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ABSTRACT

Today more and more functionality is included in embedded systems,

resulting in an increased system complexity. Existing design method-

ologies and design tools are not adequate to deal with this increase in

complexity. To overcome these limitations application specific design so-

lutions are more common. In this thesis we presents such solutions for

real-time image processing. This work is part of the WITAS Unmanned

Aerial Vehicle (UAV) project. Within this project we are developing a

prototype UAV.

We introduce Image Processing Data Flow Graph (IP-DFG), a data

flow based computational model that is suitable for modelling complex

image processing algorithms. We also present IPAPI, a run-time system

based on IP-DFG. We use IPAPI for early evaluation of image process-

ing algorithms for the vision subsystem of the WITAS UAV prototype.

This is carried out via co-simulation of IPAPI with the other subsys-

tems, such as the reasoning subsystem and helicopter control subsys-

tem. We also show how IPAPI can be used as a framework to derive an

optimised implementation for the on-board system.

FPGAs can be used to accelerate the image processing operations.

Time multiplexed FPGAs (TMFPGAs) have shown potential in both re-

ducing the price of FPGAs and in hiding the reconfiguration time for dy-

namically reconfigured FPGAs. To use a TMFPGA, the operation must

be temporally partitioned. We present an algorithm that does temporal

partitioning on a technology mapped net-list. This makes it possible to

use excising design tools when developing for TMFPGAs.
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CHAPTER 1

INTRODUCTION

This thesis addresses embedded system design and particularly with

questions related to design of vision systems for Unmanned Aerial Ve-

hicles (UAVs). The focus is on systems dedicated for complex image

precessing. We present contributions in several parts of the design

process of such systems. This thesis presents a computational model

suitable for complex image processing algorithms, a framework based

on this computational model which supports the engineers when de-

riving an optimised implementation and an algorithm for automating

design when targeting time multiplexed FPGAs. The thesis addresses

tool support and design automation, rather than design methodology.

1.1 Motivation

An embedded system is a system dedicated for a particular application,

as opposed to a general purpose system that is designed to run almost

any application. Since an embedded system is designed for a particular

application, it can be tailored for this application, resulting in a system

more suitable for the task compared to a general system. For example

a system with lower price and lower power consumption.

The design process of embedded systems is attaining an increas-

ing interest. One reason for this is the increasing productivity gap. It

is well known that the manufacturing capacity is expected to increase

faster than the design capacity. This has been the situation for some

years now. There already is a difference in system complexity of what

can be manufactured compared to what can be developed. Increasing
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the development productivity will be the main challenge for researchers

in the near future. One approach to increase the productivity in the de-

sign process is to improve the individual design steps. This includes

better design tools, i.e. faster simulators and more accurate estimators.

With better design tools, a larger part of the design process can be auto-

mated. Decisions can be based on more accurate data, which will lead

to fewer iterations of the design steps. This approach can give a re-

spectable increase in productivity, but it will not give the leap in design

productivity that is needed to solve the productivity gap problem. It

is believed that a leap in productivity can be achieved by allowing the

designer to work on a higher level of abstraction, in a computational

model and language suitable for the application he is currently work-

ing on. The most suitable computational model and language will most

likely be different for different parts of a system. To be able to use this

approach tools that support multiple models of computation are needed.

Those can be tools from different vendors cooperating trough an open

interface.

A consequence of the productivity gap is that the development cost

is an increasing part of the total system cost. One approach to decrease

the development cost of a system is to use platforms. For an application

area a platform is developed and will be used for several products in

that area. The development cost of the platform can be amortised over

a larger number of products and units. The platform is likely to be

more complex than the individual products. To manage this approach

it is important that the developer can manage this complexity. Again

a promising approach to this problem is to work with computational

models and languages suitable for the application. Also it is important

to have design tools that support platforms, encouraging for example

component and architecture reuse.

Time to market is another aspect of embedded system development

that also needs attention. It is important to release a product at the

right time. If it is released to early, the market is not ready or the prod-

uct will be too expensive. If a product is released late it cannot compete

with similar products on the market. This time window can be as short

as a few months. Usually it is more important to be first on the mar-

ket than to have the best product so, in this situation, the development

time reduction is the main challenge for the developers. Increasing the

development productivity can lead to decreased development time, but

there are other approaches too. Development time can be decreased

by increase parallelism in the design process. Hardware/software co-
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design is one approach which achieves this, co-simulation is another.

The underlying idea is to work on different subsystems in parallel rather

than in sequence. For maximum flexibility, design tools should be open

and able to interact with other tools from different vendors. For exam-

ple, it should be possible to test the implementation of one subsystem

by co-simulation with an abstract model of another subsystem.

To summarise embedded system are becoming more complex as more

functionality is included in these systems. The existing design methods

and tools are not adequate to deal with this increase in complexity. One

promising approach for overcoming the complexity problem is to use

application specific computational models. This requires heterogeneous

designs and, hence, tools supporting this co-design approach. Complex-

ity is not the only problem when designing embedded systems, other

issues, such as time to market, also must be considered.

This thesis attempts to solve some of these problems by introduc-

ing a computational model and a run-time system/simulator for vision

applications.

1.2 Contributions

In this thesis we present our work within the WITAS1 Unmanned Aerial

Vehicle (UAV) project. The work focuses on designing image processing

systems and improving the design process of such systems. Our work

covers a large part of the design process, form the early abstract mod-

elling to generating executables. There are four main contributions:

• The development of a computational model, Image Processing Data

Flow Graph (IP-DFG), tailored for modelling and implementa-

tion of complex image processing algorithms. IP-DFG is based

on boolean data flow graphs which have been extended with hier-

archy and explicit support for iterations.

• Integration of IP-DFG with a run-time system called Image Pro-

cessing Application Program Interface (IPAPI). IPAPI is used in

the WITAS project to co-simulate the vision subsystem with the

other subsystems in the WITAS simulator. IPAPI and the WITAS

simulator is used to evaluate different image processing algorithms.

The original idea of IPAPI comes from Patrick Doherty and Klas

1WITAS is an acronym for the Wallenberg laboratory for research on Information Tech-
nology and Autonomous Systems
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Nordberg, both at Linköping University. We have actively partici-

pated in the development of IPAPI, but the majority of the imple-

mentation of the memory management and scheduling layer has

been done in the computer vision laboratory in ISY, Linköping

University. Our main contribution is the underlying computa-

tional model and the data processing layer.

• IPAPI evaluation. We show that IPAPI is a good framework for

developing efficient implementations of complex image processing

algorithms. This involves the whole design process, from the early

implementation independent model to the optimised implementa-

tion. We show that by using IPAPI the engineer can focus on the

inner data processing loops and optimise this parts for the target

architecture, while the memory management and scheduling is

automatically managed by IPAPI.

• An algorithm for temporal partitioning. Temporal partitioning is

a new design step needed when using Time Multiplexed FPGAs

(TMFPGAs). The temporal partitioning is fully automated and it

is fast, which makes it suitable for large designs. The method can

be used to implement IP-DFG applications on TMFPGAs.

The rest of this thesis is organised as follows. In chapter 2 we give

our view of embedded systems and we discus the design process for em-

bedded systems. An overview of existing computational models based

on data flow graphs are presented in chapter 3. The computational

model IP-DFG is introduced in chapter 4. In that chapter we also give

a brief overview of the WITAS project. The implementation of IPAPI

and its optimisation for the PowerPC processor is discussed in chapter

5. In chapter 6 the partitioning algorithm for TMFPGAs is described.

Conclusions are presented in chapter 7.



CHAPTER 2

BACKGROUND

In this chapter we discus our view of embedded systems. We discuss

the design process and different ways to improve it. We also relate our

contributions presented in this thesis to the design process.

2.1 Embedded System Design

An embedded system is a system specially designed for a particular ap-

plication. This is different from a general purpose systems that is de-

signed to run any application. Since an embedded system is designed

for a particular application it can be tailored for this application. This

allows more aggressive optimisations and specialisation, resulting in a

system more suitable for the task. This can lead to systems with lower

price and lower power consumption, which is important for mobile ap-

plications.

Over the years, people have proposed different definitions of what

an embedded system is. Instead of giving an exact definition, which is

hard, we give two characteristics that all embedded systems have in

common. An embedded system is a dedicated system and it is of mod-

erate complexity. For example a mobile phone has moderate complexity

and is designed to make phone calls, thus an embedded system. A nu-

clear power plant is a dedicated system, but it is a complex system and

we do not consider it to be an embedded system even though it has sev-

eral characteristics in common with embedded systems. In this thesis

we focus on digital embedded system, that is embedded systems build

from digital components such as CPUs, memories, and ASICs.
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Since an embedded system is a dedicated system of moderate com-

plexity, people might be mistaken and think that the design of embed-

ded systems is an easy task, the designer is supposed to implement

a specified functionality in a device. However, in reality the situation

is much more complicated. There are many other factors, besides the

functionality, that must be considered. For example, for a mobile phone

the size, price and the standby time are the main selling factors, not

only the ability to use it as a phone. The main problem is finding the

implementation with the best trade-off between the selling factors.

In the beginning of the design process, the functionality of an em-

bedded system can be very abstract, for example to “make a phone call”.

In the early design phases, the behaviour of the embedded system are

made more concrete. This is referred to as behavioural modelling.

The main purpose of the behavioural modelling is to extract prop-

erties, such as computation and memory requirements, to base the ar-

chitecture selection on. During design space exploration, the space of

different architectures is searched for the architecture with the small-

est cost. Here cost does not only mean money, but all beneficial as-

pects, such as power consumption and time to market, can be included

in the cost. During design space exploration the system architecture is

decided, that is which CPUs, ASICs, FPGAs and memory components

will be used and how they are communicating. The functions of the be-

havioural model is mapped to the different components and it is decided

how these components are communicating. (point to point links, busses

or networks)

After the architecture selection, the functionality that was mapped

to the different components needs to be implemented. The implementa-

tions are much more detailed than the behavioural model, and usually

contains parts that are specific for a particular processor or ASIC. For

example software code can use accelerators only present on the target

CPU, such as the AltiVec unit on the PowerPC processor or the SSE

unit on an Pentium4 processor, or an ASIC implementation can used a

hard IP block only usable in a certain fabrication process.

