
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Novel Approaches to ECG-Based Modeling and Characterization of Atrial Fibrillation

Sandberg, Frida

2010

Link to publication

Citation for published version (APA):
Sandberg, F. (2010). Novel Approaches to ECG-Based Modeling and Characterization of Atrial Fibrillation.
[Doctoral Thesis (compilation), Department of Electrical and Information Technology].

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 26. Apr. 2024

https://portal.research.lu.se/en/publications/947f29f5-4295-4cb9-b443-13a122e54474


Novel Approaches to ECG-Based

Modeling and Characterization of

Atrial Fibrillation
Frida Sandberg

Lund 2010



Department of Electrical and Information Technology
Lund University
Box 118, SE-221 00 LUND
SWEDEN

This thesis is set in Computer Modern 10pt
with the LATEX Documentation System

Series of licentiate and doctoral theses
No. 26
ISSN 1654-790X

c© Frida Sandberg 2010
Printed in Sweden by Tryckeriet i E-huset, Lund.
October 2010.



Till Peder, Emil och Arvid





Sammanfattning

Förmaksflimmer är den vanligaste rytmrubbningen i hjärtat som kräver be-
handling. Risken att drabbas ökar med åldern och 8% av alla åttio̊aringar
lider av förmaksflimmer. Förmaksflimmer är i sig inte livshotande, men den
förhöjda risken för proppbildning i förmaken kan leda till allvarliga komplika-
tioner s̊asom stroke. Det finns olika behandlingsstrategier för förmaksflimmer,
t.ex. medicinering, elkonvertering och kateterablation, men läkarna vet idag
inte vilken metod som fungerar bäst för den enskilda patienten. Under
förmaksflimmer är den elektriska aktiviteten i förmaken snabb och oregel-
bunden. De bakomliggande orsakerna till detta är inte fullständigt kartlagda.
Ett enkelt och ofarligt sätt att studera den elektriska aktiviteten i hjärtat är
genom elektrokardiogram (EKG), som mäts p̊a kroppsytan.

Denna avhandling handlar om metoder för analys av EKG-signaler under
förmaksflimmer. Målet är att kunna hjälpa läkare att fatta rätt beslut om be-
handling för den enskilda patienten. Egenskaper i EKG-signalen kan användas
för att följa spontana förändringar i hjärtats elektriska aktivitet samt övervaka
effekten av behandling. I vissa fall kan man även förutsäga effekten av en viss
behandling för en enskild patient genom att analysera EKG-signalen.

I denna avhandling behandlas metoder för analys av förmakens aktivitet
(artikel I–IV), och den elektriska kopplingen mellan förmak och kammare (ar-
tikel V) under förmaksflimmer. Under denna arytmi best̊ar EKG-signalen av
flimmerv̊agor, som avspeglar den elektriska aktiviteten i förmaken, och QRST
komplex, som avspeglar den elektriska aktiviteten i kamrarna.

I artikel I används m̊att som kvantifierar olika egenskaper hos flim-
merv̊agorna, s̊asom amplitud, v̊agform, frekvens och komplexitet, för att
undersöka skillnader mellan förmaksflimmer som upphör spontant och som ej
upphör spontant. Det visar sig att flimmerfrekvensen kan användas för att
förutsp̊a spontan konvertering.

En ny metod för robust flimmerfrekvensanalys av l̊angtids-EKG presenteras
i artikel II, som bygger p̊a en “hidden Markov modell” (HMM). Resultaten
visar att frekvensestimaten är mer tillförlitliga än de som existerande metoder
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vi Sammanfattning

producerar vid höga brusniv̊aer.
I artikel III används HMM-metoden för att analysera variationer i flimmer-

frekvens över dygnet. S̊adana cirkadiska variationer kan användas för att sätta
in behandling vid en tidpunkt p̊a dygnet d̊a den bedöms ge störst effekt. Resul-
taten visar att flimmerfrekvensen i de flesta fall var högst under eftermiddagen,
även om korttidsvariationen var betydande.

I artikel IV presenteras en entropi-baserad metod för analys av flim-
merv̊agor. Metoden kan användas för att skilja paroxysmalt (spontant kon-
verterande) fr̊an persistent förmaksflimmer genom analys av 10-sekunders
segment av l̊angtids-EKG.

All överledning av elektriska impulser fr̊an förmaken till kamrarna g̊ar via
AV-knutan. I artikel V presenteras en ny stokastisk modell för AV-knutans
funktion under förmaksflimmer. Modellens parametrar kan estimeras fr̊an
EKG-signalen. P̊a s̊a sätt kan egenskaper hos AV-knutan och förändringar
hos dessa egenskaper kartläggas fr̊an EKG-signalen.



Abstract

This thesis deals with signal processing algorithms for analysis of the electro-
cardiogram (ECG) during atrial fibrillation (AF). Such analysis can be used for
diagnosing patients, and for monitoring and predicting their response to vari-
ous treatment. The thesis comprises an introduction and five papers describing
methods for ECG-based modeling and characterization of AF. Paper I–IV deal
with methods for characterization of the atrial activity, whereas Paper V deals
with modeling of the ventricular response, both problems with the assumption
that AF is present.

In Paper I, a number of measures characterizing the atrial activity in the
ECG, obtained using time-frequency analysis as well as nonlinear methods, are
evaluated for their ability to predict spontaneous termination of AF. The AF
frequency, i.e, the repetition rate of the atrial fibrillatory waves of the ECG,
proved to be a significant factor for discrimination between terminating and
non-terminating AF.

Noise is a common problem in ECG signals, particularly in long-term ambu-
latory recordings. Hence, robust algorithms for analysis and characterization
are required. In Paper II, a robust method for tracking the AF frequency in
noisy signals is presented. The method is based on a hidden Markov model
(HMM), which takes the harmonic pattern of the atrial activity into account.
Using the HMM-based method, the average RMS error of the frequency esti-
mates at high noise levels was significantly lower compared to existing methods.

In Paper III, the HMM-based method is employed for analysis of 24-h am-
bulatory ECG signals in order to explore circadian variation in AF frequency.
Circadian variations reflect autonomic modulation; attenuation or absence of
such variations may help to diagnose patients. Methods based on curve fitting,
autocorrelation, and joint variation, respectively, are employed to quantify cir-
cadian variations, showing that it is present in most patients with long-standing
persistent AF, although the short-term variation is considerable.

In Paper IV, 24-h ambulatory ECG recordings with paroxysmal and per-
sistent AF are analyzed using an entropy-based method for characterization
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viii Abstract

of the atrial activity. Short segments are classified based on these measures,
showing that it is feasible to distinguish between patient with paroxysmal and
persistent AF from 10-s ECGs; the average classification rate was above 95%.

The ventricular response during AF is mainly determined by the AV nodal
blocking of atrial impulses. In Paper V, a new model-based approach for anal-
ysis of the ventricular response during AF is proposed. The model integrates
physiological properties of the AV node and the atrial fibrillatory rate; the
model parameters can be estimated from ECG signals. Results show that
ventricular response is sufficiently represented by the estimated model in a ma-
jority of the recordings; in 85.7% of the analyzed 30-min segments the model
fit was considered accurate, and that changes of AV nodal properties caused
by autonomic modulation could be tracked through the estimated model pa-
rameters.

In summary, the work within this thesis contributes with new methods for
non-invasive analysis of AF, which can be used to tailor and evaluate different
strategies for AF treatment.



Preface

This doctoral thesis comprises an introduction and five parts describing signal
processing methods for modeling and characterization of atrial fibrillation from
the ECG. The parts are based on the following journal papers:

[1] Frida Nilsson, Martin Stridh, Andreas Bollmann, and Leif Sörnmo, “Pre-
dicting spontaneous termination of atrial fibrillation using the surface
ECG,” Medical Engineering & Physics, vol. 28, pp. 802–808, 2006. (This
paper was among the top 10 cited during 2006–2008 in the jour-
nal.)

[2] Frida Sandberg, Martin Stridh and Leif Sörnmo, “Frequency tracking of
atrial fibrillation using hidden Markov models,” IEEE Transactions on
Biomedical Engineering, vol. 55, pp. 502–511, 2008.
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Leif Sörnmo, “Circadian variation in dominant atrial fibrillation frequency
in persistent atrial fibrillation,” Physiological Measurement, vol. 31, pp.
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[4] Raúl Alcaraz, Frida Sandberg, Leif Sörnmo, and José Joaqúın Rieta,
“Classification of paroxysmal and persistent atrial fibrillation in ambu-
latory ECG recordings,” Submitted for publication.

[5] Frida Sandberg, Valentina Corino, Luca Mainardi and Leif Sörnmo,
“Model-based analysis of the ventricular response during atrial fibrilla-
tion,” Manuscript.

In Paper I–III, the author of this thesis performed the analysis, developed
and/or evaluated the methods and prepared the manuscripts. In Paper IV–V,
the development of the methods, the analysis and the manuscript was to equal
parts conducted by the author and the collaborating group. Different parts of
the work have also been presented in various contexts:
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Pyotr Platonov and Fredrik Holmqvist, “Non-invasive estimation of orga-
nization in atrial fibrillation as a predictor of sinus rhythm maintenance”
International Congress on Electrocardiology, Lund, Sweden, June 2010.



xi
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Overview of the Research
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Chapter 1

Introduction

This thesis deals with signal processing algorithms for analysis of the electro-
cardiogram (ECG) during atrial fibrillation (AF). Atrial fibrillation is one of
the most common cardiac arrhythmias in clinical practice. Although it is not
life-threatening, it is associated with higher mortality in the long-term per-
spective. The underlying mechanisms of AF are not completely known but
are currently subject to intense research. Various strategies for treatment have
been proposed but none has been found as optimal for all patients.

The surface ECG reflects the global electrical activity of the heart. Al-
though the local and complex impulse propagation pattern in the atria during
AF cannot be studied in detail from the ECG, it offers possibilities for safe and
inexpensive monitoring of the cardiac activity. Various aspects of the unorga-
nized atrial activity and the irregular ventricular response during AF can be
explored by examination of the ECG signal. Since manual inspection of ECG
signals is time-consuming and subjective, methods for automatic analysis of the
atrial and ventricular activity in the ECG during AF are essential. Features
extracted from the ECG characterizing AF, may be used as a basis for selection
of patient therapy and for noninvasive monitoring of the effects of treatment.

There are several challenges when analyzing AF from the ECG. A gen-
eral problem in biomedical signal processing is that the exact properties of the
underlying physiological processes causing the signals are not known. Hence,
there is no ’gold standard’ that can be used for evaluation of different analysis
methods, but the performance can only be evaluated indirectly. One way to
evaluate a method is by verifying the clinical relevance of the extracted features
by, e.g., their ability to separate different patient groups, monitor effects, or
predict treatment outcome. The repetition rate of the atrial fibrillator waves in
the ECG has been found to correlate well with the invasively measured atrial
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4 Overview of the Research Field

cycle length. Other characteristics of the atrial activity, e.g., morphology and
complexity, may reflect different properties of the propagation of impulses in
the atria. Hence, methods for quantification of these characteristics are needed.
A problem when analyzing AF in the ECG is that the ventricular activity has
much larger magnitude than does the atrial activity. To perform detailed anal-
ysis of the atrial activity, the ventricular activity needs to be cancelled. Since
atrial and ventricular activity temporally and spectrally overlap, simple filter-
ing approaches are not sufficient. Noise is a common problem in ECG signals,
particularly in long-term ambulatory recordings. Whereas some types of noise,
e.g., 50/60 Hz power line interference, can easily be removed by filtering the
ECG, other types of noise, e.g., muscular artifacts, are more difficult to elimi-
nate. Methods for analysis and characterization of atrial activity are therefore
required to be robust to such noise. The ventricular response during AF is
mainly determined by the atrioventricular (AV) node. Characteristics of the
series of ventricular inter-activation times derived from the ECG can therefore
be used to explore AV nodal properties. Hence, methods for modeling and
characterization of the ventricular response during AF are needed.

Paper I–IV deals with characterization of atrial activity during AF, while
Paper V mainly deals with characterization of the ventricular response. In
Paper I, a number of measures characterizing the atrial activity in the ECG,
obtained using time-frequency analysis as well as nonlinear methods, are eval-
uated for their ability to predict spontaneous termination of AF. The AF fre-
quency, i.e, the repetition rate of the atrial fibrillatory waves of the ECG,
proved to be a significant factor for discrimination between terminating and
non-terminating AF.

In Paper II, a robust method for tracking the AF frequency in noisy ECG
signals is presented. The method is based on a hidden Markov model (HMM),
which takes the harmonic pattern of the atrial activity into account. Using the
HMM-based method, the average RMS error of the frequency estimates at high
noise levels was significantly lower compared to existing methods.

