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Abstract

This paper presents an investigation of rational agentshéae limited
computational resources and that can interact with their@mments. We
analyse how such agents can combine deductive reasoning dsmain
knowledge and inductive learning from past experienceslewbmaining
time-aware in a manner appropriate for beings situated ignamic uni-
verse. In particular, we consider how they can create arabreabout par-
tial plans, choose and execute the best ones of them — in saghasvto
acquire the most knowledge. We also discuss what are theretiff types
of interactions with the world and how they can influence #igeaability to
consciously direct its own learning process.

1 Introduction

In our research we are interested in building rational agtat can interact with
their environment. In order to be practically useful, sugkras should be mod-
elled as having bounded computational resources. Morgswere they are sit-
uated in a dynamic world, they need to be aware of the notiotined — in
particular, that their reasoning process is not instammasie On the other hand,
such agents have the possibility to acquire important kadge by observing the
environment surrounding them and by analysing their pastactions with it.
This paper focuses on discussion how reasoning machinesyaf agents
can adapt to various models of interaction with the world. aM® present how

*This is an extended version of paper submitted to Studesiosesn ESSLLI 2006, com-
bined with some ideas presented at IJCAI 2005 Workshop amitig and Learning in A Priori
Unknown or Dynamic Domains



such rational agents can deal with planning in domains wbengplexity makes
finding complete solutions intractable. Clearly, it is ofteot realistic to expect
an agent to be able to find a total plan which solves a probldrarad. Therefore,
we investigate how an agent can create and reason abotigl plans By that
we mean plans which bring it somewhat closer to achievingytied, while still
being simple and short enough to be computable in reasotiaide Currently
we mainly focus on plans which allow an agent to acquire autthd knowledge
about the world.

By executing such “information-providing” partial plares) agent can greatly
simplify subsequent planning process — it no longer needak® into account
the vast number of possible situations which will be incstesit with newly ob-
served state of the world. Thus, it can proceed further in eerafiective way, by
devoting its computational resources to more relevanessu

If the environment is modelled sufficiently well (for exarapif a simulator
exists), the agent may have a high degree of freedom in ergldrand in decid-
ing how to interact with it. It may be possible to gain infotmoa that the agent
would not be able to, by itself, observe directly. In many @ams it is signifi-
cantly easier to build and employ a simulator than to anzdjlyf predict results
of complex interactions. In other cases, for example whenatent is a robot
situated in an unknown environment, it must learn “in thefvédnd be aware that
the actions it executes are final: they do happen and them@ wsag of undoing
them, other than performing, if possible, a reverse action.

In order to accommodate all of the above we use a variant a/é&d&iogic
(Elgot-Drapkinet al. 1999) as agent’s reasoning formalism. It was designed for
non-omniscient agents and has mechanisms for dealing witértain and con-
tradictory knowledge. We believe that Active Logic is a goedsoning technique
for versatile agents, as it has been successfully appliedwveral different prob-
lems, including some in which planning plays a very promtmete (Puranget al.
1999). Moreover, in order to be able to intentionally dirgstown learning pro-
cess, the agent needs to reason about its own knowledgecknaf ih— thus, its
logic needs to be augmented with epistemic concepts (Fa@h1995).

In other words, our agents are supposed to combine dedwstitvénductive
reasoning with time-awareness. We believe that the inierescamong those three
aspects are crucial for developing truly intelligent syste It is not our goal to
analyse strict deadlines or precise time measurements(@h we do not ex-
clude a possibility of doing that), but rather to express gheational agent needs
the ability to reason about committing its resources tootggitasks (Chongt al.
2002).



2 Wumpus Game

The example problem we will be using through this paper is Bkvown game

of Wumpus, a common testbed for intelligent agents. In i®d#rm, the game
takes place on a board through which an player is allowed terfreely. A beast
called Wumpus occupies one, initially unknown, square.rdggoal is to kill the

creature, a task that can be achieved by shooting an arrolaabeduare. Luckily,
Wumpus is a smelly creature, so the player always knows ifittvester is nearby.
Unfortunately, not in which direction, exactly. At the satmae, when walking

around, the player can get eaten by the monster if he sturabless it.