The design process is shown in figure 2.1. The different activities are

overlapping. For example it can happen that during implementation

some estimates that was done during the design space exploration turn

out to be incorrect. In this situation the designer might be forced to go

back and modify the architecture by adding more memory, processing

power, or do a different function mapping.

To simplify the designer’s work and to improve their productivity, it
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level of

abstraction

time

Behaviour Modelling

Design Space Exploration

Implementation

Figure 2.1: Embedded system design process.

is important to have a good tool support for the different design steps.

During the behavioural modelling, a simulator is needed to test the be-

havioural model. For the design space exploration, estimates from the

behavioural models are needed. Tool support for searching the design

space is also needed. In some situations the implementation can be au-

tomatically derived from the behavioural model using code generation.

Compilers and logic synthesis tools are of course also used during the

implementation step.

2.2 Image Processing Algorithm Development

By far the most common way to develop image processing algorithms is

using Matlab. Matlab is a tool for numerical computations on matrices

and vectors. The implementation of the matrix and vector operations is

very efficient for a desktop computers, which allows fast and easy fine

tuning of the image processing algorithms. Matlab gives much support

to the developer of the image processing algorithm. However, it does

not give much support for the system developer. It is hard to extract

certain properties of the algorithm, such as computational and mem-

ory requirements, from its Matlab implementation. Further, to get an

efficient implementation for the final system, the image processing al-

gorithm usually have to be reimplemented from scratch in either C/C++

or VHDL, depending on whether it is mapped to software or hardware.
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2.3 Improving the Design Process

Within the research community and among tool vendors, much effort is

put into improving the the design process of embedded systems. One

way to do this is to improve the quality of existing tools. For example, if

better estimates could be derived from the behavioural model an archi-

tecture with lower cost, that matches the actual design requirements

more closely can be derived during design space exploration.

Another approach is to increase the productivity of the engineers.

This can be achieved by allowing the engineers to work on a higher

level of abstraction or in a computational model and language more

suitable for the functionality they are describing. IP-DFG presented in

chapter 4 is an example of a computational model specially designed

for the application area of complex image processing. Image processing

algorithms are commonly built from well known operations, such as

convolution, and a few algorithm specific operations. Using IP-DFG, an

engineer can create a behavioural model of an algorithm using library

actors for the well known functions and only implement the algorithm

specific actors.

IPAPI, which is presented in chapter 5, is a framework for image

processing tasks meant to be used during the whole design process.

IPAPI simplifies the transition from the behavioural model to an opti-

mised implementation. During behavioural modelling, it can execute

the image processing algorithms. Its open design makes it easy to use

for co-simulation with other simulators modelling other parts of the sys-

tem. The data processing layer of IPAPI can be stepwise refined to an

optimised implementation fully utilising all features of the target archi-

tecture. The memory management and scheduling layer maintain the

structure and behaviour of the the image processing tasks, allowing the

engineers to focus on the computational intensive data processing loops.

The process of optimising the image processing algorithms within the

WITAS project for the AltiVec unit in the PowerPC processor are de-

scribed in chapter 5. The memory and scheduling layers of IPAPI can

be replaced. This makes it possible to optimise scheduling and memory

usage for the particular set of image processing algorithms used within

a system.

When new hardware technology is introduced, new design automa-

tion algorithms are needed for tools that make it possible to tailor the

new technology in existing design flows. TMFPGA is a new technol-

ogy and in chapter 6 we present an algorithm for temporal partitioning
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of technology mapped net-lists. Temporal partitioning is needed when

when targeting TMFPGAs using a traditional FPGA synthesis chain.
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CHAPTER 3

COMPUTATIONAL MODELS

In this chapter, data flow oriented models of computation are presented.

Data flow graphs (DFGs) are suitable for modelling many functions in

the area of signal analysis. We discuss the expression power of different

variants of DFGs. We also show pitfalls and problems with the general

DFG model and how this is reduced with more restrictive variants. A

method to analyse data flow graphs is also presented.

3.1 Data Flow Graphs

Data Flow Graph is a model of computation suitable for modelling op-

erations on streams of data. It has a widespread use in the signal pro-

cessing community, both in academy and in industry. A DFG is a special

case of a Khan process network, a computational model where concur-

rent processes are communicating through unidirectional FIFO chan-

nels. Reads from a channel are blocking and writes are non-blocking.

For a theoretical description of DFGs see [LP95]. A process in a DFG is

called an actor. Actors communicate through unidirectional unbounded

FIFO channels. Each actor is executed by repeated firings, during

which the actor reads tokens from its input channels and produces to-

kens on its output channels. A token represents a quantum of data. A

DFG is usually visualised by a graph, where the actors are represented

by nodes and communication channels by arcs.

The DFG model captures the inter-behaviour of actors. It models the

communication between actors and decides when actors can fire. The

DFG model ensures the synchronisation enforced by data dependencies
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among the actors. A DFG actor is specified by two parts, a firing rule

and a firing function. The firing of an actor is data driven and the firing

rule specifies which tokens must be present for an actor to fire. In the

general DFG model a firing rule is only a trigger for the firing of an

actor. More refined DFG models also include constraints on the token

production of the actor in the firing rule, see section 3.2.2 and 3.2.3.

The firing function of an actor defines the function called when an actor

fires. The firing function is usually not described using the DFG model

of computation, instead the function is commonly implemented in an

imperative language like C or Java.

3.1.1 Firing Rules

The firing of actors are data driven. Each actor has a set of firing rules

that decides when an actor can fire. A firing rule is a pre-fire condition

and does not cover the effect of a firing, i.e. tokens production on out-

puts. Later in this chapter firing rules will be extended also to cover

post-fire conditions. A firing rule specifies a token pattern for the head

of the actors input channels. A token pattern is a sequence of values

and a wildcards. A wildcard is written ∗ and is matched by any token.

The empty sequence is called bottom and is written ⊥. Observe that a

pattern is matched against the leading tokens in a FIFO queue, so ⊥
is satisfied by a queue containing zero or more tokens and not just the

empty queue. For example the pattern [true, 5, ∗] is matched by a queue

containing at least three tokens, the first token has the value true and

the second has the value 5. The third token can have any value, the

pattern only requests that it is present. In this thesis [ and ] are used

to represent a token sequence while { and } are used for representing a

set of sequences.

It is possible to create complex control structures by using several

firing rules for the actors in a DFG. For example the DFG in figure

3.1 models an if. . . then . . . else structure. There are two inputs to the

graph, one with control tokens and one with data tokens. Depending

on whether the control token is true or false the switch actor will for-

ward the corresponding data token to either the actor foo(·) or the actor

bar(·). The actor select will merge the token flows from foo(·) and bar(·)
in the correct order. The firing rules of select are {[true], [∗],⊥} and

{[false],⊥, [∗]}, the order of the inputs are {cntrol, T, F}

The firing of an actor is only limited by the presence of tokens. Hence

the actors of an DFG can fire in parallel. In the example from figure 3.1
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datacontrol

�
switch

T F

foo(·) bar(·)

T F

select

Figure 3.1: A DFG implementation of an if. . . then . . . else structure.

the actors foo(·) and bar(·) can work in parallel. Even though the pro-

cessing of the tokens can be done in parallel the tokens are guaranteed

to leave the DFG in correct order. The DFG model of computation has

an implicit synchronisation mechanism that guarantees a deterministic

order of tokens in this graph. However this is not true for all graphs.

3.1.2 Deterministic Behaviour and Sequential Firing Rules

As stated in the beginning of this chapter, DFGs are a special case of

Khan process networks. Consequently a DFG is nondeterministic iff

the corresponding Khan process network is nondeterministic. There are

five ways to make a Khan process network nondeterministic, namely:

1. Allowing more than one process to write to the same channel,

2. Allowing more than one process to consume data from the same

channel,

3. Allowing processes to be internally nondeterministic,

4. Allowing processes to share variables,

5. Allowing processes to test inputs for emptiness.
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In a DFG an arc is always connected to two actors, one reading from

it and one writing to it. When a DFG is visualised, it is common that

arcs fork, as the control arc in figure 3.1. The semantic meaning of this

is that there are two channels after the fork and in the fork tokens are

copied to both channels. Therefore 1 and 2 cannot occur in a DFG.

It is common that the actors of a DFG are implemented using lan-

guages that allow both nondeterministic behaviour and sharing of vari-

ables, for example C or Java. To get a deterministic behaviour for a

DFG, it is important that variables are not shared between actors and

that the implementation of the actors are deterministic.

According to 5, checking an input channel for emptiness can lead to

nondeterministic behaviour. This constraints the firing rules that can

be used in an actor in a deterministic DFG. For example an actor with

the firing rules {[∗],⊥} and {⊥, [∗]} should fire if there is a token on

either of its inputs. Since reads are blocking, any implementation must

check for emptiness to decide which firing rule to apply. When there are

tokens on both inputs, it is ambiguous which firing rule to chose. This

actor is therefore a nondeterministic merge.

Of course it is possible to interpret the nondeterministic merge men-

tioned above as applying the firing rules every second time. This inter-

pretation makes it possible to implement the actor without checking

inputs channels for emptiness. However this is a deviation from the

DFG semantics. An actor should be able to fire at any time when any of

its firing rules is matched.

Since checking for emptiness on an input can lead to nondetermin-

ism and reads are blocking, it is important to ensure that the firing

rules of an actor can be matched against the actor inputs only using

blocking reads. Such set of firing rules is said to be sequential. It is

easy to check if the set of firing rules for an actor is sequential:

1. Chose one input where all firing rules require at least one token.

That is, find an input which does not have the pattern ⊥ in any

firing rule. If no such input exists the firing rules are not sequen-

tial.

2. Divide the firing rules into subsets. In each subset all firing rules

have the same leading token for the pattern of the input chosen in

1. If a firing rule has a wildcard, ∗, as the leading token it should

belong to all sets.

3. For the input chosen in 1 remove the first token in the pattern of

all firing rules.
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4. If all subsets only have ⊥ as pattern for all inputs then the firing

rules are sequential. Otherwise repeat step 1 to 4 for every subset

that containing a pattern not equal to ⊥.

It is not sufficient for an actor to have sequential firing rules for it

to have deterministic behaviour. Even though the firing rules can be

matched using blocking reads, it is possible that several firing rules

match the same input. For example, consider the two patterns {[true, ∗]}
and {[∗, false]}. together they form a sequential firing rule, but both

match the input sequence [true, false, . . .]. It is ambiguous which to

chose. A set of firing rules is said to be un-ambiguous iff an input

sequence matches at most one firing rule.