In Paper III, the HMM-based method is employed for analyzing 24-h am-
bulatory ECG signals in order to explore circadian variation in AF frequency.
Circadian variations reflect autonomic modulation; absence of such variations
may help to diagnose patients. Methods based on curve fitting, autocorrelation,
and joint variation, respectively, are employed to quantify circadian variations,
showing that it is present in most patients with long-standing persistent AF,
although the short-term variation are considerable.

In Paper IV, 24-h ambulatory ECG recordings with paroxysmal and per-
sistent AF are analyzed using an entropy-based method for characterizing the
atrial activity. Short segments are classified based on these measures, showing
that it is feasible to distinguish between patient with paroxysmal and persistent
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AF from 10-s ECGs; the average classification rate was above 95%.
In Paper V, a new model-based approach for analysis of the ventricular re-

sponse during AF is proposed. The model integrates physiological properties of
the AV node and the atrial fibrillatory rate; the model parameters can be esti-
mated from ECG signals. Results show that ventricular response is sufficiently
represented by the estimated model in a majority of the recordings; in 85.7%
of the analyzed 30-min segments the model fit was considered accurate, and
that changes of AV nodal properties caused by autonomic modulation could be
tracked through the estimated model parameters.

A short background to AF and ECG signals is given in Chapter 2. Chapter 3
deals with the issue of extracting atrial activity from the ECG during AF. In
Chapter 4, different methods for characterization of the atrial activity of the
ECG during AF are presented, whereas Chapter 5 deals with methods for
analysis and modeling of the ventricular response during AF. A summary of
the included papers is found in Chapter 6.
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Chapter 2

Atrial Fibrillation

2.1 The Normal Heart

The heart is divided into a left and a right part, each consisting of two chambers;
the atrium and the ventricle [1], see Fig. 2.1. The two parts are divided by a
muscular wall, called septum. Different valves control the direction of the blood
flow; the atrioventricular valves between the atria and the ventricles, and the
pulmonary and aortic valves between the ventricles and the arteries. During
one cardiac cycle a sequence of mechanical events occur, starting when blood
in the right atrium is forced into the right ventricle by contraction of the atria.
The blood in the right atrium has been collected from all veins in the body,
except for the veins from the lungs. When the right ventricle is filled with
blood, it contracts and forces the blood into the pulmonary artery and further
to the lungs where it is oxygenated. The oxygenated blood passes through the
pulmonary veins to the left atrium, which, once it is filled, contracts and forces
the blood to the left ventricle. When the left ventricle contracts, the blood
flows to all arterial vessels in the body, except for the lungs, into the venous
system and back to the right atrium again.

The myocardium, i.e., the wall of the heart, is mainly composed of muscle
cells which exercise mechanical force during contraction. The mechanical force
of the muscle cells is triggered by electrical impulses; a conduction system of
specialized cells in the myocardium spreads the electrical impulse throughout
the heart. The cardiac cycle consists of two phases; activation (contraction)
and recovery (relaxation) which in electrical terms are referred to as depolar-
ization and repolarization. Depolarization is a rapid change of the membrane
potential of the cell. The depolarization spreads to neighboring cells so that
the electrical impulse propagates. After depolarization, the cell immediately

7
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Figure 2.1: Anatomy of the heart. Reprinted with permission from [1].

starts its repolarization to return to its resting state. During this period of
time, called refractory period, the cell cannot depolarize.

In the normal heart, the cardiac cycle is initiated by an electrical impulse
originating from the sinoatrial node, the natural pacemaker of the heart situ-
ated in the right atrium, see Fig. 2.1. The electrical impulse propagates through
the right and left atria to the atrioventricular (AV) node, where it is collected
and delayed before it continues to the bundle of His, which is the only electric
connection between the AV node and the ventricles. The ventricular conduc-
tion system consists of the rapidly conducting left and right bundle branches
and the Purkinje network. During normal sinus rhythm, the rate of electri-
cal impulses which causes the heart to beat is determined by the autonomic
nervous system.

2.2 The Heart during AF

Atrial fibrillation is the most common sustained cardiac arrhythmia in clinical
practice. The prevalence of AF increases with age, being 0.4–1% in the general
population and 8% for octogenarians [2]. While AF is not generally considered
life-threatening, there is a risk of blood clots forming in the atria which leads
to increased risk of stroke. The rate of stroke among patients with AF aver-
ages 5% per year, which is two to seven times higher than that of the general
population [2].

In contrast to normal sinus rhythm, electrical impulses may originate from
many different areas in the atria during AF. The exact mechanisms of AF
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remain uncertain. The different theories involve two main processes: rapidly
depolarizing foci, and reentry circuits [3]. The rapidly depolarizing foci are
usually located in the pulmonary veins, but can also occur in the right atria,
or (more rarely) in superior vena cava or coronary sinus [4]. The refractory
periods of the cells in the conduction system are usually shortened during AF,
and, since activation of the cells can occur immediately after the refractory
period, this facilitates the forming of electrical reentry loops in the atria.

The irregular atrial activity during AF causes the atria to quiver rather
than to contract, which leads to insufficient heart function. Since the atria
beats abnormally fast during AF, it is labeled as an atrial tachyarrhythmia.

As a consequence of the rapid atrial rate during AF, the ventricular re-
sponse is rapid and irregular. However, AV nodal refractoriness prevents the
heart from racing. Electrical impulses from the atria are conducted to the
ventricles through the AV node, and, if the cells of the AV node are refrac-
tory the atrial impulses are blocked. Several complex mechanisms determine
the ventricular response during AF; the AV nodal refractory period and the
conduction time through the AV node are dependent on intrinsic AV nodal
characteristics as well as the timing and strength of the arriving atrial im-
pulses. Concealed conduction, which occurs when an atrial impulse traverse
part of the AV node but is not conducted through the ventricles, influences
the conduction of subsequent atrial impulses [5]. In addition, the existence
of two dominant paths through the AV node, each of them having different
electrophysiological properties has been documented [6].

2.3 Diagnosis and Treatment

Atrial fibrillation is generally diagnosed from the surface ECG to confirm its
presence. The ECG, which reflects the electrical activity of the heart as mea-
sured on the body surface, is an important tool when studying the function
of the heart and diagnosing different cardiac diseases. The standard 12-lead
ECG is acquired using ten electrodes, of which one is located on each wrist and
ankle joint, and the remaining six are located on the chest. When recording
the ECG over longer periods of time, it is common to use only three electrodes
placed on the chest.

During normal sinus rhythm, each heartbeat in the ECG signal consists
of a P wave, a QRS complex, and a T wave [7]. The P wave corresponds to
atrial activation, the QRS complex corresponds to activation of the ventricles,
and the T wave corresponds to ventricular recovery, see Fig. 2.2. In AF, the
P wave is replaced by an undulating baseline, where the waves are referred to
as f waves. In atrial flutter, which is another type of atrial tachyarrhythmia,
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the P waves are replaced by F waves which are slower and more regular than
the f waves during AF. Examples of ECG signals during normal sinus rhythm,
AF and atrial flutter are given in Fig. 2.3.
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Figure 2.2: Different parts of the ECG signal during normal sinus
rhythm. Reprinted with permission from [1].

The medical history of the patient is also considered when diagnosing AF.
In some patients transesophageal echocardiography is used in which ultrasound
images the anatomy and function of the heart. Intracardiac electrograms
are normally only recorded if the patient is undergoing invasive treatment.
Atrial fibrillation may be paroxysmal or sustained, the former being occasional
episodes of fibrillation interrupting normal sinus rhythm. Sustained AF can be
further divided into persistent AF, which may terminate using certain treat-
ment, and permanent AF. In new-onset episodes of AF, i.e. < 48 hours, spon-
taneous termination is common [8], whereas long-standing persistent AF, e.g. 1
year, usually leads to permanent AF [2]. About 18% of paroxysmal AF evolve
to permanent AF over 4 years [9].

Cardioversion denotes restoration of sinus rhythm in patients with persis-
tent AF and can be achieved by means of electrical shock (electrical cardiover-
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Figure 2.3: Different examples of ECG signals during (top) normal
sinus rhythm, (middle) atrial flutter, and (bottom) AF. Reprinted with
permission from [1].

sion) or drugs (pharmacological cardioversion). In more than 90% of new-onset
AF, electrical cardioversion terminates AF [10]. Electrical shocks are usually
delivered noninvasively, but may also be delivered invasively. A wide range of
drugs are used for pharmacological cardioversion, with varying efficacies [8].
For new-onset AF, the success rate is about 50% 1.5 hour after drug admin-
istration [11]. Pharmacological cardioversion is ineffective for AF of duration
longer than 7 days [11]. Recurrence of AF is common after cardioversion, and
antiarrhythmic drugs are often needed for maintenance of sinus rhythm. A
serious side effect of such drugs is that they may induce other cardiac arrhyth-
mias [12].

In permanent AF, when cardioversion has failed or not been attempted,
conventional treatment consists of heart rate control and anticoagulants to
prevent clots from forming in the atria [12].

In recent years ablation therapy for treatment of AF has quickly evolved.
Today, ablation offers a potential curative strategy for patients with paroxys-
mal and persistent or permanent AF. Ablation therapy has proved to be su-
perior to currently available antiarrhythmic drugs in the maintenance of sinus
rhythm [13]. In catheter ablation, energy is applied for controlled destruction of
arrhythmia-generating tissue in the atria. Several different ablation techniques
and a variety of energy sources may be used, although RF ablation targeting
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the pulmonary veins is the most common procedure. This technique aims at
isolating the rapidly depolarizing foci that are usually located in the pulmonary
veins. Other AF substrate sites can be identified and targeted during the abla-
tion procedure, guided by the atrial electrograms. In some cases the atria are
segmented by creation of linear lesion, to prevent atrial impulses from forming
reentry loops [14]. However, it is important to recognize that catheter ablation
of AF is a demanding technical procedure that may result in complications.
Hence, patients should only undergo AF ablation after carefully considering
the risks and benefits of the procedure [14].



Chapter 3

Extraction of Atrial
Activity

The ventricular activity in the ECG signal has much larger magnitude than the
atrial activity, and thus needs to be suppressed before the atrial activity can
be studied. Since the atrial and ventricular activity overlap spectrally, linear
time-invariant filtering is unsuitable for this purpose. Instead, atrial activity
extraction is usually performed employing average beat subtraction [15–19],
or source separation methods [20–25]. While the average beat subtraction
methods extract the atrial activity of a specific ECG lead, the source separation
methods derive a global atrial signal with contributions from all leads. In this
chapter it is assumed that the QRST complexes have been detected and that
AF is known to be present in the signal.

3.1 Average Beat Subtraction Methods

During AF, the atrial activity is decoupled from the ventricular activity. Hence,
atrial activity that coincide with QRST complexes may be removed by aver-
aging beats. Prior to average beat subtraction, the detected QRST complexes
should be classified according to their morphology. Similarity of QRST com-
plexes is usually quantified by correlation, such that if the correlation exceeds
a certain threshold, the QRST complexes are considered to belong to the same
class of QRST morphology. In the next step, template QRST complexes are
obtained by averaging the QRST complexes in each morphology class. Finally,
the template QRST complex can be subtracted from the individual QRST com-
plexes in the corresponding morphology class, where it is important that the

13
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template is correctly aligned in time.
The technique for obtaining atrial activity from the ECG by subtracting an

average QRST complex was first presented in [15]. Since then several improve-
ments, such as spatiotemporal QRST cancellation [16], have been proposed.
In this approach, the QRST complexes are spatially aligned by shifting signal
energy between the different leads. In detail, the atrial activity is assumed
to be uncorrelated to the ventricular activity during AF. Hence, each beat Y,
consisting of N samples from L leads, can be modeled as a sum of ventricular
activity YV , atrial activity YA, and noise W,

Y = YV + YA + W. (3.1)

The ventricular activity in Y is modeled as

ŶV = J(τ)X̄S, (3.2)

where J(τ) is a time shift matrix, X̄ is the average QRST complex of the
corresponding morphology class, and S is a spatial alignment matrix. The time
shift matrix J(τ) corrects for misalignment in time between YV and X̄, while
the spatial alignment matrix S compensates for alterations of the electrical
axis. S is composed of a diagonal scaling matrix, D, and a rotation matrix, Q,
such that

ŶV = J(τ)X̄DQ, (3.3)

The aim is to estimate the matrices Q, D, and the time-shift τ of J(τ), such
that

Y − ŶV = W + YA. (3.4)

Hence, not only the noise but also the atrial activity will limit how well ŶV fits
Y. In order to improve the cancellation performance, an estimate of the atrial
activity ỸA is subtracted from the signal prior to QRST cancellation, defining

Z = Y − ỸA. (3.5)

This procedure is referred to as AF reduction, and leads to the following min-
imization problem

ε2min = min
D,Q,τ

||Z− J(τ)X̄DQ||2F , (3.6)

where ||A||2F denotes the Frobenius norm, defined by tr{AAT }.
Since Q and D cannot be maximized independently, and a closed-form solu-

tion is difficult to find, the minimization problem is solved using an alternating
iterative approach. Minimization with respect to the time-lag, τ , is done by a
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grid-search in the interval [−∆,∆]. The optimal Q and D are determined for
each value of τ , and the Q, D, and J(τ) corresponding to the smallest error are
chosen. Finally, the spatially and temporally aligned average beat is subtracted
from each beat of the ECG, producing a residual signal, see Fig. 3.1.

