
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Knowledge Representation for Learning How to Evaluate Partial Plans

Nowaczyk, Slawomir

Published in:
Proceedings of the 24th Annual Workshop of the Swedish Artificial Intelligence Society (SAIS-07)

2007

Link to publication

Citation for published version (APA):
Nowaczyk, S. (2007). Knowledge Representation for Learning How to Evaluate Partial Plans. In Proceedings of
the 24th Annual Workshop of the Swedish Artificial Intelligence Society (SAIS-07)

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/f0c25807-ca52-429c-b589-55c559304073

Download date: 18. Jan. 2026

Knowledge Representation for Learning How to Evaluate Partial Plans

Sławomir Nowaczyk
Lund University

Slawomir.Nowaczyk@cs.lth.se

Abstract

In this paper we present some ideas for knowledge repre-
sentation formalism suitable for rational agents which learn
how to choose the best conditional, partial plan in any given
situation. In our architecture, the agent uses an incomplete
symbolic inference engine, employing Active Logic, to rea-
son about consequences of performing actions — including
information-providing ones. It utilises a simple planner to
create conditional partial plans, i.e. ones which do not neces-
sarily lead all the way to the ultimate goal. Finally, a learning
module — based on ILP mechanisms — provides, from ex-
perience, knowledge on how to choose which of those plans
ought to be executed.
We discuss principles which should guide design of knowl-
edge representations in order to best fit the requirements of
learning process. Clearly, simply presenting all of agent’s
knowledge to the ILP algorithm is very inefficient. On the
other hand, for many particular applications some very ef-
fective representations are known. We compare several ap-
proaches, analysing the tradeoff between amount of domain
specific knowledge provided and the quality of solutions ob-
tained.
In the experiments presented we used PROGOL for learn-
ing, and one of the conclusions of this paper is that some
algorithm better suited for the particular problem of evaluat-
ing plans could significantly improve the competitiveness of
domain-independent solutions.

Introduction
In our research we are interested in creating rational, au-
tonomous agents that are able to survive in a dynamic world.
In order to be practical, such agents need to be modelled as
having limited computational resources, but they also need
to be aware of their own limitations and take them into ac-
count (Chonget al., 2002). To facilitate this, we use a for-
malism known as Active Logic, which characterises reason-
ing as an ongoing process, instead of focusing on a fixed
point of entailment relation.

Due to limited resources and the necessity to stay respon-
sive in a dynamic world, situated agents cannot be expected
to create a complete plan for achieving their goals. They
need to consciously alternate between reasoning, acting and
observing their environment. In order to achieve this, in our
approach the agent creates short partial plans and executes
them, learning more about its surroundings in the process.

One special case are “information-providing” actions and
plans, which allow an agent to greatly simplify subsequent
planning process — it no longer needs to take into account
the vast number of possible situations which will be incon-
sistent with newly observed state of the world. Thus, it can
proceed further in a more effective way, by devoting its com-
putational resources to more relevant issues.

Our goal is to create an agent able to function in an ad-
versary environment which it can only partially observe and
which it only partially understands. In order to succeed in
this, the agent must be allowed to experiment in a number of
episodes, learning from its mistakes and improving itself.

Active Logic, when used as a main logical formalism for
our agent, allows us to do many of those things. It was de-
signed for non-omniscient reasoners and we believe it is a
good reasoning technique for versatile agents. Moreover, we
require our agent to combine planning, deductive reasoning
and inductive learning with time-awareness. We believe that
the interactions among those three aspects are crucial for de-
veloping truly intelligent systems.

Thus, the agent we are discussing will create several par-
tial plans and reason about usefulness of each one — includ-
ing what knowledge can be acquired by executing it. Fur-
ther, it will judge whether it is more beneficial to begin exe-
cuting one of those plans immediately or rather to continue
deliberation. In other words, the agent will be performing
on-line planning and interleaving it with plan execution.

Moreover, we expect it to live significantly longer than
any single planning episode lasts, so it should generalise ev-
ery solution it finds. In particular, the agent needs to extract
domain-dependent control knowledge and use it when solv-
ing subsequent, similar problem instances. To this end we
introduce an architecture consisting of three modules, which
we believe will allow combining state-of-the-art solutions
from several fields of Artificial Intelligence, in order to pro-
vide the synergy of features our agent requires to achieve the
desired functionality.

