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Introduction

1 Compositions

An essential part of statistics is analysing measurements of various entities.
Normally these values make perfect sense; we may be interested in the number
of cars, the velocity of each car, or the weight of each car. There are however
situations when we are not interested in the absolute values of our measure-
ments, but the relative ones; the absolute values may not even be available to
us. The absolute amount of a certain oxide in a rock sample or the absolute
number of respondents who would vote for a certain party in a party prefer-
ence survey are seldom of interest, whereas the relative amount of a certain
oxide and the relative number of respondents are usually more interesting.
We often refer to these relative values as proportions. The proportions of all
the different outcomes must of course sum to 1 (or 100 %). A vector of these
proportions is known as a composition, or put more mathematically: a com-
position is a vector of positive components summing to a constant, usually
taken to be 1. As indicated above, compositions arise in many different areas;
the geochemical compositions of different rock specimens, the proportion of
expenditures on different commodity groups in household budgets, and the
party preferences in a party preference survey are all examples of compositions
from three different scientific areas.

The sample space of a composition is the simplex. Without loss of gener-
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ality we will always take the summation constant to be 1, and we define the
D-dimensional simplex S D as

S D =
{

(x1, . . . , xD)T ∈ RD
+ :

D∑
j=1

xj = 1
}
,

where R+ is the positive real space.
In this thesis we will refer to compositions with two components (or

parts), i.e. D = 2, as bicomponent, with three components, i.e. D = 3, as
tricomponent, and with more than two components, i.e. D > 2, as multicom-
ponent. Please note the difference between bicompositional referring to two
compositions and bicomponent referring to a composition with two compo-
nents. The two notions will be used together as in “a bicomponent bicompo-
sitional distribution,” i.e. a joint distribution of two compositions each with
two components.

2 A short historical review

Compositions have been studied almost as long as the subject of modern
statistics has existed. Pearson (1897) was the first to realize that if you divide
two independent random variates with a third random variate, independent
of the first two, the two quotients will be correlated. Pearson called this “spuri-
ous correlation” and warned researchers for this phenomenon. This “spurious
correlation” of course applies to compositions, since compositions are usu-
ally made up of a number of measurements divided by their sum; in fact for
compositions the denominator is not even independent of the measurements.
Since then it should have been known that compositions have to be treated
with care. During the following 60 years this was however usually not the
case.

In 1986 Aitchison published his pivotal book The Statistical Analysis of
Compositional Data (reprinted 2003). In this book he argues for the con-
cept of logratio transformations as a way to resolve the problems caused by
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the compositional summation constraint. Aitchison presented two logratio
transformations: the additive logratio transformation (ALR) and the centred
logratio transformation (CLR). Later Egozcue et al. (2003) introduced the
isometric logratio transformation (ILR). The ALR transformation consists
of the logarithms of the components, omitting one, divided by the omitted
reference component; the CLR transformation consists of the logarithms of
the components divided by the geometric mean of the components. The
ILR transformation is a much more complex transformation. If for exam-
ple x = (x1, x2, x3, x4)T ∈ S 4, then the resulting vectors of the different
transformations are the following:

alr(x) =

(
log

x1

x4
, log

x2

x4
, log

x3

x4

)T

clr(x) =

(
log

x1

g(x)
, log

x2

g(x)
, log

x3

g(x)
, log

x4

g(x)

)T

ilr(x) =

(
1√
2

log
x1

x2
,

1√
6

log
x1x2

x2
3
,

1√
12

log
x1x2x3

x3
4

)T

where g(x) = (x1 · · · xD)1/D, i.e. the geometric mean. The three transforma-
tions are related, see for instance Barceló-Vidal et al. (2007).

Aitchison and Egozcue (2005) distinguish four phases in the evolution of
compositional analysis, the first one being the phase until 1960s when the
complications with compositional data were ignored, and the second being
the phase from the 1960s until the 1980s when different ideas were tried to
resolve the problems of the multivariate methods not working for compo-
sitional data. The third phase is that when the logratio methodology gains
acceptance. The fourth phase started some ten years ago, with the realization
that the simplex is a Hilbert space (see e.g. Pawlowsky-Glahn and Egozcue,
2001, 2002). This has given rise to a “stay-in-the-simplex” approach. This
approach basically provides a way of modelling the operations done on the
logratio transformed data, then usually referred to as coordinates, in the sim-
plex.
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3 Compositional time series

The interest for bicompositional correlation resulting in this thesis originally
began as an interest in compositional time series (CTS), i.e. time series of
compositions. Compositional time series arise in many different situations,
for instance party preference surveys, labour force surveys or pollution mea-
surements.

Even though there have only been relatively few papers published on CTS,
there have been several approaches to CTS; these have been reviewed by Lar-
rosa (2005) and Aguilar Zuil et al. (2007).

The first to discuss and use an ALR approach to CTS seem to be Aitchi-
son (1986) and Brunsdon (1987), which were followed by Smith and Bruns-
don (1989) and Brunsdon and Smith (1998). In that approach the CTS is
transformed with an ALR, and the transformed series is then analysed with
standard models, e.g. VAR or VARMA. Bergman (2008) and Aguilar and
Barceló-Vidal (2008) have also used ILR to model the data. The choice of
logratio transformation is of course arbitrary.

There have also been some ideas on how to model the time series on
the simplex. Apart from Aitchison and Brunsdon, Billheimer and Guttorp
(1995) and Billheimer et al. (1997) have used autoregressive and conditional
autoregressive models. Barceló-Vidal et al. (2007) introduced a compositional
ARIMA model, defined using the “stay-in-the-simplex” approach.

As an illustration of CTS we present a figure from Bergman (2008), where
a time series from the Swedish labour force survey (AKU) was modelled. Fig-
ure 1 gives three views of the analysed time series; the top plot shows the time
series in a ternary time series plot (sometimes referred to as a “Toblerone
plot”), the middle plot shows the three components of the time series in
a standard time series plot, and the bottom plot shows a standard time se-
ries plot of the ILR-transformed time series. In all three plots the structural
change in the series due to the Swedish fiscal crisis during the early 1990s is
clearly visible, as well as a seasonal pattern.
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Figure 1 (Next page) Three views of a compositional time series. The top plot shows
the time series in a ternary time series plot, where the top corner of the Simplex
represents 100 % Unemployment, the bottom left corner 100 % Employment, and
the bottom right corner that 100 % of the population are Not belonging to the labour
force. The middle plot shows the three components of the time series in a standard
time series plot. (Note that the vertical axis has been cut and has different scales in
the different parts.) The bottom plot shows the ILR-transformed series. (The second
component of the transformed series is plotted with a dotted line.) In all three plots
the structural change in the series during the early 1990s is clearly visible, as well as
the seasonal pattern.

Source: Statistics Sweden.

4 Correlation

Unlike the observations in cross-sectional data, the observations in time series
are usually not independent. A not entirely unintuitive starting point for
describing this dependence is to consider the concept of correlation. This
thesis tries to target the question: “How do we model, measure and compare
similarity or dissimilarity between two compositions?”

When hearing the word “correlation” most people would probability think
of the product moment correlation coefficient

r =
Cov(X ,Y )√
Var(X )Var(Y )

,

which measures the linear relationship between two variables. This is also
how correlation is defined in Encyclopedia of Statistical Sciences (Rodriguez,
1982). However, correlation does not have be restricted to linear relationships
or univariate variables. Dodge (2003) for instance states that it can be “used
broadly to mean some kind of statistical relation between variables.” This
wider approach includes correlation coefficients that need not measure linear
relationships, for instance the rank correlation coefficient Spearman’s rS . It is
this wider approach we will utilize. We thus consider correlation as a measure
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of similarity.
A good measure of correlation (or similarity) should also be able to com-

pare not just two observations of the same composition at different time
points, but also of two different compositions at the same time point. These
two compositions might not even have equal numbers of components. We
could for instance consider the correlation between some composition of the
labour force and some composition of the gross domestic product. In this
thesis we will however restrict our analysis to the correlation between two
observations of the same composition, but with the introduction of suitable
distributions, the result of this thesis is easily generalized to the above situa-
tions.

5 Bicompositions

In order to parametrically quantify the correlation between two compositions
one needs to consider the joint distribution of the compositions. As stated
above, the sample space of a D-component composition is the simplex S D.
The sample space of two compositions X, Y, defined on S D, is consequently
the Cartesian product S D × S D. This is however not a simplex, but a
manifold with two constraints, a bisimplex. We note that whereas the Carte-
sian product of two random vectors on the real space Rp will form a new
random vector on the real space Rp+p, this does not hold for two simplices:
S D ×S D 6= S D+D.

The Cartesian product of two D-component compositions could have
been denoted

Z = (Z1, . . . ,ZD,ZD+1, . . . ,ZD+D)T,

where
∑D

j=1 Zj =
∑D+D

j=D+1 Zj = 1. However, throughout this thesis we
choose to denote it

(X,Y) = (X1, . . . ,XD,Y1, . . . ,YD)T,
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to stress the fact that we regard it primarily as two compositions and not as
one bicomposition.

We will in this thesis base our modelling of correlation on an extension of
the Dirichlet distribution. Following Aitchison (1986), we define the Dirich-
let probability density function with parameter a = (a1, . . . , aD) ∈ RD

+ as

fX(x) =
G (a1 + · · ·+ aD)
G(a1) · · ·G(aD)

xa1−1
1 · · · xaD−1

D ,

where x = (x1, . . . , xD)T ∈ S D and G(·) is the Gamma function. We will
present a bicompositional generalization of the Dirichlet distribution, defined
on the Cartesian product of two simplices, i.e. a bisimplex. The notation
(X,Y) will also allow us to emphasize the relationship between the new dis-
tribution and the product of two Dirichlet distributions.

In accordance with the Dirichlet integral, the new distribution is defined
with respect to the Lebesgue measure. It remains as future work to reformu-
late it using the Aitchison (or simplicial) measure (Pawlowsky-Glahn, 2003)
along the lines of Mateu-Figueras and Pawlowsky-Glahn (2005).

6 Outline of the thesis

This thesis is based on four papers concerning bicompositions and modelling
the correlation between compositions. The contents of the papers are pre-
sented briefly below.

6.1 Paper I

We search the literature for distributions defined on the Cartesian product
S D ×S D, and find a few bivariate Beta distributions for the bicomponent
case, but no distributions defined on S D ×S D when D > 2.

We introduce a bicompositional Dirichlet distribution. The distribution
is defined on the Cartesian product S D ×S D and is based on the product
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of two Dirichlet distributions. The probability density function is

fX,Y(x, y) = A

 D∏
j=1

x
aj−1
j y

bj−1
j

(xTy
)g
,

where x = (x1, . . . , xD)T ∈ S D, y = (y1, . . . , yD)T ∈ S D, and aj, bj ∈ R+

(j = 1, . . . ,D). The parameter space of g depends on a and b; however, all
non-negative values are always included. The parameter g models the degree
of covariation between X and Y. When g = 0, the distribution is the product
of two independent Dirichlet distributions.

We prove that the distribution exists in the bicomponent case if and only
if g > −min(a1 +b2, a2 +b1) and at least for g ≥ 0 in the multicomponent
case. We also give expressions for the normalization constant A for all g in
the bicomponent case and for integers g in multicomponent case.

In the bicomponent case we present expressions for the cumulative distri-
bution function and the product moment. In both the bicomponent and the
multicomponent case, we derive expressions for the marginal probability den-
sity functions and the marginal moments, and for the conditional probability
density distribution and conditional moments.

6.2 Paper II

We consider two families of parametric models {f (x, y; j), j ∈ Ji} (i = 0, 1)
with J0 ⊂ J1 when modelling (X,Y) and assume that the true joint density
function is g(x, y). Kent (1983) defines the Fraser information as

F (j) =
∫

log f (x, y; j)g(x, y) dx dy

and the information gain as

G(j1 : j0) = 2{F (j1)− F (j0)},
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where ji is the parameter value that maximizes F (j) under the parameter
space Ji (i = 0, 1). Using G(j1 : j0), Kent (1983) proposes a general
measure of correlation, or joint correlation coefficient, between (X,Y) defined
as

r2
J = 1− exp{−G(j1 : j0)},

where X and Y are modelled as independent quantities under J0.
We use the bicompositional Dirichlet distribution presented in Paper I to

model two compositions X and Y. We let j = (a, b,g) and J0 = {j : g =
0}, while J1 is the unrestricted parameter space.