An extension to the spatiotemporal QRST cancellation technique was pro-
posed by Lemay et al. [18], where separate QRS and T wave templates were
considered. The rationale for using separate templates is that the physiological
origin of the QRS and T waves differ, and hence, the morphology of the T wave
may be different even if the QRS complex is similar and vice versa.

A limitation of the average beat subtraction methods is that a sufficiently
large number of QRST complexes with similar morphology are required to
create an average beat. Hence, methods based on average beat subtraction
cannot be used to extract ventricular activity from short segments of ECG.
Another problem with these methods is that incompletely cancelled QRST
complexes introduce spiked artifacts in the residual ECG, which complicates
the analysis of the extracted atrial activity.

3.2 Principal Component Analysis

In principal component analysis (PCA), an N ×M data matrix X consisting
of M mutually correlated signals of length N , is transformed into an N ×M
matrix Y consisting of M uncorrelated principal components of length N , by
applying an orthonormal linear transform, defined by the N×N matrix P [26],

Y = PTX. (3.7)

The derivation of P is based on the assumption that each signal xm, m =
1, . . . ,M , represents a zero-mean random process, characterized by the corre-
lation matrix Cx. The principal components ym, i.e. the columns of Y, are
ordered according to variance, such that the first principal component y1 has
the largest variance. Hence, the first column p1 of the transformation matrix
P is chosen to maximize

E{yT1 y1} = E{(pT1 xxTp1} = pT1 E{xxT }p1 = pT1 Cxp1, (3.8)

where p1 is subjected to the constraint ||p1|| = 1. The optimal solution to
maximization of (3.8) under this constraint is given by p1 = e1, i.e, the nor-
malized eigenvector corresponding to the largest eigenvalue of the correlation
matrix Cx. Hence, the first principal component y1 is given by eT1 x. The
following principal components are chosen under the additional constraint that
they should be orthogonal to the previous principal components, such that

E{yTmyk} = E{pTmxxTpk} = pTmCxpk = 0, m 6= k. (3.9)
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Figure 3.1: (a) Examples of ECG signals from patients with AF and (b)
the corresponding residual ECG obtained using spatiotemporal QRST
cancellation [16]. Note that the scaling of the residual ECG is magnified.
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The solution is given by pk = ek. Hence, using PCA, the rows of P are given
by the eigenvectors of Cx.

The principal components can also be obtained directly from the data ma-
trix X using singular value decomposition (SVD) [26]. The SVD theorem states
that an M ×N matrix X can be decomposed as

X = UΣVT , (3.10)

where U is an orthonormal N ×N matrix with left singular columns, V is an
orthonormal M ×M matrix with right singular columns, and Σ is a diagonal
N×M matrix containing the singular values. The eigenvectors associated with
PCA are obtained as the left singular vectors of U, i.e. U = P.

Assuming that atrial and ventricular activity are uncorrelated during AF,
PCA can be used to extract atrial activity from the ECG. In the work by Raine
et al. [20], PCA was employed to extract the atrial activity from 20-s 12-lead
ECGs; the resulting principal component with the largest contribution from
lead V1, which is generally the lead with the most prominent f waves, was
selected to represent atrial activity. This blind source separation approach is
closely related to the independent component analysis techniques presented in
Sec. 3.3. However, in PCA independence between sources are measured entirely
by means of correlation; the higher order moments are disregarded.

Principal component analysis can also be applied to separate atrial and
ventricular activity in consecutive QRST segments from one lead [17]. In that
study, the first principal component was assumed to consist of ventricular ac-
tivity, since the magnitude, and hence, the variance of the signal is larger in
ventricular activity than in atrial activity. The principal components corre-
sponding to the smallest eigenvalues were assumed to be noise. The atrial
activity of the m:th segment x̂m was reconstructed from the remaining prin-
cipal components yi, i = k1, . . . , kn, which were assumed to consist of atrial
activity, using the inverse transform

x̂m(n) =
kn∑
i=k1

P−1
m,iyi(n). (3.11)

The segments of atrial activity were then put together to create a continuous
signal with atrial activity; bandpass filtering was applied to avoid undesired
edge effects. A general problem with the blind source separation approach is
to select sources corresponding to atrial activity, i.e, the choice of k1 and kn;
no criteria for this selection was given in this work.

In another study [19], the extracted principal component corresponding to
ventricular activity was used as a template QRST complex, and subtracted
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from each QRST complex to obtain the atrial activity. In order to account for
differences in amplitude, scaling was applied to the template QRST complex
before subtraction. Care was taken to avoid sudden transitions at the beginning
and end of the subtracted template. Although the template QRST complex
is obtained using PCA rather than averaging, the technique is essentially sim-
ilar to that used in average beat subtraction methods. Differences in QRST
morphology are not considered in this method; all QRST complexes occurring
within a certain time frame are used to generate the template QRST complex.

A method for cancellation of ventricular activity based on one single beat
was presented in [18], in which a template TU wave was created using PCA
based on the JQ intervals of all available leads, and the atrial activity of the
QRS segment was interpolated from adjacent JQ segments. Since T wave mor-
phology has proved to be quite similar in different leads, a dominant T wave
Tdom(t) may be obtained from SVD of the matrix X containing the N samples
during the JQ interval of the L leads. The first principal component corre-
sponds to Tdom(t). The T wave of each lead is assumed to be sufficiently mod-
eled using Tdom(t) and its derivatives. In order to eliminate noise in Tdom(t),
which may influence the derivatives considerably, Tdom(t) is approximated by
a smooth function

f(t) = p1

(
p2 +

1
1 + ep3(t−p5)

1
1 + ep4(t−p5)

)
, (3.12)

where p1 is a scale factor, p2 sets the initial value, p3 and p4 are parameters
for the positive and negative slope, and p5 is the timing of the T wave apex. A
function which accounts for the unlikely presence of a U wave is incorporated
in the Tdom(t) template. The U wave is approximated by a gaussian function

g(t) = p6e
−(

t−p6
p7

), (3.13)

where p6 is an overall scaling factor, p7 is the width and p8 is the timing of the
U wave apex. The parameters pi, i = 1, . . . , 8 were found by fitting f(t) + g(t)
to Tdom(t). A linear combination of f(t), f ′(t), f ′′(t) and g(t) was fitted to the
JQ segment of each lead, and atrial activity was estimated by subtracting the
acquired template TU wave. The atrial activity of the QRS segment of each
lead was modeled as a finite sum of sinusoids

s(t) =
P∑
k=1

αk cos(2πfkt) + βk sin(2πfkt), (3.14)

where the frequencies fk was uniformly distributed between 0-10 Hz. The
coefficients αk and βk were determined from preceding and subsequent JQ
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intervals using least squares estimation, and the atrial activity of the QRS
segment was interpolated using these coefficients. Finally, the atrial signal
was obtained by merging the interpolated sinusoids of the QRS segment with
surrounding JQ intervals.

A criticism towards this method is that atrial activity of the QRS segment is
estimated entirely based on the atrial activity in adjacent JQ segments. There-
fore, this method is only intended for QRST cancellation in short segments of
ECG, when the number of QRST complexes in each cluster is insufficient for
average beat subtraction methods.

3.3 Independent Component Analysis

When applying blind source separation methods to the ECG signals, each lead
of the ECG is assumed to consist of a linear combination of sources with atrial
and ventricular origins and noise. The sources are considered independent since
the atrial and the ventricular activity are decoupled during AF. Mathemati-
cally, the M observed ECG signals x(t) = [x1(t), x2(t), . . . , xM (t)]T , are given
by

x(t) = As(t), (3.15)

where s(t) = [s1(t), s2(t), . . . , sM (t)]T are the M unknown independent sources,
and A is an unknown mixing matrix. Hence, the sources can be estimated from
the observed signals using

ŝ(t) = Wx(t). (3.16)

Solving the blind source separation problem is therefore a matter of estimating
the coefficients of W. This is done by maximizing the independence between
the estimated sources ŝ = [ŝ1(t), ŝ2(t), . . . , ŝM (t)]T .

In independent component analysis (ICA), the independence of the sources
is maximized based on higher order statistics or entropy measures [27]. The
signals are assumed to have zero mean, which can easily be fixed by subtracting
the mean value, and to be white, i.e. uncorrelated with unit variance. Since
PCA whitens the signal, it is often a preprocessing step in ICA algorithms.
The sources are required to be nongaussian. Maximizing independence of the
sources can be done by minimizing gaussianity of the sources, since sums of
nongaussian variables are closer to gaussian than the original signal according
to the central limit theorem. Gaussianity of a signal y can be measured using
entropy, defined by

H(y) = −
∫
py(η) log py(η)dη, (3.17)
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where py(η) denotes the probability of y = η. The entropy is largest if y has
a gaussian distribution.

The Fast ICA algorithm for estimating several independent components [27],
using an iterative scheme to obtain the independent sources, has been employed
to separate atrial activity from ventricular activity in the ECG signal [21]. Fig-
ure. 3.2 displays a 12-lead ECG from a patient with AF and the corresponding
decomposed sources using ICA. Recently, a robust ICA method for which
no prewhitening is required, and which can be used to decompose real as
well as complex signals was presented [25]; this ICA method was applied to
ECG signals with AF in the frequency domain, and the extracted sources were
transformed back to time domain.

Once the independent sources have been separated, each source needs to
be identified as ventricular activity, atrial activity or noise. There is no unan-
imous criteria for identifying sources with atrial activity; measures based on
the sample distribution as well as on the spectral content of the sources have
been proposed for this task.

The sample distributions of the different sources can be classified according
to their gaussianity, which can be quantified using kurtosis,

K(y) = E{y4} − 3(E{y2})2. (3.18)

Kurtosis is zero for gaussian random variables, while subgaussian variables, e.g.,
the uniform distribution, have negative kurtosis and supergaussian variables,
e.g., the laplacian distribution, have positive kurtosis. The ventricular activity
is more spiky, and has hence larger values of K than does noise and atrial
activity. Sources with K < 0 and spectral content between 3–12 Hz were
identified as atrial activity in the work by Rieta et al. [21], whereas identification
of atrial activity was based solely on spectral content in the work by Zarzozo
et al. [25].

Castells et al. [22] introduced a second step following ICA separation, second
order blind identification, which aims at separating atrial activity from noise.
First, the separated sources from ICA containing ventricular activity were re-
moved; these sources were identified based on their high kurtosis K > 1.50. The
remaining sources, which were considered to contain atrial activity and noise,
were separated based on spectral content by minimizing correlation at different
time lags. In this approach, the independent sources s obtained from ICA are
assumed to be an orthogonal transformation of the real sources z containing
atrial activity and noise, so that

s = Qz (3.19)

where Q is a Givens rotation matrix. Since the sources should be uncorrelated
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Figure 3.2: Illustrations of ICA for (a) a 12-lead ECG from a patient
in AF. (b) The separated sources are reordered from lower to higher
kurtosis value. The atrial activity is contained in source #1. Reprinted
from [21] with permission.
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for all time-lags τi, the correlation matrices

C(τi) = E[z(t)zT (t− τi)] (3.20)

should be diagonal. The optimal Q is the one that maximizes the joint diago-
nalization of C for each τi simultaneously, so that

Q̂ = arg max
V

J(V), (3.21)

where

J(V) =
N∑
i=1

||diag[VTC(τi)V]||2. (3.22)

The correlation matrices were computed for τi = [0, 20, 40, . . . , 320] ms, i.e.
corresponding to a maximum of approximately two f waves, since significant
correlation can be expected at these lags. Following second order blind iden-
tification, only one of the sources had a spectral peak in the 3–10 Hz region;
this source was considered to contain the atrial activity.

Another approach to include temporal information when separating sources
was proposed by Vayá et al. [23]. In this work, a convolutive linear mixing
model, where the mixing matrix A was assumed to consist of FIR filters rather
than constants, was considered. The performance of the Infomax algorithm,
which assumes a convolutive linear mixing of sources, was compared to that of
the Fast ICA algorithm, which assumes instantaneous mixing of sources, show-
ing that the Fast ICA was better suited for atrial activity extraction. Hence,
it was concluded that the instantaneous linear mixing model was sufficient for
atrial and ventricular activity in the ECG.