It is also important that the firing rules of an actor is complete. This

means that an input sequence of sufficient length matches at least one

firing rule. For example the firing rules {[true, false]} and {[false]} are

not complete since the input sequence [true, true, . . .] does not match

any of the firing rules.

In this sub-section we have discussed problems at the actor level of a

DFG. Even if one only uses deterministic actors with complete and un-

ambiguous firing rules there can still be problems at the graph level.

This will be discussed in the next sub-section.

3.1.3 Consistency

A DFG is consistent if in the long run the same number of tokens are

consumed as produced on each channel [Lee91]. In [GGP92] Gao et

al. calls the same property well-behaved. If a DFG is not consistent

then at least one of two problems will arise. On some channels more

tokens are produced than consumed resulting in token accumulation.

On other channels more tokens are consumed than produced, resulting

in deadlock.

Consider the DFG in figure 3.2(a). The problem here is that tokens

will accumulate on the arc a. Since the switch actor discards some to-

kens (forward them to the F output) the number of tokens passing on

the arcs a and b will be different. The size of the FIFO queue on arc a

will increase each time switch forwards a token to its F output. Because

of this the DFG is not consistent and will suffer from token accumula-

tion.

Figure 3.2(b) shows an attempt to implement an accumulator. The

diamond on the arc from switch to the adder is an initial token with

the value 0. The token is placed on the arc before the DFG is executed.
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Figure 3.2: Some problematic DFGs. Execution results in deadlock or

token accumulatiuon.

This DFG works fine until the accumulated value is read, that is until

a token on the control input to switch is false. When this happens

there is no feedback token from switch to the adder and hence the adder

cannot fire. The DFG deadlocks. The DFG becomes consistent if the

switch actor is replaced by an actor that forwards the input token to

T when the control input is true. When the control input is false the

replacement actor generates a new token with the value 0 on T and

forward the input token to F .

Even if a DFG is consistent it can still deadlock. This happens if the

DFG starts in a state where it is deadlocked. Consider the accumulator

in 3.2(b). If the initial token is removed the DFG deadlocks. The adder

waits for a token from switch and switch waits for a token from the

adder, so neither of the actors can fire. This illustrate the importance of

a proper initialisation. If a DFG is consistent and properly initialised,

it will not deadlock.

3.1.4 Recursion

In DFGs, tail recursion is implemented using cycles in the graph. Fig-

ure 3.3(a) shows an attempt to implement the factorial function. When

the guarded counter fires it consumes one token. This token should con-
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Figure 3.3: The fractorial function implemented using DFG. The core

functionality is captured in (a), but this is not a working DFG. A correct

implementation is shown in (b).

tain an integer, N . The actor then produces N tokens with the values

N, N − 1, . . . , 1. Last of N does the reverse. It consume an integer to-

ken, with value N , from its upper input. It then consumes N tokens

from the input on the left side, discarding all but the last, which it out-

puts. It is easy to see the intended function in figure 3.3(a). A sequence

n = [N, N − 1, . . .] is generated and the product of the sequence is cal-

culated. The multiplication actor will have the function pi = pi−1 ∗ ni

and last of N will discard all but the last of this tokens, so the result

is N !. This DFG has the same problem as the accumulator in figure

3.2(b). It will deadlock because there is no initial token on the feed-

back arc for the multiplication actor. Even if an initial token is placed

on this arc, the DFG will only work once. When the DFG starts a new

factorial calculation the token on the feed back arc must be reset to 1.

This is done in figure 3.3(b). The mux consume one token on each input

and depending on the value on the control input (right side) it forward

either the token from input T or F. Last of N now also generates this

control signal, which is a sequence of N − 1 true tokens followed by one

false token. From this example it is clear that it can be hard both to

implement and to understand recursive functions implemented using
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DFGs. This is because the graphs contain actors and arcs whose only

purposes are to generate initial tokens and to remove remaining tokens

after the end of the calculation. These components are mixed with the

body of the recursive function.

3.2 Analysis of DFGs

In the previous section several problems with DFGs were presented.

In this section we present a method to analyse DFGs. This makes it

possible to detect some of these problems at compile time. The general

principle is that all tokens produced should be consumed. This leads

to one equation for each channel in the DFG [LM87]. This equation

involves the average token production and consumption rates of the ac-

tors. For general DFGs this values are hard to derive. We first present a

method for DFG analysis followed two variants of DFGs more suitable

for this kind of analysis.

3.2.1 Consistency

To avoid token accumulation all tokens produced must be consumed

within finite time. This constrains the relative firing rates of actors

connected trough a channel. For an actor a communicating with an-

other actor b the following must hold:

γaqa = γbqb (3.1)

where γa is the average number of tokens produced on the channel, for

each firing, by actor a. If actor a consumes tokens from the channel then

γa is negative. qa is the relative firing rate of actor a, i.e. the number

of firings of a divided by the total number of firings in the graph. The

sum of q for all actors in the DFG is 1. Collecting one such equation for

each channel results in a system of equations which can be compactly

written using matrix notation

Γq = 0 (3.2)

q is a vector with the relative firing rates of the actors and should be

normalised,

1T q = 1 (3.3)

If equation 3.2 and 3.3 have a solution, the DFG is consistent. Γ can be

data dependent. For example in figure 3.1, γ for the T input of the select
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actor is equal to the probability that a true token arrives at the control

input. If 3.2 and 3.3 have a solution for all possible token sequences,

the DFG is strongly consistent.

3.2.2 Static DFGs

Static DFGs are sometimes called regular DFGs. In a static DFG an

actor consumes a fixed number of tokens from its inputs and produces

a fixed number of tokens to its outputs each time it fires [LM87]. To

make the firing rule complete, the patterns must be sequences of wild-

cards. This implies that an actor can only have one firing rule. With

this limitations, it does not make sense to talk about firing rules and

token patterns. Instead a static DFG actor is usually represented by

the transfer function and the number of tokens consumed/produced for

each input/output.

The static DFG model is quite limited compared to the general DFG

model. There can be no data dependent structures, such as the if . . . then

. . . else structure in figure 3.1. However, static DFGs are sufficient for

many applications, especially in the area of signal analysis. If data

dependent decisions are needed, they can be implemented using con-

ditional assignment instead of conditional execution. With conditional

assignment, both possible result are calculated and a mux actor is used

to select the correct result. A mux is an actor with two data inputs and

one control input. It consume one token for each input as it fires and

depending of the value of the control token forwards either of the data

token to its output. Static DFGs are used in many signal analysis and

image processing applications. For this application domain one only

needs up-sampling, mathematical calculations, and down-sampling.

For static DFGs, the analysis introduced in section 3.2.1 becomes

simple. The token consumptions/productions are constants, thus γ in

equation 3.1 is a constant. Γ is a constant matrix and equation 3.2

can be solved. If there exists a solution, then there will be no token

accumulation and the DFG will not deadlock. One still has to ensure a

proper initialisation, so the DFG does not start in a deadlocked state.

The solution to equation 3.2 can also be used to derive a static schedule

and exact memory bounds of the FIFO queues [LM87].
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3.2.3 Boolean DFGs

Static DFGs are very convenient from the analysis and scheduling points

of view. However, they are limited to static behaviours. It is not possi-

ble to model data dependent decisions. To overcome this limitation,

while still preserve some possibility of analysis, boolean DFGs were

introduced [Buc93]. In boolean DFGs an actor can have a control in-

put. As an actor fires, it consume one token from the control input.

This token must contain a boolean value. The number of tokens con-

sumed/produced for the other inputs/outputs are a function of the boolean

value of the control token. In other words, an actor can have two firing

rules: one with the pattern [true] and one with the pattern [false] for

the control input. The pattern for the other inputs must be a sequence

of ∗ or ⊥. Select and switch are examples of boolean DFG actors. Us-

ing boolean DFGs it is possible to model data dependent decisions and

iterations.

Boolean DFGs can be analysed with the method presented in section

3.2.1. The control input is modelled by a probability function. γ in

equation 3.1 then becomes a probability variable and if equation 3.2

has a solution for any probability then the DFG is strongly consistent.

Consistency for boolean DFGs is discussed in [Lee91, Buc93].

3.2.4 Problems with current DFG variants

There are several limitations and problems with the DFG variants that

have been presented in this chapter. The main problem is the lack of

support for modularisation, both at fine and coarse level of granularity.

The DFGs have a flat structure. It is not possible to create functions,

subgraphs, or divide a graph into components. This was addressed in

the Ptolemy and the Ptolemy II projects[Lee01]. Both projects empha-

sise a component based aspects of modeling and design. In Ptolemy

and Ptolemy II a design is made of components, which can use different

computational models. The components can be combined in a hierar-

chical way. There are computational models for both static and boolean

DFGs [Lee01].

There are also problems at a finer level of granularity. To preserve

consistency, special care must be taken when implementing dynamic

decisions and recursive functions. It is common that actors which create

initial tokens or remove remaining tokens are added to the DFG. These

actors are mixed with the actors that perform the modelled function.
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This leads to graphs where control and data dependencies are mixed.

Such graphs are usually hard to understand and debug.

To overcome the mentioned limitations we have developed Image

Processing DFG (IP-DFG). IP-DFG is a DFG based model, aimed at

modelling and implementation of complex image processing algorithms.

IP-DFG is presented in more detail in chapter 4.
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CHAPTER 4

IMAGE PROCESSING-DATA

FLOW GRAPH

In this chapter we present Image Processing DFG (IP-DFG), a model

of computation developed for complex image processing algorithms. IP-

DFG was developed as part of the WITAS Unmanned Aerial Vehicle

(UAV) project. In this chapter we first give a brief outline of the WITAS

project, and then present IP-DFG.

4.1 The WITAS Project

Substantial research has recently been devoted to the development of

Unmanned Aerial Vehicles (UAVs) [DGK+00, AUV, BWR01, EIY+01].

An UAV is a complex and challenging system to develop. It operates au-

tonomously in unknown and dynamically changing environments. This

requires different types of subsystems to cooperate. For example, the

subsystem responsible for planning and plan execution bases its deci-

sions on information derived from the surroundings in the vision sub-

system. The vision system, on the other hand, decides which image pro-

cessing algorithms to run, based on expectations of the surroundings,

information derived by the planning and plan execution subsystem.