This game is concise enough to be explained easily, but findisolution
is sufficiently complex to illustrate the issues we want topbasise. We look
at it as one instance of a significantly broader class of prab| along the lines
of General Game Playingwhere an agent accepts a formal description of an
arbitrary game and, without further human interaction, glary it effectively.

3 Agent Architecture

We use a simple architecture for our agent, as presentedjirlLFit consists of
three main elements, corresponding to the three main tdske agent.

The Deductor reasons about world, possible actions and ecddl be their
consequences. Its main aim is to generate plans applicalderient situation
and predict — at least as far as past experience, imperfeotitioknowledge
and limited computational resources allow — effects eacthem will have, in
particular what new knowledge can be acquired.

The Actor is responsible for overseeing the reasoning gaeainly for in-
troducing new observations into the knowledge base andhoosing plans for
execution. Basically, it decidashento switch from deliberation to acting, and
which of the plans under consideration to execute.

These two modules form the core of the agent. By creating aaduting a
sequence of partial plans our agent moves progressivedgicknd closer to its

Deductor Plan

Game historx Learning
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Figure 1. The architecture of the system.



goal, until it reaches a point where a solution can be diyexr#ated by Deductor.

The learning module is necessary in order to ensure thatahe pgent chooses
for execution are indeed “good” ones. After the game is ovegardless of
whether the agent has won or lost, learning system indugtiyeneralises ex-
perience it has gathered — attempting to improve Deductmt Actor’s per-
formance. Our goal is to use the learned information to figgga the domain
knowledge, to figure out generally interesting reasoningations, to discover
relevant subgoals and, finally, to more efficiently seleetlibst partial plan.

4 Logical Reasoning

The language used by Deductor is the First Order Logic autgdenith Situation
Calculus mechanisms. Within a given situation, knowledgexpressed using
standard FOL. In particular, we do not put any limitationstloa expressiveness
of the language. Predicaténows describes knowledge of the agent, e.g.,

Knows|[ smell(a) < 3,(Wumpus(z) A\ Neighbour(a, z)) |

meansagent knows that it smells on exactly those squares whigfhbheur Wum-
pus’ position The predicatd{nows may be nested, although it is useful only in a
couple of specialised contexts. We use standard reificatechanism for putting
formulae as parameters of a predicate (Reiter 2001).

In order to describe actions and changes, we employ a welkRrSituation
Calculus approach, using a predichl@lds (situation, formulajo denote that the
formulaholds insituationand a predicatinforms (action, groundedwft denote
thataction provides information whethegroundedwffholds. We also introduce
function Result (situation, action)which returns the set of situations resulting
from applyingactionin situation

In order to facilitate agent’s reasoning about changingldyave treat predi-
cate Knows in a similar way asHolds, i.e. we introduce an additional param-
eter denoting the current situation. Moreover, since thenageeds to reason
about knowledge-producing actions, we add yet anothempatex, namely the
plan agent is going to execute. Therefore, the previousudtamshould actually be
written as:

Knowsls,p, smell(a) < 3,(Wumpus(z) A Neighbour(a,x)) ]

and mean:agent knows that executing planin situations leads to a new sit-
uation, such that it smells on exactly those squares whieghbeur Wumpus’
position This particular formula is an universal law of the world]igaegard-
less of the choser andp, but many interesting ones — e.gW*umpus(a)” or

“ Knows|[smell(b)]” — are true only for specific andp.