A semi-blind source extraction technique, in which the source that best
agrees with a given set of AR parameters is extracted, was used to extract
atrial activity from the ECG in [24]. First, atrial activity was roughly estimated
from non-QRST intervals of lead V1, which is assumed to have the largest atrial
activity, and an initial set of AR parameters were obtained from this crude atrial
activity estimate. The source best agreeing with these AR parameters was
extracted, and a new set of AR parameters were obtained from the extracted
atrial activity. This iterative procedure continued until the AR parameters had
converged. Using this approach, the problem of how to determine which sources
that contain atrial activity is essentially avoided. However, as sufficiently long
non-QRST intervals are required to estimate the initial set of AR parameters,
the use of this method is restricted to ECGs with slow ventricular rate.
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3.4 Performance Evaluation

Since the true atrial activity is not known in ECG signals, it is difficult to
evaluate atrial activity extraction performance. However, some measures that
quantifies performance based on time domain or frequency domain charac-
teristics of the extracted atrial activity have been proposed. The amplitude
of the extracted atrial activity in QRST intervals was compared to that of
non-QRST intervals [28]; if the amplitude in a QRST segment was above a
certain data dependent threshold, the residual was considered to be signifi-
cant [18]. In addition to the amplitude, the energy in QRST segment may also
be considered [19]. Since the criteria are based solely on minimizing residuals,
blanking of QRST segments would produce an excellent result according to
these measures. Spectral concentration, defined as the ratio between spectral
power in a small interval centered around the dominant spectral peak and the
total spectral power, has been used to evaluate atrial activity extraction per-
formance [22, 23]; a high spectral concentration is assumed to correspond to
better atrial activity extraction, since large QRST residuals would cause the
spectrum to become less distinct. This measure generally favors source separa-
tion techniques, since the sources with atrial activity are often selected based
on frequency content in these methods.

Simulated signals may be used to overcome the problem with unknown atrial
activity. Artificial AF signals may be generated using simulated atrial activity
combined with real ECG signals from patients in normal sinus rhythm, where
the P waves have been removed. Several methods for generating artificial atrial
activity have been proposed. In [22], atrial activity signals was generated from
the TQ intervals of patients in AF. The atrial activity in QRST segments was
generated by extrapolation of adjacent TQ segments; the f waves in preceding
TQ segment were replicated within the QRST interval, but linearly weighted
so that the weights were one in the beginning of the QRST segment and zero
in the end, similarly the f waves of subsequent TQ interval was replicated and
weighted by zero in the beginning of the segment but one in the end.

In [16], simulated atrial activity signals were modeled by sawtooth signals,
generated using a linear combination of a sinusoid and its M − 1 harmonics,

s(n) = −
M+1∑
m=1

am(n) sin(m2πf0n+
∆f
ff

sin(2πffn)), (3.23)

where the fundamental f0 has a maximum frequency deviation of ∆f and the
modulation frequency ff . The time-varying amplitudes of the fundamental and
the harmonics, denoted a1(n) and am(n),m = 2, . . . ,M + 1, respectively, are
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given by

am(n) =
2
mπ

(am + ∆am sin(2πfan)), (3.24)

where ∆am is the modulation peak amplitude and fa is the modulation fre-
quency.

In [18], a more advanced model which makes use of electroanatomical infor-
mation on the atria as well as volume conduction theory, was used to simulate
atrial activity. In this approach, a 3-D model of the human atria was con-
structed from magnetic resonance images [29]. The properties of the atrial
conduction cells were modeled using a detailed ionic model. Atrial fibrillation
was induced in the model by rapid pacing in the left atrium; the properties
of the atrial conduction cells had been modified to create substrates for AF.
Simulated signals modeling the atrial activity of ECGs were computed using a
complementary torso model, also this constructed from MR images.

When the atrial activity is known, as is the case with simulated signals, the
atrial activity extraction performance can be quantified as mean square error
or using cross correlation between true and extracted atrial activity.



Chapter 4

Characterization of Atrial
Activity

The atrial activity of the ECG exhibit both intra- and interpatient variability
with respect to amplitude, morphology, repetition rate and regularity of the
f waves.

Different methods to extract features charactering f waves have been pro-
posed, including time-frequency analysis [30–32], morphology analysis [31, 33],
complexity analysis [34, 35], and spatial analysis [36–38]. In this chapter we
assume that the atrial activity of the ECG has been extracted, cf. Ch 3; the
extracted atrial activity is here referred to as residual ECG.

4.1 Time-Frequency Analysis

The AF frequency, i.e. the repetition rate of the f waves, is an important
characteristic of the atrial activity in the ECG. It can be estimated from the
maximum peak of the power spectrum of the residual ECG. By comparing
endocardially recorded electrograms to ECG signals, it has been shown that
AF frequency can be used as an index of the average intra-atrial fibrillatory
cycle length [39–41].

The AF frequency can be used for monitoring of drug effects [42], as well
as for predicting spontaneous or drug-induced AF termination; a low AF fre-
quency has proved to be a predictor of spontaneous AF termination [35, 43].
When the AF frequency is below 6 Hz the likelihood of successful pharmaceu-
tical cardioversion is higher [40, 44]. The risk of early AF recurrence is also
higher for patients with higher AF frequency [45].

25
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The atrial refractory period, and hence the AF frequency, is known to be
affected by autonomic modulation [46]. Hence, AF frequency has been used
to monitor circadian variations as well as the effects of parasympathetic and
sympathetic stimulation. Studies show that the AF frequency decreases during
night and increases in the morning [47–49], and that carotide sinus massage
(parasympathetic stimulation) [50], head-up tilt (sympathetic stimulation) [51],
and controlled respiration [52] alters AF frequency.

4.1.1 Short-time Fourier Transform

In order to explore the time-varying properties of AF, time-frequency analy-
sis has been suggested. The basic approach to time-frequency analysis is to
segment the signal and calculate the Fourier spectrum for each segment. The
short-time Fourier transform is defined by

WSTFT (n, k) =
K/2∑

m=−K/2+1

s(n+m)w(m)e−j2πkm, (4.1)

where s(n) is the signal, w(n) is a window function, and K is the window length
and the number of frequency samples. The segments may be overlapping.
A larger value of K gives better frequency resolution, but poorer resolution
in time. Hence, the choice of segment size is a trade-off between time and
frequency resolution.

4.1.2 Other Time-Frequency Distributions

While the STFT depends linearly on the signal, there are other time-frequency
distributions that depend quadratically on the signal, e.g. the Wigner–Ville
distribution (WVD), defined by

WWVD(n, k) =
L∑

m=−L

L∑
l=−L

Az(m, l)e−j2πln/Ne−j2πkm/N , (4.2)

where the ambiguity function Az(m, l) is given by

Az(m, l) =
L∑

p=−L
z(p+m)z∗(p−m)ej2πlp/N . (4.3)

The signal z(n) is the analytic equivalent of the signal s(n),

z(n) = s(n) + jH(s(n)) (4.4)
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where H(s(n)) is the Hilbert transform of s(n). The advantage of these
quadratically dependent distributions is the improved time-frequency resolu-
tion. However, quadratic distributions of multicomponent signals introduce
cross-terms between components.

There are other quadratic distribution, e.g. the Choi–Williams distribution
(CWD), which is similar to the WVD except for that certain regions of the
ambiguity plane are weighted down using a kernel function, f(m, l), so that

WCWD(n, k) =
L∑

m=−L

L∑
l=−L

f(m, l)Az(m, l)e−j2πln/Ne−j2πkm/N . (4.5)

In the CWD the kernel, defined by

f(m, l) = e−
m2,l2

σ , (4.6)

weights down cross-terms between frequency components that do not occur at
the same time or at the same frequency. In [53] a new set of kernel functions
were presented. One of the kernels, defined by

f(m, l) =
8J2(αml)
(αml)2

, (4.7)

where J2(·) is the Bessel function of first kind order 2, was proposed for time-
frequency analysis of atrial activity from the ECG; the parameter α was set to
0.5 for this application.

4.1.3 Cross Wigner–Ville Distribution

Despite the efforts made to improve atrial activity extraction, the residual ECG
often contains noise such as muscular artifacts and remainders of cancelled
QRST complexes, that can cause analysis to become inaccurate. In [30], a
method based on the cross Wigner–Ville distribution (XWVD) was proposed
for robust estimation of the AF frequency trend in the presence of noise. The
XWVD is defined by

WXWVD(n, k) =
L∑

m=−L

L∑
l=−L

Az1,z2(m, l)e−j2πln/Ne−j2πkm/N , (4.8)

where

Az1,z2(m, l) =
L∑

p=−L
z1(p+m)z∗2(p−m)ej2πlp/N (4.9)
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and z1(n) and z2(n) are two analytical signals. The XWVD may be used to
extract the local frequency of a time-varying, repetitive signal.

Instantaneous frequency estimation of can be preformed using the XWVD
with an iterative procedure. First, a preliminary frequency trend, F̂0(n) is
determined using, e.g., the STFT or the WVD. Then

1. A frequency-modulated sinusoid is reconstructed from the frequency
trend.

zF̂l(n) = ej2π
Pn
i=0 F̂l(i) (4.10)

2. The XWVD between zF̂l(n) and z(n) is computed by

WXWVDl+1(n, k) =
L∑

m=−L

L∑
l=−L

z(p+m)z∗
F̂l

(p−m)e−j4πmk/K (4.11)

Peak detection in the XWVD domain results in a new frequency trend,
F̂l+1(n).

3. The procedure is repeated until the frequency trend converges

F̂l+1(n)− F̂l(n) = 0 ∀n (4.12)

The cross-term between the original signal and the reconstructed sinusoid will
be large, and hence selected when reconstructing a new sinusoid. In this way,
the reconstructed sinusoid converges to the frequency trend of the original
signal. A disadvantage of the XWVD approach is that only the fundamental of
AF is being used, while the harmonic pattern is not considered when estimating
the AF frequency.

4.1.4 Phase-Rectified Signal Averaging

Another approach to robust estimation of the AF frequency in the presence of
QRST residuals and noise is by phase-rectified signal averaging (PRSA) [32].
In this approach, the AF frequency is estimated from a signal average x̃(k),
rather than from the original signal x(n). The signal average x̃(k) is created to
enhance quasi-periodic components of the original signal x(n); this is achieved
by averaging segments of x(n) centered around certain anchor points nν which
are selected based on their instantaneous phase.

In [32], nν were chosen so that all samples for which the signal is incremented
x(n) > x(n− 1) were selected as anchor points x(nν). In this way, M different
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segments of length 2L+ 1 centered around x(nν), ν = 1, . . . ,M , were created.
These segments were averaged to produce the phase-rectified signal average,

x̃(k) =
1
M

M∑
ν=1

x(nν + k), k = −L, . . . , L− 1. (4.13)

The AF frequency was estimated by the maximum peak of the power spectrum
of x̃(k) obtained from 5 min of residual ECG during AF. The parameter L
influences the properties of x̃(k); if L is small the effect of averaging is larger
but the resulting signal shorter. As frequency resolution increases with segment
length, the choice of L is a tradeoff between averaging effect and frequency
resolution; L = 512 was used in [32], which corresponded to a length of x̃(k) of
approximately 2 s.

The performance of AF frequency estimation using PRSA was compared to
that of AF frequency estimation using averaged short-time Fourier spectra, ob-
tained using 50% overlap and a Hamming window of length 1025. Results show
that the methods perform equally well for AF frequency estimation from the
residual ECG. When attempting to estimate the AF frequency from the original
ECG, i.e., in the presence of QRST complexes, the PRSA technique resulted
in more accurate estimates, although the QRST cancellation had greater influ-
ence on performance than did PRSA. It was concluded that PRSA improves
AF frequency estimation in very noisy conditions. A drawback of this approach
is the poor time resolution, as only one frequency estimate is obtained for each
5 min segment.

4.2 Morphology Analysis

The harmonic pattern of the residual ECG spectra can be exploited to quantify
f wave morphology. The magnitude [31] as well as the phase [33] of the harmon-
ics can be used to monitor morphological changes of the f waves. The expo-
nential decay of the harmonic magnitudes can be used to predict spontaneous
termination of AF [35, 54] and AF recurrence following electrical cardiover-
sion [55] as well as to monitor drug induced changes of f wave morphology [42].

