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Department of Computer Science
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Abstract

This paper presents an investigation of rational agents that have limited
computational resources and that can interact with their environments. We
analyse how such agents can combine deductive reasoning using domain
knowledge and inductive learning from past experiences, while remaining
time-aware in a manner appropriate for beings situated in a dynamic uni-
verse. In particular, we consider how they can create and reason about par-
tial plans, choose and execute the best ones of them — in such way as to
acquire the most knowledge. We also discuss what are the different types
of interactions with the world and how they can influence agent’s ability to
consciously direct its own learning process.

1 Introduction
In our research we are interested in building rational agents that can interact with
their environment. In order to be practically useful, such agents should be mod-
elled as having bounded computational resources. Moreover, since they are sit-
uated in a dynamic world, they need to be aware of the notion oftime — in
particular, that their reasoning process is not instantaneous. On the other hand,
such agents have the possibility to acquire important knowledge by observing the
environment surrounding them and by analysing their past interactions with it.

This paper focuses on discussion how reasoning machinery ofsuch agents
can adapt to various models of interaction with the world. Wealso present how

∗This is an extended version of paper submitted to Student session on ESSLLI 2006, com-
bined with some ideas presented at IJCAI 2005 Workshop on Planning and Learning in A Priori
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such rational agents can deal with planning in domains wherecomplexity makes
finding complete solutions intractable. Clearly, it is often not realistic to expect
an agent to be able to find a total plan which solves a problem athand. Therefore,
we investigate how an agent can create and reason aboutpartial plans. By that
we mean plans which bring it somewhat closer to achieving thegoal, while still
being simple and short enough to be computable in reasonabletime. Currently
we mainly focus on plans which allow an agent to acquire additional knowledge
about the world.

By executing such “information-providing” partial plans,an agent can greatly
simplify subsequent planning process — it no longer needs totake into account
the vast number of possible situations which will be inconsistent with newly ob-
served state of the world. Thus, it can proceed further in a more effective way, by
devoting its computational resources to more relevant issues.

If the environment is modelled sufficiently well (for example, if a simulator
exists), the agent may have a high degree of freedom in exploring it and in decid-
ing how to interact with it. It may be possible to gain information that the agent
would not be able to, by itself, observe directly. In many domains it is signifi-
cantly easier to build and employ a simulator than to analytically predict results
of complex interactions. In other cases, for example when the agent is a robot
situated in an unknown environment, it must learn “in the wild” and be aware that
the actions it executes are final: they do happen and there is no way of undoing
them, other than performing, if possible, a reverse action.

In order to accommodate all of the above we use a variant of Active Logic
(Elgot-Drapkinet al. 1999) as agent’s reasoning formalism. It was designed for
non-omniscient agents and has mechanisms for dealing with uncertain and con-
tradictory knowledge. We believe that Active Logic is a goodreasoning technique
for versatile agents, as it has been successfully applied toseveral different prob-
lems, including some in which planning plays a very prominent role (Puranget al.
1999). Moreover, in order to be able to intentionally directits own learning pro-
cess, the agent needs to reason about its own knowledge and lack of it — thus, its
logic needs to be augmented with epistemic concepts (Faginet al.1995).

In other words, our agents are supposed to combine deductiveand inductive
reasoning with time-awareness. We believe that the interactions among those three
aspects are crucial for developing truly intelligent systems. It is not our goal to
analyse strict deadlines or precise time measurements (although we do not ex-
clude a possibility of doing that), but rather to express that a rational agent needs
the ability to reason about committing its resources to various tasks (Chonget al.
2002).



2 Wumpus Game
The example problem we will be using through this paper is a well-known game
of Wumpus, a common testbed for intelligent agents. In its basic form, the game
takes place on a board through which an player is allowed to move freely. A beast
called Wumpus occupies one, initially unknown, square. Agent’s goal is to kill the
creature, a task that can be achieved by shooting an arrow on that square. Luckily,
Wumpus is a smelly creature, so the player always knows if themonster is nearby.
Unfortunately, not in which direction, exactly. At the sametime, when walking
around, the player can get eaten by the monster if he stumblesacross it.

