002. Using theory completion to learn a robot gavi
tion control program. InLP.

Muggleton, S. 1995. Inverse entailment and Profj#w Genera-
tion Computing, Special issue on Inductive Logic Prograngmi
13(3-4):245-286.

for the particular needs of evaluating plans, since PROGOL Nowaczyk, S. 2006. Partial planning for situated agentedas

does not appear to be appropriate for it.

Acknowledgements
| would like to thank my supervisor, , for his input into

this work and for many discussions about the concepts of

on active logic. InWorkshop on Logics for Resource Bounded
Agents, ESSLLI 2006

Petrick, R. P. A., and Bacchus, F. 2004. Extending the knibgéde
based approach to planning with incomplete information and
sensing. Ininternational Conference on Automated Planning
and Scheduling2—11.

on issues that genuinely interested me, even when it looked

(or, sometimes, still look) like they lead nowhere near the
PhD thesis | should be writing.

References

Bertoli, P.; Cimatti, A.; and Traverso, P. 2004. Interlewyexecu-
tion and planning for nondeterministic, partially obsdaeado-
mains. InEuropean Conference on Atrtificial Intelligen®@b7—
661.

Bonet, B., and Geffner, H. 2001. Planning and control infiarti
cial intelligence: A unifying perspectiveApplied Intelligence
14(3):237-252.

Perlis, D. 1999. Practical reasoning and plan executioh wit
active logic. In Bell, J., edRroceedings of the IJCAI-99 Work-
shop on Practical Reasoning and Rationgli3p—38.

Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systen¥he MIT
Press.

Russell, S., and Norvig, P. 2003trtificial Intelligence: A Modern
Approach Prentice Hall Series in Al, 2nd edition.

van der Hoek, W., and Wooldridge, M. 2002. Tractable muégg
planning for epistemic goals. IRroceedings of the First In-
ternational Conference on Autonomous Agents and Multiagen
Systems (AAMAS)