4.2.1 The Spectral Template Method

The spectral template method, which makes use of the harmonic pattern of AF
was proposed for robust AF frequency trend estimation [31]. The ECG signal
is divided into overlapping segments, for which the spectrum, ql, is obtained
using a nonuniform Fourier transform,

ql = FWxl, (4.14)
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where the elements of the N×N diagonal matrix W defines a window function.
TheK×N matrix F defines theK-point discrete, nonuniform Fourier transform

F =
[
1 e−j2πf e−j2πf2 · · · e−j2πf(N−1)

]
, (4.15)

where f = [f0 · · · fK−1]T is a logarithmically scaled frequency vector, given by

fk = f0 · 10
k
K , k = 0, . . . ,K − 1. (4.16)

Each observed spectrum ql can be modeled by q̃l being a frequency-shifted,
νl, and amplitude-scaled, al, version of a known real-valued spectral template,
φl,

q̃l = al J(νl)φl, (4.17)

where the matrix J(νl) performs the frequency shift by selecting the appropriate
interval of φl. The amplitude parameter al and the frequency-shift parameter
νl can be estimated by minimizing the quadratic cost function, J(νl, al), such
that the model, q̃l, optimally matches the true spectrum, ql,

J(νl, al) = (ql − q̃l)T D (ql − q̃l) (4.18)

= (ql − alJ(νl)φl)
T D (ql − alJ(νl)φl), (4.19)

where D is a K × K diagonal matrix designed to weight the error of the
frequency components differently, to compensate for the logarithmic frequency
scaling. Minimization of (4.19) results in estimates of the frequency-shift ν̂l
and the amplitude al,

ν̂l = arg max
νl

[
qTl D

1
2 J(νl)D

1
2φl

]
(4.20)

âl = qTl D
1
2 J(ν̂l)D

1
2φl. (4.21)

With the estimates of al and νl, a model of the observed spectrum is obtained,

q̂l = âl J(ν̂l)φl. (4.22)

The spectral template is gradually updated to fit the shape of the true
spectrum. For the first segment, the spectral template, φ0, is initiated by

φ0 =
[
0.01 · · · 0.01 1 0.01 · · · 0.01

]T
, (4.23)

where φ0 is 1 at a predefined peak position and 0.01 at all other positions. The
spectral template, φl, is then updated for each segment through exponential
averaging,

φ̂l+1 = (1− αl)φ̂l + αl
J(ν̂l)q̂l
‖J(ν̂l)q̂l‖

, l > 0, (4.24)
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where the gain αl (0 ≤ αl < 1) is set to a positive value when the signal is
judged reliable, and otherwise zero. In order to determine if the l:th segment
is reliable, i.e. contains AF, measures based on ql and q̂l are employed. The
segment is accepted as AF if 1) the SNR is sufficiently large, 2) the model error
exhibits no sudden decrease, 3) the second largest peak has neither too high a
magnitude, nor 4) is too close to the position of the fundamental. The SNR
is estimated by the ratio between the average of the fundamental and the first
harmonic magnitudes to the noise level between these two peaks.

The criteria for determining if a signal segment is reliable based on its
spectrum, was further refined in [56]. Each spectrum ql was modeled as a sum
of M + 1 gaussian functions,

ψ(f,θ) =
M∑
i=0

Aie
− (f−µi)

2

2σ2
i (4.25)

where Ai is the magnitude, σi is the width, and µi is the location of the i:th
peak of the spectrum. Since harmonics were expected to be located at integer
multiples of f0, the location of the i:th gaussian was constrained to an interval
centered around i · f0, whose width was defined by the frequency shift ∆i, so
that

µ0 = f0 (4.26)
µi = f0 · i+ ∆i, i = 1, . . . ,M (4.27)

Consequently, the parameter vector θ was defined by

θ = [ A0 · · · AM σ0 · · · σM f0 ∆1 · · · ∆M ]T . (4.28)

The parameters were obtained by minimizing the cost function

Jl(θ) = (ql −ψ(θ))TD(ql −ψ(θ)) (4.29)

where the vector ψ(θ) resulted from evaluation of ψ(f,θ) at the frequencies
fk = f0 · 10

k
K , k = 0, . . . ,K − 1, and D is a weight matrix designed to

compensate for the low-frequency emphasis caused by the logarithmic scaling
and to reduce the influence of regions between peaks of the spectrum. The
reliability of a signal segment was judged based on its corresponding fitted
gaussian model; if 1) no large peak were present in the spectrum between
the fundamental and the first harmonic, 2) the spectral concentration of the
fundamental was large enough, and 3) the model error was below a certain
threshold the segments was used to update the spectral template.

Measures that characterizes the spectral content of the atrial activity may
be extracted from the spectral template. A spectral line model is used to



32 Overview of the Research Field

0 20 40 60
0

5

10

15

20

25

time (s)

fr
e
q
u
e
n
c
y
 (

H
z
)

0 10 20
0

0.1

0.2

0.3

0.4

frequency (Hz)

m
a
g
n
it
u
d
e

γ=1.0

0 20 40 60
0

5

10

15

20

25

time (s)

fr
e
q
u
e
n
c
y
 (

H
z
)

Figure 4.1: Analysis of one minute signals with AF producing a loga-
rithmic STFT (left panel), the spectral template (middle panel) and the
AF frequency trend (right panel). Reprinted from [31] with permission.

parameterize φl, by means of its magnitudes at the fundamental and harmon-
ics [31].

φl(pl + hm) =
{
ble
−γlm, m = 0, 1, . . . ,M

0, otherwise, , (4.30)

where bl is the peak magnitude of the fundamental, and γl is the exponential
decay of each of the M harmonics. The parameter hm denotes the offset posi-
tion of the m:th harmonic in relation to the fundamental at pl. The exponential
decay, γl, and the peak magnitude, bl, are estimated by minimizing the least
squares cost function using the logarithm of the spectral line model,

J(ln bl, γl) =
M∑
m=0

(lnφl(pl + hm)− (ln bl − γlm))2. (4.31)

The spectral template method is illustrated in Fig. 4.1. Lower values of γl
has been associated with spontaneous termination of AF [35,54] and lower risk
of early AF recurrence following electrical cardioversion [55].

4.2.2 The Phase-Delay Method

The morphology of the f waves can be quantified using the delay between the
phase of the fundamental and that of the harmonics [33]. The rationale for
this type of analysis is that the morphology of the f waves is believed to reflect
the propagation pattern of the impulses in the atria. The atrial activity of
the ECG is filtered around the dominant frequency f0 and the harmonics fm,
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m = 1, . . . ,M , respectively, using narrowband filters. The signal component
corresponding to each filtered subband of atrial activity is then segmented
into nonoverlapping blocks of length L, where each segment is being analyzed
separately. The normalized frequencies fm,p, and phases φm,p are estimated
using the following estimators

f̂m,p = arg max

∣∣∣∣∣ 1L
L−1∑
n=0

ym,p(n)e−j2πfn
∣∣∣∣∣ (4.32)

φ̂m,p = arctan

(
−
∑L−1
n=0 ym,p(n) sin(2πf̂m,pn)∑L−1
n=0 ym,p(n) cos(2πf̂m,pn)

)
+
π

2
. (4.33)

where ym,p(n) is the n:th sample of the p:th block in them:th harmonic subband
of atrial activity. Since the f waves may be irregular within one block, the
estimated phase φ̂m,p is shifted to represent the middle of the block yp,m rather
than the beginning, in order to better fit the entire block. Hence,

φ̂′m,p = φ̂m,p + 2π(f̂m,p −mf̂0,p)tm (4.34)

where tm is the time from block onset to middle of the block. In order to
compare the phase of the harmonics to that of the fundamental, a scaling
operation is performed, so that all phases relate to the same time-scale.

φ̂′′m,p =
φ̂′m,p
m+ 1

. (4.35)

The phase relationship is finally quantified by subtracting φ̂′′0,p from φ̂′′m,p.

θ̂m,p = φ̂′′m,p − φ̂′′0,p ± l
2π

m+ 1
(4.36)

where l is an integer; the last term is added to adjust θ̂m,p inside the interval.
The phase relationships of the odd harmonics can be used to quantify sym-

metry of the f waves, whereas both even and odd harmonic phases relationships
contribute to characterize other features of the f wave morphology. This type
of detailed morphologic analysis can only be performed on “organized” AF, i.e.
with low AF frequency and large harmonics; the method is sensitive to noise,
as noise may conceal the harmonics.

4.3 Complexity

Different nonlinear measures have been proposed to quantify the complexity
of the atrial activity in the ECG during AF with varying results; the sample
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entropy, when applied to a residual ECG which has been filtered in a narrow
band around its AF frequency, has proved to be able to predict outcome of
electrical cardioversion and spontaneous AF termination [34], whereas other
studies have found no correlation between complexity and spontaneous AF
termination [35,57].

4.3.1 Conditional Entropy

The conditional entropy HCE describes the amount of information conveyed
in the most recent sample in a segment of length L when the previous L − 1
samples are known [58]. It is estimated using Shannon entropy according to

HCE(L) = −
∑

p(xL) log p(xL) +
∑

p(xL−1) log p(xL−1) (4.37)

where p(xL) is the probability of the sequence xL = (x(i), . . . , x(i + L − 1))
among the N − L+ 1 sequences of length L which may be extracted from the
signal x(n), n = 1, . . . , N . A regularity index HR, which ranges from 0 for
white noise to 1 for a periodic signal may be derived from HCE(L) as follows,

HR = 1−min
L

HCCE(L)
E(x)

, (4.38)

where E(x) is the process entropy and HCCE(L) is HCE(L) corrected to ac-
count for finite length signals, using

HCCE(L) = HCE(L) + p(xL)E(x). (4.39)

This regularity index has been been used to characterize f waves when trying to
discriminate between paroxysmal and persistent AF. No significant differences
in HR were found between the two groups [57].

4.3.2 Sample Entropy

The sample entropy HSaE compares similarity in fixed length segments of a
signal [59]. HSaE is defined as the negative natural logarithm of the probability
of that sequences that are similar for m points remain similar for an additional
point. The signal x(n) is divided into different time segments, xm(i), of length
m, starting at time index i,

xm(i) =
[
x(i) x(i+ 1) · · · x(i+m− 1)

]T
. (4.40)

The distance between two vectors, xm(i) and xm(j), is calculated as the infinity
norm,

d(xm(i),xm(j)) = max (|xm(i)− xm(j)|) . (4.41)
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The number of vectors xm(j) within the distance r of vector xm(i), j 6= i, is
denoted Ai. Then, Dm

i (r) represents an estimate of the probability that any
segment of length m in the signal is similar to the vector xm(i),

Dm
i (r) =

Ami
N −m− 1

, (4.42)

and Dm(r) is the probability that any pair of two vectors of length m are
similar,

Dm(r) =
1

N −m

N−m−1∑
i=0

Dm
i (r). (4.43)

The sample entropy, HSaE , is defined as

HSaE(m, r,N) = − ln
(
Dm+1(r)
Dm(r)

)
. (4.44)

A high value ofHSaE indicates high complexity of x(n). Sample entropy closely
related to approximate entropy [60], but better suited for short noisy data se-
ries. Attempts have been made to use sample entropy for prediction of spon-
taneous termination of AF, but no significant differences were found between
non-terminating and terminating AF [35].

A reason for the unsuccessful results obtained in [35] may be that measures
of complexity are particularly sensitive to noise. To overcome this problem,
Alcaraz et al. [61] proposed to compute the sample entropy of the main atrial
wave, i.e. the fundamental waveform of the residual ECG. The main atrial
wave can be obtained from the residual ECG, e.g., using wavelet decomposi-
tion [61, 62] or by selective narrowband filtering centered around the AF fre-
quency [63,64]. This measure proved to be successful in predicting spontaneous
AF termination [61,63,64] as well as the outcome of electrical cardioversion [62].
Figure 4.2 illustrates two residual ECG signals, and the corresponding domi-
nant atrial wave x0(n) for 10-s segments with paroxysmal and persistent AF,
respectively. In this example, the values of both f0 and HSaE are much larger
for persistent AF than for paroxysmal AF.

A downside with this narrowband filtering approach is that the information
contained in the harmonics of the atrial activity is disregarded.

4.4 Spatial Characterization

The spatial characteristics of the atrial activity in the ECG may reflect the
propagation of impulses in the atria. Different methods to quantifying spatial
characteristics have been proposed, including vector analysis [36,37], and linear
mixing models [38].
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Figure 4.2: Atrial activity (upper panel) and the corresponding dom-
inant atrial wave x0(n) (lower panel) for (a) paroxysmal AF (f0 = 5.65
Hz, S0 = 0.056) and (b) persistent AF (f0 = 7.35 Hz, S0 = 0.113).

4.4.1 Vector Analysis

Vector analysis has been applied to spatially characterize atrial activity of
ECG signals during AF and atrial flutter. Three-dimensional vector loops are
constructed using ECG signals from orthogonal leads; orthogonal leads can be
derived from the standard 12-lead ECG using the inverse Dower transform [65].
Each loop is characterized by its plane of best fit, i.e. the 2-dimensional projec-
tion of the loop that produces the minimum mean squared error with respect
to the original loop. This plane is determined from eigenanalysis of the co-
variance matrix that results from the 3 × N data matrix with samples from
the 3 orthogonal leads; N denotes the number of samples of each segment.
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Eigendecomposition results in the eigenvectors e1, e2 and e3, associated to the
eigenvalues λ1 ≥ λ2 ≥ λ3; e1 and e2 spans the plane of best fit, while e3 defines
the perpendicular axis.