The joint correlation coefficient is calculated, utilizing that the bicom-
positional Dirichlet distribution constitutes an exponential family of distri-
butions, and it is presented graphically for a large number of bicomponent
bicompositional models. We note that r2

J as a function of g is not symmetric
around 0.

We also calculate the joint correlation coefficient for nine tricomponent
bicompositional models.

In the Appendices we present and examine expressions for the first deriva-
tive of the binomial coefficient

d
dr

(
r
n

)
,

and we also give a suggestion for numerical integration over S 3 ×S 3.

6.3 Paper III

We use the rejection method to generate random variates with a bicomposi-
tional Dirichlet density f . Given a dominating density g and a constant c ≥ 1
such that f (x, y) ≤ cg(x, y), and a random number U uniformly distributed
on the unit interval, a generated variate (x, y) is accepted if

U ≤ f (x, y)
cg(x, y)

,
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otherwise it is rejected and new (x, y) and U are generated until acceptance.
We hence need to find dominating densities g and constants c. We examine
three cases.

First we look at the (trivial) case when g = 0, i.e. the product of two
independent Dirichlet distributions. Dirichlet distributed variates are easily
generated using Gamma distributed variates, and thus we need not use the
rejection method.

Secondly we examine the case when g > 0. We use a bicompositional
Dirichlet distribution with g = 0, i.e. the product of two independent
Dirichlet distribution, as dominating density. We find that the random vari-
ate is accepted if U ≤ (xTy)g. Evidently, we need not calculate the normaliza-
tion constant A(a, b, g), and hence we can generate random numbers from
bicompositional Dirichlet distributions whose probability density functions
we cannot calculate. When g is very large, the method will be slow, as the
acceptance probability Pr{U ≤ (xTy)g} = (xTy)g will be very low. We note
that we can always use a uniform density as g , with c = maxx,y f (x, y). This
is though only applicable for non-negative integers g, since it is necessary to
calculate A(a, b, g).

Thirdly we examine the bicomponent case when g < 0. We partition
the sample space into four quadrants Q1-Q4, and choose a quadrant Qk
(k = 1, 2, 3, 4) randomly with probability∫∫

Qk
f (x, y) dx dy (k = 1, 2, 3, 4),

where f (x, y) is the bicomponent bicompositional Dirichlet probability den-
sity function viewed as a function of x and y. For each of the quadrants we
find a dominating density based on the product of two Dirichlet distributions
and a constant c, and generate a random variate using the rejection method. A
slight problem with the method is to find effective ways of generating random
Dirichlet distributed variates that are restricted to a particular quadrant.

We compare the efficiencies of the two suggestions for dominating densi-
ties, Dirichlet and uniform, with a Monte Carlo study.
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6.4 Paper IV

We present maximum likelihood estimates of the parameter j = (a, b, g)
of the bicompositional Dirichlet distribution presented in Paper I. Following
Kent (1983) we also present an estimator of the general measure of correla-
tion, or joint correlation coefficient, presented in Paper II, assuming that the
data follow a bicompositional Dirichlet distribution,

r̂2
J = 1− exp{−Ĝ(ĵ1 : ĵ0)},

where Ĝ(ĵ1 : ĵ0) is an estimator of the information gain when allowing for
dependence,

Ĝ(ĵ1 : ĵ0) =
2
n

(
n∑

k=1

log f (xk, yk; ĵ1)−
n∑

k=1

log f (xk, yk; ĵ0)

)
,

and ĵ1 and ĵ0 are the maximum likelihood estimates under the parameter
spaces J1 and J0, respectively.

We also present two confidence intervals for the joint correlation coeffi-
cient: one when G(j1 : j0) is large,[

1− exp

{
−Ĝ(ĵ1 : ĵ0) +

√
s2q2

1;a/n
}
,

1− exp

{
−Ĝ(ĵ1 : ĵ0)−

√
s2q2

1;a/n
}]

,

where s2 is the sample variance of 2 log{f (xj, yj ; ĵ1)/f (xj, yj ; ĵ0)} and q2
1;a is

the upper a quantile of the q2
1 distribution; and one when G(j1 : j0) is small,[

1− exp

{
−
k1;a/2(â)

n

}
, 1− exp

{
−
d1;a/2(â)

n

}]
,

12



where k1;a/2 and d1;a/2 are non-centrality parameters of certain q2
1 distribu-

tions and â = nĜ(ĵ1 : ĵ0).
Using a Monte Carlo study, we compare the empirical confidence coeffi-

cients of the two intervals for a number of models. The random variates are
generated by means of the method described in Paper III. It is apparent for the
models that we have examined that the “small” confidence interval (based on
non-central q2-distributions) will produce the smaller intervals, yielding an
empirical confidence coefficient for almost all models of approximately 95 %,
when the nominal confidence coefficient is 95 %. The “large” confidence
intervals will in general be wider.

We also examine a bias correction, suggested by Kent (1983), of the in-
formation gain estimator. This correction involves the second derivative of
the binomial coefficient

d2

dr2

(
r
n

)
,

and an expression for this is given in the appendix of that paper. In our
examples, however, the suggested correction actually yields estimates that are
more biased than the uncorrected ones. We believe that this might be due to
numerical issues, as the correction involves a large number of infinite sums.
Due to this lack of improvement we have not used this bias correction in our
estimations.

As an example we have also estimated the general measure of correlation
for GDP data from the 50 U.S. states and District of Columbia. The estimate
of the general measure of correlation is

r̂2
J = 0.3027,

with a “small” confidence interval of

(0.0993, 0.5371)

thus indicating that composition of the government GDP in 1967 is corre-
lated with that in 1997.
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A bicompositional Dirichlet distribution

Jakob Bergman

Abstract

The simplex S D is the sample space of a D-part composition.
There are only a few distributions defined on the simplex and even fewer
defined on the Cartesian product S D × S D. Based on the Dirich-
let distribution, defined on S D, we propose a new bicompositional
Dirichlet distribution defined on S D × S D, and examine some of its
properties, such as moments as well as marginal and conditional distri-
butions. The proposed distribution allows for modelling of covariation
between compositions without leaving S D × S D.

Keywords

Cartesian product · Compositional data · Dirichlet distribution · Sim-
plex

1 Introduction

1.1 Compositions

A composition is a vector of positive components summing to a constant,
usually 1. The components of a composition are what we usually think of as
proportions (at least when the vector sums to 1). Compositions arise in many
different areas; the geochemical compositions of different rock specimens,
the proportion of expenditures on different commodity groups in household
budgets, and the party preferences in a party preference survey are all three
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examples of compositions from different scientific areas. For more examples
of compositions, see for instance Aitchison (1986) or the reprint Aitchison
(2003).

Compositions differ from other multivariate random vectors on the real
space due the summation constraint. Whereas the Cartesian product of two
random vectors on the real space Rp will form a new random vector on the
real space Rp+p, this does not hold for two simplices: S D ×S D 6= S D+D.

When describing dependency structures, compositional analysis has been
primarily concerned with describing the dependency structures within a com-
position, i.e. the relation between the components of a composition. Aitchi-
son (1986, Ch. 10) for instance devotes an entire chapter to this, and as a
recent example Ongaro et al. (2008) construct a new distribution for mod-
elling such relations. In this paper we will not be considering the relation
between the components of a composition, but the relation between two
compositions. We will use the term bicompositional when referring to two
compositions (with same number of components) and the term unicompo-
sitional when referring to one composition. A composition with two com-
ponents will be referred to as a bicomponent composition, as opposed to a
multicomponent composition.

1.2 The simplex

The sample space of a composition is the simplex. (For simplicity we will
always take the summing constant to be 1.) We define the D-dimensional
simplex space S D as

S D =
{

(x1, . . . , xD)T ∈ RD
+ :

D∑
j=1

xj = 1
}

where R+ is the positive real space. As noted above, it is a sample space that
occurs in a wide variety of applications. There are however only a limited
number of distributions defined on the simplex; the two most notable are the
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Dirichlet distribution and the logistic normal distribution class described by
Aitchison and Shen (1980). There are also a number of generalizations of
these two distributions.

The sample space of the joint distribution of two compositions is the
Cartesian product S D ×S D, which is not a simplex, but a manifold with
two constraints. S D ×S D is the subspace of RD+D

+ , where

D∑
j=1

xj =

D+D∑
j=D+1

xj = 1.

There are almost no distributions defined on S D×S D. For the case D = 2,
the bicomponent case, there have been proposed a few bivariate Beta distri-
butions (though usually not in a compositional context). See for instance in
recent years Olkin and Liu (2003), Nadarajah and Kotz (2005), Nadarajah
(2006) or Nadarajah (2007). For D > 2, the multicomponent case, we have
not found any distributions at all in the literature.

2 An example

As an example we look at the proportion x of the Gross Domestic Product
(GDP) due to agriculture etc., mining, utilities, construction and manufac-
turing for the 50 U.S. states and District of Columbia. Every observation
hence is a composition (x, 1− x)T. (Data come from the Bureau of Economic
Analysis, U.S. Department of Commerce.) The observations for 2007 are
plotted versus the observations for 1997 in Figure 1. We see that for almost
all of the states the proportion x is less for 2007 than for 1997. For 1997
most states vary between (0.2, 0.8) and (0.4, 0.6), but for 2007 most are be-
tween (0.1, 0.9) and (0.2, 0.8). To be able to model this relation we need
distributions defined on S 2 ×S 2.

We could of course also have divided the GDP into three parts, e.g. (Agri-
culture, mining etc.; Other private industries; Government). This would
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Figure 1 The combined agriculture, mining, utilities, construction, and manufactur-
ing proportion of the GDP for the 50 U.S. states and District of Columbia for 2007
plotted versus the same proportion for 1997.

Source: Bureau of Economic Analysis, U.S. Department of Commerce.
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however require a four-dimensional plot. We acknowledge though the need
for modelling the covariation between two compositions with D components
in the space S D ×S D.

As well as studying the joint probability density of two compositions,
we could study the probability density for a composition conditioned on the
values of another composition. In our example we might study a composition
in 2007, conditioned on the value in 1997. Also for this context we need
suitable distributions to be able to create models.

3 A bicompositional Dirichlet distribution

Following Aitchison (1986), we define d = D− 1 and x = (x1, . . . , xd , xD)T,
and let x ∈ S D. The well-known (unicompositional) Dirichlet distribution
with parameter a ∈ RD

+ is defined as

fX(x) =
G (a1 + · · ·+ aD)
G(a1) · · ·G(aD)

xa1−1
1 · · · xaD−1

D

where G(·) is the Gamma function.
Based on the Dirichlet distribution we will now define a bicompositional

generalization for X and Y.

Definition 1 (Probability Density Function). Let X,Y ∈ S D and let

fX,Y(x, y) = A

 D∏
j=1

x
aj−1
j y

bj−1
j

(xTy
)g

(1)

where aj, bj ∈ R+ for j = 1, . . . ,D and g is a real number.

The parameter g models the degree of covariation between X and Y. If
g = 0, (1) reduces to the product of two independent Dirichlet probability
density functions

fX,Y(x, y) = A
D∏

j=1

x
aj−1
j y

bj−1
j
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where A is known:

A =
G (a1 + · · ·+ aD)G

(
b1 + · · ·+ bD

)∏D
j=1 G(aj)G(bj)

.

This motivates that (1) is referred to as the probability density function of a
bicompositional Dirichlet distribution. We let DD

1 (a) denote the unicom-
positional Dirichlet distribution with D components and parameter a =
(a1, . . . , aD)T and we let DD

2 (a, b; g) denote the bicompositional Dirichlet
distribution with D components and parameters a, b and g, where b =
(b1, . . . , bD)T.

Next we examine some of the properties of this distribution: first in the
special bicomponent case, and then in the general multicomponent case.