In the next section we introduce an example domain on
which we present our ideas. In sectionArchitecturewe
describe the organisation of our agent. The three follow-
ing sections introduce each of agent’s functional modules
in more detail: Deductor, Actor and Learner. After that,
we discuss some of theRelated Workand finish with some
Conclusions.

Wumpus
In this paper we will be using a simple game called Wum-
pus, the well-known testbed for intelligent agents (Russell
& Norvig, 2003), to better illustrate our ideas. The game is
very simple, easy to understand, and people have absolutely
no problems playing it effectively as soon as they learn the
rules. For artificial agents, however, this game — and other
similar applications, including numerous ones of practical
importance — still remain a serious challenge.

The game is played on a simple square board. There are
two characters, the player and the Wumpus. The player
can, in each turn, move to any neighbouring square. The
Wumpus, in the simplest version of the game at least, does
not move at all. Position of the monster is not known to
the player, he only knows that it hides somewhere on the
board. Luckily, Wumpus is a smelly beast, so upon enter-
ing a square the player can immediately observe whether
the creature is in the vicinity or not. The goal of the game is
to find out the location of the monster, by moving through-
out the board and observing on which squares does it smell,
and to finally shoot the creature with a bow. However, if the
player enters the square occupied by the beast, he gets eaten
and loses the game.

In order to understand the goal of our research, it can be
helpful to imagine the setting somewhat akin to theGeneral
Game Playing Competition: our agent is given some knowl-
edge about the domain and is supposed to act rationally from
the very beginning, while becoming more and more profi-
cient as it gathers more experience.

Agent Architecture
The architecture of our agent consists of three main func-
tional modules. Each of them is responsible for a different
part of agent’s rationality, but the overall intelligence is only
achievable by the interactions of them all.

The Deductormodule is the one responsible for classi-
cal “thinking”. It uses logical formalism based on com-
bination of Active Logic and Situation Calculus (as intro-
duced in Nowaczyk, 2006) in order to reason about conse-
quences of agent’s current beliefs. Based on domain knowl-
edge and previous observations, it analyses possible actions
and predicts what will be the effect of their execution. In
particular, it accounts for the fact that some actions may be
information-providing ones. We describe Deductor in more
details in the following section.

In addition to the typical reasoner functionality, the De-
ductor module also includes a simple planner, which gener-
ates partial, conditional plans applicable in agent’s situation.
In our current implementation the planner is a trivial one and
it simply generates all possible plans of a given length. We
are looking into a ways of hooking up a more efficient plan-
ner instead, but doing so is not trivial, since domain knowl-
edge in our case is, typically, expressed in a language richer
than what classical planners accept.

The second main module,Actor, oversees Deductor’s rea-
soning process and evaluates plans the latter has come up
with. Taking into account the possible consequences of each
of them, it tries to find out which is the most valuable one to

execute. At the moment, the Actor relies on incompleteness
of the Deductor, and on the fact that the inference is guaran-
teed to always terminate. Only after this happens, the Actor
chooses the best plan. Our ultimate goal, however, is to have
it monitor the Deductor and estimate its reasoning progress,
so that it can break the deliberation when a particularly in-
teresting plan has been discovered or when it decides that
nothing worthwhile is likely to be deduced anymore.

Finally, theLearneranalyses agent’s past experience and
induces rules for estimating quality of plans. Results of
learning process are used both by the Deductor and by the
Actor. In particular, since the plans Deductor reasons about
are partial (i.e. they do not — most of the time — lead all
the way to the goal) it is very difficult, in general, to esti-
mate whether a particular plan is a step in the right direction
or not. Using machine learning techniques is one way in
which this could be achieved.

In general, the ultimate goal of this architecture is to al-
low putting together state-of-the-art solutions from several
different areas of Artificial Intelligence. Despite multiple
efforts, both ones done in the past and those still in progress,
the vast majority of AI research is being done in specialised
subfields and — while such research is very important and
often greatly successful — it is this author’s belief that nei-
ther of these subfieldsalone can give us truly intelligent,
rational agents.

Deductor
In some sense, the Deductor forms the core of our agent,
since it performs the logical inference and directly reasons
about knowledge. In particular, it is the module which anal-
yses both current state of the world and how it will change
as a result of performing a particular action. To this end, the
agent uses a variant of Active Logic, augmented with some
ideas from Situation Calculus.