The perpendicular direction of each plane can be described in terms of
azimuth φAZ and elevation φEL angles relative to the frontal plane. These
angles can be obtained from the vector e3 = [e3x, e3y, e3z], such that

φAZ = arctan
(
e3z

e3x

)
, (4.45)

φEL =

∣∣∣∣∣arctan

(
e3y√

e2
3x + e2

3z

)∣∣∣∣∣ . (4.46)

The degree of organization can be quantified by similarity in the planes of
best fit obtained from different signal segments; if φAZ was within the same 30
degree region for > 30% of the segments, it was considered as organized [36].
The spatial stability was compared to the dominant frequency gradient, i.e. the
difference between dominant frequencies measured invasively in the left and
right atrium, respectively, showing that a high spatial stability corresponded
to a low frequency gradient [66].

Each vector loop can also be characterized in terms of planarity ψPL, i.e.
how well a vector loop is fitted to its plane and planar geometry ψPG, i.e. how
circular the vector loop is in its plane of best fit [37]. These measures can be
derived from the eigenvalues,

ψPL =
λ3

λ1 + λ2 + λ3
, (4.47)

ψPG =
λ2

λ1
, λ1 > λ2. (4.48)

Figure 4.3 displays an example of vector loops constructed from a 1-s seg-
ment of residual ECG. In this example, the azimuth angle indicates that the
plane of best fit is in the sagittal plane (φAZ = −23.3◦). The elevation angle
φEL is 16.7◦. The loops are quite planar (ψPL = 0.95), and have an elliptic
appearance (ψPG = 0.35).

4.4.2 Mixing Matrices

The mixing matrix P obtained using PCA, cf 3.2, has been proposed for de-
termining spatial complexity and temporal stationarity of the atrial activity in
surface recordings [38]. In this work, SVD was applied to 10-s segments of the
atrial activity of body surface potential maps (BSPM) consisting of M = 56
simultaneous recordings.
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Figure 4.3: Example of a 1-s segment, containing approximately six
f waves. (a) The orthogonal leads X, Y, and Z after QRST cancellation.
(b) Frontal plane. (c) Transverse plane. (d) Sagittal plane. (e) Plane of
best fit. The azimuth angle indicates that the plane of best fit is in the
sagittal plane (φAZ = −23.3◦). The elevation angle φEL is 16.7◦. The
loops are quite planar (ψPL = 0.95), and have an elliptic appearance
(ψPG = 0.35). Reprinted with permission from [37].



Chapter 4. Characterization of Atrial Activity 39

A larger spatial organization of the atrial activity was assumed to be re-
flected in terms of a lower number of principal components yi needed to accu-
rately represent the signals xi, i = 1, . . . ,M . Accuracy of representation was
quantified in terms variance of xi captured by the k first principal components
yi , i = 1, . . . , k, and was estimated from the singular values σi, i = 1, . . . ,M ,
contained in the matrix Σ,

vk =
∑k
i=1 σ

2
i∑M

i=1 σ
2
i

. (4.49)

The number of principal components k0.95 required to capture 95% of the signal
variance, i.e. vk = 0.95, was used as a measure of spatial complexity.

Temporal stationarity of the atrial activity was quantified by the repeti-
tiveness of the mixing matrix P along the recording. The k first principal
components y(1)

i , i = 1, . . . , k, obtained from the first 10-s segment in a record-
ing were used to reconstruct the signals x(s) of the following 10-s segments,
s = 2, . . . , 6. The normalized mean square error ε(s)k when reconstructing x(s)

18 ,
i.e, the lead of the BSPM with the most prominent atrial activity, based on
y(1)
i , i = 1, . . . , k, was used as a measure of temporal stationarity. The error εk

was computed for k0.95, determined in the previous step, and for k = 3.
Clustering analysis based on the measures v0.95, εk0.95, and εk=3 was ap-

plied to separate patients into different groups. The clinical relevance of these
parameters has, however, yet to be shown.
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Chapter 5

Ventricular Rate during AF

The ventricular rate during AF differs from that during normal sinus rhythm
in that it is more irregular and generally more rapid. While the ventricular rate
during normal sinus rhythm is determined by the sinus node, the ventricular
rate during AF mainly reflects AV nodal properties, e.g., refractoriness and
degree of concealed conduction.

5.1 Analysis of Ventricular Rate

In order to obtain the ventricular rate, the QRS complexes need to be detected.
This is usually done through a three-step process, consisting of linear filtering
to suppress other parts of the ECG signal, a nonlinear transform to enhance
the QRS complex, and finally a decision rule to decide whether a QRS complex
is present or not [1]. The QRS complexes are also classified according to their
morphology, in order to identify so-called ectopic beats which do not originate
from the sinus node.

The ventricular activity during AF can be studied through the RR intervals,
i.e. the distance between consecutive QRS complexes in the ECG signal. Thus,
the interval tachogram, defined as

dRR,k = tk − tk−1, k = 1, . . . ,M, (5.1)

where tk is the fiducial point of the k:th QRST complex, is commonly used in
analysis of ventricular activity. Generally, RR intervals preceding and succeed-
ing an ectopic beat are excluded before analysis of the RR interval series.

41
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Figure 5.1: RR interval histograms constructed from 30 min of ECG
from two patients with AF.

5.1.1 RR Interval Histogram

Analysis of RR interval histograms is basically limited to Holter recordings,
since a large number of intervals is needed in order to construct a reliable his-
togram. The RR interval histogram during normal sinus rhythm is essentially
unimodal with a relatively narrow gaussian shape, while the RR interval his-
togram during AF may exhibit a variety of shapes [67]. Figure 5.1 displays two
examples of RR interval histograms during AF.

In about 55% of the patients, the RR interval histogram during AF shows
two distinct peaks [68]; the two peaks are believed to correspond to dual AV
nodal paths [69–72].

5.1.2 Heart Rate Stratified Histograms

Heart rate stratified histograms (HRSH) can be used to facilitate detection of
multiple peaks. In this technique different histograms are constructed based on
mean heart rate, in order to reduce smearing caused by fluctuations in heart
rate. The ECG signal is divided into segments containing a fixed number of
beats, and, for each segment, the mean RR interval is calculated. The segments
are grouped according to mean heart rate, and the RR intervals of each group
are used to construct a histogram [71,73].

An example of a bimodal HRSH is displayed in Fig. 5.2. Various measures
quantifying the properties of the bimodal histograms can be obtained; the peaks
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corresponding to the longest and shortest RR interval population are named
slow peak value (PVs) and fast peak value (PVf), respectively. The peak gap
(PG) is defined as the distance between the longest and shortest RR population,
and the peak value ratio (PVR) is the ratio between the slow and fast peak
values. Figure 5.2 illustrates these measures. A problem with this type of
analysis, is that the result is dependent on the selection of bins in the histogram.
In order to detect peaks in the histogram, smoothing is generally required. This
can be arranged, e.g., using a moving average filter with iterative prolongation
of window length, repeated until no peaks are closer than 50 ms [71]. However,
the results will depend on the method used for histogram smoothing.

5.1.3 Poincaré Plot

Poincaré plots, which are sometimes referred to as Lorenz plots, can be used
when analyzing ventricular response during AF. In a Poincaré plot, individual
RR intervals are plotted against the corresponding adjacent preceding intervals.
Whereas RR interval histograms can only be used to study the distribution of
RR intervals, the Poincaré plots displays dependence between two consecutive
RR intervals.

The pattern of such plots can be used to distinguish AF from normal sinus
rhythm as well as from other supraventricular tachycardias such as atrial flutter.
While the Poincaré plot during normal sinus rhythm is centered around the
main diagonal, the irregularity of RR intervals during AF results in a widely
scattered plot. During atrial flutter clusters are visible in the Poincaré plot as a
result of the AV node conducting a periodic number of atrial impulses arriving.
Figure 5.3 shows examples of Poincaré plots from normal sinus rhythm, atrial
flutter, and AF.

The lower envelope ULE of the Poincaré plot has been used to estimate
the functional refractory period of the AV node and its dependence on cycle
length [75]. The degree of scatter of the Poincaré plot, estimated by the root
mean square difference of each RR interval and ULE , has been used as a measure
of the degree of concealed conduction [46].

One method to estimate ULE is by linear regression [76]; the horizontal axis
is divided into consecutive bins, and for each bin, the minimal value is detected.
The lower envelope is then estimated by line fitting to the minimal values. This
method is not robust against outliers, since all points in the Poincaré plot are
weighted equally.

Another, more robust method to estimate ULE is by using the Hough trans-
form [77]. This transform has been used for robust detection of shapes, e.g,
straight lines, in images. In an (x, y)-space a straight line can be expressed as
y = mx+ c. In the Hough space the straight line is characterized by its slope
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Figure 5.2: (a) Heart rate stratified histograms (HRSH) presenting two
RR interval populations, and (b) illustration of measures derived from
one of the HRSH. Reprinted with permission from [74].
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Figure 5.3: Poincaré plots of 24-h recordings of different patients dur-
ing (a) sinus rhythm, (b) atrial flutter, and (c) AF. Reprinted with
permission from [74].

and intercept (m, c). Since (m, c) are unbounded, the line is rather expressed
in the pair of parameters (ρ, θ), where ρ is the minimal distance from origo to
the line, and θ is the angle from origo to the closest point on the line. Each
point (x, y) is expressed by a sinusoidal curve

ρ(θ) = x cos θ + y sin θ, −π
2
≤ θ ≤ π

2
. (5.2)

in the Hough space, representing all lines intersecting (x, y). A line in (x, y)-
space is characterized by sinusoids ρ(θ) intersecting at the corresponding value
of (ρ, θ) in the Hough space.

When using the Hough transform for estimating ULE of a Poincaré plot,
some preprocessing is required. For each value of dRR(n − 1) = x, there are
usually several corresponding dRR(n) values; the minimum dRR(n) = y among
these is selected for intervals not exceeding 2 s. Each pair of coordinates (x, y) is
then transformed into Hough space. The point in Hough space where the largest
number of curves ρ(θ) intersect, indicated by the coordinates (ρmax, θmax), is
converted to (x, y)-space and expressed in terms of slope m and intersect c
using

(x0, y0) =
(

ρmax
cos θmax

,
ρmax

sin θmax

)
(5.3)

(m, c) =
(
− y0 − 1
x0 − 1

, y0

)
. (5.4)
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5.1.4 Histographic Poincaré plots

In a histographic Poincaré plot, each point is associated with the number of
occurrences of RR interval pairs given by the coordinates (dRR,k−1, dRRk) [78].
Similar to the peaks of RR interval histograms, the clusters of such a plot may
reflect preferential AV node conduction routes.

The diagonal of the histographic Poincaré plot, referred to as the Poincaré
surface profile (PSP), can be interpreted as an RR histogram where only RR
intervals that were preceded with RR intervals with approximately the same
length has been considered [79]. In order to reduce variability caused by RR
series of limited length, a two-dimensional lowpass filter was applied to the
histographic Poincaré plot, prior to extraction of the PSP. It was concluded
that more peaks could be detected using the PSP than using the conventional
histogram. A problem with this approach is that the number of RR intervals
used to construct the PSP is strongly reduced compared to the original RR
series, only about 1/50 of the RR intervals are used; an insufficient number of
RR intervals can cause spurious peaks in the histogram.

5.2 AV Modeling

The ventricular response during AF is to a large extent determined by AV
nodal blocking of atrial impulses that continuously bombard the AV node.
Several functional models of the AV node during AF have been proposed, in-
corporating various physiological phenomena, e.g., concealed conduction and
AV nodal refractoriness. Simulated RR series with different properties can be
obtained by changing the model parameters; some models need invasive data
as input [80, 81], whereas other models rely on the stochastic properties of
atrial impulses arriving to the AV node [67, 82, 83]. Attempts have also been
made to estimated model parameters from real data by comparing properties
of simulated RR series to the true RR series.

5.2.1 The Cohen Model

In this model, the turbulent atrial activity is assumed to cause atrial impulses
arriving randomly to the AV node at a mean rate of λ [67]. The arrival of atrial
impulses is statistically characterized by a Poisson process. The AV node is
modeled as a lumped structure; the transmembrane potential VM of the AV
node determines when a ventricular activation is triggered. The AV node is
refractory to stimulation of atrial impulses during a time period τ from the
occurrence of the previous ventricular activation. At the end of the refractory
period, VM is at its resting potential VR. Spontaneous depolarization causes VM
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to increase at a rate of V̇4. In addition to this spontaneous depolarization, each
atrial impulse arriving to the AV node causes an increase of VM by a discrete
amount ∆V . Once VM has reached a certain threshold VT , a ventricular beat
is initiated. Hence, a ventricular activation occurs when

VM = VR + n(t)∆V + V̇4t = VT , (5.5)

where n(t) is the number of atrial impulses that has arrived, and t is the time
that has passed since the end of the previous refractory period.