As we mentioned earlier, the agent employs Active Logic —ranfdism in-
tended to describe the deduction as an ongoing processpaseaipto character-
ising just some static, fixed-point consequence relatianthis end, it annotates
every formula with a time-stamp (usually an integer) of witemas first derived,
incrementing the label with every application of an inferenule:

1: a,a—b
i+1: b

Additional features which are available in AL and importéotthis work in-
clude theNow predicate, true only during current time point (i.e.,: “Now(j)”
is true for alli = 7, but false for alli # j) and theobservation functiondeliv-
ering axioms that are valid since a specific point in time. yrban be used to
naturally model agent acquiring new knowledge from the mmrent, including
changes which are external to the agent. This way AL lifts important lim-
itations of the classical Situation Calculus. Finally, tbgic has provisions for
dealing with contradictory knowledge, useful when ageatrie something which
is not completely correct and that later conflicts with incogrobservation.

The predicateVow makes it possible to reason about passing time and, com-
bined with observation function delivering knowledge abexternal events, al-
lows the agent to remain responsive during its deliberatidrhis way both De-
ductor and Actor can keep track of how the reasoning is pesgng and make
informed decisions about balancing thinking and acting.

The plans agent reasons about consist of a concatenatitasefcal and con-
ditional actions, the latter of the foriipredicate 7 action; : actions), with the
usual meaning thatction; will be executed ifpredicate holds, anductions will
be executed otherwise. For a well-developed discussiothef possible ways of
representing conditional partial plans and of interlegypfanning and execution
see, for example, Bertoli, Cimatti, & Traverso (2004)

One of the reasons we have chosen symbolic representatjgars, as op-
posed to a policy (an assignment of value to each stateraptio) is that we
intend to deal with other types of goals than just reachatines. For a discus-
sion of possibilities and rationalisation of why such gaais interesting, see for
example Bertolet al. (2003), where authors present a solution for planning with
goals described in Computational Tree Logic. This fornmaladlows to express
goals of the kind “value o will never be changed”,&will be eventually restored
to its original value” or “value o#, after timet, will always beb” etc.

To summarise, our agent uses AL to reason about its own kage|evhich
is very important in the Wumpus domain. Here, the main goallmareduced to
“learn the position of Wumpus”, so active planning for kneddje acquisition is
crucial. Agent also requires an ability to compare what kahéhformation will
execution of each plan provide, in order to be able to chdusé¢st one of them.



5 Actor

The Actor module supervises the deduction process and ieakselected mo-
ments, e.g., when it notices a particularly interestingn@awhen it decides that
sufficiently long time has been spent on planning. It teesluate®xisting partial
plans and executes the best one of them. The evaluationgsrecerucial here,
and we expect the subsequent learning process to greattsibeda to its im-
provement. In the beginning, the choice may be done at randosome simple
heuristic may be used. After execution of partial plan, a sguation is reached
and the Actor lets the Deductor create another set of pesgiahs.

This is repeated as many times as needed, until the gamealepsseither won
or lost. Losing the game clearly identifies bad choices omp#reof the Actor and
leads to an update of the evaluation function.

Winning the game also yields feedback that may be used forowng this
function, but it also provides a possibility to (re)constra complete plan, i.e. one
which starts in the initial situation and ends in a winningtest If such a plan can
be found, it may be subsequently used to quickly solve anglpro instance for
which it is applicable. Moreover, even if such plan is noedtty applicable, an
Actor can use it when evaluating other plans found by the DedluThose with
structure similar to the successful one are more likely tavbehwhile.

6 Learning

When analysing learning module, it is important to keep imanthat our agent
has a dual aim, akin to the exploration and exploitationnalitea in reinforcement
learning. On one hand, it wants to win the current game episoat at the same
time it needs to learn as much general knowledge as possildgjer to improve

its future performance.

Currently we are mainly investigating the learning modutf Actor’s per-
spective — using ILP to evaluate quality of partial planstesthe best of our
knowledge, a novel idea. One issue is that work on ILP has Healing almost
exclusively with the problem aflassification while our situation requiresvalu-
ation. There is no predefined set of classes into which plans shmmubssigned.
What our agent needs is a way to chooseltbstone of them.