This game is concise enough to be explained easily, but finding a solution
is sufficiently complex to illustrate the issues we want to emphasise. We look
at it as one instance of a significantly broader class of problems, along the lines
of General Game Playing, where an agent accepts a formal description of an
arbitrary game and, without further human interaction, canplay it effectively.

3 Agent Architecture
We use a simple architecture for our agent, as presented in Fig. 1. It consists of
three main elements, corresponding to the three main tasks of the agent.

The Deductor reasons about world, possible actions and whatcould be their
consequences. Its main aim is to generate plans applicable in current situation
and predict — at least as far as past experience, imperfect domain knowledge
and limited computational resources allow — effects each ofthem will have, in
particular what new knowledge can be acquired.

The Actor is responsible for overseeing the reasoning process, mainly for in-
troducing new observations into the knowledge base and for choosing plans for
execution. Basically, it decideswhento switch from deliberation to acting, and
which of the plans under consideration to execute.

These two modules form the core of the agent. By creating and executing a
sequence of partial plans our agent moves progressively closer and closer to its

Deductor

Actor

Plan

Observation

LearningGame history

Figure 1: The architecture of the system.



goal, until it reaches a point where a solution can be directly created by Deductor.
The learning module is necessary in order to ensure that the plans agent chooses

for execution are indeed “good” ones. After the game is over,regardless of
whether the agent has won or lost, learning system inductively generalises ex-
perience it has gathered — attempting to improve Deductor’sand Actor’s per-
formance. Our goal is to use the learned information to fill gaps in the domain
knowledge, to figure out generally interesting reasoning directions, to discover
relevant subgoals and, finally, to more efficiently select the best partial plan.

4 Logical Reasoning
The language used by Deductor is the First Order Logic augmented with Situation
Calculus mechanisms. Within a given situation, knowledge is expressed using
standard FOL. In particular, we do not put any limitations onthe expressiveness
of the language. PredicateKnows describes knowledge of the agent, e.g.,

Knows[ smell(a) ↔ ∃
x
(Wumpus(x) ∧ Neighbour(a, x)) ]

means:agent knows that it smells on exactly those squares which neighbour Wum-
pus’ position. The predicateKnows may be nested, although it is useful only in a
couple of specialised contexts. We use standard reificationmechanism for putting
formulae as parameters of a predicate (Reiter 2001).

In order to describe actions and changes, we employ a well-known Situation
Calculus approach, using a predicateHolds (situation, formula)to denote that the
formulaholds insituationand a predicateInforms (action, groundedwff)to denote
thatactionprovides information whethergroundedwffholds. We also introduce
function Result (situation, action), which returns the set of situations resulting
from applyingaction in situation.

In order to facilitate agent’s reasoning about changing world, we treat predi-
cateKnows in a similar way asHolds, i.e. we introduce an additional param-
eter denoting the current situation. Moreover, since the agent needs to reason
about knowledge-producing actions, we add yet another parameter, namely the
plan agent is going to execute. Therefore, the previous formula should actually be
written as:

Knows[s, p, smell(a) ↔ ∃
x
(Wumpus(x) ∧ Neighbour(a, x)) ]

and mean:agent knows that executing planp in situations leads to a new sit-
uation, such that it smells on exactly those squares which neighbour Wumpus’
position. This particular formula is an universal law of the world, valid regard-
less of the chosens andp, but many interesting ones — e.g. “Wumpus(a)” or
“Knows[smell(b)]” — are true only for specifics andp.