We currently develop an UAV in the WITAS UAV project [DGK+00,

NFW+02]. This is a long term research project covering many areas

relevant for UAV development. Within this project, both basic research

and applied research is carried out. As part of the project, a proto-
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Figure 4.1: The WITAS prototype helicopter.

type UAV is developed. The UAV platform is a mini helicopter. We

are looking at scenarios involving traffic supervision and surveillance

missions. The helicopter currently used in the project for experimenta-

tion is depicted in figure 4.1. On the side of the helicopter is mounted

the on-board computer system while the camera gimbal is mounted be-

neath the helicopter. The project is a cooperation between several uni-

versities in Europe, the USA, and South America. The research groups

participating in the WITAS UAV project are actively researching top-

ics including, but not limited to, knowledge representation, planning,

reasoning, computer vision, sensor fusion, helicopter modelling, heli-

copter control, human interaction by dialog. See [DGK+00] for a more

complete description of the activities within the WITAS UAV project.

One of the most important information sources for the WITAS UAV

is vision. In this subsystem, symbolic information is derived from a

stream of images. There exists a large set of different image processing

algorithms that are suited for different purposes and different condi-

tions. It is desirable for an UAV to be able to combine different algo-

rithms as its surrounding and goal changes. To allow this, one needs

a flexible model for the image processing algorithms together with a

run-time system that manages the combination and execution of these

algorithms. Further more a run-time system needs to represent im-

age processing algorithms in a model with a clear semantic definition.

This would make it possible to do both static (off-line) and dynamic

(run-time) optimisations. Optimisations make it possible to utilise the

available processing power optimally by varying the quality and the

size of the regions an algorithm is applied to, as the number of image

processing tasks varies.
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4.1.1 IPAPI - a run-time system for image processing

Early in the WITAS UAV project it was clear that the planning and

plan execution subsystem would need to access and guide the image

processing subsystem. For this purpose, an Image Processing Applica-

tion Program Interface (IPAPI) was defined. IPAPI has evolved from a

simple run-time system with static behaviour to a run-time system with

dynamic behaviour, where the planning and plan execution subsystem

configure the set of algorithms to be executed based on what symbolic

information it needs to extract from its surroundings.

IPAPI has a library with implementations of different algorithms.

An algorithm is executed as long as its results are needed. The creation,

execution, and removal of algorithms is managed by IPAPI. IPAPI also

updates the Visual Object data Base (VOB) with the result of the algo-

rithms. The VOB contains one entry for each dynamic object the UAV

keeps track of in its surrounding, The VOB is the UAV’s view of the

world. Other subsystem access image processing result from the VOB.

Internally the image processing algorithms are represented using

a DFG based model. This representation is described later in this

chapter. IPAPI has functionality for dynamic creation and removal of

graphs. It dynamically manages the size of temporary data in the al-

gorithms i.e. buffers for images. The planning and plan execution sub-

system sets the size of the region of either the input or the output of

a graph. IPAPI then propagates the size through the graph and allo-

cates memory for buffers needed during execution. When the size of the

regions propagates through the graph, operations that affect the size,

i.e. the result is the intersection of the input regions, are accounted for.

IPAPI also manages the execution of the graphs.

IPAPI has a type system. For each input and output of an actor, a

type is specified. The types are checked when inputs are connected to

outputs during the creation of graphs. The typing of inputs and outputs

of actors makes it possible for the run-time system to automatically add

conversion between different algorithms of the graphs, for example an

image with pixels encoded as integers can be converted to an image

with pixels encoded as floating points. See [NFW+02] for a more de-

tailed description of IPAPI and its part in the WITAS on-board system.
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4.2 IP-DFG - a computational model

We had two goals when developing the computational model to be used

in IPAPI. First, the model should be simple for humans to work with yet

it should have sufficient expression power to allow seamless modelling

of complex image processing algorithms. The second goal was to find

a model that is suitable for integration with a flexible run-time system

such as IPAPI. The model should simplify dynamic combinations of dif-

ferent algorithms. It should allow dynamic change of region sizes and

the parallelism of an algorithm should be preserved. Since there is no

need to describe non-determinism in image processing algorithms the

model should only allow deterministic behaviour. We call the represen-

tation Image Processing Data Flow Graph (IP-DFG) [AKND02].

IP-DFG is based on boolean DFG, but has been extended with hier-

archy and new rules for token consumption when an actor fires. This

makes the model more flexible. IP-DFG implements conditional actors

using a formalism similar to boolean DFG. An actor can have one con-

trol input and, if it does, it has two firing rules. The value of the control

token decides which firing rule is used and the firing rule determines

the number of tokens consumed and produced, i.e. the number of to-

kens consumed and produced is a function of the control token. Actors

without a control input consume and produce a fixed number of tokens

each time they fire.

As in general DFGs, tokens are stored on the arcs in FIFO queues.

When an actor fires, it consumes tokens from its inputs and produces

tokens at its outputs. The number of tokens produced and consumed

depends on which firing rule that is matched. In a traditional DFG

all tokens matched by the firing rule are consumed. This is not the

case in an IP-DFG. An IP-DFG actor does not need to remove all tokens

matching the firing rule from its inputs. In an IP-DFG a firing rule

contains a tuple, 〈m, n〉i, for each input, i. The number, m, indicates

how many tokens need to be present on the input i for the actor to

fire. This is equivalent to a pattern with m wildcards. The number, n,

indicate how many tokens to remove from the input queues when the

firing rule is matched. If an actor has a pattern with m tokens and n

tokens are removed when it fires, the actor is said to read m tokens

and consume n. This simplifies the implementation of functions that

use the same token in several firings, for example the sliding average

function. The sliding average function over m tokens reads m tokens

but consumes only 1. m − 1 tokens remain in the FIFO-queue of the
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input and will be read the next time the actor fires. This behaviour is

common for image processing algorithms that extract dynamic features

in an image sequence, for example optical flow algorithm.

4.2.1 Hierarchy

An IP-DFG is composed of boolean DFGs in a hierarchical way. An actor

can encapsulate an acyclic boolean DFG. Such an actor is called a hier-

archical actor. Since the internal graph of a hierarchal actor is acyclic,

it cannot model iterations. Instead, in IP-DFG iterations are explic-

itly defined, see section 4.2.2. This makes the model more suitable for

human interaction. In an IP-DFG a hierarchical actor is no different

from any other boolean DFG actor. It has two firing rules and when it

fires, it consumes and produces tokens according to the matching firing

rule. Internally the firing is divided into three steps. The three steps

perform initialisation, execution and result transmission. For initialisa-

tion and result transmission a token mapping function is used. A token

mapping function maps a set of token sequences to another set of token

sequences, {S1, . . . , Sn} → {S′

1, . . . , S
′

m}. A token mapping function is

usually simple, i.e. a result sequence is identical to a source sequence.

However, it is possible to perform more complex operations in a token

mapping function. For example, to split one sequence or concatenate

two sequences. The token sequences in a token mapping function al-

ways have a finite length, by contrast to DFGs which are working on

infinite token sequences. Token mapping functions are discussed in

section 4.2.3.

A hierarchical actor is stateless. To guarantee this, the first step

of the firing of a hierarchical actor is to generate the initial state of

all internal arcs. The contents of the arcs are created from the tokens

read by the hierarchical actor as it is fired. This is done according to a

token mapping function. When a hierarchical actor with n inputs and m

internal arcs fires, a sequence of tokens, Si, are read from each input,

i. The token mapping function maps the set of all input sequences,

{S1, . . . , Sn}, to a set of sequences {S ′

1, . . . , S
′

m}, where a sequence, S ′

k, is

used as the initial state of the FIFO queue of the internal arc k. There

is one token sequence for each of the internal arcs. Each firing rule has

a token mapping function.

The second step is the execution of the internal boolean DFG. This

is done according to the firing rules of the actors in the internal boolean

DFG. When no internal firing rules are matched, the boolean DFG is
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Figure 4.2: A hierarchical actor for tracking a fix-point. If the fix-point

is not visible a new fix-point is selected.

blocked and the second step ends.

In the third and final step, the result tokens are mapped to the out-

puts of the hierarchical actor. This is done according to a token map-

ping function. When the internal boolean DFG is blocked, there is a

sequence of tokens, Si, on each internal arc i. The token mapping func-

tion maps the set of all the sequences of the internal arcs, {S1, . . . , Sm},

to a set of sequences {S ′

1, . . . , S
′

o}. For each output, oi, of the hierar-

chical actor a sequence, S ′

i, in the result set is transmitted. After the

token mapping function is performed all tokens remaining in the inter-

nal boolean DFG are dead. The initialisation mapping guarantees that

they will not be used in the next firing of the hierarchical actor and the

run-time system can reclaim the memory used by these tokens. This

also prevents token accumulation.

To illustrate, consider a camera control algorithm for an UAV. The

camera is to be pointed at an area of interest. The camera should point

to this area independent of the helicopter movement. This can be done

by tracking a number of fix-points in the image [For00]. A fix-point is

a point that is easy to track. If one fix-point is out of sight, i.e. hidden,

the camera control algorithm should find another fix-point. Figure 4.2
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shows a sub-function in the algorithm. The sub-function is called point-

Locator and finds one fix-point with a given signature in a given image,

or if the fix-point is not found selects a new one. The result of pointLoca-

tor is an updated or new fix-point signature and corresponding param-

eters used in the camera control loop. PointLocator consume/produce

one token on each input/output when it fires. The internal actors has

the following firing rules (inputs are ordered counter clockwise starting

with the the upper-most left-most one):

find: {[∗], [∗]}

select new: {[∗], [true]}, {⊥, [false]}

merge: {[∗], [true],⊥}, {⊥, [false], [∗]}

The firing of pointLocator starts with the initialisation step. There are

two token sequences, Sfixpoint and Simage, both containing one token ini-

tially. According to the token mapping function, the sequence Sfixpoint

is placed in the FIFO queue of the internal arc f, while the sequence

Simage is placed in the FIFO queue of i. After this, the internal boolean

DFG is executed. The actor find fires first, since it is the only actor with

a matched firing rule. It generates one token on each of its outputs. The

gray arc is connected to the control input of select new and merge. The

generated control token is true if the fix-point was found or else false. If

the token is true both select new and merge can fire. In this case select

new does not generate any token and merge forwards the fix-point token

from find. If the fix-point was not found, only select new can fire. Select

new now picks a new fix-point and send it to its output. Merge forwards

this token to the f’ arc. At this moment, the boolean DFG is blocked

and the result mapping starts. The tokens on the internal arcs f’ and

p are transferred to the outputs fix-point’ and pos. In this example the

actor select new fired independent of whether a new fix-point needs to

be selected. It is important to understand that it is only in one of these

firings that the actor does any work. The purpose of the second firing

rule is only to remove tokens from the control input. If the run-time

system knows that the actor is stateless, it can chose not to fire an ac-

tor that does not produce any output. Instead, the tokens matching the

firing rule are discarded. Also note that if the fix-point was not found,

the fix-point token from find to merge will not be consumed. This is not

a problem because the next time pointLocator fires, the token will be re-

moved during initialisation. In fact a run-time system should reclaim

this token directly when pointLocator is blocked.
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From this example it seems unnecessary to have a token mapping

function for initialisation and transferring the result to the outputs. It

would be simpler to directly connect the internal arcs with the FIFO

queues of the surrounding arcs. However, this separation allows an

actor to create constant tokens during the initialisation step and it sim-

plifies modelling of iterative functions as described in the next section.