For now, however, we focus on distinguishing a special atdsbad” plans,
namely ones that lead to losing the game. Clearly some plartBese that in
agent’s experiencdid so — are bad ones. But not every plan which does not
cause the agent to lose igaodplan. Further, not every plan that leadssmimning
a game is a good one. An agent might have executed a dangdapuana win
only because it has been lucky.

Therefore, we define as positive examples those plans weath br can be
proven topossiblylead, to the defeat. On the other hand, those plans which can



be proven tmevercause defeat are negative examples. There is a third class of
plans, when neither of the above assertions can be proverar®\orking on
how to use such examples in learning most effectively.

Nevertheless, this is only the beginning. After all, in maityations a more
“proactive” approach than simptet-losingis required. One promising idea is to
explore the epistemic quality of plans: an agent shouldymuitisose which provide
the most important knowledge. Another way of expressingrdison between
good and bad partial plans, one we feel can give very goodtsemidiscovering
relevant subgoals and landmarks, as in Hoffmann, Port&8sgpastia (2004).

7 Environment Interaction

One of the main contributions of our research lies in the $oiousness” of in-

teractions between an agent and its environment, conduti®ech a way as to

maximise the knowledge that can be obtained. In particataggent is facing, at
all times, the exploration versus exploitation dilemme., iit both needs to gather
new knowledgendto win the current game episode.

In order to facilitate such reasoning, our agent requireahality to both act
in the world and to observe it. Finally, it needs to consitkepivn knowledge and
how it will (or can) change in response to various events taking place in the en-
vironment. In different domains and applications diffdremodels of interactions
with the world are possible.

The most unrestrictive case is a simulator, where an agentdraplete con-
trol over the (training) environment. It can setup an adbitrsituation, execute
some actions and observe the results. Such a scenario ismompior example,
physical modelling, where it is often much easier to sineuthings than to predict
their behaviour and interactions. In a similar spirit, ityri@e easier for our agent
to “ask the environment” about validity of some formula tharmprove it.

If agent’s freedom is slightly more restricted, it is po$sithat it is not allowed
to freely change the environment, but can “try out” sevelahg in a given situ-
ation. For example, the agent may provide a set of plans amivieean outcome
for each of them. Alternatively, it may store some opasiteation identifierso
that it can revisit the same situation at later time. This eldslalso suitable for
agents that do not have perfect knowledge of the world, as¢ipday” capability
does not assumiie agents able to fully reconstruct the situation or knows the
state of the world completely.

In our opinion, this is the most interesting setting: it gitke agent sufficient
freedom to allow it to achieve interesting results and atsdme time is not, in
many domains, overly infeasible. On the other hand, we anking on ways
in which this setting could be made even more practical — oe@ iis having
an agent accept the fact that in several replays “the sarmgitgin could vary
slightly. For example, physical agent might request anatpeto restore previous



state of the world: it would not really be identical, but it ynbe sufficiently
close. Alternatively, in some applications, only a subdesituations may be
“replayable” — only those, for example, that an agent catores with required
tolerance, all by itself.

In most applications, however, the agent is only able to @nfte its own ac-
tions and have no control whatsoever over the rest of thedwdrhis is also the
most suitable model for aautonomougphysical agent. In such case, the envi-
ronment will irreversibly move into the subsequent staterugach agent’s action
(or any other event), leaving it no option but to adapt. It ey be interesting,
in some situations, to substitute acting for reasoning,thetagent needs to be
aware that once acted upon, the current situation will be@gpaossibly forever. It
thus needs to consider if saving some deduction effort iseddhe best possible
course of action, or if doing something else instead woulthbee advantageous.

Finally, we can imagine a physical agent situated daagerougnvironment,
where it is not even plausible for it to freely choose its@usi— it needs to, first,
assert that an action is reasonably safe. In this case,euthiék previous one, a
significant amount of reasoningeeddo be performed before every experiment.