Since atrial impulses are arriving according to a Poisson process, the PDF
of the number of atrial impulses n that has arrived at a certain time t after the
end of the refractory period is given by

p(n) =
e−λt

n!
. (5.6)

Using (5.5) and (5.6), a PDF of the time t from the end of a refractory period
to a ventricular activation can be derived as,

p(t) = e−λtλn+1 t
n

n!
+
N−vt∑
k=0

e−λt
(λt)k

k!
· δ
(
t− N − k

v

)
, (5.7)

where

v = V̇4/∆V (5.8)

N =
VT − VR

∆V
, (5.9)

and δ(·) is the impulse function. The time between two consecutive ventricular
activations, i.e. an RR interval, is determined by t as well as by the refractory
period length τ , so that the i:th RR interval is given by dRR,i = ti+ τi. Hence,
the PDF of dRR,i can be obtained by right shifting p(t), so that

p(dRR,i) = p(ti − τi). (5.10)

The refractory period τi is assumed to depend on the previous RR interval
length

τi = τ∞

(
1− e

−dRR,i−1
τ∞

)
, (5.11)

such that a longer RR interval is followed by a longer refractory period; τ∞ is
a design parameter of the model.

RR interval series with unimodal as well as bi- and multimodal PDFs can
be generated using this model. Attempts were made to estimate the model pa-
rameters from RR series of ECGs; the atrial activity was disregarded. However,



48 Overview of the Research Field

the parameter estimates sometimes assumed unphysiological values. Another
problem with this model is that several parameter settings can produce a sim-
ilar RR series, and hence, for some RR series no unique set of parameters can
be determined.

5.2.2 The Jørgensen Model

The output sequence of ventricular activations is, in this more recent model [80],
predicted on a beat-to-beat basis given an input sequence of atrial activations.

All atrial impulses arriving to the AV node are assumed to cause a ventric-
ular activation unless the AV node is refractory. The AV node is assumed to be
refractory during a time period τ0 following a ventricular activation. Concealed
conduction is incorporated in this model, so that each atrial impulse arriving
to the AV node while it is refractory causes a prolongation of τ0 by a fixed
time ∆. Hence, the refractory period after the k:th concealed atrial impulse
following a conducted atrial impulse is given by

τ(k) = τ(k − 1) + ∆ (5.12)
= τ0 + k ·∆.

The refractory period is reset to τ0 following each conducted beat.
The AV delay tAV , i.e. the time from that the AV node is depolarized to a

ventricular activation is initiated, is also incorporated in this model. The AV
delay is assumed to depend on the recovery time tRT , i.e. the time from the end
of the preceding refractory period to the arrival of the current atrial impulse,
so that a shorter tRT is followed by a longer tAV ,

tAV (k) = tAVmin + αe−
tRT (k)
τc . (5.13)

Thus, the minimal AV delay tAVmin occurs when tRT = 0, while the maxi-
mal AV delay prolongation α occurs when tRT → ∞. The parameter τc is
the conduction-curve time constant. The model parameters were estimated,
using an ad hoc procedure, by comparing recorded RR interval series to the
corresponding predicted RR series obtained using different model parameter
settings [τ0,∆, tAVmin , α, τc]. Since invasive recordings are needed to estimate
the parameters of this model, it was only tested on two patients; one in AF
and one in atrial flutter.

The model was later modified to account for concealed conduction causing
variable refractory period increments ∆(k) [81]. Here, the refractory period
prolongation is defined as

∆(k) = Ω(k)∆std + ∆mean, (5.14)
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where ∆mean and ∆std are the mean value and standard deviation of the re-
fractory period prolongation, and Ω(k) zero-mean, unit-variance normally dis-
tributed random value. Three of the model parameters [α, τc,∆std] were fixed,
and the remaining parameters [τ0,∆mean, tAVmin ] were estimated by grid search
in parameter space. For each parameter setting an RR series was generated
based on the recorded series of atrial activations. The parameters correspond-
ing to the RR series which was most similar to the recorded RR series in terms
of distribution, i.e., yielded the highest significance in a Kolmogorov-Smirnov
test, were chosen. This extended model was used to evaluate drug effects in
10 patients with paroxysmal AF; the signals were recorded after open-heart
bypass surgery. The results showed that patients treated with amiodarone had
increased refractoriness, i.e. τ0, and concealed conduction, ∆mean, whereas
patients treated with β-blockers had an increase in τ0 and the minimum con-
duction time tAVmin .

5.2.3 The Rashidi Model

Atrial impulses are assumed to arrive to the AV node randomly according to
a gaussian distribution in this simulation model [82]. The refractory period
of the AV node τ was assumed to be limited to 0.3–0.9 s. If the AV node
was refractory, the atrial impulses were blocked and the refractory period was
increased. The refractory period τ(k) following a conducted atrial impulse k
is initially set to 0.3 s. For each atrial impulse that is blocked, the refractory
period is increased according to

τ(k + 1) = τ(k) + u(k)(0.9− τ(k)). (5.15)

The prolongation of the refractory period is dependent on the time t(k) from
the previous conducted atrial impulse and the design parameters a and b, such
that

u(k) =
1

1 + e−a(z(k)−b) , (5.16)

where

z(k) =
τ(k)− t(k)

τ(k)
. (5.17)

Hence, an atrial impulse arriving close in time to a conducted atrial impulse
increases the refractory period more than an atrial impulse arriving later. Since
the blocked atrial impulses increases the refractory period towards its upper
limit, i.e. 0.9 s, a longer refractory period is effected less than a short refractory
period. By changing a and b various shapes of the RR interval histograms can
be obtained, however, these two parameters have no physiological interpreta-
tion.
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5.2.4 The Lian Simulation Model

Similar to [67], atrial impulses are assumed to arrive to the AV node according
to a Poisson process. In this work, however, the Poisson process is truncated so
that the time between consecutive atrial impulses are at least 50 ms, to impose
a certain minimal repolarization time of the atria [83]. The atrial impulses are
assumed to have different strength, so that ∆V can take on different values.
A functional dependence of the AV delay on the recovery time, similar to that
used in [80], cf. (5.13) is incorporated in the model.

The refractory period is assumed to depend on the recovery time tRT , so
that

τ(k) = τmin + β(1− e−
tRT (k−1)

τr ), (5.18)

where τmin is the shortest AV refractory period, corresponding to tRT = 0, β
is the maximum prolongation of the refractory period when tRT →∞, and τr
is the refractory curve time constant.

The effect of concealed conduction is incorporated in the model; the refrac-
tory period prolongation is assumed to depend on both timing and strength of
the blocked impulse, so that

τ ′(k) = τ(k) + τmin

(
t

τ

)θ [
max(1,

∆V
VT − VR

)]δ
]
, (5.19)

where t is the time when the impulse is blocked, and θ and δ are parameters
modeling the respective dependence of timing and strength on prolongation of
the refractory period. The maximal prolongation τmin occurs when a supra-
threshold impulse, i.e., ∆V > (VT − VR) arrives at the AV node at the end of
the refractory period. The prolongation will be shorter if the impulse arrives
earlier or is weaker in strength.

The model was later extended to include the effects of dual chamber pac-
ing [84]. These detailed simulation model is not suited for estimation of pa-
rameters from real data.
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Summary of Included
Papers

6.1 Paper I: Predicting Spontaneous Termina-
tion of Atrial Fibrillation using the Surface
ECG

Extracting features that characterizes AF from the surface ECG is important
when trying to help physicians diagnosing the arrhythmia. Several features that
characterizes the signal may be extracted, but it is also of great interest to know
if a feature has some relevance for diagnosing AF. The purpose of this work
was to extract features from AF that could predict spontaneous termination.
Time-frequency measures, such as amplitude, harmonics decay and frequency,
as well as complexity measures were studied.

A database of 80 one-minute segments extracted from 20-24 hour two-
channel Holter ECG recordings, sampled at 50 Hz, provided by Physionet [85]
for the CinC Challenge 2004 [86], was used in the study. The signals was
classified as either non-terminating (N), soon-terminating (S) or immediately
terminating (T). The database was divided into a training set of 30 recordings
(10N, 10S and 10T), and two test sets with 30 recordings (N and T) and 20
recordings (S and T), respectively.

Preprocessing of the signals consisted of baseline wander and 50 Hz filtering.
The atrial activity of the ECG signal was extracted using spatiotemporal QRST
cancellation.

Using the spectral template method [31], the AF frequency fl, fibrillation

51
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Table 6.1: Mean value and standard deviation of measures used for AF char-
acterization, for the non-terminating (N) and immediately-terminating (T) sig-
nals in the training set. Measures with boldface asymptotic p-values are signif-
icantly different according to a Kolmogorov-Smirnov test.

Parameter N T Asymptotic
average Mean± Std Mean± Std p-value

f̄ 6.91± 0.66 5.00± 0.65 0.000033
γ̄ 1.29± 0.27 0.79± 0.20 0.0021
σf 0.80± 0.23 0.52± 0.13 0.0127
ā 21.7± 12.4 28.6± 16.7 N.S.
HSpE 1.73± 0.34 1.73± 0.18 N.S.
HSaE 1.51± 0.34 1.63± 0.16 N.S.
HFSR 0.16± 0.04 0.14± 0.02 N.S.

amplitude al, and exponential decay γl was obtained for each segment l of 128
samples (2.56 s). A validity measure was employed to check if the segments
did contain atrial activity or not. Once occasional episodes of sinus rhythm
and local noise had been excluded by the validity parameters, the fl, al, and
γl of the remaining segments were averaged producing reliable averages of the
AF frequency, f̄ , the exponential decay, γ̄, and the peak amplitude, ā. The
variation of the AF frequency was quantified by the standard deviation σf . If
more than 75% of the signal segments were invalid, the entire recording was
excluded from further analysis.

Three different complexity measures: spectral entropy HSpE , sample en-
tropy HSaE , and fractional spectral radius HFSR were also examined. The
spectral entropy, HSpE , quantifies the spectral complexity of a signal, x(n),
and is obtained by applying Shannon’s entropy to the PDF of the signal [87].
A large value of HSpE indicates high complexity of x(n). The sample entropy,
HSaE , compares similarity in fixed length segments of the signal [59]. A large
value ofHSaE indicates high complexity of x(n). The fractional spectral radius,
HFSR, is another measure of complexity which gives an upper bound to the
trajectory dimension [87]. A small value of HFSR indicates a large trajectory
dimension, and hence high complexity of x(n).

The features were compared for the different groups of the training set. We
found that the mean AF frequency, the variance of the AF frequency and the
exponential decay significantly differed between the non-terminating (N) and
the terminating (T) AF patients, as shown in Table 6.1. Neither the fibrillation
amplitude nor the complexity measures differed between the two groups.
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Figure 6.1: Residual ECG signals (left) with different exponential de-
cay, γ̄, AF frequency, f̄ , and variation of AF frequency, σf and corre-
sponding spectral template, φl (right). (a) Non-terminating AF with
γ̄ = 1.6, f̄ = 7.6 Hz and σf = 0.9, and (b) terminating AF with γ̄ = 0.7,
f̄ = 5.0 Hz, σf = 0.4.

Figure 6.1 shows examples with residual ECG signals of non-terminating
and terminating AF and their corresponding spectral template, from which the
significant parameters are derived.

There were no significant differences between any of the measures obtained
from the soon-terminating (S) and the immediately-terminating (T) signals of
the training set, see Table 6.2.

The three significant features were highly correlated. Hence, only the most
significant feature, f̄ , was used to predict possible oncoming spontaneous ter-
mination. Using this predictor, 90% of the test set was correctly classified into
N and T.
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Table 6.2: Mean value and standard deviation of measures used for AF char-
acterization, from the soon-terminating (S) and immediately-terminating (T)
signals in the training set.

Parameter S T Asymptotic
average Mean± Std Mean± Std p-value

f̄ 5.33± 0.65 5.00± 0.65 N.S.
γ̄ 0.90± 0.17 0.79± 0.20 N.S.
σf 0.67± 0.32 0.52± 0.13 N.S.
ā 32.3± 17.8 28.6± 16.7 N.S.
HSpE 1.74± 0.16 1.73± 0.18 N.S.
HSaE 1.61± 0.12 1.63± 0.16 N.S.
HFSR 0.16± 0.03 0.14± 0.02 N.S.

6.2 Paper II: Frequency tracking of Atrial Fib-
rillation using Hidden Markov Models

Erroneous AF frequency estimates is a problem, particularly in ambulatory
ECG recordings (Holter), where the signal often is corrupted by noise. The
purpose of this study was to make AF frequency trend estimation more robust
to noise, by post-processing the frequency estimates using a hidden Markov
model (HMM) which make use of a priori knowledge of the AF characteristics.

In this approach, given an observed sequence of frequency estimates, z =
[z(1), z(2), . . . , z(T )]T , our goal is to obtain the true sequence, denoted x =
[x(1), x(2), . . . , x(T )]T . The HMM for frequency tracking includes one zero
state, z(t) = 0, when no signal is present, and P − 1 different frequency states,
z(t) = 1, . . . , P − 1, where state i includes frequencies between fi and fi+1 =
fi + ∆f , with a center frequency of f̃i,

f̃i = fi +
∆f
2
. (6.1)

An HMM is completely characterized by a state transition matrix A, an ob-
servation matrix B, and an initial state vector π [88].