As we mentioned earlier, the agent employs Active Logic — a formalism in-
tended to describe the deduction as an ongoing process, as opposed to character-
ising just some static, fixed-point consequence relation. To this end, it annotates
every formula with a time-stamp (usually an integer) of whenit was first derived,
incrementing the label with every application of an inference rule:

i : a, a → b

i + 1 : b

Additional features which are available in AL and importantfor this work in-
clude theNow predicate, true only during current time point (i.e., “i : Now(j)”
is true for alli = j, but false for alli 6= j) and theobservation function, deliv-
ering axioms that are valid since a specific point in time. They can be used to
naturally model agent acquiring new knowledge from the environment, including
changes which are external to the agent. This way AL lifts twoimportant lim-
itations of the classical Situation Calculus. Finally, thelogic has provisions for
dealing with contradictory knowledge, useful when agent learns something which
is not completely correct and that later conflicts with incoming observation.

The predicateNow makes it possible to reason about passing time and, com-
bined with observation function delivering knowledge about external events, al-
lows the agent to remain responsive during its deliberations. This way both De-
ductor and Actor can keep track of how the reasoning is progressing and make
informed decisions about balancing thinking and acting.

The plans agent reasons about consist of a concatenation of classical and con-
ditional actions, the latter of the form(predicate ? action1 : action2), with the
usual meaning thataction1 will be executed ifpredicate holds, andaction2 will
be executed otherwise. For a well-developed discussion of other possible ways of
representing conditional partial plans and of interleaving planning and execution
see, for example, Bertoli, Cimatti, & Traverso (2004)

One of the reasons we have chosen symbolic representation ofplans, as op-
posed to a policy (an assignment of value to each state–action pair) is that we
intend to deal with other types of goals than just reachability ones. For a discus-
sion of possibilities and rationalisation of why such goalsare interesting, see for
example Bertoliet al. (2003), where authors present a solution for planning with
goals described in Computational Tree Logic. This formalism allows to express
goals of the kind “value ofa will never be changed”, “a will be eventually restored
to its original value” or “value ofa, after timet, will always beb” etc.

To summarise, our agent uses AL to reason about its own knowledge, which
is very important in the Wumpus domain. Here, the main goal can be reduced to
“learn the position of Wumpus”, so active planning for knowledge acquisition is
crucial. Agent also requires an ability to compare what kindof information will
execution of each plan provide, in order to be able to choose the best one of them.



5 Actor
The Actor module supervises the deduction process and breaks it at selected mo-
ments, e.g., when it notices a particularly interesting plan or when it decides that
sufficiently long time has been spent on planning. It thenevaluatesexisting partial
plans and executes the best one of them. The evaluation process is crucial here,
and we expect the subsequent learning process to greatly contribute to its im-
provement. In the beginning, the choice may be done at random, or some simple
heuristic may be used. After execution of partial plan, a newsituation is reached
and the Actor lets the Deductor create another set of possible plans.

This is repeated as many times as needed, until the game episode is either won
or lost. Losing the game clearly identifies bad choices on thepart of the Actor and
leads to an update of the evaluation function.

Winning the game also yields feedback that may be used for improving this
function, but it also provides a possibility to (re)construct a complete plan, i.e. one
which starts in the initial situation and ends in a winning state. If such a plan can
be found, it may be subsequently used to quickly solve any problem instance for
which it is applicable. Moreover, even if such plan is not directly applicable, an
Actor can use it when evaluating other plans found by the Deductor. Those with
structure similar to the successful one are more likely to beworthwhile.

6 Learning
When analysing learning module, it is important to keep in mind that our agent
has a dual aim, akin to the exploration and exploitation dilemma in reinforcement
learning. On one hand, it wants to win the current game episode, but at the same
time it needs to learn as much general knowledge as possible,in order to improve
its future performance.

Currently we are mainly investigating the learning module from Actor’s per-
spective — using ILP to evaluate quality of partial plans is,to the best of our
knowledge, a novel idea. One issue is that work on ILP has beendealing almost
exclusively with the problem ofclassification, while our situation requiresevalu-
ation. There is no predefined set of classes into which plans shouldbe assigned.
What our agent needs is a way to choose thebestone of them.