4 The bicomponent case

For two bicomponent compositions, X = (X , 1− X )T and Y = (Y , 1− Y )T,
the probability density function is a function of x = (x, 1 − x)T and y =
(y, 1 − y)T, but as it is completely determined by (x, y) we will for simplicity
treat it as function of (x, y). Hence the probability density function (1) is
reduced to

fX ,Y (x, y) = Axa1−1(1−x)a2−1yb1−1(1−y)b2−1 {xy + (1− x)(1− y)}g . (2)

This distribution could of course also be considered a bivariate Beta distribu-
tion, if we regard it as a function of (x, y).

We begin our investigation of the distribution by stating for what values
of g the distribution exists.

Theorem 1. The distribution D2
2(a1, a2, b1, b2;g) exists if and only if g >

−min(a1 + b2, a2 + b1).

Proof. If g is a non-negative then the last factor in

xa1−1(1− x)a2−1yb1−1(1− y)b2−1 {xy + (1− x)(1− y)}g (3)
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(0, .5)

(0, 1) (.5, 1)

(.5, 0) (1, 0)

(1, .5)

Figure 2 The integration area of (4). The denominator is close to 0 only when (x, y)
is close to either (0, 1) or (1, 0).

is bounded for x, y ∈ [0, 1] and the integral of (3) exists. If g is negative then
the last factor is unbounded.

Let g be negative and g = −g. Then the integral of (3) may be written
as ∫ 1

0

∫ 1

0

xa1−1(1− x)a2−1yb1−1(1− y)b2−1

{xy + (1− x)(1− y)}g dx dy. (4)

The denominator is close to 0 only when (x, y) is close to either (0, 1) or
(1, 0). For the rest of the integration area the denominator is bounded away
from 0. In the triangle (0, 0.5), (0, 1), (0.5, 1), i.e. the top left triangle, {xy+
(1−x)(1−y)}may be estimated from below by (x+1−y)/2 and from above
by (x + 1 − y). In the bottom right triangle, {xy + (1 − x)(1 − y)} may be
estimated from below by (y + 1− x)/2 and from above by (y + 1− x). The
integration area, with the top left and bottom right triangles shaded, is shown
in Figure 2.
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The integral (4) thus exists if and only if the integral∫ 1

1
2

(∫ y− 1
2

0

xa1−1(1− y)b2−1

(x + 1− y)g dx

)
dy (5)

and the corresponding integral over the bottom triangle both exist. Introduc-
ing u = x and v = x + 1− y, (5) turns into∫ 1

2

0

(∫ v

0

ua1−1(v − u)b2−1

vg du
)

dv. (6)

If we replace u by vt, (6) may be written as∫ 1
2

0
va1+b2−g−1 dv

∫ 1

0
ta1−1(1− t)b2−1 dt.

The second integral of this product always exists, but the first one exists if
and only if a1 + b2 > g . With an analogous argument for the integral over
the bottom right triangle, we can show that this integral exists if and only if
a2 + b1 > g . Hence the density (2) exists if and only if g > −min(a1 +
b2, a2 + b1).

We next determine the normalization constant A.

Theorem 2. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g > −min(a1 + b2, a2 +

b1), the normalization constant A is determined by

1
A
=

1
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

) (7)
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where B(p, q) is the Beta function:

B(p, q) =
∫ 1

0
tp−1(1− t)q−1 dt =

G(p)G(q)
G(p + q)

.

Proof. Let x and h be defined by x = 1
2 (1 + x) and y = 1

2 (1 + h). Then
1 − x = 1

2 (1 − x), 1 − y = 1
2 (1 − h) and xy + (1 − x)(1 − y) = 1

2 (1 + xh)
and the Binomial expansion yields

{xy + (1− x)(1− y)}g = 1
2g

∞∑
i=0

(
g

i

)
(xh)i. (8)

We note that, since 0 < x < 1 and 0 < y < 1, and thus −1 < x < 1
and −1 < h < 1, the series on the right-hand side of (8) converges. The
normalization constant is then determined by

1
A
=

1
2g

∞∑
i=0

(
g

i

)∫∫
xa1−1(1− x)a2−1yb1−1(1− y)b2−1(xh)i dx dy

=
1
2g

∞∑
i=0

(
g

i

)(∫
xa1−1(1− x)a2−1xi dx

)(∫
yb1−1(1− y)b2−1hi dy

)

=
1
2g

∞∑
i=0

(
g

i

)(∫
xa1−1(1− x)a2−1{x − (1− x)}i dx

)

·
(∫

yb1−1(1− y)b2−1{y − (1− y)}i dy
)

=
1
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

)
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where all integrals are over the unit interval.

Empirical trials show that the series (7) converges quickly for most exam-
ples. If all the parameters are close to 0, the series may converge very slowly.
We have also found that convergence can be slow when g is negative and close
to −min(a1 + b2, a2 + b1). These situations however mean that the prob-
ability is concentrated near the edges of the sample space and hence perhaps
of little practical importance.

If g is a non-negative integer the results are simplified as shown next.

Theorem 3. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g is a non-negative integer,

the normalization constant A is determined by

1
A
=

g∑
j=0

(
g

j

)
B(a1 + j, a2 + g− j)B(b1 + j, b2 + g− j) (9)

where B(·, ·) is the Beta function.

Proof. The result follows from expanding the last factor of (2) using the Bi-
nomial theorem

{xy + (1− x)(1− y)}g =
g∑

j=0

(
g

j

)
xjyj(1− x)g−j(1− y)g−j (10)

and then integrating

g∑
j=0

(
g

j

)
xa1−1(1− x)a2−1yb1−1(1− y)b2−1xjyj(1− x)g−j(1− y)g−j

using the definition of the Beta function.

We proceed by also stating the cumulative distribution function.
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Theorem 4. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g > −min(a1 + b2, a2 +

b1), the cumulative distribution function is

FX ,Y (x, y) =
A
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jBx(a1 + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kBy(b1 + k, b2 + i − k)

) (11)

where A is the constant given in Theorem 2 and Bx(p, q) is the incomplete Beta
function defined as

Bx(p, q) =
∫ x

0
tp−1(1− t)q−1 dt.

Proof. The proof is similar to the proof of Theorem 2, but uses the definition
of the incomplete Beta function instead of the Beta function.

If g is a non-negative integer the cumulative distribution function may be
expressed more simply.

Theorem 5. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g is a non-negative integer,

the cumulative distribution function is

FX ,Y (x, y) = A
g∑

j=0

(
g

j

)
Bx(a1 + j, a2 + g− j)By(b1 + j, b2 + g− j) (12)

where A is the constant given in Theorem 3 and Bx(·, ·) is the incomplete Beta
function.

Proof. The proof is similar to the proof of Theorem 3, but uses the definition
of the incomplete Beta function instead of the Beta function.

29



Next we give the product moments of the distribution.

Theorem 6. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g > −min(a1 + b2, a2 +

b1), the product moment E(X nY m) is

E(X nY m) =
A
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + n + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + m + k, b2 + i − k)

)

=
A
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + n + j, a2 + i − j)G(a, j, g, n)


·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + m + k, b2 + i − k)G(b, k, g,m)

)

where

G(a, j, g, n) =
n−1∏
l=0

a1 + j + l
a1 + a2 + g+ l

(13)

and A is the constant given in Theorem 2.

Proof. The proof of the first equality is similar to that of Theorem 2. The
second equality follows from repeated use of the identity

B(p + 1, q) =
p

p + q
B(p, q). (14)

As before, if g is a non-negative integer, the calculations are simplified.
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Theorem 7. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g is a non-negative integer,

the product moment E(X nY m) is

E(X nY m) = A
g∑

j=0

(
g

j

)
B(a1 + n + j, a2 + g− j)B(b1 + m + j, b2 + g− j)

= A
g∑

j=0

(
g

j

)
B(a1 + j, a2 + g− j)B(b1 + j, b2 + g− j)

· G(a, j, g, n)G(b, j, g,m)

where G is given in (13) and A is the constant given in Theorem 3.

Proof. The proof of the first equality is similar to the proof of Theorem 3.
The second equality follows from repeated use of the identity (14).

4.1 Marginal distributions

In the example in Section 2 we noted that not only the joint distribution,
but also the conditional distributions may be of interest when modelling bi-
compositional data. In order to determine the properties of the conditional
distributions, we first need to derive some of the properties of the marginal
distributions.

Theorem 8. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g > −min(a1 + b2, a2 +

b1), the marginal probability density function of X is

fX (x) =
A
2g

∞∑
i=0

(
g

i

)
xa1−1(1− x)a2−1{x − (1− x)}i

·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

)
(15)

where A is the constant given in Theorem 2.
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Proof. The result follows by expanding (2) as in the proof of Theorem 2 to
get

A
2g

∞∑
i=0

(
g

i

)
xa1−1(1− x)a2−1{x − (1− x)}iyb1−1(1− y)b2−1{y− (1− y)}i,

then using the Binomial Theorem to expand

{y − (1− y)}i =

i∑
k=0

(
i
k

)
(−1)i−kyk(1− y)i−k, (16)

and finally integrating

A
2g

∞∑
i=0

(
g

i

)
xa1−1(1− x)a2−1{x − (1− x)}i

· yb1−1(1− y)b2−1
i∑

k=0

(
i
k

)
(−1)i−kyk(1− y)i−k

with respect to y using the definition of the Beta function.

As previously the results are simplified for non-negative integer values on
g.

Theorem 9. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g is a non-negative integer,

the marginal probability density function of X is

fX (x) = A
g∑

j=0

(
g

j

)
B(b1 + j, b2 + g− j)xa1+j−1(1− x)a2+g−j−1 (17)

where A is the constant given in Theorem 3.
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Proof. The result follows by expanding the last factor of (2) using the identity
(10) and then integrating with respect to y using the definition of the Beta
function.

When g = 0, we see that (17) is reduced to the common unicomposi-
tional Dirichlet distribution.

For completeness we also state the moments of the marginal distributions.

Theorem 10. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g > −min(a1+b2, a2+

b1), the nth moment of X is

E(X n) =
A
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + n + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

)

=
A
2g

∞∑
i=0

(
g

i

) i∑
j=0

(
i
j

)
(−1)i−jB(a1 + j, a2 + i − j)


·

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

)

·

(
n−1∏
l=0

a1 + i + l
a1 + a2 + g+ l

)

where A is the constant given in Theorem 2.

Proof. The result follows by expanding {x−(1−x)}i in (15) using the identity
(16), integrating the product of (15) and xn, and repeatedly using the identity
(14).

Again, the calculations are simplified for integer values.
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Theorem 11. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2;g) and g is a non-negative integer,

the nth moment of X is

E(X n) = A
g∑

j=0

(
g

j

)
B(a1 + n + j, a2 + g− j)B(b1 + j, b2 + g− j)

= A
g∑

j=0

(
g

j

)
B(a1 + j, a2 + g− j)B(b1 + j, b2 + g− j)G(a, j, g, n)

where A is the constant given in Theorem 3 and G(a, j, g, n) is given in (13).

Proof. The result follows from direct calculation and repeated use of the iden-
tity (14).

We note that if g = 0, then E(X ) = a1
a1+a2

, i.e. precisely the expectation
of a Dirichlet distribution, as one would expect.

Due to the symmetry of the bicompositional Dirichlet distribution, all of
the above results of course also apply to Y (with appropriate changes of ai to
bi and vice versa).

4.2 Conditional distributions

We now proceed to the bicomponent conditional distributions, first stating
the conditional probability density function.

Theorem 12. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2;g) and g > −min(a1+b2, a2+

b1), the conditional probability density function for Y conditioned on X = x is

fY |X=x(y) = Cyb1−1(1− y)b2−1 {xy + (1− x)(1− y)}g (18)

where

1
C

=
1
2g

∞∑
i=0

(
g

i

)
{x−(1−x)}i

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + k, b2 + i − k)

)
.
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Proof. The result follows directly from (2) and Theorem 8.