4.2.2 Iteration

For our purpose we distinguish between iteration and tail recursion. In

iteration over data, the same function is applied on independent data,

while in tail recursion, one invocation takes the result of an earlier in-

vocation as input. In a computational model based on the token flow

model iteration over data is achieved by placing several tokens, each

containing one quantum of data, in the graph. The actors will fire ap-

propriate number of times. To use the pointLocator shown in figure 4.2

for tracking ten fix-points, one simply places ten tokens containing the

signature on the fix-point arc and ten images on the image arc, pointLo-

cator will then fire ten times. This implementation tracks different fix-

points in different images. For tracking several fix-points in the same

image, a more suitable approach is to change the firing rules. By setting

the firing rule of pointLocator to consume ten tokens on the fix-point in-

put and one on the image input, the proper tokens are placed on the f

and i internal arcs during the initialisation mapping. The behaviour of

find should be changed, it should not generate a fix-point token if the

fix-point was not found. The firing rule of the actors find and select new

must also be changed. They should read one token and consume none

from the i arc. The image token on the internal arc i will be removed

after the result mapping, making pointLocator to behave correctly the

next time it fires.

Tail recursion is an important type of iteration commonly used for

iterative approximations. In tail recursion the result of one invocation

of a function is used as argument for the next invocation of the same

function. Tail recursion is equivalent to iteration and in the rest of this

thesis we will use the term iteration. In IP-DFGs iteration is imple-

mented using hierarchical actors. When a hierarchical actor fires, the

internal graph can be executed several times. For modelling iterations,

we have extend hierarchical actors with a termination arc and an iter-

ation mapping function. Such actors are called iterative actors.

When an iterative actor fires, it is initialised and the internal boolean
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DFG is executed once as a hierarchical actor. As part of the execution a

termination condition is evaluated, resulting in a boolean token on the

terminate arc. The terminate arc is a special arc in the internal boolean

DFG of an iterative actor. If the last token on the terminate arc is false

when the internal boolean DFG is blocked, the internal boolean DFG is

to be executed again. Before the repeated execution starts, the internal

boolean DFG must be transformed from its blocked state, where no fir-

ing rules are satisfied, to the initial state of the next iteration. This is

done according to the iteration mapping function. The iteration map-

ping function generates a token sequence for each arc in the internal

graph from the token sequences in the blocked graph. This mapping

is defined by a token mapping function. Tokens not explicitly declared

to remain in the boolean DFG will be removed, in order to to avoid

token accumulation. The internal boolean DFG is executed until the

termination condition is satisfied. When this happens, result tokens

are generated according to the output mapping as described in 4.2.1

The separation of the iteration body and token mapping functions

allows a cleaner implementation of iterative functions. Consider the

camera control algorithm from section 4.2.1. The core of the algorithm

is to find the cameras position and heading in the 3D world. This can be

done by using the Geographical Position System (GPS) and anchoring

objects in an image from the camera with a geographical information

system. This is very computationally intensive, so it is preferable not

to do this often. A less computational intensive approach is to use an

iterative algorithm that estimates the movement of the camera in the

3D world. This can be done by tracking a set of points in the sequence

of 2D images from the camera [For00]. The calculations assume that

all points are located on the ground plane. However, this is not the

case for all points in the world, i.e. points at the top of a building. An

algorithm based on this approach should ignore points not behaving

as if they were on the ground plane. An iterative actor which does

this is shown in figure 4.3. All actors consume/produce one token on

each input/output, except the plane input of the new plane actor, which

reads one token, but the token is not consumed. In each iteration one

estimate of the ground plane is calculated. Also the distance between

the estimated plane and the fix-points are calculated. If there is one

fix-point with a distance larger than a threshold, then the fix-point with

the largest distance is removed and a new iteration is to be done. The

actor new plane calculates a new estimate of the ground plane from

an earlier ground plane estimate and a set of current and earlier fix-
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�

new

plane

residual

�

plane

FPPair

plane’

terminate

FPPair’

oldPlane

fixpoints

newPlane

init mapping:

plane = oldPlane

FPPair = fixpoints

iteration mapping:

plane = plane

FPPair = FPPair’

result mapping:

newPlane = last(plane’, 0)

Figure 4.3: A recursive algorithm which estimates a plane in the 3D

vorld from a set of fix-points.

points positions. The set of fix-points is stored in one token. The actor

residual finds the fix-point with the largest distance from the estimated

ground plane. If this distance is larger than a threshold, then this point

is removed and a token with the remaining fix-points are sent to the

FPPair’ arc and a false token is sent to the terminate arc, otherwise true

are sent to the terminate arc. The firing of the iterative actor is simple

to follow. First, in the initialisation mapping function an earlier ground

plane and a set of tracked fix-points are mapped to the internal boolean

DFG. Next the internal boolean DFG is executed. The actor new plane

fires first followed by residual, resulting in a blocked boolean DFG. If

the estimate of the ground plane was based on fix-points not behaving

as if being on a plane, then the last token generated on the terminate arc

is false, and the set of fix-points now believed to be on the ground plane

is in the token on the FPPair’ arc. The internal boolean DFG is to be

executed again and the iteration mapping function generates the initial

state for the next iteration. The token on the plane arc is to stay on the

arc and the token with the set of fix-points on the PFPair’ arc is mapped

to the FPPair arc. Now the internal boolean DFG is executed again.

This repeats until all fix-points are sufficiently close to the estimate
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distance

plane’

fp

dist

plane

fixpoints

distance

init mapping:

plane’ = plane

fp = unwrap(fixpoints)

result mapping:

distance = wrap(dist)

Figure 4.4: A hierarchical actor that calculates the distance from a set

of points, wrapped into one token, to a plane. The result is the set of

distances wrapped into one token.

of the ground plane, resulting in a true token on the terminate arc.

The result mapping function then maps the last estimated plane to the

newPlane output.

4.2.3 Token mapping functions

Token mapping functions are used in hierarchical and iterative actors

to transfer tokens between the internal arcs and the external arcs. They

are also used in iterative actors to change the internal state between

iterations. This can be seen as a mapping from one set of token se-

quences of final length to another set of token sequences of finite length,

{S0, . . . , Sn} → {S′

0, . . . , S
′

m}. Each sequence is associated to one arc and

the token sequence is the contents of the arcs FIFO queue. In a token

mapping function a result sequence is created from concatenations of

sequences. The sequences can be original sequences, new sequences or

an empty sequence (⊥). New sequences are created from individual to-

kens from the source sequences and new tokens created from constants.

In a token mapping function a new token can also be created by

wrapping a token sequence. The original token sequence can be recre-

ated by unwrapping token created by a wrapping. This makes it pos-

sible to work at different levels of abstraction in different parts of a

model. For example consider the plane estimate actor for the camera

control algorithm in figure 4.4. In the iterative plane estimation actor

in figure 4.3 the fix-points are treated as a set, encapsulated in one to-
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ken. However, as part of the algorithm, the distance for each fix-point

to a plane is to be calculated. This is done by the hierarchical actor in

figure 4.4. During the initialisation mapping the set of fix-points is un-

wrapped and placed as a sequence of tokens on the fp arc. The distance

actor will fire once for each fix point and the result mapping will later

wrap the sequence of distances to one token.

To preserve properties of a graph a token mapping function is said

to be monotonic if it preserves the relative precedence of all tokens. If

token tk precedes token tl in any of the input sequences tk precedes tl
for all result sequences in which both tokens appear.



CHAPTER 5

IPAPI

In this chapter we explain how we use IPAPI when developing image

processing algorithms within the WITAS project. We detail how the

implementation evolves from a prototype used in the WITAS simulator

to an optimised implementation for the on board platform.

5.1 The Architecture of IPAPI

IPAPI was developed to manage the execution of the image processing

tasks in the WITAS on-board system. The on-board system is to oper-

ate in a dynamic environment, where the number of image processing

tasks varies over time. As explained in section 4.1.1, IPAPI must adapt

the image processing tasks to cope with the limited on-board resources,

both processing power and memory. For this purpose, IPAPI’s archi-

tecture captures these three aspects, data processing, memory manage-

ment and scheduling.

IPAPI uses IP-DFG as the internal computational model. For each

image processing task IPAPI creates a graph structure, i.e. actor objects

connected by arc objects. During the creation of new image processing

tasks, IPAPI chooses an implementation for each actor from a library

of actor implementations. The selection is based on the name of the

actor and the available hardware. This makes it possible to used differ-

ent implementations for different architectures. Currently there exist

a platform independent implementation in Java, an ANSI C implemen-

tation, and an implementation for the PowerPC processor, which takes

advantage of the PowerPC processors vector unit, the AltiVec unit.
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The actor library contains aspects needed for data processing and

memory management. For each actor, it contains an implementation

of the actors firing function, a function that takes tokens as input and

returns tokens. It does not provide functionality for memory manage-

ment, however it provides the information needed for the memory man-

agement. For each actor, information of the size relation between the

input images and the output images are provided. For example the out-

put can be the intersection of the inputs or, for convolution, the output is

the input with the border effect removed. Based on this information, a

graph wide memory manager allocates memory for the internal buffers

needed on the arcs between the actors, i.e. the storage for temporary

data in the image processing tasks.