For now, however, we focus on distinguishing a special classof “bad” plans,
namely ones that lead to losing the game. Clearly some plans —those that in
agent’s experiencedid so — are bad ones. But not every plan which does not
cause the agent to lose is agoodplan. Further, not every plan that leads towinning
a game is a good one. An agent might have executed a dangerous plan and win
only because it has been lucky.

Therefore, we define as positive examples those plans which lead, or can be
proven topossiblylead, to the defeat. On the other hand, those plans which can



be proven tonevercause defeat are negative examples. There is a third class of
plans, when neither of the above assertions can be proven. Weare working on
how to use such examples in learning most effectively.

Nevertheless, this is only the beginning. After all, in manysituations a more
“proactive” approach than simplenot-losingis required. One promising idea is to
explore the epistemic quality of plans: an agent should pursue those which provide
the most important knowledge. Another way of expressing distinction between
good and bad partial plans, one we feel can give very good results, is discovering
relevant subgoals and landmarks, as in Hoffmann, Porteous,& Sebastia (2004).

7 Environment Interaction
One of the main contributions of our research lies in the “consciousness” of in-
teractions between an agent and its environment, conductedin such a way as to
maximise the knowledge that can be obtained. In particular,an agent is facing, at
all times, the exploration versus exploitation dilemma, i.e., it both needs to gather
new knowledgeand to win the current game episode.

In order to facilitate such reasoning, our agent requires anability to both act
in the world and to observe it. Finally, it needs to consider its own knowledge and
how it will (or can) change in response to various events taking place in the en-
vironment. In different domains and applications different models of interactions
with the world are possible.

The most unrestrictive case is a simulator, where an agent has complete con-
trol over the (training) environment. It can setup an arbitrary situation, execute
some actions and observe the results. Such a scenario is common in, for example,
physical modelling, where it is often much easier to simulate things than to predict
their behaviour and interactions. In a similar spirit, it may be easier for our agent
to “ask the environment” about validity of some formula thanto prove it.

If agent’s freedom is slightly more restricted, it is possible that it is not allowed
to freely change the environment, but can “try out” several plans in a given situ-
ation. For example, the agent may provide a set of plans and receive an outcome
for each of them. Alternatively, it may store some opaquesituation identifierso
that it can revisit the same situation at later time. This model is also suitable for
agents that do not have perfect knowledge of the world, as the“replay” capability
does not assumethe agentis able to fully reconstruct the situation or knows the
state of the world completely.

In our opinion, this is the most interesting setting: it gives the agent sufficient
freedom to allow it to achieve interesting results and at thesame time is not, in
many domains, overly infeasible. On the other hand, we are working on ways
in which this setting could be made even more practical — one idea is having
an agent accept the fact that in several replays “the same” situation could vary
slightly. For example, physical agent might request an operator to restore previous



state of the world: it would not really be identical, but it may be sufficiently
close. Alternatively, in some applications, only a subset of situations may be
“replayable” — only those, for example, that an agent can restore, with required
tolerance, all by itself.

In most applications, however, the agent is only able to influence its own ac-
tions and have no control whatsoever over the rest of the world. This is also the
most suitable model for anautonomousphysical agent. In such case, the envi-
ronment will irreversibly move into the subsequent state upon each agent’s action
(or any other event), leaving it no option but to adapt. It maystill be interesting,
in some situations, to substitute acting for reasoning, butthe agent needs to be
aware that once acted upon, the current situation will be gone, possibly forever. It
thus needs to consider if saving some deduction effort is indeed the best possible
course of action, or if doing something else instead would bemore advantageous.