Theorem 13. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g is a non-negative integer,

the conditional probability density function for Y conditioned on X = x is

fY |X=x(y) = D
g∑

k=0

(
g

k

)
xk(1− x)g−kyb1+k−1(1− y)b2+g−k−1 (19)

where
1
D

=

g∑
j=0

(
g

j

)
xj(1− x)g−jB(b1 + j, b2 + g− j).

Proof. The result follows from directly from (2) and Theorem 9.

We note that when g = 0, (19) simplifies to the probability density
function of the unicompositional Dirichlet distribution with parameters b1

and b2.
We also derive the moments for the conditional distributions.

Theorem 14. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2; g) and g > −min(a1+b2, a2+

b1), the nth moment of Y |X = x is

E(Y n|X = x) =

C
2g

∞∑
i=0

(
g

i

)
{x − (1− x)}i

(
i∑

k=0

(
i
k

)
(−1)i−kB(b1 + n + k, b2 + i − k)

)
(20)

where C was given in Theorem 12

Proof. The result follows by using the identity (8) on (19) to get

C
2g

∞∑
i=0

(
g

i

)
{x − (1− x)}iyb1−1(1− y)b2−1{y − (1− y)}i,
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than expanding {y − (1− y)}i using (16), and finally integrating

yn C
2g

∞∑
i=0

(
g

i

)
{x−(1−x)}iyb1−1(1−y)b2−1

(
i∑

k=0

(
i
k

)
(−1)i−kyk(1− y)i−k

)
with respect to y using the definition of the Beta function.

Theorem 15. If (X ,Y ) ∈ D2
2(a1, a2, b1, b2;g) and g is a non-negative integer,

the nth moment of Y |X = x is

E(Y n|X = x) = D
g∑

j=0

(
g

j

)
xj(1− x)g−jB(b1 + n + j, b2 + g− j) (21)

where D was given in Theorem 13.

Proof. The result follows by integrating the product of yn and (19) using the
definition of the Beta function.

In both (20) and (21), the Beta function may be expanded to a product
similar to the ones in Theorems 10 and 11.

5 The multicomponent case

We now turn to the case when there are D > 2 components. Unfortunately,
due to the increased complexity, the results for this case are less elaborate than
for the bicomponent case.

The distribution exists if g is a non-negative real number. If g fur-
thermore is a non-negative integer, the normalization constant may easily
be determined. To simplify the expressions, we let a. = a1 + · · · + aD,
b. = b1 + · · · + bD, k. = k1 + · · · + kD and k = (k1, . . . , kD). We denote
the multinomial coefficient (

g

k

)
=

g!
k1! · · · kD!

.
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Theorem 16. If (X,Y) ∈ DD
2 (a, b; g) and g is a non-negative integer, then the

normalization constant is determined by

1
A
=
∑
k≥0
k.=g

(
g

k

)∏D
i=1 G(ai + ki)
G(a. + g)

∏D
i=1 G(bi + ki)
G(b. + g)

. (22)

Proof. The result follows from expanding the factor (xTy)g by using the Multi-
nomial Theorem and from the properties of the Dirichlet integral:

1
A
=

∫
y

∫
x

 D∏
j=1

x
aj−1
j y

bj−1
j

(xTy
)g

dx dy

=

∫
y

∫
x

 D∏
j=1

x
aj−1
j y

bj−1
j

∑
k≥0
k.=g

(
g

k

)
xk1

1 yk1
1 · · · x

kD
D ykD

D dx dy

=
∑
k≥0
k.=g

(
g

k

)∫
x

D∏
j=1

x
aj+kj−1
j dx

∫
y

D∏
j=1

y
bj+kj−1
j dy

For computational purposes, we note that (22) can for instance be written
as

1
A
=

g∑
k1=0

g−k1∑
k2=0

· · ·
g−

∑d−1
i=1 ki∑

kd=0

(
g

k

)∏D
i=1 G(ai + ki)
G(a. + g)

∏D
i=1 G(bi + ki)
G(b. + g)

if we define kD = g− k1 − · · · − kd .

5.1 Marginal distributions

Before we examine the conditional distributions we give the marginal distri-
butions for the multicomponent case.

First we give the probability density function.
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Theorem 17. If (X,Y) ∈ DD
2 (a, b; g) and g is a non-negative integer, then the

marginal probability density function for X is

fX(x) = A
∑
k≥0
k.=g

(
g

k

)
xa1+k1−1

1 · · · xaD+kD−1
D

∏D
i=1 G(bi + ki)
G(b. + g)

. (23)

where A is the constant given in Theorem 16.

Proof. The proof is similar to that of Theorem 16, but only integrating overy.

Just as for the bicomponent case, we note that when g = 0, (23) simplifies
to a unicompositional Dirichlet distribution with parameter a. When g is a
positive integer, (23) just like (1) is a mixture of unicompositional Dirichlet
distributions.

Next we determine the moments of the components of the marginal dis-
tributions.

Theorem 18. If (X,Y) ∈ DD
2 (a, b; g) and g is a non-negative integer, then

E(X n
j ) = A

∑
k≥0
k.=g

(
g

k

)∏D
i=1 G(ai + ki)
G(a. + g)

∏D
i=1 G(bi + ki)
G(b. + g)

n−1∏
l=0

aj + kj + l
a. + g+ l

(24)

for j = 1, . . . ,D and n = 1, 2, . . ..

Proof. The result follows by using the Dirichlet integral and the identity
G(x + 1) = xG(x) repeatedly.
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5.2 Conditional distributions

Having determined the marginal distributions we continue by determining
the multicomponent conditional distributions. We begin with the condi-
tional probability density function of the composition Y conditioned on the
composition X = x.

Theorem 19. If (X,Y) ∈ DD
2 (a, b; g) and g is a non-negative integer, then the

conditional probability density function for Y given X = x is

fY|X=x(y) =
yb1−1

1 · · · ybD−1
D (x1y1 + · · ·+ xDyD)g∑

k≥0
k.=g

(
g
k

)
xk1

1 · · · x
kD
D

∏D
i=1 G(bi+ki)
G(b.+g)

. (25)

Proof. The result follows directly from (2) and Theorem 17.

As before, we note that if g = 0, (25) reduces to a unicompositional
Dirichlet distribution.

Using (25) we next determine the moments of the multicomponent con-
ditional distribution.

Theorem 20. If (X,Y) ∈ DD
2 (a, b; g) and g is a non-negative integer, then

E(Y n
j |X = x) = B

∑
k≥0
k.=g

(
g

k

)
xk1

1 · · · x
kD
D

∏D
i=1 G(bi + ki)
G(b. + g)

n−1∏
l=0

bj + kj + l
b. + g+ l

(26)

for j = 1, . . . ,D and n = 1, 2, . . .; here

1
B

=
∑
k≥0
k.=g

(
g

k

)
xk1

1 · · · x
kD
D

∏D
i=1 G(bi + ki)
G(b. + g)

.

Proof. The proof is similar to the proof of Theorem 18.
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6 An example, cont’d

To illustrate the bicompositional Dirichlet distribution, we fit a bicomposi-
tional Dirichlet model to the data presented in Section 2 using the method of
maximum likelihood. The contour lines of the model are shown in Figure 3
together with the 51 observations.

7 Discussion

There are not many distributions defined on the sample space consisting of
the Cartesian product of two Simplices. In this paper we have proposed a bi-
compositional generalization of the unicompositional Dirichlet distribution.
The proposed bicompositional Dirichlet distribution allows for modelling of
covariation between compositions without leaving S D ×S D. We have de-
termined in the bicomponent case for what parameter values the distribution
exists. We have also derived the marginal and conditional distributions and
their moments. For the bicomponent case we have also derived the cumula-
tive distribution function and the product moment.

The distribution is defined with respect to the Lebesgue measure in accor-
dance with the Dirichlet integral. It remains as future work to reformulate it
using the Aitchison (or simplicial) measure (Pawlowsky-Glahn, 2003) along
the lines of Mateu-Figueras and Pawlowsky-Glahn (2005).

The proposed distribution is meant to be a first suggestion for modelling
bicompositional data and it is developed primarily to possess properties that
will exploited in future work. Among these properties are, apart from simplic-
ity, the ability to model dependence and independence between compositions
and also the fact that the distributions constitute an exponential family of dis-
tributions.
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Figure 3 The data from Figure 1 plotted together with the contour lines of the density
with the parameter values estimated with maximum likelihood estimators from the
data.

Source: Bureau of Economic Analysis, U.S. Department of Commerce.
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A measure of dependence between two
compositions

Jakob Bergman and Björn Holmquist

Abstract

A composition is a vector of positive components summing to a
constant. We consider the problem of describing the correlation be-
tween two compositions. Using a bicompositional Dirichlet distribu-
tion, we calculate a joint correlation coefficient, based on the concept
of information gain, between two compositions. Numerical values of
the joint correlation coefficient are calculated for compositions of two
and three components.

Keywords

Binomial coefficient differentiation · Composition · Correlation · Dirich-
let distribution · Simplex

1 Introduction

A composition is a vector of positive components summing to a constant,
usually taken to be 1. The components of a composition are what we usually
think of as proportions (at least when the vector sums to 1). Compositions
arise in many different areas; the geochemical compositions of different rock
specimens, the proportion of expenditures on different commodity groups in
household budgets, and the party preferences in a party preference survey are
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all examples of compositions from three different scientific areas. For more
examples of compositions, see for instance Aitchison (2003).

The sample space of a composition is the simplex. Without loss of gen-
erality we will always take the summing constant to be 1, and we define the
D-dimensional simplex S D as

S D =
{

(x1, . . . , xD)T ∈ RD
+ :

D∑
j=1

xj = 1
}
,

where R+ is the positive real space. The joint sample space of two compo-
sitions is the Cartesian product of two simplices S D × S D. It should be
noted that, unlike the case for real spaces, S D × S D 6= S D+D and that
S D ×S D is not a even simplex, but a manifold with two constraints.

The compositional data analysis has previously been concerned with de-
scribing how the components of a composition correlate, i.e. the intra-com-
positional dependence. The components of a composition are not indepen-
dent due to the summation constraint. A review of different independence
concepts pertaining to partitions of a composition is presented in (Aitchison,
2003, Chap. 10).

Correlation between compositions has however previously not been given
very much attention. We investigate the dependence between two compo-
sitions, i.e. the inter-compositional dependence, using a measure of depen-
dence suggested in Kent (1983) based on the concept of information gain.
We believe that a measure of inter-compositional dependence is needed in
order to describe, for instance, the spatial similarity between two geochem-
ical compositions measured at different locations, or the temporal similarity
between party preference surveys conducted at different times.
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2 Information gain and Kent’s general measure of
correlation

If we consider two families of parametric models {f (x, y; j), j ∈ Ji} (i =
0, 1) with J0 ⊂ J1 and the true joint density function is g(x, y), the Fraser
information is defined in Kent (1983) as

F (j) =
∫

log f (x, y; j)g(x, y) dx dy, (1)

that is, F (j) is the expected log-likelihood.
By choosing ji to maximize F (j) in the parameter space Ji, “ji is the

theoretical analogue of the maximum likelihood estimate of j over the pa-
rameter space Ji” (Kent, 1983). We will in the following partition j into
two parts j = (y, l), where y is the parameter of interest and l is a nuisance
parameter.

If the model forms a canonical exponential family, that is

f (x, y; j) = exp{yTv(x, y) + lTw(x, y)− c(j)},

the Fraser information may be calculated as

F (ji) = ji
Tb(ji)− c(ji), (2)

where b(j) is the vector of partial derivatives of c(j) with respect to j.
If for J0 = {j : y = 0}, X and Y are modelled as independent, the

information gain of allowing for dependence between X and Y in the model
is

G(j1 : j0) = 2{F (j1)− F (j0)}.
Since F (ji) is the maximized expected log likelihood, G(j1 : j0) is the theo-
retical analogue of −2 times the log likelihood ratio statistic.

Kent (1983) proposed a joint correlation coefficient between X and Y
defined as

r2
J = 1− exp{−G(j1 : j0)}.
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As is easily seen, 0 ≤ r2
J ≤ 1.

Independence between X and Y implies zero correlation if g(x, y) =
f (x, y; j) for some j, or “the model J1 forms a regular exponential family”
Inaba and Shirahata (1986).