The main parts of the IPAPI run-time system are the scheduler and

the memory manager. The scheduler handles the execution of the actor

implementations, while the memory manager handles the allocation

of all memory buffers needed by an image processing task. Both the

memory manager and the scheduler use the same underlying graph

structure.

5.2 The AltiVec Implementation

Initially IPAPI was implemented in Java. This was used as a platform-

independent implementation of the vision sub-system in the WITAS

simulator. This implementation is suitable for use in a simulated en-

vironment, but for the on-board system it does not provide sufficient

performance. To overcome this, an implementation optimised for the

on-board hardware has been developed. The on-board system has one

MPC7400 processor, a processor in the PowerPC family with AltiVec

support, dedicated for the image processing sub-system.

To achieve good performance it is not necessary to reimplement the

whole IPAPI system. It is sufficient to reimplement the data process-

ing layer, while keeping the Java implementation of the scheduler and

memory manager. This saves development time and does not affect the

run time performance very much.

To accelerate the data processing layer of IPAPI the actor firing func-

tion was reimplemented in C with Motorola’s AltiVec extensions [PIM].

To interface with the memory manager and the scheduler Java Native

Interface (JNI) [Lia99] was used.
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5.2.1 The AltiVec Unit in Combination With JNI

The PowerPC processor has become popular for use in high performance

embedded systems in the area of telecommunication and signal process-

ing. This is to a large extend due to the AltiVec unit, which provides

a high performance processing unit. Motorola has also extended the

C/C++ language to allow quick and easy development of highly opti-

mised implementations.

The AltiVec unit is a vector processing unit present in the recent

PowerPC processors from Motorola, i.e. the MPC74xx family. The Al-

tiVec unit follows the RISC paradigm, i.e. register to register opera-

tions. There is one register file with 32 entries and all operations take

their operands from the register file and write the result to the register

file. The register to register operations can be arithmetic operations (+,

- and *), logic operations (bitwise and, or), comparison operations or el-

ement rearrangement within a vector. There is also support for division

and square root. In addition to the register to register operations, there

are operations for moving data between the register file and memory

and operations for cache prefetch. All operations work on 128 bit wide

vectors. A 128 bit vector is arranged to 16, 8 or 4 elements of 8, 16 or

32 bit each, processed in parallel. An element is a signed or unsigned

integer, or a 32 bit floating point value. For a detailed description of

AltiVec, see Motorola’s documentation [PIM, PEM]

The Java Native Interface (JNI) is an interface allowing a mix of

Java and implementations compiled to native executables, i.e. C and

C++ implementations. This makes it possible to implement in C some

methods in a Java class. The methods are compiled using a native com-

piler to a dynamically loaded library. JNI also provides a mechanism

for the native code to access other methods and attributes from Java

objects. This mechanism follows Java’s scope and access rules, i.e. all

attributes in the the own object and all public attributes in the current

scope can be accessed. JNI is described in detail in [Lia99].

A simple way to accelerate the data processing layer would be to im-

plement the actors firing function in native methods. The tokens are

stored in Java objects and the native implementations can access them

through JNI. This makes it possible to mix actors with Java and na-

tive implementations in the same graph. This is the approach we are

using for the ANSI C implementation of actors. However, there is a

problem with AltiVec optimised implementations, Javas memory align-

ment. The read and store operations of the AltiVec unit need the 128

bit vector to be 16 byte aligned in memory. Java allocated objects only
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Table 5.1: Execution times in milliseconds for different implementa-

tions of two IP-DFGs.
edge polytest4

interpreted Java 2030 24174

ANSI C 50 619

AltiVec C 20 188

provide alignment according to the requirement of the scalar part of the

processor, that is 4 byte alignment of floating points and 1 byte align-

ment of bytes. To solve this we have modified the memory manager.

Tokens used in AltiVec optimised actors are allocated at native level,

with the correct memory alignment. These tokens cannot be accessed

directly from Java. To make it possible to mix AltiVec and Java imple-

mented actors we have implemented conversion actors that copy data

between the two types of tokens.

5.2.2 Experimental Results

Most of the image processing algorithms we are considering to use

within the WITAS project are under development. Some are evaluated

using matlab and others have been implemented in Java for evaluation

in the WITAS simulator. At this time it is not clear which algorithms

will be optimised for AltiVec and used in the final WITAS on-board sys-

tem.

To show that it is sufficient to optimise the data processing layer of

IPAPI we have optimised a few sample IP-DFGs. We have done timing

analysis of two typical IP-DFGs, edge and polytest4. Edge is a simple

graph, consisting of a single convolution node, which performs edge de-

tection. Figure 5.1 shows the result of applying edge to a benchmark

image, well known in the image processing community. Polytest4 de-

tects high level features in an image of a road network. Figure 5.2(b) is

the result after applying polytest4 to the image in figure 5.2(a). Road

intersections, curves and road ends are highlighted. Polytest4 also per-

forms sub-sampling and apply this operation to several scales of the

original image.

The execution time for different implementations of the two IP-DFGs

are shown in table 5.1. The execution times are measured on an Ap-

ple PowerMac with a 450 MHz G4 processor and 256 MB memory. All
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Figure 5.1: The output of the edge IP-DFG.

(a) (b)

Figure 5.2: The output of the polytest4 IP-DFG. (a) the input image

with a road network and (b) the output with intersections and curves

highlighted.
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experiments were carried out under Linux PPC using Blackdown Java

VM 1.3.0beta-b02, configured for native threads and nojit. This is a sim-

ilar setup as the WITAS on-board system. The only difference is that

the on-board system is based on a cPCI board from Motorola instead of

a motherboard from Apple. At the moment we do not have access to any

Java hotspot for the Linux PPC environment. A Java hotspot does just-

in-time compilation of the Java bytecode and can reduce the execution

times for the Java implementation significantly. Running the IP-DFGs

under Mac OS X, using Apples JVM with hotspot reduced the execution

time for edge to 148 ms and for polytest4 to 1272 ms.

Our experiments show that the AltiVec optimised implementations

runs more than 100 times faster then the Java implementation and 2.5

to 3 times faster than the C implementation on the target platform.

This is a significant improvement in performance and we are confident

that it is sufficient to optimise the data processing layer of IPAPI to

achieve the required processing power.



CHAPTER 6

PARTITIONING FOR TIME

MULTIPLEXING

In chapter 5 a run-time system for IP-DFGs was presented. Using a

PowerPC processor and optimising the implementations of the firing

functions for the AltiVec unit resulted in good performance. It is pos-

sible to improve the performance even more by using an FPGA to ac-

celerator some firing functions. Since some functions require a large

number of logic gates to implement we have investigated partitioning

techniques for such applications. In this chapter we present an algo-

rithm for partitioning a design for time multiplexing. The algorithm is

tailored for use with Time Multiplexed FPGAs (TMFPGAs). We first

give an overview of TMFPGAs and then we present our algorithm.

The partitioning problem is treated at logic level. This is much lower

level of abstraction compared to the earlier chapter in this thesis. In an

IP-DFG a node performs a function on an image, for example convolu-

tion. In this chapter a node performs a simple logic function. Several

hundred nodes are needed to build a floating point adder.

6.1 Time Multiplexed FPGAs

FPGAs are often considered to be expensive compared to the gate count

they provide. To reduce this price Time Multiplexed FPGAs (TMFP-

GAs) were introduced. In a TMFPGA the cost is reduced by increasing

the equivalent gate count per silicon area. This is achieved by divid-
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FF

FF

FF

FF
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Figure 6.1: In a TMFPGA a pipeline is divided to micro-cycles. The

micro-cycles are executed in sequence using the same LUTs and inter-

connects.

ing the logic circuit into micro-cycles which are execute in sequence us-

ing the same FPGA resources. This is illustrated in figure 6.1. The

logic between the flip-flops(FFs) is divided into three micro-cycles. The

micro-cycles are to be executed in sequence with a reconfiguration of

the FPGA between each micro-cycle. This makes it possible to share

the FPGA resources in a time multiplexed way. Today, commercial

FPGAs allow dynamic reconfiguration. However, the time for recon-

figuration is long, usually several milliseconds. The bottleneck is the

loading of the new configuration from the off-chip memory. The recon-

figuration time can be reduced by storing several configurations on the

FPGA die. Several architectures based on this idea have been suggested

[EEC+95, FFM+99, SV98, TCJW97].

We have based our work [AK00] on a generic architecture, depicted

in figure 6.2. We assume that the TMFPGA can store several contexts

on chip. The TMFPGA consists of an array of Processing Elements

(PEs). The interconnections between the PEs allow multiple levels of

logic in one partition. Each PE can perform one combinatorial opera-

tion in each context, i.e. the PE has one Look Up Table (LUT). During

technology mapping the logic in a circuit is mapped into LUTs, so each

combinatorial node in the net-list corresponds to one LUT.

Each PE contains a register file, is used to store values generated in

one partition so they can be used later. This is useful in two situations.
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Figure 6.2: Our generic TMFPGA architecture.

The first situation is when a node and any of its successor nodes are

placed in different partitions. Since the nodes are executed at different

times, the output from the predecessor node cannot be directly routed

to the input of the successor nodes. Therefore the output of the pre-

decessor node is stored in a register. The second situation where the

register file is useful is for sequential circuits. If a value generated in

one iteration is used in the next iteration it must be stored in a register.

This corresponds to an originally defined flip-flop in the net-list. Sev-

eral of the recently announced time multiplexed architectures fulfil our

assumptions, for instance Trimbergs architecture [TCJW97].

6.2 The Partitioning Problem

When a TMFPGA is to be used, the net-list must be divided into micro-

steps. This is referred to as the partitioning problem. The net-list is

to be divided into disjoint sets. Since the partitions are executed in

sequence, the partitioning step also decides the execution order of the

nodes. A consequence of this is that data dependency must be consid-

ered during partitioning.

In figure 6.3, two possible partitions of a net-list are shown. In

(a) the nodes {A, B, C, D} are placed in, p1, the first partition. The
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Figure 6.3: Two possible partitions of a net-list.
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(a) A B FF C

(b) A B C

Figure 6.4: Data dependency. (a) the net-list, (b) the dependency graph.

nodes {E, F, G, H} goes to, p2, the second partition. In (b) the parti-

tions are {A, B, E, F} and {C, D, G, H}. Both in (a) and (b) the size of

each partition is 4 nodes, so they use the same amount of resources.