Active Logic (Elgot-Drapkinet al., 1999) is a reasoning
formalism which, unlike classical logic, concerns thepro-
cessof performing inferences, not just the final outcome
(fixed point) of the entailment relation. In particular, instead
of classical notion of theoremhood, AL hasi-theorems, i.e.
formulae which can be provenin i steps. This allows an
agent to reason aboutdifficulty of proving something, to re-
tract knowledge found inappropriate and to resolve contra-
dictions in a meaningful way, as well as makes it aware of
the passage time and its own non-omniscience.

To this end, each formula in AL is labelled with the step
number when it was derived. Therefore, themodus ponens
inference rule looks like this:

i : α, α ⇒ β

i + 1 : β

and means “if at stepi formulaeα andα ⇒ β are known,
then at stepi+1 formulaβ will be known.” Moreover, there
is a special inference rule i:Now(i)

i+1:Now(i+1) , which allows an
agent to refer to the current moment and to explicitly follow
the passage of time. A more in-depth description of Active
Logic, and especially its way of handling time, can be found
in (Puranget al., 1999).

Following ideas of (Nowaczyk, 2006) we have decided to
augment Active Logic with some concepts from Situation
Calculus (Reiter, 2001). In particular, in order to have the
agent reason about changing world, every formula is indexed
with current situation. Furthermore, since the agent needsto
reason about effects of executing various plans, we addition-
ally index formulae with the plan the agent is considering.
Therefore, a typical formula our agent reasons about looks
like this:

Knows(s, p, Neighbour(a2, b2))

and mean “an agent knows that after executing planp in
situations, squaresa2 and b2 will be adjacent” (we use
chess-like notation for naming squares, with letters design-
ing columns and numbers designing rows). This formula is
only mildly interesting, as its validity depends on neithers
norp, at least in the Wumpus domain. But:

Knows(s, p,¬Wumpus(b2))

which means “an agent knows that after executing planp in
situations, Wumpus will not be onb2,” does, obviously,
depend ons, since agent’s knowledge changes as it acts
in the world. It still does not, however, depend onp it-
self. Clearly, no new knowledge can be obtained by sim-
ply consideringsome plan (without actually executing it).
If an agentKnows(s, p,¬Wumpus(b2)), then it must also
Know(s, ∅,¬Wumpus(b2)), where∅ stands for an empty
plan1. Therefore, the really interesting formulae are the ones
like:

Knows(s, p, Wumpus(b3))∨Knows(s, p, Wumpus(c2))

which means “an agent knows that after executing planp in
situations, it will either know that there is Wumpus onb3
or that there is Wumpus onc2”. As an example of reasoning
by cases and predicting action results, this is exactly the kind
of knowledge that we are interested in agent inferring — it
doestell important things about quality of the plan being
considered. If all the agent knew before was:

Knows(s, ∅, Wumpus(b3) ∨ Wumpus(c2))

than clearly executingp is useful. For a human “expert,”
suchp looks like a good plan. The goal of our research is
to makean agentbe able to reason about plans in exactly
this way. It is our intuition, supported by preliminary exper-
iments reported on in this paper, that creating adomain inde-
pendentActor module which would efficiently select good
plans by learning from experience using formulae like the
one above is possible.

One more thing worth mentioning is the planner sub-
module. As we stated earlier, our agent creates conditional,
partial plans. For example, if in an initial situation the agent
is on squarea1 and it does not smell there, the total plan

1Since in our game the player has no way of changing Wumpus’
position, the actual validity of “Wumpus(b2)” remains constant,
only agent’s knowledge is changing

for solving 3x3 Wumpus game has 13 steps (if we consider
all possible positions of the monster). This is not much, of
course, but it grows very fast as we increase the size of the
board or complicate rules of the game even slightly.

Therefore, since having an agent create complete plans is
infeasible in many domains, we have decided to settle for
partial plans. In the experiments reported in this paper, we
consider plans of length one and two only. In order to make
plan evaluation more meaningful, we allow those plans not
only to be simple (sequential) but alsoconditional, i.e. to
have branches which depend on agent’s observations. It is
our intuition that such conditional plans will be, in many
domains, much easier to classify as either good or bad ones.