3 The bicompositional Dirichlet distribution

In order to calculate a joint correlation coefficient between two compositions
a suitable distribution is needed. Unfortunately very few distributions with
dependence structures defined on S D ×S D are available. One distribution
for modelling random vectors on S D×S D is proposed in Bergman (2009).
The proposed distribution, called the bicompositional Dirichlet distribution,
has the probability density function

f (x, y) = A

 D∏
j=1

x
aj−1
j y

bj−1
j

(xTy
)g

, (3)

where x = (x1, . . . , xD)T ∈ S D, y = (y1, . . . , yD)T ∈ S D, and aj, bj ∈ R+

(j = 1, . . . ,D). The parameter space of g depends on a and b; however,
all non-negative values are always included. Expressions for the normaliza-
tion constant A are given in Bergman (2009). If g = 0, the probability
density function (3) is equal to the product of two Dirichlet probability den-
sity functions with parameters a and b respectively, and hence X and Y are
independent in that case.

When X,Y ∈ S 2 we shall refer to this as the bicomponent case, and
similarly to S 3 as the tricomponent case and to S D(D > 2) as the multicom-
ponent case.

The bicompositional Dirichlet distribution forms a canonical exponential
family with parameters j = (g, ã, b̃)T, where

ãj = aj − 1,
b̃j = bj − 1.
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We shall assume that the true density function g(x, y) is the bicompo-
sitional Dirichlet probability density function (3) and that the two fami-
lies of parametric models f (x, y; ji) also are bicompositional Dirichlet dis-
tributions. The parameter of interest in these models is y = g. Denoting
j1 = (g(1), ã(1), b̃

(1)
)T and j0 = (g(0), ã(0), b̃

(0)
)T, it can be shown, through the

information inequality, that g(1) = g, ã(1) = ã, and b̃
(1)

= b̃, but when
g(0) = 0, in general ã(0) 6= ã and b̃

(0)
6= b̃.

3.1 The bicomponent case

If we define

Sã =
i∑

j=0

(
i
j

)
(−1)i−jB(ã1 + j + 1; ã2 + i − j + 2), (4)

where B(a, b) is the Beta function, and Sb̃ in the same way as equation (4)

but with ã1 and ã2 replaced with b̃1 and b̃2, we may for the bicomponent bi-
compositional Dirichlet distribution with parameters j = (g, ã1, ã2, b̃1, b̃2)T

derive the following expressions:

c(j) = log
{

2−g
∞∑

i=0

(
g

i

)
SãSb̃

}
, (5)

b(j) =

(
∂c
∂g

,
∂c
∂ã1

,
∂c
∂ã2

,
∂c

∂b̃1
,

∂c

∂b̃2

)T

. (6)
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The partial derivatives of (5) in (6) are

∂c
∂g

=

∑∞
i=0

(
g
i

)′
SãSb̃∑∞

i=0

(
g
i

)
SãSb̃

− log 2,

∂c
∂ã1

=

∑∞
i=0

(
g
i

)
Sb̃

{∑i
j=0

(i
j

)
(−1)i−jBij(ã)Y (1)

ij (ã1, ã2)
}

∑∞
i=0

(
g
i

)
SãSb̃

,

∂c
∂ã2

=

∑∞
i=0

(
g
i

)
Sb̃

{∑i
j=0

(i
j

)
(−1)i−jBij(ã)Y (2)

ij (ã1, ã2)
}

∑∞
i=0

(
g
i

)
SãSb̃

,

∂c

∂b̃1
=

∑∞
i=0

(
g
i

)
Sã
{∑i

j=0

(i
j

)
(−1)i−jBij(b̃)Y (1)

ij (b̃1, b̃2)
}

∑∞
i=0

(
g
i

)
SãSb̃

,

∂c

∂b̃2
=

∑∞
i=0

(
g
i

)
Sã
{∑i

j=0

(i
j

)
(−1)i−jBij(b̃)Y (2)

ij (b̃1, b̃2)
}

∑∞
i=0

(
g
i

)
SãSb̃

,

where (
g

i

)′
=

d
dg

(
g

i

)
, (7)

Bij(ã) = B(ã1 + j + 1; ã2 + i − j + 1), (8)

Y (1)
ij (ã1, ã2) = Y(ã1 + j + 1)−Y(ã1 + ã2 + i + 2), (9)

Y (2)
ij (ã1, ã2) = Y(ã2 + i − j + 1)−Y(ã1 + ã2 + i + 2). (10)

Analogous expressions of equations (8)-(10) for b̃1 and b̃2 are implied. The
function in equations (9) and (10) is the digamma function

Y(x) =
d logG(x)

dx
.

Expressions for the derivative of the binomial coefficient (7) are discussed in
Appendix A.
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Figure 1 The joint correlation coefficient r2
J calculated for g ranging from −1.25 to

2.0 for the (a; b) parameter values (2.1, 2.4; 2.2, 2.3) (�), (2.1, 2.2; 3.6, 3.5) (N),
(5.2, 2.0; 2.0, 2.0) (O), (1.9, 6.4; 3.2, 2.1) (•) and (4.1, 2.4; 4.1, 2.4) (+).

If J0 = {j : g = 0}, the joint correlation coefficient r2
J may be cal-

culated through the information gain as described earlier. However F (j0)
requires maximization, usually numerical, with respect to a(0) and b(0).

Figure 1 depicts the joint correlation coefficient r2
J , calculated for five dif-

ferent sets of a and b values and 49 of values of g ranging from −1.25 to
2.0. As can be seen in the figure, the joint correlation coefficient depends
primarily on the value of g but also to some extent on the rest of the parame-
ters. It should be noted that r2

J is not symmetric around 0; the rate at which
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r2
J changes differs for negative and positive g and we note that the vertical

order of the five graphs in the figure are different for negative and positive g.
The small deviations in the curvature of the graphs, e.g. at −0.65, are due
numerical issues.

3.2 The tricomponent case

Since the normalization constant of the bicompositional Dirichlet distribu-
tion in the multicomponent case hitherto is only calculated for non-negative
integers g, we may only calculate the joint correlation coefficient for such g
values. This also disables us from using equation (2) in the calculations, as
differentiation with respect to g is not meaningful. We will instead utilize the
definition given in equation (1).

The Fraser information for the tricomponent bicompositional Dirichlet
distribution is the following:

F (ji) =
∫

log{f (x, y; ji)}g(x, y) dx dy

=

∫
log

{
Axa

(i)
1 −1

1 xa
(i)
2 −1

2 x
a(i)

3 −1
3 yb

(i)
1 −1

1 yb
(i)
2 −1

2 y
b(i)

3 −1
3 (xTy)g

(i)
}

g(x, y)dxdy

= log A + (a(i)
1 − 1)

∫
log(x1)g(x, y) dx dy

+ · · ·

+ (b(i)
3 − 1)

∫
log(y3)g(x, y) dx dy

+ g(i)

∫
log(x1y1 + x2y2 + x3y3)g(x, y) dx dy

Thus F (ji) equals the sum of a constant, six log expectations, and the ex-
pectation E{log(xTy)}. (For the sake of brevity we will use the notation
a. = a1 + · · ·+ aD for the rest of this section.)
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Before proceeding, we note that the Dirichlet distribution with parameter
a constitutes an exponential family of distributions, with sufficient statistic
T(x) = (log x1, . . . , log xD)T and normalization constant

A(a) =
D∑

j=1

logG(aj)− logG(a.).

Since E{T(X)} = ∂A(a)/∂a for distributions that constitute an exponential
family, we conclude that the log expectation of a Dirichlet distribution with
parameter a is

E{log(Xj)} = Y(aj)−Y(a.). (11)

Using the Multinomial Theorem and equation (11), we may calculate the
first seven terms of F (ji) exactly. For example:∫

log(xj)g(x, y) dx dy

=

∫
log(xj)Axa1−1

1 xa2−1
2 xa3−1

3 yb1−1
1 yb2−1

2 yb3−1
3 (x1y1 + x2y2 + x3y3)g dx dy

=

∫
log(xj)

∑
ki≥0
k.=g

(
g

k

)
A xa+k−1yb+k−1 dx dy

= A
∑
ki≥0
k.=g

(
g

k

)∫
log(xj) xa+k−1 dx

∫
yb+k−1 dy

= A
∑
ki≥0
k.=g

(
g

k

)∏3
i=1 G(a1 + ki)
G(a. + g)

∏3
i=1 G(b1 + ki)
G(b. + g)

{
Y(aj + kj)−Y(a. + g)

}
where

xa+k−1 = xa1+k1−1
1 xa2+k2−1

2 xa3+k3−1
3 ,

yb+k−1 = yb1+k1−1
1 yb2+k2−1

2 yb3+k3−1
3
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and the multinomial coefficient is denoted(
g

k

)
=

g!
k1!k2!k3!

.

The integral
∫

log(yj)g(x, y) dx dy analogously yields the same result ex-
cept for the last factor, where aj and a. are replaced by bj and b. respectively.

The last term of F (j1) must be integrated numerically. (See Appendix B
for integration over S 3 ×S 3.) This is not the case for F (j0), as g(0) = 0,
but instead, in order to obtain j0, F (j) must be maximized with respect to
a(0) and b(0).

In Figure 2 the joint correlation coefficient is plotted for g ranging from
−2 to 8 for bicomponent models with parameters a = (2.1, 2.4)T and b =
(2.2, 2.3)T, and for tricomponent models with parameters a = (2.1, 2.4,
2.3)T and b = (2.2, 2.3, 2.1)T. In this figure we see how the joint correlation
coefficient is levelling off towards 1 as g increases, something that is not really
visible in Figure 1.

Appendix A Differentiating binomial coefficients

We first define the binomial coefficient.

Definition 1. The binomial coefficient is defined as(
r
k

)
=

r(r − 1) · · · (r − (k − 1))
k!

(12)

where r is a real number and k is a non-negative integer.

The binomial coefficient may also be expressed as(
r
k

)
=

G(r + 1)
k!G(r − k + 1)

. (13)
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Figure 2 The joint correlation coefficient r2
J calculated for g ranging from −2 to

8 for bicomponent models with (a; b) parameter values (2.1, 2.4; 2.2, 2.3) (◦) and
tricomponent models with (a; b) parameter values (2.1, 2.4, 2.3; 2.2, 2.3, 2.1) (N).
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The derivative of equation (13) with respect to r is

d
dr

(
r
k

)
=

G(r + 1)
k!G(r − k + 1)

{Y(r + 1)−Y(r − k + 1)} (14)

where Y(x) is the digamma function d logG(x)/ dx. However, equation (14)
is not defined if r is an integer less than k. In order to give an expression that
is useful for all alternatives, the derivative of the binomial coefficient must be
based on the expression given in Definition 1.

Theorem 1. The derivative of the binomial coefficient with respect to r is

d
dr

(
r
k

)
=

1
k!

k−1∑
i=0

k−1∏
j=0

I (i, j)

where

I (i, j) =

{
1 (i = j),

r − j (i 6= j).

Proof. Differentiating equation (12) with respect to r means differentiating
the numerator consisting of a product of k factors:

d
dr

k−1∏
i=0

(r − i) = 1 ·
k−1∏
i=1

(r − i) + (r − 0)
d
dr

k−1∏
i=1

(r − i)

= 1 · (r − 1) · · · (r − k + 1)

+ (r − 0) · 1 · (r − 2) · · · (r − k + 1)

+ · · ·
+ (r − 0)(r − 1) · · · (r − k + 2) · 1

The derivative is hence a sum of k terms, each consisting of the product
r(r − 1) · · · (r − (k − 1)), where ith factor of the ith term is is replaced by 1.
If we define

f (r) = r(r − 1) · · · (r − k + 1),
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Figure 3 Two views of S 3: (a) as seen in the normal coordinate system and (b) as
seen in the plane.

we may write

f ′(r) =
k−1∑
i=0

k−1∏
j=0

I (i, j)

where

I (i, j) =

{
1 (i = j),

r − j (i 6= j),

and hence
d
dr

(
r
k

)
=

f ′(r)
k!