However, the time to execute one iteration, corresponding to one clock

cycle in the net-list, is different. In (a), the data has to propagate

through 4 nodes in each partition. The total time for one iteration is

T = 8Tnode + 2Treconfigure. For the other case, (b), some nodes can be

evaluated in parallel within the partitions. The time for one iteration

is T = 4Tnode + 2Treconfigure.

The critical path in the net-list is the longest path of nodes that can-

not execute in parallel. Partitioning does not increase parallelism, so

executing all partitions in sequence cannot be faster than the propaga-

tion delay of the critical path of the non-partitioned net-list. Thus the

critical path in the non partitioned net-list is a lower bound of the sum

of the critical paths in the partitions. The only time overhead of using

a TMFPGA with a partitioning with minimal timing is the reconfigura-

tion time. This is the case for the partitioning in figure 6.3(b). We have

developed a partitioning algorithm that aims at finding a partitioning

with minimal time overhead.

6.2.1 Data Dependency

As mentioned above, data dependencies must be considered during par-

titioning. To handle this, we do not partition the net-list directly. In-

stead we first create a dependency graph from the net-list and then we

partition this dependency graph. The dependency graph represents the

partial order imposed on the nodes by data dependencies. There exist

two kinds of data dependencies, direct data dependency and forward

data dependency. This is illustrated in figure 6.4. Node B uses the re-

sult of node A to produce its output. This is a direct data dependency.
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Obviously, node A must be evaluated before node B. This is represented

with a solid arc in figure 6.4(b). Forward data dependency is illustrated

by nodes B and C in figure 6.4. In the net-list, the flip-flop is used to

delay the output of B so it will be the input to node C in the next clock

cycle. In a time-multiplexed FPGA, each clock cycle is divided to micro-

steps. At the end of the micro-step where node B is executed, the value

of the flip-flop will be updated, i.e. the value is written to a register in

the register file where node B is placed. The old value of the flip-flop

is overwritten. The overwritten value is the value node C must use in

this iteration. Therefore node C must have already been executed. This

is illustrated in the dependency graph by a dashed arc.

The dependency graph represents a partial order between nodes and

since the partitions are executed in sequence the dependency graph con-

strains the relative placement of nodes to partitions. If there is an arc

from node A to node B in the dependency graph, node A may not be

placed in a later partition than node B. Placing two nodes in the same

partition is always possible. However, it might influence the perfor-

mance. If there is a direct data dependency between two nodes placed

in the same partition, the duration of that partition will be longer. This

is because the signal has to propagate through two nodes before all

outputs are stable. If the critical path is longer than the number of

partitions, this is unavoidable. Forward data dependencies represent

the read and write order of registers. Those do not introduce delays in

a partition, since reading from and writing to registers are part of the

reconfiguration.

6.2.2 Dependency Loops

As described above, partitioning is similar to scheduling. Indeed, the

partitioning problem can be formulated as a scheduling problem. Par-

titioning a net-list to n partitions is the same as scheduling the com-

binatorial nodes in the corresponding dependency graph such that at

times t0, . . . , tn−1 no nodes are executing. The times t0, . . . , tn−1 are the

reconfiguration times. All nodes executed in the time interval [tk−1, tk]
are placed in partition k. The schedules for the partitions in figure 6.3

are shown in figure 6.5. For partition (a) the reconfiguration takes place

at times 0 and 4 and for partition (b) at times 0 and 2. When treating

partitioning as a scheduling problem, timing aspects can be handled by

enforcing a deadline for the schedule.

Scheduling is a well known problem in many areas. For example
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Figure 6.5: Two possible partitions of a net-list. A thick line indicates

the reconfiguration of the FPGA.

several scheduling algorithms have been developed for high-level syn-

thesis. The conditions for this partitioning problem are, however, dif-

ferent. During high-level synthesis, an acyclic task graph is scheduled.

For the TMFPGA partitioning problem, the dependency graph is not

acyclic. Figure 6.6(a) shows one of several possible net-lists with cyclic

data-dependency. Figure 6.6(b) shows the corresponding dependency

graph. There is a direct data dependency from B to A and a forward

data dependency from A to B, thus giving a cyclic dependency. The

scheduling algorithms from high-level synthesis cannot be applied di-

rectly to this partitioning problem. If the dependency graph could be

transformed such that the resulting graph is acyclic, any scheduling

algorithm could be used.

Assuming that the net-list does not have any combinatorial loops,

the direct data dependencies form an acyclic graph. Therefore any loop

in a data dependency graph must contain at least one forward data

dependency. A forward dependency enforces the order of reading from

and writing to a flip-flop. The old value must be read before the new one

is written. Adding one register to temporary store the new value until
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Figure 6.6: Cyclic dependency. (a) the net-list, (b) the dependency

graph, (c) the transformed net-list, (d) the transformed dependency

graph.

the flip-flop can be updated, will remove this dependency. We assume

that in a TMFPGA a register can only be updated from the output of

a LUT, i.e. there is no direct register to register transfer. To move the

value from the temporal register to the flip-flop, it has to pass through

a LUT. This dummy LUT is created by adding one node to the net-list.

This process is depicted in figure 6.6. A dummy node C is added to the

net-list in 6.6(a). The added node is placed between the node updating

the flip-flop, B, and the flip-flop. The resulting net-list is shown in 6.6(c)

and its corresponding dependency graph in 6.6(d). The arc from A to B

in the dependency graph is replaced by one from B to C and one from A

to C. Since there are no paths from A to B after the transformation, the

original loop is broken. There is no outgoing arc from the added node

C, so C cannot be involved in any loop. This ensures that no new loops

are created during the transformation.

Breaking all loops in the dependency graph using the transforma-

tion described above gives an unnecessary overhead. If all nodes in a

loop are placed in the same partition no dependencies are violated and

no additional nodes are needed. Our approach is to ignore some of the

forward data dependencies. This is further explained in section 6.3.1.

Ignoring some arcs in the dependency graph results in an acyclic graph,

called the scheduling graph. This graph is scheduled and if any of the

ignored dependencies is violated, we remove the violated dependency
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by the transformation described above. In order to remove the depen-

dency, a node is added to the net-list.

6.3 The Partitioning Algorithm

The main part of our algorithm is the scheduler. The scheduler takes a

net-list, a deadline, and a maximum size for the partitions as input, and

generates a schedule as an output. The scheduling function is explained

in section 6.3.1. Scheduling might fail for two reasons. The generated

schedule might not meet the deadline or, during scheduling, nodes were

added, resulting in a net-list exceeding the partition size. When the

scheduling fails, we relax the size constraint and try to schedule again.

During the new scheduling attempt we use the net-list that was gen-

erated during the previous failed scheduling, i.e. the original net-list

with some additional nodes. We repeat this until a schedule that meets

all constraints is found. The partitioning algorithm is depicted in figure

6.7.

6.3.1 Scheduling

For performance reasons we are using list scheduling to schedule the

net-list nodes. The start time of a node in the derived schedule decides

which partition it is placed in. The scheduling step uses three graph

representations of the design: the net-list, the dependency graph, and

the scheduling graph. The net-list is the LUT equivalent net that is

generated during logic synthesis. The net-list is used to derive timing

information of the nodes. The dependency graph is created from the

net-list, as described in section 6.2.1. From the dependency graph some

arcs are removed to create the scheduling graph. This is an acyclic

graph that is scheduled using list scheduling. The arcs removed during

the creation of the scheduling graph are ignored during scheduling. If

any of the dependencies corresponding to the removed arcs are violated,

the net-list is transformed to remove the dependencies from the design.

The scheduling is depicted in the lower part of figure 6.7.

To create the scheduling graph we first find all nodes that belong

to a loop in the dependency graph. This is the problem of finding all

strongly connected components, which can be done in linear time by

two depth-first traversals of the graph [CLR90].

From the dependency graph, all forward data dependency arcs end-

ing in a node from a loop are removed. After removing these arcs, the
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PARTITION(net_list){

size = net_list.size/nr_partitions

while(schedule_fails){

net_list = SCHEDULE(net_list, size, deadline)

size=max(size+1, net-list.size/nr_partitions)

}

}

SCHEDULE(net_list, size, deadline){

create_scheduling_graph

for partition = 1 to number_of_partitions{

calculate_ASAP

calculate_ALAP

while(not_full(partition) and all_nodes_are_not_scheduled){

possible = get_all_possible_nodes

node = get_highest_priority(possible)

add(node, partition)

}

check_violations_and_modify_net_list

}

if(unscheduled_nodes_exist OR deadline_missed)

signal failure

return the modified net_list

}

Figure 6.7: The partitioning algorithm.
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resulting graph is acyclic. This is the scheduling graph. At this point

only the arcs in the dependency graph are removed, the net-list is un-

changed. The dependencies represented by the removed arcs will be

ignored during scheduling. In figure 6.6(b) the arc from A to B will be

removed and in figure 6.6(d) no arcs will be removed since there are no

loops.

When the scheduling graph has been created, it is scheduled using

list scheduling. List scheduling is an iterative process. In each itera-

tion, one node is selected. The selected node is scheduled, i.e. placed in

a partition. To chose which node to select, a set of possible nodes is cre-

ated. A node is eligible for selection if it is not already scheduled and all

its predecessors in the scheduling graph are scheduled. From the set of

possible nodes, the node with the highest priority is selected. The way

of assigning priorities is described in section 6.3.2. The scheduling loop

is repeated until all nodes are scheduled.

The first n1 selected nodes are placed in partition 1, the following

n2 nodes are placed in partition 2 and so on. How we decide about the

sizes of the partitions is explained in section 6.3.4.

During scheduling, when a partition is filled, the unscheduled nodes

will be scheduled in a later partition than the scheduled nodes. At this

time it is easy to check if there are any dependencies that cannot be ful-

filled. Only the removed forward data dependencies need to be checked.

A dependency cannot be fulfilled if the corresponding arc goes from an

unscheduled node to a scheduled node. After filling one partition, if we

detect that an ignored dependency will be violated, it is removed from

the net-list. This is done by the transformation shown in figure 6.6. All

three graphs are transformed. The added dummy node is treated in the

same way as any other nodes. When all its predecessors in the schedul-

ing graph are scheduled, it will be placed in the set of possible nodes

and it will eventually be selected for scheduling.