As an orthogonal issue, sometimes it is feasible for an atgeekecute an
action, observe the results, reason about them and figurtheutext action to
perform. But in many applications the “value” of time varggnificantly. There
are situations where an agent may freely spend its time atedjt and there
are situations where decisions must be made quickly. Fanpba in RoboCup
robotic soccer domain, when the ball is in possession oéadity player, the agent
just needs to position itself in a good way for a possible pasa task which is
not too demanding and leaves agent free to ponder more Suglucal” issues.
On the other hand, when the ball is rolling in agent’s dictitime is of essence
and an agent better had plans ready for several most plawsibbn outcomes.

8 Redated Work

Combination of planning and learning is an area of activeassh, in addition to
the extensive amount of work being done separately in thesgective fields.

There has been significant amount of work done in learningiabyat ac-
tions to take in a particular situation. One notable exangplkéhardon (1999),
where author showed important theoretical results abo@-Rarnability of ac-
tion strategies in various models. In Moyle (2002) authscdssed a more practi-
cal approach to learning Event Calculus programs using fiini@ompletion. He
used extraction-case abduction and the ALECTO system iardodsimultane-
ously learn two mutually related predicate:{tiates and T'erminates) from
positive-only observations. Recently, Konik & Laird (2DQdeveloped a system
which is able to learn low-level actions and plans from gaoatdrchies and action
examples provided by experts, within the SOAR architecture



The work mentioned above focuses primarily on learning howadt, with-
out focusing on reaching conclusions in a deductive way. $erese, the results
are somewhat more similar to the reactive-like behavioantto classical plan-
ning system, with important similarities to the reinforeamlearning and related
techniques.

One attempt to escape the trap of large search space has tesemtpd in
Dzeroski, Raedt, & Driessens (2001), where relationatrab8ons are used to
substantially reduce cardinality of search space. Stiks, mew space is subjected
to reinforcement learning, not to a symbolic planning systeA conceptually
similar idea, but where relational representation is dlstieeing learned via be-
haviour cloning techniques, is presented in Morales (2004)

Recently, Colton & Muggleton (2003) showed several ideasitbow to learn
interesting facts about the world, as opposed to learningsargtion of a pre-
defined concept. A somewhat similar result, more specijicallated to plan-
ning, has been presented in (Fern, Yoon, & Givan 2004), winereystem learns
domain-dependent control knowledge beneficial in plantasgs.

Yet another track of research focuses on (deductive) ptanmaking into ac-
count incompleteness of agent’s knowledge and uncertabuwyt the world. Con-
ditional plans, generalised policies, conformant plars @mversal plans are the
terms used (Bertoli, Cimatti, & Traverso 2004).

9 Conclusions

The work presented here is a discussion of an interestiol tresearch, rather
than a report on some concrete results. We have introducadeant architecture
facilitating resource-aware deductive planning interarowith plan execution
and supported by inductive, life-long learning. The patac deduction mech-
anism used is based on Active Logic, in order to incorpolate4awareness into
the reasoning itself. The plans created in deductive wag@nmditional, account-
ing for possible results of future actions, in particuldommation-gathering ones.

We intend to continue this work in several directions. Disaing subgoals
and subplans seems to be one of the most useful capabilittes@an problem
solving and we would like our agent to invent and use sucheoindn our ex-
ample domain a useful subgoal could be “First, find a placereviiesmells.” In
addition, Deductor should be able to conceive general nfleational behaviour,
such as “Don't shoot if you don’t know Wumpus’ position”. Yahother clear
advantage would be the ability to reuse a previously sutdgdan in a different
situation. Finally, domain experts often are an invaluaddarce of knowledge
that the agent should be able to exploit, if possible.

The ideas above do not cover all the possible further ingattins and exten-
sions of the proposed system; it is just a biased presentatithe authors’ own
interests and judgements.
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