For example, with an agent on squarea1, one simple plan
is “a2”, meaning “go toa2”, and another is “a2a3”, meaning
“go to a2 and then go toa3”. A conditional plan could be
“a2 ? a1 : b2”, meaning “go toa2 and if it smells there go
back toa1, else go forward tob2”. In Wumpus domain it is
difficult to find a simple plan longer than one step which is
good, while finding a good conditional one is much easier.

Actor
The Actor module is an overseer of the Deductor and works
as a controller of the agent as a whole. In its ultimate form,
it is expected to do three main things. First, it should guide
the reasoning process by making it focus on the plans most
likely to be useful. Second, it should decide when enough
time has been spent on deliberation and no more interesting
results are likely to be obtained. Third, it should make deci-
sions to execute a particular plan from Deductor’s repertoire.

In this paper we have decided to focus more on the inter-
actions between learning and deduction, so Actor’s function-
ality has been simplified significantly. The Deductor mod-
ule uses an incomplete reasoner which always terminates,
therefore Actor does not need to decidewhento begin plan
execution — it simply lets Deductor infer everything it can
about each of the available plans and chooses the best one
based on all the available information.

Learner
The ultimate goal of the learning module is to provide Actor
with knowledge about how to choose the plan to be executed
next, which plans are most likely to lead to good results (and
thus should be reasoned about) and when enough time has
been spent on deliberation and the agent should start acting.

In the current setup we use the ILP algorithm called PRO-
GOL (Muggleton, 1995), since it is one of the best known
ones and its author has provided a fully-functional, publicly
available implementation. PROGOL is based on the idea of
inverse entailmentand it employs a covering approach simi-
lar to the one used by FOIL, in order to generate hypothesis
consisting of a set of clauses which cover all positive ex-
amples and do not cover any negative ones. An important
feature are mode declarations, where user specifies which
predicates can be used in the hypothesis being learned, as
well as their arity and argument types.

In our case, we were interested in learning, first of all, to
distinguish “bad” plans early, so that Actor can spot them

and instruct Deductor not to waste time deliberating about
them. In this section we describe our experiments on how
to represent Deductor’s knowledge base in a way accessible
to the PROGOL algorithm. In particular, our goal was to
analyse the relationship between quality of learning and the
amount of domain specific knowledge put into data transfor-
mation between Active Logic and PROGOL.

The first major obstacle was the closed world semantics
used by PROGOL. In the Deductor, in order to deal with
incomplete knowledge the agent has about the world, we
had to employ open-world semantics — from the mere fact
that agent is unable to prove something it does not follow
that it is false.

As a data set we have used three example runs of a Wum-
pus game on a very small, 3x3 board. The player had, in
each case, considered 134 plans, which is the total number
of length 2 plans (both simple and conditional ones) in four
situations: the player started ona1, first moved toa2, then to
b2, and finally toc3. In the first run, it noticed that it smells
on b2, and after moving tob3 and not dying, it figured out
that Wumpus is onc2. The second and third runs were sim-
ilar, except Wumpus was ona3 andc1, respectively.

In the experiment reported here, we have assumed the
agent has perfect knowledge about which plans (training ex-
amples) are potentially bad. It is possible since our reasoner,
even if incomplete, is powerful enough to eventually dis-
cover whether there is any possibility of agent dying due to
executing a particular plan in a given situation. It is not the
most useful setup, however. We have made some prelim-
inary tests in a moresimulation-likecase, where an agent
executes a plan and observes whether it is a fatal one or not,
and learns based on that experience. The problem is that
the agent may just get lucky when executing a dangerous
plan. Even though PROGOL caters for the possibility of
noisy data, we have found its features rather insufficient for
this concrete application.

Our first approach was to use as little domain-specific
knowledge as possible, so we have purposefully left PRO-
GOL mode declarations open for all background predi-
cates, since they can not be automatically extracted from the
knowledge available to the agent. We have also decided not
to filter agent’s knowledge in any way, except for remov-
ing Active Logic specific extensions and the axioms which
remain constant throughout all situations and all plans (like
geometrical relationships). The one point worth noting is
that we have introduced five predicates (position, final,
finalSmell, finalNoSmell andpassThrough) describ-
ing the plan itself. They mean, respectively, “agent’s initial
position,” “agent’s final position” (for simple plans), “final
position if it smells” and “final position if is doesn’t smell”
(for conditional ones), and “the square which the player will
pass” (for plans of length two or more).