Finally, we can imagine a physical agent situated in adangerousenvironment,
where it is not even plausible for it to freely choose its actions — it needs to, first,
assert that an action is reasonably safe. In this case, unlike the previous one, a
significant amount of reasoningneedsto be performed before every experiment.

As an orthogonal issue, sometimes it is feasible for an agentto execute an
action, observe the results, reason about them and figure outthe next action to
perform. But in many applications the “value” of time variessignificantly. There
are situations where an agent may freely spend its time meditating, and there
are situations where decisions must be made quickly. For example, in RoboCup
robotic soccer domain, when the ball is in possession of a friendly player, the agent
just needs to position itself in a good way for a possible pass— a task which is
not too demanding and leaves agent free to ponder more “philosophical” issues.
On the other hand, when the ball is rolling in agent’s direction, time is of essence
and an agent better had plans ready for several most plausible action outcomes.

8 Related Work
Combination of planning and learning is an area of active research, in addition to
the extensive amount of work being done separately in those respective fields.

There has been significant amount of work done in learning about what ac-
tions to take in a particular situation. One notable exampleis Khardon (1999),
where author showed important theoretical results about PAC-learnability of ac-
tion strategies in various models. In Moyle (2002) author discussed a more practi-
cal approach to learning Event Calculus programs using Theory Completion. He
used extraction-case abduction and the ALECTO system in order to simultane-
ously learn two mutually related predicates (Initiates andTerminates) from
positive-only observations. Recently, Könik & Laird (2004) developed a system
which is able to learn low-level actions and plans from goal hierarchies and action
examples provided by experts, within the SOAR architecture.



The work mentioned above focuses primarily on learning how to act, with-
out focusing on reaching conclusions in a deductive way. In asense, the results
are somewhat more similar to the reactive-like behaviour than to classical plan-
ning system, with important similarities to the reinforcement learning and related
techniques.

One attempt to escape the trap of large search space has been presented in
Džeroski, Raedt, & Driessens (2001), where relational abstractions are used to
substantially reduce cardinality of search space. Still, this new space is subjected
to reinforcement learning, not to a symbolic planning system. A conceptually
similar idea, but where relational representation is actually being learned via be-
haviour cloning techniques, is presented in Morales (2004).

Recently, Colton & Muggleton (2003) showed several ideas about how to learn
interesting facts about the world, as opposed to learning a description of a pre-
defined concept. A somewhat similar result, more specifically related to plan-
ning, has been presented in (Fern, Yoon, & Givan 2004), wherethe system learns
domain-dependent control knowledge beneficial in planningtasks.

Yet another track of research focuses on (deductive) planning, taking into ac-
count incompleteness of agent’s knowledge and uncertaintyabout the world. Con-
ditional plans, generalised policies, conformant plans and universal plans are the
terms used (Bertoli, Cimatti, & Traverso 2004).

9 Conclusions
The work presented here is a discussion of an interesting track of research, rather
than a report on some concrete results. We have introduced anagent architecture
facilitating resource-aware deductive planning interwoven with plan execution
and supported by inductive, life-long learning. The particular deduction mech-
anism used is based on Active Logic, in order to incorporate time-awareness into
the reasoning itself. The plans created in deductive way areconditional, account-
ing for possible results of future actions, in particular information-gathering ones.

We intend to continue this work in several directions. Discovering subgoals
and subplans seems to be one of the most useful capabilities of human problem
solving and we would like our agent to invent and use such concept. In our ex-
ample domain a useful subgoal could be “First, find a place where it smells.” In
addition, Deductor should be able to conceive general rulesof rational behaviour,
such as “Don’t shoot if you don’t know Wumpus’ position”. Yetanother clear
advantage would be the ability to reuse a previously successful plan in a different
situation. Finally, domain experts often are an invaluablesource of knowledge
that the agent should be able to exploit, if possible.

The ideas above do not cover all the possible further investigations and exten-
sions of the proposed system; it is just a biased presentation of the authors’ own
interests and judgements.
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