6.3.2 The Priority Function

Due to the nature of list scheduling, there is no problem to distribute

the nodes evenly among the partitions. We do not think that the num-

ber of nodes added due to violated data dependencies is a problem ei-

ther. The major concern is to find a schedule that meets the deadline.

The priority function was designed to address this issue.

One way to find a tight schedule is to minimise the critical paths, i.e.

the depths, of the partitions. The priority function does this by giving
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(a)

ASAP = n ASAP = n + 1

A

B

C

D

partition 1

(b)

ASAP = n + 1 ASAP = n + 2

C

B D

Figure 6.8: A node can have different ASAP values for different parti-

tions. (a) before recalculation of the ASAP values and (b) after recalcu-

lation.

higher priorities to nodes that will not increase the critical path of the

current partition, and a lower priorities to nodes that will increase it.

When nodes are added to a partition, the inverse of the depth of the

nodes in the net-list can be used as a priority. Nodes with depth one

have the highest priority, followed by nodes with depth two and so on.

The depth of a node can be found by doing ASAP scheduling of the net-

list. Observe that it is not the scheduling graph that is used to calculate

the ASAP value. It contains both direct and forward data dependencies,

since a forward data dependency does not correspond to a propagation

delay, but only to the read and write order of the registers.

The procedure described above is used for the first partition. For

later partitions, the use of the original ASAP as priority is not optimal.

In figure 6.8(a) node A and B have ASAP = n. Node A is scheduled

in partition 1 while there is no space for node B. Now if both node B

and C are scheduled in partition 2 both nodes will have a depth of 1

in that partition. Therefore both nodes should have the same priority

for partition 2. To solve this, we recalculate the ASAP value for all

unscheduled nodes when one partition is full. When the ASAP value is

recalculated all nodes must have an ASAP that is larger than the ASAP

of any scheduled nodes. A consequence of this is that a node can have

different priorities for different partitions.

The purpose of the priority function is to order the nodes. The n1
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nodes with the highest priority are scheduled in the first partition, the

next ,n2, nodes in partition 2 and so on. When a partition is full it

is likely that some unscheduled nodes have the same ASAP as some

scheduled nodes. In figure 6.8(a) node A is scheduled, but not node B.

The overall schedule is influenced by the selection criterion for nodes to

be scheduled and nodes to be saved for later partitions. Using only the

inverse ASAP as a priority function is not sufficient. For nodes with the

same ASAP we give a higher priority to nodes with smaller mobility.

The mobility of a node is defined as the length of the time interval it

can be scheduled in without violating the deadline. The mobility can

be calculated by doing ALAP and ALAP scheduling of the net-list and

then for each node mobility = ALAP − ASAP .

We do not define a mathematical function for the priority. Instead

we define an ordering of the nodes in a net-list. For two node A, B

A ≺ B iff (A.ASAP < B.ASAP ) ∨

((A.ASAP = B.ASAP ) ∧ (A.ALAP < B.ALAP ))(6.1)

If two nodes have the same ASAP the node with the smallest ALAP

will have the highest priority. Since the ASAP values are the same, this

is the node with the smallest mobility. For nodes with different ASAP

the node with the smallest ASAP has the highest priority.

6.3.3 Deadline Inheritance

If all nodes were scheduled in decreasing priority order, a close to opti-

mal timing is likely to be found. This is not always possible since the

nodes are scheduled in the partial order represented by the scheduling

graph. During scheduling, one node can be blocked by another node

with lower priority. This happens if there is a forward data dependency

from a low priority node to a high priority node, see figure 6.9. Only

considering the net-list in figure 6.9(a) node D has a high mobility, it

can be scheduled between 1 and 3. However there is a forward data

dependency from D to A, so the low priority node D precedes the high

priority node A in the scheduling graph, shown in figure 6.9(b). We ad-

dress this by what we call deadline inheritance. For all nodes, the ALAP

value must be smaller or equal to the ALAP value of all its successors in

the scheduling graph. This property is not automatically fulfilled since

the ALAP values are calculated in the net-list, which does not contain

the forward data dependencies in the scheduling graph. With deadline

inheritance ALAP of node D will change from 3 to 1, and D becomes a
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(a) (ASAP, ALAP)

A B C

FF

D

(1, 1) (2, 2) (3, 3) (1, 3)

(b) D A B C

(1, 3) (1, 1) (2, 2) (3, 3)

Figure 6.9: A net-list (a) and the corresponding scheduling graph (b).

With deadline inheritance the ALAP of node D will change from 3 to 1.

high priority node. The ALAP value for the nodes is calculated by first

doing ALAP scheduling of the net-list followed by deadline inheritance

during a depth-first traverse of the scheduling graph.

6.3.4 The Size of the Partitions

The list scheduler adds one node at a time to the current partition. The

question is “how many nodes should be placed in each partition”? One

way is to divide the nodes evenly among the partitions. Our experi-

ments showed that this works for some net-lists, but for others it does

not generate a minimal schedule length.

When a node with ASAP equal to n is added to a partition, it means

that all nodes with ALAP smaller or equal to n must also be scheduled

in that partition, or the deadline will be missed. To avoid missing the

deadline, before adding node to a partition we check that all other nodes

with ALAP less or equal to the ASAP of this node will also fit in this

partition. If there is not enough space in the partition for all these

nodes we consider the partition to be full. This check only needs to be

done when the critical path of a partition is extended.

Our criteria for a partition to be full is either that a maximum num-
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Table 6.1: MCNC Partitioning93 benchmarks characteristics.

net-list nodes ff depth strongly connected

components

c5315 606 0 14 -

c6288 1199 0 45 -

c7552 643 0 13 -

s9234 373 138 16 1

s13207 1006 450 18 10

s15850 1256 540 22 9

s38417 3361 1464 15 10

s38584 4082 1300 20 41

ber of nodes has been added or adding one more node will lead to a

missed deadline. That is adding one more node will increase the critical

path in the partition and there is not enough space left in the partition

to add all nodes that must be scheduled in the same partition.

6.3.5 Experimental results

We have implemented our algorithm in Java and run it on the MCNC

Partitioning93 benchmark circuits. We used the largest circuits with a

critical path of at least 8 nodes. The experiments were run on a SUN

Ultra-1 SPARC with 192 MB memory. The Java Virtual Machine used

was Solaris VM, Java version 1.2.1. In all our experiments we divided

the net-list to 8 partitions. The benchmark characteristics are shown

in table 6.1.

In our experiments we focused on minimal timing. The deadline for

the schedule was set to the depth of the net-list, i.e. the critical path.

With this timing constraint, the partitioning algorithm was run, both

with and without deadline inheritance. The results are shown in table

6.2.

The column labelled ’nodes added’ shows the number of nodes added

to the net-list by the partitioning algorithm. For the combinatorial

circuits no nodes are added since all direct data dependencies are re-

spected during scheduling.

The size increase of the partitions is shown both in number of nodes

and in percentage. For some circuits the space added to the partitions

is smaller than the number of nodes added to the net-list. This is pos-
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Table 6.2: Partitioning results.

net-list no deadline inheritance with deadline inheritance

nodes increase of cpu nodes increase of cpu

added partition size (s) added partition size (s)

nr % nr %

c5315 0 0 0 0.26 0 0 0 0.26

c6288 0 0 0 0.36 0 0 0 0.39

c7552 0 0 0 0.38 0 0 0 0.42

s9234 0 0 0 0.19 0 0 0 0.21

s13207 33 4 3.2 0.98 22 3 2.4 1.06

s15850 39 5 3.2 0.99 36 5 3.2 1.01

s38417 14 17 4.0 23.5 11 1 0.2 2.76

s38584 60 7 1.4 3.19 61 7 1.4 3.38

sible because there is some free space even for a minimal size of the

partitions. i.e. free space = netList.size modulo nrPartitions.

The experiments show that deadline inheritance can decrease the

number of nodes added during partitioning. It also improves timing.

This is clear for the circuit s38417. Without deadline inheritance the

partition size is increased by 17 before the deadline is met. This made

space for 8*17=136 nodes, but only 14 were used. With deadline inher-

itance the deadline was met after increasing the size of the partitions

by one.

Our experiments showed that the algorithm can partition net-lists

with up to 4000 nodes in less than 4 seconds. This was done without

any timing overhead and with a space overhead of up to 3.2%.



CHAPTER 7

CONCLUSIONS

7.1 Summary

Improving the productivity in the design of embedded systems is a im-

portant research topic. We have presented several contributions that

can improve the productivity in the development of image processing

systems. As part of the WITAS UAV project we are developing a pro-

totype UAV. The material presented here consists of our experiences

from the the development of the vision sub-system for the WITAS UAV

prototype.

We have developed a computational model, IP-DFG, which is suit-

able for modelling of complex image processing algorithms. IP-DFG is

based on boolean DFGs which have been extended with hierarchy and

better support for token consumptions and iterations.

We have been using IP-DFG as the computational model in a frame-

work for complex image processing modelling and implementation. The

framework is called IPAPI and covers the design process from system

level modelling to optimised implementation. IPAPI is suitable for co-

simulation with other parts of a large system.

Seen as a run time system IPAPI provides three functional aspects,

data processing, memory management and scheduling. Data process-

ing corresponds to the firing functions in an IP-DFG. The firing of the

actors are captured in the scheduler and the memory manager handles

the tokens. To create an IPAPI model of an algorithm, the designer cap-

tures the semantic in a IP-DFG graph, and provides an implementation

of the algorithm specific firing functions, that is, the image operations
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that are unique for this algorithm.

IPAPI provides more flexibility compared to a traditional task based

run time system. It is possible for IPAPI to dynamically combine differ-

ent algorithms and adapt the size of the image regions they are applied

to. This flexibility does not introduce more complexity during the im-

plementation. Instead the memory manager and scheduler in IPAPI

manages the dependencies introduced by the flexibility.

We have been using IPAPI to optimise a few typical image process-

ing algorithms within the WITAS project for the PowerPC processor.

The optimised implementations take full advantage of the AltiVec unit,

a vector unit in the PowerPC processor. With this optimised imple-

mentation we achieved sufficient computational power in the WITAS

on board system.

We also present an algorithm for temporal partitioning. This algo-

rithm is tailored to be used for time multiplexed FPGAs and makes it

possible to use existing FPGA tools for time multiplexed FPGAs. This

can be used to increase the performance for some actors by using a

FPGA accelerator.
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