We have run PROGOL ten times, with different numbers
of training examples. We started with one positive and one
negative example only, and kept increasing their numbers
up to 20 positive and 20 negative examples (using differ-
ent number of positives and negatives did not lead to any
interesting results). We present the accuracy achieved by
the learned hypothesis (an average of 50 trials) as the low-

2 4 6 8 10 12 14 16 18 20
Number of examples

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

Wumpus only
Smelling only
With mode declarations
Without mode declarations

Figure 1: Results of learning

est curve (marked “without mode declarations”) in figure 1.
It can be easily seen that learning quality is too low to be
practically useful.

This result is not really surprising as it is a well known fact
that specifying appropriate mode declarations is very impor-
tant for PROGOL. Therefore, our next step was to provide
exactly them. The task of writing (by hand) the necessary
declarations is not particularly difficult for a user who under-
stands the domain well, but it can be tiresome nevertheless.
In addition, requiring an expert to provide mode declarations
for all predicates in the domain is somewhat pointless, as he
certainly has enough knowledge to only label those that are
actually appropriate for defining target predicate.

Because of that, in our second experiment we have pro-
vided mode declarations for the meaningful predicates only.
In particular, we have introduced three predicates describing
the smelling phenomenon (maybeSmells, knowsClear
and knowsSmell), as well as three predicates describing
the potential positions of the Wumpus (maybeWumpus,
noWumpus andknowsWumpus), all with board squares
as arguments. As mentioned above, due to the closed-world
semantics of PROGOL we actually need three predicates to
describe all possibilities2. As can be easily seen on figure 1
(curve marked “with mode declarations”), even such a small
amount of domain knowledge is enough to greatly improve
quality of learned hypothesis. We have again run the ex-
periment ten times, for different number of examples, and
present average accuracy of 50 trials.

It is also important to note that it is not necessary to
achieve 100% accuracy in our application. One interesting

2We do not, actually,needall three — two would be, theo-
retically, sufficient, but would make learning much mode difficult
since good formulae would become more complex

feature of our learning setting is that false negatives are not
overly problematic: the point is to save some computations
by discarding useless plans early, so if some bad plans are
not detected, the worst that can happen is that some com-
putations will still be wasted. False positives, on the other
hand, are much more dangerous, since if an Actor removes
a useful plan from considerations, the overall quality of the
solution can deteriorate. However, there is no way to express
this distinction in PROGOL terms, so we have decided not
to separate accuracy into positive and negative parts.

Encouraged by the success with mode declarations, we
have decided to perform two more experiments. In the back-
ground knowledge which we have identified as relevant for
the concept of bad plans, there were two separate compo-
nents: information about squares where it smells and in-
formation about squares on which Wumpus might hide. In
principle, each one of them contains, by itself, enough in-
formation to express target concept. Therefore, in the third
experiment, we have only used predicatesmaybeSmells,
knowsClear andknowsSmell. As can be seen from curve
“smelling only” in figure 1, expressing the notion of bad
plans using only those three predicates proved too difficult
for PROGOL.

On the other hand, in our forth and final experi-
ment, PROGOL managed to learn to perfectly identify bad
plans using predicatesmaybeWumpus, noWumpus and
knowsWumpus from as few as 30 examples chosen at ran-
dom. The learned definition of a bad plan looked like this:

badP lan ⇐ final(A), maybeWumpus(A).

badP lan ⇐ finalSmell(A), maybeWumpus(A).

badP lan ⇐ passThrough(A), maybeWumpus(A).

It is interesting to note that as few as fivehand-chosen
example plans suffice for PROGOL to learn the correct def-
inition, which opens up interesting possibilities for an agent
to selectlearning examples in an intelligent way.

Having established that successful learning is possible,
one more thing that should be shown is whether it is actually
useful. In our implementation (which is designed for flexi-
bility of reasoning rather than its speed) analysing a com-
plete game of Wumpus takes (depending on monster’s real
position) on the order of 15 hours. If the Actor knows how
to identify bad plans and forces Deductor to ignore them, the
total time drops down dramatically, to aboutsix hours. This
is a clear confirmation of our claim that knowledge gained
due to learning from experience can be very useful to im-
prove efficiency of reasoning.