.

Appendix B Integration over S 3 ×S 3

The simplex S 3 is the triangle in R3
+ where x + y + z = 1; it is depicted

in Figure 3(a). Obviously, this triangle lies in a plane and may be viewed that
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way as shown in Figure 3(b). Integrating over S 3 in R3 is thus equivalent to
integrating over the triangle defined by

0 < u < 21/2,

0 < v <
(

3
2

)1/2 − 31/2
∣∣2−1/2 − u

∣∣ ,
in R2. Integration over S 3×S 3 analogously becomes a quadruple integral.
However, since the tricomponent bicompositional Dirichlet distribution is
defined on S 3 ×S 3, the R2 ×R2 coordinates must be transformed into
compositions to get the density. Using

x(s, t) = y(s, t) =

 t
(

2
3

)1/2

s2−1/2 − t6−1/2

1− s6−1/2 − t2−1/2

 ,

the integral of g(x, y) over S 3 ×S 3 becomes∫
g(x, y) dx dy =

∫ 21/2

s=0

∫ ( 3
2 )1/2−31/2|2−1/2−s|

t=0

∫ 21/2

u=0

∫ ( 3
2 )1/2−31/2|2−1/2−u|

v=0

g(x(s, t), y(u, v)) dv du dt ds.

References

Aitchison, J. (2003). The Statistical Analysis of Compositional Data. Caldwell,
NJ: The Blackburn Press.

Bergman, J. (2009). A bicompositional Dirichlet distribution. Technical
Report 3, Department of Statistics, Lund University.

Inaba, T. and S. Shirahata (1986). Measures of dependence in normal models
and exponential models by information gain. Biometrika 73(2), 345–352.

Kent, J. T. (1983). Information gain and a general measure of correlation.
Biometrika 70(1), 163–173.

60



III





Generating random variates from a
bicompositional Dirichlet distribution

Jakob Bergman

Abstract

A composition is a vector of positive components summing to a
constant. The sample space of a composition is the simplex and the
sample space of two compositions, a bicomposition, is a Cartesian prod-
uct of two simplices. We present a way of generating random variates
from a bicompositional Dirichlet distribution defined on the Cartesian
product of two simplices using the rejection method. We derive a gen-
eral solution for finding a dominating density function and a rejection
constant, and also compare this solution to using a uniform dominating
density function. Finally some examples of generated bicompositional
random variates, with varying number of components, are presented.

Keywords

Bicompositional Dirichlet distribution · Composition · Dirichlet dis-
tribution · Random variate generation · Rejection method · Simplex

1 Introduction

A composition is a vector of positive components summing to a constant. The
components of a composition are what we usually think of as proportions (at
least when the vector sums to 1). Compositions arise in many different areas;
the geochemical compositions of different rock specimens, the proportion of

63



expenditures on different commodity groups in household budgets, and the
party preferences in a party preference survey are all examples of compositions
from three different scientific areas. For more examples of compositions, see
for instance Aitchison (2003).

The sample space of a composition is the simplex. Without loss of gen-
erality we will always take the summing constant to be 1, and we define the
D-dimensional simplex S D as

S D =
{

x = (x1, . . . , xD)T ∈ RD
+ :

D∑
j=1

xj = 1
}
, (1)

where R+ is the positive real space. The joint sample space of two composi-
tions is the Cartesian product of two simplices S D×S D. It should be noted
that, unlike the case for real Cartesian product spaces, S D ×S D 6= S D+D

and that S D × S D is not even a simplex, but a manifold with two con-
straints.

2 The rejection method

Leydold (1998) notes that apart from the multinormal and Wishart distri-
butions, papers on generating bivariate and multivariate random variates are
rare and most suggested general methods have disadvantages. The only uni-
versal algorithm for generating multivariate random variates is the algorithm
presented by Leydold and Hörmann (1998), which is a generalization of algo-
rithms for the univariate and bivariate case given in different versions by Gilks
and Wild (1992) and Hörmann (1995). However, Leydold (1998) concludes
that this algorithm is very slow and suggests an alternative algorithm which
requires a function of the density to be concave. The class of distributions
that will be utilized in this paper is very versatile and it is therefore hard to
find a function that fulfils the requirements. Hence we will use the rejection
method to construct a specialized method for generating bicompositional ran-
dom variates.
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Let f be the density from which we wish to generate random variates. Let
c ≥ 1 be a constant and g be a density such that

f (z) ≤ cg(z) (2)

for all z. We now generate a random variate Z with density g and a ran-
dom number U uniformly distributed on the unit interval. The variate Z is
accepted if

U ≤ f (Z)
cg(Z)

, (3)

otherwise we reject Z and generate new Z and U until acceptance.
We thus need to find a dominating density g and constant c, and prefer-

ably such choices of g and c that will give high probabilities of acceptance and
hence make the random variate generation efficient.

3 The bicompositional Dirichlet distribution

Bergman (2009) proposed a distribution, called the bicompositional Dirichlet
distribution, for modelling random vectors on S D × S D. The proposed
distribution has the probability density function

f (x, y) = A(a, b, g)

 D∏
j=1

x
aj−1
j y

bj−1
j

(xTy
)g

, (4)

where x, y ∈ S D and aj, bj ∈ R+(j = 1, . . . ,D). The parameter space
of g depends on a = (a1, . . . , aD)T and b = (b1, . . . , bD)T; however, all
non-negative values are always included. Expressions for the normalization
constant A are given in Bergman (2009). If g = 0, the probability density
function (4) is the product of two Dirichlet probability density functions with
parameters a and b respectively, and hence X and Y are independent in that
case.
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When X,Y ∈ S 2 we shall refer to this as the bicomponent case, and
similarly to S 3 as the tricomponent case, and to S D(D > 2) as the multi-
component case.

4 Generating random bicompositions

Here, the bicomposition (X,Y) will take the role of Z in Section 2.

4.1 The case when g = 0

A Dirichlet distributed random variate is easily generated using Gamma dis-
tributed variates. Let Vi is a Gamma distributed variate with parameter (ai, 1)
and Xi = Vi/

∑D
j=1 Vj (i = 1, . . . ,D), then X = (X1, . . . ,XD) is Dirichlet

distributed with parameter a = (a1, . . . , aD) (Devroye, 1986, pp. 593–596).
Hence, to generate a random bicompositional Dirichlet distributed vari-

ate (x, y) with parameter (a, b, 0), we need only to generate a Dirichlet dis-
tributed variate x with parameter a and a Dirichlet distributed variate y with
parameter b.

4.2 The case when g > 0

When g > 0, we may use the product of two Dirichlet distributions, i.e. a
bicompositional Dirichlet distribution with g = 0, as a dominating density,
since 0 < xTy < 1 and thus

A(a, b, g)

 D∏
j=1

x
aj−1
j y

bj−1
j

 (xTy)g ≤ A(a, b, g)

 D∏
j=1

x
aj−1
j y

bj−1
j

 .

The inequality (2) now becomes

A(a, b,g)

 D∏
j=1

x
aj−1
j y

bj−1
j

 (xTy)g ≤ cA(a, b, 0)

 D∏
j=1

x
aj−1
j y

bj−1
j

 , (5)
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which holds if we choose

c =
A(a, b, g)
A(a, b, 0)

> 1. (6)

The last inequality is true, since for fixed a and b, A(a, b, g) is a non-negative
increasing function of g.

A random variate (x, y) with a bicompositional Dirichlet distribution with
parameter (a, b, 0) is generated as described in Section 4.1. We accept the
variate (x, y) if

U ≤
A(a, b, g)

(∏D
j=1 x

aj−1
j y

bj−1
j

)
(xTy)g

A(a,b,g)
A(a,b,0) A(a, b, 0)

(∏D
j=1 x

aj−1
j y

bj−1
j

) , (7)

i.e. if
U ≤ (xTy)g; (8)

otherwise it is rejected and new (x, y) and U are generated until acceptance.
We note that this procedure does not require the calculation of A(a, b, g)

and hence is applicable for all non-negative g. We thus have the slightly
surprising situation that we may generate random variates from distributions
whose densities we cannot calculate.

Using a product of two Dirichlet distributions as dominating density is
however not always very efficient, as (xTy)g may be close to 0 when g is large.
When g ≥ 0, and aj, bj ≥ 1 (j = 1, . . . ,D), it is easily seen that the density
(4) will have an upper bound. We may therefore use a uniform density as
g , with c = maxx,y f (x, y). This is though only applicable for non-negative
integers g, since it is necessary to calculate A(a, b, g).

4.3 The case when g < 0 and D = 2

The bicomponent case is simpler as x = (x, 1− x)T and y = (y, 1− y)T. This
has enabled the distribution to be defined also for g < 0. We will in this
section view the density as a function of x and y.

67



Q1 Q2

Q3Q4
(0, .5)
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(0, 0)
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Figure 1 The four quadrants Q1-Q4 of the sample space S 2 × S 2; the horizontal
axis represents x and the vertical axis represents y.

Bergman (2009) showed that the bicomponent bicompositional Dirichlet
density exists if and only if g > −min(a1 +b2, a2 +b1). If g < 0, the factor
(xTy)g will tend to infinity when x is close to 0 and y is close to 1, and also
when x is close to 1 and y is close to 0. We therefore divide the sample space
S 2 ×S 2 into four quadrants, denoted Q1-Q4 counter-clockwise from the
origin. Figure 1 shows the S 2 ×S 2 with the four quadrants.

To generate a random variate from a bicomponent bicompositional Dirich-
let distribution with parameters a, b and

−min(a2, b2) < g < 0,
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we first randomly choose a quadrant Qk (k = 1, 2, 3, 4) with probability

pk =

∫∫
Qk

f (x, y) dx dy (k = 1, 2, 3, 4), (9)

where f (x, y) is the bicomponent bicompositional Dirichlet probability den-
sity function (4) viewed as a function of x and y. Expressions for the cumu-
lative distribution function have been given by Bergman (2009), which may
be used in calculating pk. Depending on which quadrant is chosen, we then
choose a dominating density g and a constant c in the following manner.

Q1 & Q3. In quadrants Q1 and Q3, xTy > 1/2 and we may hence use a
product of two Dirichlet (or equivalently Beta) distributions with parameters
a respectively b as g and a constant

c =
A(a, b, g)

A(a, b, 0)2g
. (10)

Q2. In quadrant Q2, xTy is bounded from below by (1− x)/2, and hence

(xTy)g ≤ 2−g(1− x)g

as g < 0. We therefore use a product of two Dirichlet distributions with
parameters (a1, a2 + g) respectively b as the density g and the constant c
given by

c =
A(a, b, g)

A(a1, a2 + g, b, 0)2g
. (11)

Q4. Analogously, in quadrant Q4, xTy > (1 − y)/2 and we hence use a
product of two Dirichlet distributions with parameters a and (b1, b2 + g),
respectively, as g and c given in (12).

c =
A(a, b,g)

A(a, b1, b2 + g, 0)2g
(12)
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Table 1 Comparisons of the estimated acceptance probabilities depending on choice
of dominating density. We clearly see that the product of two Dirichlet densities can
be very inefficient for large values of g, but also that it may be much more efficient
than a uniform density for some distributions.

Parameter values Dominating density
a1 a2 b1 b2 g Dirichlet Uniform

2.1 3.1 5.5 2.3 0.3 0.769 0.222
2.1 3.1 5.5 2.3 3.2 0.103 0.200
2.1 3.1 5.5 2.3 7.7 0.007 0.110
2.1 3.1 5.5 2.3 −1.2 0.208 0.208
2.1 3.1 0.7 2.3 3.2 0.185 NA
7.1 4.2 6.3 8.5 0.3 0.769 0.119
7.1 4.2 6.3 8.5 3.2 0.100 0.125
7.1 4.2 6.3 8.5 7.7 0.005 0.135
7.1 1.2 12.5 3.1 3.2 0.357 0.031

In all four cases, we must though assure that the generated variates with
density g are restricted to that particular quadrant.