Wumpus Full time Improved time Time decrease
position (hours) (hours) (percent)

c2 16.07 h 4.41 h 72.58%
a3 14.72 h 5.52 h 62.49%
c1 15.23 h 7.18 h 52.84%

Table 1: Usefulness of learning

Finally, we would like to point out that PROGOL algo-
rithm, while a very efficient one, is rather poorly suited for
the class of problems we face. It was enough as a proof of
concept and to show the general usefulness of learning as
such, but our next step will be to find a different one, better
adapted to the particular needs of evaluating plans.

Related Work
Combination of planning and learning is an area of active
research, in addition to the extensive amount of work being
done separately in those respective fields.

The first to mention is Dietterich & Flann (1995), which
presented results establishing conceptual similarities be-
tween explanation-based learning and reinforcement learn-
ing. In particular, they discussed how EBL can be used to
learn action strategies and provided important theoretical re-
sults concerning its applicability to this aim.

There has been significant amount of work done in learn-
ing about what actions to take in a particular situation. One
notable example is Khardon (1999), where author showed
important theoretical results about PAC-learnability of ac-
tion strategies in various models. In Moyle (2002) au-
thor discussed a more practical approach to learning Event
Calculus programs using Theory Completion. He used
extraction-case abduction and the ALECTO system in or-
der to simultaneously learn two mutually related predicates
(Initiates andTerminates) from positive-only observa-
tions. Recently, Könik & Laird (2004) developed a system
which is able to learn low-level actions and plans from goal
hierarchies and action examples provided by experts, within
the SOAR architecture.

The work mentioned above focuses primarily on learn-
ing how to act, without trying to reach conclusions in a
deductive way. In a sense, the results are more similar to
the reactive-like behaviour than to classical planning system,
with important similarities to the reinforcement learning.

One attempt to escape the trap of large search space has
been presented in Džeroski, Raedt, & Driessens (2001),
where relational abstractions are used to substantially reduce
cardinality of search space. Still, this new space is subjected
to reinforcement learning, not to a symbolic planning sys-
tem. A conceptually similar idea, but where relational rep-
resentation is actually being learned via behaviour cloning
techniques, is presented in Morales (2004).

Outside the domain of planning, there is a lot of important
research being done in the learning paradigm.

Recently, Colton & Muggleton (2003) showed several
ideas about how to learn interesting facts about the world,
as opposed to learning a description of a predefined concept.
A somewhat similar result, more specifically related to plan-
ning, has been presented in Fern, Yoon, & Givan (2004),
where the system learns domain-dependent control knowl-
edge beneficial in planning tasks.

From another point of view, Khardon & Roth (1995,
1997) presented a framework for learning done “specifically
for the purpose of reasoning with the learned knowledge,”
an interesting early attempt to move away from thelearning
to classifyparadigm, which appears to dominate the field of
machine learning.

Yet another track of research focuses on (deductive) plan-
ning, taking into account incompleteness of agent’s knowl-
edge and uncertainty about the world. Conditional plans,
generalised policies, conformant plans, universal plans are
the terms used by various researchers (Cimatti, Roveri, &
Bertoli, 2004; Petrick & Bacchus, 2004; van der Hoek &
Wooldridge, 2002; Bertoli, Cimatti, & Traverso, 2004) to
denote in principle the same idea: generating a plan which
is “prepared” for all possible reactions of the environment.
This approach has much in common with control theory, as
observed in Bonet & Geffner (2001) or earlier in Dean &
Wellman (1991). We are not aware of any such research that
would attempt to integrate learning.

Conclusions
We have presented an architecture for rational agents that
combine planning, deductive reasoning, inductive learning
and time-awareness in order to operate successfully in a dy-
namic environment. Our agent creates conditional, partial
plans, reasons about their consequences using an extension
of Active Logic with Situation Calculus features, and em-
ploys ILP learning to generalise past experience in order to
distinguish good plans from bad ones.

In this paper we report on our initial experiments with us-
ing PROGOL learning algorithm to identify bad plans early,
in order to save agent the (wasteful) effort of deliberating
about them. We analyse how the quality of learning de-
pends on the amount of additional, domain-specific knowl-
edge provided by the user. Finally, we show that successful
learning can result in a dramatic decrease of agent’s reason-
ing time.

Several ideas for future work have been mentioned
throughout the text, for example the need for a more effi-
cient planner, the ability of Deductor to prioritise most in-
teresting plans, allowing an agent to estimate its own rea-
soning progress and to consciously choose between deliber-
ation and acting, finally, learning rules for helping an Actor
choose the best plan. We want to reiterate, however, that
our next step will be to find learning algorithms better suited
for the particular needs of evaluating plans, since PROGOL
does not appear to be appropriate for it.

Acknowledgements
I would like to thank my supervisor,, for his input into
this work and for many discussions about the concepts of
rational agents in general, as well as for allowing me to work
on issues that genuinely interested me, even when it looked
(or, sometimes, still look) like they lead nowhere near the
PhD thesis I should be writing.

References
Bertoli, P.; Cimatti, A.; and Traverso, P. 2004. Interleaving execu-

tion and planning for nondeterministic, partially observable do-
mains. InEuropean Conference on Artificial Intelligence, 657–
661.

Bonet, B., and Geffner, H. 2001. Planning and control in artifi-
cial intelligence: A unifying perspective.Applied Intelligence
14(3):237–252.

Chong, W.; O’Donovan-Anderson, M.; Okamoto, Y.; and Perlis,
D. 2002. Seven days in the life of a robotic agent. InGSFC/JPL
Workshop on Radical Agent Concepts.

Cimatti, A.; Roveri, M.; and Bertoli, P. 2004. Conformant planning
via symbolic model checking and heuristic search.Artificial
Intelligence159(1-2):127–206.

Colton, S., and Muggleton, S. 2003. ILP for mathematical dis-
covery. In 13th International Conference on Inductive Logic
Programming.

Dean, T., and Wellman, M. P. 1991.Planning and Control. Morgan
Kaufmann.

Dietterich, T. G., and Flann, N. S. 1995. Explanation-basedlearn-
ing and reinforcement learning: A unified view. InInternational
Conference on Machine Learning, 176–184.

Džeroski, S.; Raedt, L. D.; and Driessens, K. 2001. Relational
reinforcement learning.Machine Learning43(1/2):7–52.

Elgot-Drapkin, J.; Kraus, S.; Miller, M.; Nirkhe, M.; and Perlis, D.
1999. Active logics: A unified formal approach to episodic rea-
soning. Technical Report CS-TR-4072, University of Maryland.

Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-specific
control knowledge from random walks. InInternational Con-
ference on Automated Planning and Scheduling.

Khardon, R., and Roth, D. 1995. Learning to reason with a re-
stricted view. InWorkshop on Computational Learning Theory.

Khardon, R., and Roth, D. 1997. Learning to reason.Journal of
the ACM44(5):697–725.

Khardon, R. 1999. Learning to take actions.Machine Learning
35(1):57–90.

Könik, T., and Laird, J. E. 2004. Learning goal hierarchiesfrom
structured observations and expert annotations. InILP.

Morales, E. F. 2004. Relational state abstractions for reinforcement
learning. InICML-04 Workshop on Relational Reinforcement
Learning.

Moyle, S. 2002. Using theory completion to learn a robot naviga-
tion control program. InILP.

Muggleton, S. 1995. Inverse entailment and Progol.New Genera-
tion Computing, Special issue on Inductive Logic Programming
13(3-4):245–286.

Nowaczyk, S. 2006. Partial planning for situated agents based
on active logic. InWorkshop on Logics for Resource Bounded
Agents, ESSLLI 2006.

Petrick, R. P. A., and Bacchus, F. 2004. Extending the knowledge-
based approach to planning with incomplete information and
sensing. InInternational Conference on Automated Planning
and Scheduling, 2–11.

Purang, K.; Purushothaman, D.; Traum, D.; Andersen, C.; and
Perlis, D. 1999. Practical reasoning and plan execution with
active logic. In Bell, J., ed.,Proceedings of the IJCAI-99 Work-
shop on Practical Reasoning and Rationality, 30–38.

Reiter, R. 2001.Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. The MIT
Press.

Russell, S., and Norvig, P. 2003.Artificial Intelligence: A Modern
Approach. Prentice Hall Series in AI, 2nd edition.

van der Hoek, W., and Wooldridge, M. 2002. Tractable multiagent
planning for epistemic goals. InProceedings of the First In-
ternational Conference on Autonomous Agents and Multiagent
Systems (AAMAS).