5 Comparison of the two dominating densities

The efficiency of the generation process will usually depend on the choice of
dominating density. In most cases we have a possibility to choose between
two different dominating densities: a product of two independent Dirichlet
densities or a uniform density. In general, the product of two Dirichlet distri-
butions will often be more efficient when g is close to 0, but may however be
highly inefficient when g is large.

To compare the efficiencies of the two dominating densities we generated
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Table 2 Comparisons of the estimated acceptance probabilities for some multicom-
ponent bicompositional Dirichlet distributions using a Dirichlet and a uniform dom-
inating density.

Parameter values Density
a b g Dir. Unif.

(2, 2, 2) (2, 2, 2) 1 0.333 0.145
(2, 2, 2) (2, 2, 2) 7 0.001 0.085

(2.1, 1.2, 3.2, 4.1, 2.8) (3.2, 2.2, 5.3, 1.8, 2.9) 1 0.204 0.000
(2.1, 1.2, 3.2, 4.1, 2.8) (3.2, 2.2, 5.3, 1.8, 2.9) 3 0.009 0.000

25,000 random variates for each of the dominating densities from a number
of different bicomponent bicompositional Dirichlet distributions, and calcu-
lated the average number of trials to generate one random variate. Table 1
shows the results presented as the estimated probability of acceptance (the
reciprocal of the average number of trials) as well as the results for a distribu-
tion where only a Dirichlet product is available as dominating density as the
distribution density function does not have an upper bound. We note that
the probability of acceptance with a uniform density can be much (almost
30 times) larger than the probability of acceptance with a with a Dirichlet
density. On the other hand we also see that there are distributions for which
the probability of acceptance with a with a Dirichlet density is more than 10
times the probability of acceptance with a uniform density. As a graphical
illustration of the differences between the distributions, 150 generated ran-
dom variates from four of the distributions in Table 1 are plotted for each of
the two dominating densities in Figure 2 together with contour curves of the
density.

The differences in efficiency between the two dominating densities is even
more obvious for the multicomponent bicompositional Dirichlet distribution
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Figure 2 150 random variates generated from four different bicompo-
nent bicompositional Dirichlet distributions with (a; b; g) parameters
(2.1, 3.1; 5.5, 2.3; 0.3) (a), (2.1, 3.1; 5.5, 2.3; 7.7) (b), (2.1, 3.1; 5.5, 2.3; −1.2)
(c), and (2.1, 3.1; 0.7, 2.3; 3.2) (d), using the product of two Dirichlet densities (◦)
and a uniform density (p) as dominating density. Since the distribution in (d) does
not have an upper bound, a uniform density may not be utilized. As a reference, the
contour curves of the true densities are also drawn.
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examples presented in Table 2. Here again, we generated 25,000 random vari-
ates, this time from four different multicomponent bicompositional Dirichlet
distributions using both of the two dominating densities. For the tricompo-
nent distributions, when g = 1, the Dirichlet density has a probability of
acceptance of more than twice that of the uniform density, but when g = 7
the probability of acceptance of the uniform density is more than 80 times
that of the the Dirichlet density. For the two distributions with five compo-
nents, we see that the Dirichlet density is much more effective for both cases.
This is in accordance with Devroye (1986, p. 557), who notes that as the
dimension D increases the rejection constant often deteriorates quickly when
a uniform density is used.

6 Conclusions

The choice of the dominating density is evidently crucial to the efficiency of
this random variate generation. When g is close to 0 or the number of com-
ponents is large, a product of two Dirichlet density functions seems the most
efficient, otherwise a uniform density function (if possible) is recommended.
What is meant by close is however dependent of the other parameters (a, b),
so when in doubt, the recommendation would be to generate a small number
of variates with each dominating density and see which is the most efficient
for the particular parameter values in question. We note that the efficiency
of the method seems to degrade as the dimension (i.e. the number of com-
ponents) increases, and that further research is needed to find more efficient
dominating densities for distributions with a large number of components
and for large g values.

It remains yet to find a way of generating random numbers for the bi-
component case when −min(a1 + b2, a2 + b1) < g < −min(a2, b2) and
the density function does not have an upper bound.

The random variate generation might further be made more efficient for
at least the bicomponent case, by adopting the quadrant scheme also for pos-
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itive g; especially when the probability mass is concentrated in one or two
of the quadrants, which is often the case for large g, this might speed up the
generation process considerably.
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Estimating a measure of dependence
between two compositions

Jakob Bergman

Abstract

We present an estimator of the general measure of correlation for
bicompositional data for a sample from a bicompositional Dirichlet dis-
tribution. Two confidence intervals are also presented and we examine
their empirical confidence coefficient using a Monte Carlo study. Fi-
nally we apply the estimator to a data set analysing the correlation be-
tween the 1967 and 1997 composition of the government GDP for the
50 U.S. states and District of Columbia.

Keywords

Composition · Correlation · Dirichlet distribution · Empirical confi-
dence coefficient · Estimation · Joint correlation coefficient

1 Introduction

A composition is a vector of positive components summing to a constant,
usually taken to be 1. The components of a composition are what we usually
think of as proportions (at least when the vector sums to 1). Compositions
arise in many different areas; the geochemical compositions of different rock
specimens, the proportion of expenditures on different commodity groups in
household budgets, and the party preferences in a party preference survey are
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all examples of compositions from three different scientific areas. For more
examples of compositions, see for instance Aitchison (2003).

The sample space of a composition is the simplex. Without loss of gener-
ality we will always take the summation constant to be 1, and we define the
D-dimensional simplex S D as

S D =
{

(x1, . . . , xD)T ∈ RD
+ :

D∑
j=1

xj = 1
}
,

where R+ is the positive real space.
We will refer to compositions with two components, i.e. D = 2, as bi-

component.

2 Estimation of the correlation

Following the ideas of Kent (1983), Bergman and Holmquist (2009) derived
a general measure of correlation r2

J for data from a bicompositional Dirich-
let distribution. The bicompositional Dirichlet distribution, defined on the
Cartesian product S D × S D, was introduced by Bergman (2009a). The
distribution has three parameters a = (a1, . . . , aD)T, b = (b1, . . . , bD)T and
g, and the probability density function is

f (x, y;a, b, g) = A(a, b, g)

 D∏
j=1

x
aj−1
j y

bj−1
j

(xTy
)g

, (1)

where x = (x1, . . . , xD)T ∈ S D, y = (y1, . . . , yD)T ∈ S D, and aj, bj ∈ R+

(j = 1, . . . ,D). The parameter space of g depends on a and b; however, all
non-negative values are always included. Expressions for the normalization
constant A(a, b,g) are given in Bergman (2009a). If g = 0, the probability
density function (1) is the product of two Dirichlet probability density func-
tions with parameters a and b respectively, and hence the two compositions
are independent in that case.
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The general measure of correlation (or joint correlation coefficient) is de-
fined as

r2
J = 1− exp{−G(j1 : j0)}, (2)

where G(j1 : j0) is the information gain of modelling the data with j1 ∈ J1

instead of j0 ∈ J0 ⊂ J1 in the parametric model f (x, y; ji) (i = 0, 1). The
information gain is defined as

G(j1 : j0) = 2{F (j1)− F (j0)}, (3)

where F (ji) (i = 0, 1) is the maximized Fraser information

F (ji) = max
j∈Ji

∫
log f (x, y; j)g(x, y) dx dy; (4)

here g(x, y) is the true probability density function.
We assume that g(x, y) is a bicompositional Dirichlet probability density

function and restrict our estimation to the bicomponent models. Since we are
interested in modelling the correlation between two compositions (the inter-
compositional correlation), we want to calculate the information gained by
allowing dependence between the compositions as compared to independent
compositions. The parameter spaces are then

J1 = {a1 > 0, a2 > 0, b1 > 0, b2 > 0, g > −min(a1 + b2, a2 + b1)}

and
J0 = {a1 > 0, a2 > 0, b1 > 0, b2 > 0, g = 0}.

According to Kent (1983), the information gain G(j1 : j0) may be esti-
mated by

Ĝ(ĵ1 : ĵ0) =
2
n

(
n∑

k=1

log f (xk, yk; ĵ1)−
n∑

k=1

log f (xk, yk; ĵ0)

)
, (5)

where ĵ1 and ĵ0 are the maximum likelihood estimates under the parameter
spaces J1 and J0, respectively.
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2.1 Maximum likelihood estimates

If we assume a sample of n independent observations (xj, yj) (j = 1, . . . , n)
from a bicomponent bicompositional Dirichlet distribution with parameters
a, b and g, the likelihood function becomes

L(a, b, g) = {A(a, b, g)}n
n∏

k=1

(xT
kyk)g

2∏
j=1

x
aj−1
kj y

bj−1
kj

 (6)

and the log likelihood function is

`(a, b, g) = −nc(a, b, g) + g
n∑

k=1

log(xT
kyk)

+

n∑
k=1

2∑
j=1

{(aj − 1) log xkj + (bj − 1) log ykj} (7)

where c(a, b, g) = − log A(a, b, g) = log
(
2−g

∑∞
i=0

(
g
i

)
SaSb

)
. Here

Sa =

i∑
j=0

(
i
j

)
(−1)i−jBij(a), (8)

Sb =
i∑

j=0

(
i
j

)
(−1)i−jBij(b), (9)

with
Bij(a) = B(a1 + j, a2 + i − j), (10)

where B(·, ·) denotes the Beta function.
The maximum likelihood estimates are of course the parameter values that

yield the maximum value of (7). However, finding those values will in general
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require numerical methods. We have used the R function constrOptim,
which also utilizes the score function

U(a, b, g) =
[

∂`
∂g

∂`
∂a1

∂`
∂a2

∂`
∂b1

∂`
∂b2

]T

, (11)

where

∂`

∂g
= −n

∂c
∂g

+

n∑
j=1

log(xT
j yj), (12)

∂`

∂a1
= −n

∂c
∂a1

+

n∑
j=1

log xj1, (13)

∂`

∂a2
= −n

∂c
∂a2

+

n∑
j=1

log xj2, (14)

∂`

∂b1
= −n

∂c
∂b1

+

n∑
j=1

log yj1, (15)

∂`

∂b2
= −n

∂c
∂b2

+

n∑
j=1

log yj2. (16)

The maximum likelihood estimate of j = (a, b,g) under the parameter
space Ji (i = 0, 1) is denoted ĵi. Trivially, the estimate of g under J0 is
ĝ = 0.

An estimator of the general measure of correlation is thus

r̂2
J = 1− exp{−Ĝ(ĵ1 : ĵ0)}. (17)

2.2 Confidence intervals

Kent (1983) gives two proposals concerning confidence intervals for G(j1 :
j0): when the value of G(j1 : j0) is “large” and when it is “small”. Kent
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does not indicate which values of G(j1 : j0) that are to be considered “large”
and which are to be considered “small,” other than that it depends on the
number of observations n. He notes though that “the asymptotics for ‘small’
G(j1 : j0) are likely to prove most useful.”

The first 1− a confidence interval (“large”) isĜ(ĵ1 : ĵ0)−

√
s2q2

1;a

n
, Ĝ(ĵ1 : ĵ0) +

√
s2q2

1;a

n

 (18)

where s2 is the sample variance of

2 log
f (xj, yj ; ĵ1)

f (xj, yj ; ĵ0)
(j = 1, . . . , n)

and q2
1;a is the upper a quantile of the q2

1 distribution.
The second 1− a confidence interval (“small”) is (corrected for an appar-

ently misprinted â instead of â)(
mk1;a/2(â/m)

n
,
md1;a/2(â/m)

n

)
, (19)

where
â = nĜ(ĵ1 : ĵ0)

and k1;a(a) and d1;a(a) are the values of the non-centrality parameters of a
non-central chi square distribution defined as

Pr[q2
1{k1;a(a)} ≥ a] = a, Pr[q2

1{d1;a(a)} ≤ a] = a.

The constant m is the common value of the eigenvalues, which are assumed
to be equal, of a rather complicated matrix. However, for our purposes m is
always equal to 1, as we are convinced that the true density function belongs
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to {f (x, y; j)|j ∈ J1}. (The a in (18) and (19) is one minus the confi-
dence coefficient, not to be confused with the parameter a = (a1, a2)T of the
bicomponent bicompositional Dirichlet distribution.)

We thus transform the confidence intervals of G(j1 : j0) yielding the
“large”[

1− exp

{
−Ĝ(ĵ1 : ĵ0) +

√
s2q2

1;an−1

}
,

1− exp

{
−Ĝ(ĵ1 : ĵ0)−

√
s2q2

1;an−1

}]
(20)

and the “small”[
1− exp

{
−
k1;a/2(â)

n

}
, 1− exp

{
−
d1;a/2(â)

n

}]
(21)

1− a confidence intervals of r2
J .

3 Comparison of the confidence intervals

If the first confidence interval (18) “includes or nearly includes 0, then,” ac-
cording to Kent (1983), “provided n is large enough for the asymptotics to
be valid, the confidence interval of the next section [(19)] is probably more
reliable.”

In order to examine the properties of the two confidence intervals (20)
and (21), we conduct a Monte Carlo study for seven models with different r2

J
and for different numbers of observations (n = 50, 100, 250). For every com-
bination of model and number of observations we generate random variates
(Bergman, 2009b), estimate r̂2

J , compute the two confidence intervals, and
record in how many cases the true value of r2

J is covered by the two intervals
(the empirical confidence coefficient). The results are presented in Table 1.
The nominal confidence coefficient in the study is 0.95 and we see clearly
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from the table that most of the empirical confidence coefficients are close to
this; the empirical confidence coefficients vary between 0.88 and 1.00. We
note that especially the “large” confidence intervals seem to have a too high
empirical confidence coefficients, indicating overly wide confidence intervals.

The ratios between the average widths of the “small” and “large” confi-
dence intervals are plotted in Figure 1. We see in the figure that the average
ratio between the widths of the “small” and the “large” confidence intervals
is about 0.5 when r2

J < 0.2, and around 0.6 for larger r2
J . We also note

that, perhaps not very surprisingly, the ratio increases as the sample size and
the correlation coefficient are increased. However, for 250 observations and
r2

J = 0.867, the average width of the “small” confidence interval is less than
0.75 of that of the “large” one. It should be noted though that as the “large”
confidence intervals are not guaranteed to be non-negative, the comparisons
are from a practical point of view not entirely fair; a confidence interval with
a lower limit less than zero would in practice of course have it replaced by
zero as both the information gain and the general measure of correlation are
non-negative. On the other hand, a confidence limit that is not restricted to
the appropriate parameter space is of course of less practical use.

4 Bias correction

Kent (1983) notes that the estimator (5) is biased and suggests a less biased
estimator

Ĝ(ĵ1 : ĵ0)− B̂
n

(22)

where
B̂ = tr{Ĥ(ĵ1)−1Ĵ(ĵ1)} − tr{Ĥll(ĵ0)−1Ĵll(ĵ0)}. (23)

In (23), Ĵ(ĵ) is an estimate of the expected squared score matrix J(j) =
E{U(j)U(j)T}

Ĵ(j) =
1
n

∑
U(j)U(j)T, (24)
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Table 1 The empirical confidence coefficient is presented for seven different models
(a, b, g) and three different numbers of observations n. For each model and number
of observations, 500 samples of random variates are generated and the two confidence
intervals (“large” and “small”) for the correlation coefficient are calculated. We then
calculate the proportion of the confidence intervals that cover the true value of the
correlation coefficient r2

J for that model.

Parameter values Interval
a b g r2

J n “large” “small”

(3, 2.3) (4, 2) 1.5 0.038 50 0.932 0.970
100 0.946 0.964
250 0.980 0.958

(9, 7) (4, 2) 4.5 0.099 50 0.964 0.950
100 0.972 0.882
250 0.988 0.948

(4, 3) (4, 2) 4.5 0.174 50 0.968 0.954
100 0.980 0.910
250 1.000 0.946

(4, 3) (3, 4) 4.5 0.244 50 0.992 0.954
100 0.994 0.962
250 0.998 0.954

(4, 3) (3, 4) 6.5 0.418 50 0.996 0.968
100 1.000 0.982
250 1.000 0.968

(4, 3) (3, 4) 9.5 0.652 50 1.000 0.992
100 1.000 0.996
250 1.000 0.984

(4, 3) (3, 4) 14.0 0.867 50 0.998 0.996
100 1.000 0.994
250 1.000 0.994
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Figure 1 The average ratio between the widths of the “small” (DS) and “large” (DL)
confidence intervals plotted for the seven different models (r2

J ) in Table 1 and for
50 (•), 100 (N) and 250 (�) observations.
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and Ĥ(ĵ) is the estimate of minus the expected score derivative matrix H(j)=
−E{∂U(j)/∂jT}

Ĥ(j) = −1
n

∑ ∂U(j)
∂j

. (25)

The matrices above with the subscript ll refers to the 4× 4 part of the matrix
not depending on g, that is the top left part Hll if the matrix is partitioned

H =

[
Hll Hlg

Hgl Hgg

]
and of course analogously for Jll .

Calculating Ĥ(j) requires calculating the second derivatives of the log
likelihood ∂2`(j)/∂j2 = ∂U(j)/∂j. An expression for (25) may be found,
but it is not presented here as it would require a large amount of space. How-
ever to give an example of the complexity of the calculations necessary we
present five of the second derivatives. We first introduce some notation (to
enable the expressions to fit into the page).

Let a. = a1 + a2 and b. = b1 + b2. We use the digamma and trigamma
functions

Y(z) =
d logG(z)

dz
, (26)

y1(z) =
d2 logG(z)

dz2
=

dY(z)
dz

, (27)

and define

Y (1)
ij (a) = Y(a1 + j)−Y(a. + i), (28)

Y (2)
ij (a) = Y(a2 + i − j)−Y(a. + i). (29)

The first and second derivatives of the binomial coefficient are denoted(
g

i

)′
=

d
dg

(
g

i

)
, (30)(

g

i

)′′
=

d2

dg2

(
g

i

)
. (31)

87



Calculation of the second derivative of the binomial coefficient (31) is dis-
cussed in Appendix A. We also define

S (k)
a =

∂Sa
∂ak

=

i∑
j=0

(
i
j

)
(−1)i−jBij(a)Y (k)

ij (a) (32)

S (kl)
a =

∂2Sa
∂ak∂al

=

i∑
j=0

(
i
j

)
(−1)i−jBij(a){Y (k)

ij (a)Y (l)
ij (a)− y1(a. + i)}, (33)

where Bij(a) is given in (10), and we define S (k)

b and S (kl)

b analogously. We
finally define

K =

∞∑
i=0

(
g

i

)
SaSb, (34)

where Sa is given in (8) and Sb is given in (9).
Using this notation we present five of the elements in Ĥ(j):

∂2`

∂g2
= −n

(∑∞
i=0

(
g
i

)′′
SaSb

)
K −

(∑∞
i=0

(
g
i

)′
SaSb

)2

K 2

∂2`

∂g∂a1
= −n

(∑∞
i=0

(
g
i

)′
S (1)
a Sb

)
K −

(∑∞
i=0

(
g
i

)′
SaSb

)(∑∞
i=0

(
g
i

)
S (1)
a Sb

)
K 2

∂2`

∂a2
1
= −n

(∑∞
i=0

(
g
i

)
S (11)
a Sb

)
K −

(∑∞
i=0

(
g
i

)
S (1)
a Sb

)2

K 2

∂2`

∂a1∂a2
= −n

(∑∞
i=0

(
g
i

)
S (12)
a Sb

)
K −

(∑∞
i=0

(
g
i

)
S (1)
a Sb

)(∑∞
i=0

(
g
i

)
S (2)
a Sb

)
K 2

∂2`

∂a1∂b1
= −n

(∑∞
i=0

(
g
i

)
S (1)
a S (1)

b

)
K −

(∑∞
i=0

(
g
i

)
S (1)
a Sb

)(∑∞
i=0

(
g
i

)
SaS (1)

b

)
K 2

The remaining the elements of the matrix may be expressed in a similar fash-
ion.
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Assuming that the true density belongs to {f (x, y; j)|j ∈ J1}, then,
according to Kent (1983), tr{Ĥ(ĵ1)−1Ĵ(ĵ1)} is equal to the number of pa-
rameters in the model, in our case five.

However, numerical examples indicate that the bias corrected estimates
are, contrary to Kent’s claim, actually more biased than the uncorrected ones,
especially for models with large r2

J . We believe that this increased bias might

be due to numerical issues in calculating Ĥ(ĵ), which, as demonstrated above,
consists of a multitude of infinite sums. Due to this lack of improvement we
have not used this bias correction in our estimations.

5 An application

We illustrate the estimation of the general measure of correlation presented in
Section 2 with an example. The data consist of the composition of the gov-
ernment Gross Domestic Product (GDP) for the 50 U.S. states and District
of Columbia, for the years 1967 and 1997. The composition is originally
(Federal civilian, Federal military, State and local), but we have collapsed the
Federal military and the State and local, to create a bicomponent composi-
tion. Data come from the Bureau of Economic Analysis, U.S. Department of
Commerce.

The maximum likelihood estimates of the parameters under J1 are

â = (16.32, 14.41)T, b̂ = (17.31, 43.20)T, ĝ = 57.41.

The data and the contour curves of the bicompositional Dirichlet distribution
with the above parameter estimates are shown in Figure 2. The estimate of
the general measure of correlation is

r̂2
J = 0.3027,

with a “small” confidence interval of

(0.0993, 0.5371)
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thus indicating that composition of the government GDP in 1967 is corre-
lated with the composition of the government GDP in 1997.

6 Discussion

The compositional data analysis has through history primarily been con-
cerned with modelling the dependence between the components of a com-
position, the intra-compositional dependence. However, understanding and
modelling the dependence between compositions, the inter-compositional
dependence, is also of interest; this is of course especially evident when we
are studying compositional processes.

Kent (1983) introduced a general measure of correlation and this was
developed by Bergman and Holmquist (2009) for two compositions using
the only known distribution on the Cartesian product S D×S D (Bergman,
2009a). In this paper we have shown how to estimate the general correlation
coefficient r2

J with a point estimate and two confidence intervals. We have
also compared the two confidence intervals and it is apparent for the models
that we have examined that the so called “small” confidence interval (based on
non-central q2-distributions) will produce the smaller intervals, yielding an
empirical confidence coefficient for almost all models of approximately 95 %,
when the nominal confidence coefficient is 95 %. The “large” confidence
intervals will in general be wider.

As an example we have also estimated the general measure of correlation
for GDP data from the 50 U.S. states and District of Columbia.
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Figure 2 The federal civilian proportion of the government part of GDP for the 50
U.S. states and District of Columbia plotted for 1997 versus 1967 and the contour
curves of the estimated bicompositional Dirichlet distribution.

Source: Bureau of Economic Analysis, U.S. Department of Commerce.
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Appendix A Derivatives of binomial coefficients

Theorem 1. The second derivative of the binomial coefficient with respect to r is

d2

dr2

(
r
n

)
=

1
n!

n−1∑
i=0

n−1∑
j=0
j 6=i

n−1∏
k=0
k 6=i
k 6=j

(r − k). (35)

Proof. Bergman and Holmquist (2009, Theorem A.2) give an expression for
the first derivative of the binomial coefficient:

d
dr

(
r
n

)
=

1
n!

n−1∑
i=0

n−1∏
j=0

I (i, j)

where

I (i, j) =

{
1 (i = j),

r − j (i 6= j).

This is thus a sum of n terms each consisting of a product of n factors r − j,
where the jth factor of the jth term is replaced by 1; hence each term in
practice consists of a product of n− 1 factors:

(r − 1)(r − 2) · · · (r − n + 1)

+(r − 0)(r − 2) · · · (r − n + 1)

+ · · ·
+(r − 0)(r − 1) · · · (r − n + 2)

Differentiating this expression yields a sum of n terms (i = 0, . . . , n−1),
each consisting of a sum n − 1 terms (j = 0, . . . , n; j 6= i), each in turn
consisting of a product of n − 2 factors (k = 0, . . . , n; k 6= i, k 6= j) where
every factor is r − k.
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