The P × P state transition matrix A describes the transition probabilities
between different states; element aij is the probability that state x(t + 1) = j
if state x(t) = i. It is assumed the changes in AF frequency are characterized
by a gaussian PDF, i.e., the AF frequency is more likely to remain the same or
to change gradually, than to change drastically. A state transition matrix A
is derived, where the design parameters d, u, and v corresponds to the std of
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the gaussian PDF, and the probability of initiation and termination of an AF
signal, respectively.

The P × P observation matrix B describes the probabilities of observing
a specific state given the true state. Its elements, bij , corresponds to the
probability of detection in state j when the true state is i. It is assumed that
the observed signal consists of a sinusoid with K − 1 harmonics and additive
noise, according to the following model

s(n) =
K∑
k=1

αk sin(2πkf0n) + w(n). (6.2)

The amplitude of the signal, α1, and its harmonics, α2, . . . , αK , and the fre-
quency f0 is assumed to be constant during the time interval for the Fourier
transform; the noise w(n) is assumed to be zero-mean, gaussian with variance
σ2. Setting the design parameters defined by α1, . . . , αK , σ2, and the detection
threshold D, an observation matrix B may be derived.

Given an observed sequence, z, an optimal sequence, x, with respect to A,
B and π can be obtained using the Viterbi algorithm [89].

Simulated AF mixed with real noise obtained from ECG recordings as well
as white noise to different SNR were used in the evaluation. The frequency es-
timates were calculated using STFT. An example of frequency tracking using
HMM of simulated AF mixed with noise obtained from a real ECG recording
to different SNR is displayed in Fig. 6.2. At 10 dB SNR, all frequencies were
correctly estimated by the STFT, thus using the HMM has no effect. At 5 dB
SNR, two erroneous frequency estimates were excluded and two erroneous fre-
quency estimates were replaced using the HMM. At 0 dB SNR several erroneous
estimates were either excluded or replaced using the HMM.

The performance of the HMM method was compared to that of the spec-
tral template method [31]. An average RMS error of the frequency estimates
was obtained using four different frequency trends, modeling various types of
frequency variation. The average RMS error of the estimated frequencies of
simulated AF signals mixed with noise obtained from real ECG recordings is
presented in Fig. 6.3. A high zero state occupancy percentage tend to give a
lower average RMS error, since the error is undefined at zero state. Therefore,
it is important to compare not only the average RMS error, but also the zero
state occupancy percentage. As indicated in Fig. 6.3, the average RMS error
and the zero-state occupancy is significantly lower for the HMM method than
for the spectral template method. Hence, frequency tracking using HMM is
particularly suited for signals with large amplitude noise.
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Figure 6.2: Frequency tracking with and without employing the HMM
of simulated AF signals mixed with QRST-noise to (a) 10 dB SNR, (b)
5 dB SNR and (c) 0 dB SNR. The true frequency trend (solid line),
the estimated frequency using STFT (’+’), and the estimated frequency
using HMM (’o’). Note that an absent ’+’ or ’o’ corresponds to zero
state.
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6.3 Paper III: Circadian Variation in Dominant
Atrial Fibrillation Frequency in Persistent
Atrial Fibrillation

The purpose of this study was to investigate the dominant AF frequency trend
xm(n) with respect to the presence of circadian variation. Circadian variations
are important to study as knowledge about them may help to establish proper
timing of drug administration (chronotherapy).

Three different methods were used to quantify circadian variation in AF
frequency trends of 18 patients with long-standing persistent AF, obtained
from 24-h ECG recordings using HMM-based frequency tracking [90]. Whereas
previous studies on circadian variation in AF frequency have been based on
sparse measurements [47,48], this study is based on continuous measurements.

First, in the cosinor method [91–93], a sinusoid with 24-hour periodicity,
defined by

ym(n) = am + bm cos
(

2π(n− n0,m)
24

)
, (6.3)

was fitted to each frequency trend, resulting in estimates of the magnitude
bm and phase n0,m of the circadian variation. A goodness-of-fit measure γ2

m

indicating how well the variation in xm(n) is explained by the fitted curve
ym(n) was also computed. This measure is defined as the ratio between the
variance of ym(n) and the variance of xm(n), i.e.

γ2
m =

Nm∑
n=1

(ym(n)− x̄m)2

Nm∑
n=1

(xm(n)− x̄m)2

, (6.4)

where x̄m denotes mean AF frequency. The measure γ2
m can take on values

between 0 and 1 where larger values indicate a better fit.
In contrast to the cosinor method, the autocorrelation method [94] does not

impose a functional structure on the circadian variation. In this method the
autocorrelation function of each AF frequency trend, defined by

r̂m(k) =
1
Nm

Nm−k∑
n=1

(xm(n)− x̄m)(xm(n+ k)− x̄m), (6.5)

is used to detect circadian variation. When xm(n) exhibits circadian variation,
rm(k) has a U-shaped appearance, i.e., the autocorrelation is positive-valued at
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0 and 23 hour lags and negative-valued at some intermediate lags. The auto-
correlation function rm(k) is compared to the autocorrelation function rw,m(k)
that corresponds to white noise only; rm(k) is judged to reflect circadian vari-
ation if it differs significantly from rw,m(k).

Finally, in the ensemble correlation method, variations of the frequency
trends of the different recordings are time-aligned and averaged to reveal joint
variational patterns [1].

µ∆x(n) =
1
M

M∑
m=1

∆xm(n), (6.6)

where
∆xm(n) = xm(n)− x̄m (6.7)

and M is the number of frequency trends. A weighting factor w(n) is derived
from the ensemble correlation ρ̂(n), defined by

ρ̂(n) =

M∑
i=1

M∑
j=1,i6=j

∆xi(n)∆xj(n)

(M − 1)
M∑
i=1

∆x2
i (n)

, (6.8)

such that samples with a large correlation across the ensemble are assigned a
larger weight and vice versa [95].

Using the autocorrelation method, circadian variation was found in 13 out
of the 18 frequency trends. Using cosinor analysis, the amplitude bm of the
variation was found to be 0.15 ± 0.09 Hz (range 0.05 − 0.30 Hz), and the
acrophase n0,m was found to typically occur in the afternoon or evening (median
time was at 15h48). The goodness of fit γ2

m of the sinusoid to the observed
trend was 0.15±0.13 (range 0.008−0.446), indicating that only a small portion
of the variation in AF frequency is accounted for by the fitted sinusoids. The
upper frequency trend in Fig. 6.4 (case #1) corresponds to the recording with
the largest value of bm, possibly indicative of circadian variation, whereas the
lower frequency trend in Fig. 6.4 (case #2) corresponds to the smallest value.

The ensemble average of the deviations from the mean AF frequency, and
the related ensemble correlation are presented in Fig. 6.5 as functions of the
time of the day. It is evident from Fig. 6.5(a) that the highest mean AF fre-
quency occurs in the afternoon (about 15h to 17h), while the lowest occurs
late in the night (about 1h to 6h). These two periods of the day are asso-
ciated with the most pronounced joint variation as reflected by the ensemble
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Figure 6.4: Two examples of AF frequency trends corresponding to (a)
the largest bm and (b) the smallest bm.

correlation, see Fig. 6.5(b). The magnitude of the ensemble average variation
is approximately ±0.15 Hz.

It is concluded that circadian variation is present in most patients with
long-standing persistent AF though the short-term variation in AF frequency
is considerable and should be taken into account.

6.4 Paper IV: Classification of Paroxysmal and
Persistent Atrial Fibrillation in Ambula-
tory ECG Recordings

The primary question of this study can be formulated as “Given an arbitrarily
chosen 10-s segment of an ambulatory ECG recording, which performance can
be achieved with respect to classification of paroxysmal and persistent AF?”
This question is addressed by investigating the performance of a novel method
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Figure 6.5: (a) The ensemble average (solid line) ± one standard devia-
tion (dashed line) of the deviations from the mean AF frequency µ∆x(n)
and (b) the corresponding ensemble correlation w(n).

that makes use of information on harmonics of the atrial signal, derived by a
signal-dependent filter bank, and by comparing its performance with existing
techniques. A total of 50 patients with 24-h ambulatory ECG recordings were
enrolled in the study; 26 patients had paroxysmal AF, whereas the remaining
24 patients had persistent AF. This study differs from Paper I in that a new
method is employed to characterize the atrial activity, and that a very much
larger database is used. Whereas 1-min excerpts of ECG were used in the
studies following the CinC Challenge 2004 [35, 96–100] , entire recordings are
analyzed on a 10-s basis in this study.

Following spatiotemporal QRST cancellation, the AF frequency f0 was
tracked on a segment to segment basis, using HMM-based frequency track-
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ing [90]. Hence, for each 10-s segment l, a new frequency estimate f0,l was
obtained.

Characterization of AF was based on subbands of the atrial activity, corre-
sponding to the fundamental and the first and second harmonic, respectively.
These signals, denoted x0(n), x1(n), and x2(n), were obtained using time-
varying bandpass filtering of the atrial activity. For each segment l, new filters
H0,l(z) H1,l(z), and H2,l(z) with 3 Hz bandwidth, and center frequencies of
f0,l, f1,l = 2f0,l, and f2,l = 3f0,l, respectively, were designed and applied to
forward/backward filtering of the atrial activity segments; care was taken to
minimize transients at the segment boundaries by matching the initial condi-
tions.

Atrial organization was estimated by sample entropy, which examines a sig-
nal for similar sequences and assigns a non-negative number to the signal so
that larger values correspond to higher complexity [59], cf 4.3.2. The sam-
ple entropy was computed for each of the subbands, i.e., x0,l(n), x1,l(n), and
x2,l(n), and denoted S0,l S1,l, and S2,l, respectively. The parameter values
were set to m = 2, r = 0.35·std(xi,l(n)), and N = 10000, i.e. 10 s at sampling
rate 1 kHz [101]. Since the sample entropy does not convey any information on
the strength of the harmonics, the relative subband energy al of the first and
second harmonics was also considered for classification.

The mean and standard deviation of S0, S1, S2, a, and f0 were determined
from all values that resulted from the 10-s segments in patients with either
paroxysmal AF (PA) or persistent AF (PE), see Table 6.3. The results show
that PA is associated with lower sample entropy, larger harmonics as reflected
by a, and lower dominant atrial frequency than PE.

Table 6.3: Parameter values of 10-s segments of paroxysmal AF and persistent
AF.

Parameter Paroxysmal AF Persistent AF p-value
Mean±Std Mean±Std

S0 0.085±0.010 0.110±0.016 < 0.0005
S1 0.192±0.025 0.248±0.038 < 0.0005
S2 0.285±0.040 0.356±0.047 < 0.0005
a 0.245±0.112 0.157±0.081 < 0.0005
f0 (Hz) 5.65±0.69 6.73±0.85 < 0.0005

The features of each segment l; the subband sample entropies S0,l, S1,l, and
S2,l, the relative harmonics energy al, and the dominant atrial frequency f0,
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were grouped into the following four vectors:

y1,l =
[
S0,l

]
, y2,l =

S0,l

S1,l

S2,l

 ,
y3,l =

[
S0,l

al

]
, y4,l =

[
f0,l

]
.

The reason for studying these groups was that both y2,l and y3,l extend y1,l

with information on the harmonics, though in quite different ways. For compar-
ison, f0,l was included since its significance has been investigated in numerous
studies.

For each feature vector yi,l, minimum-error-rate classification with discrim-
inant functions was employed, assuming that the feature vectors were gaus-
sian [102]. Hence, the discriminant functions for PA and PE, designed for the
i:th feature vector, are given by

gPAi(yi,l) =− 1
2

(yi,l − µPAi)
TΣ−1

PAi
(yi,l − µPAi)

− 1
2

ln |ΣPAi |, (6.9)

gPEi(yi,l) =− 1
2

(yi,l − µPEi)
TΣ−1

PEi
(yi,l − µPEi)

− 1
2

ln |ΣPEi |, (6.10)

respectively, where µPAi and µPEi denote the vectors with mean values, and
ΣPEi and ΣPAi denote the covariance matrices of the data. A leave-one-
out strategy was employed to evaluate classification performance. Hence, the
statistical parameters µPAi , µPEi , ΣPEi , and ΣPAi were estimated based
on the 10-s segments of all recordings except one; the 10-s segments of the
remaining recording were used to test classification performance. The leave-
one-out strategy was repeated until all recordings had been used as test data;
the overall performance figure was obtained by averaging the individual results.

Assuming that persistent and paroxysmal AF occur with equal prior prob-
abilities, the feature vector yi,l was classified as paroxysmal AF if

gi(yi,l) = gPAi(yi,l)− gPEi(yi,l) > ε, (6.11)

and otherwise as persistent AF. Obviously, this classifier can be optimized for
paroxysmal AF at the expense of persistent AF by tuning the threshold ε, and
vice versa.
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The average classification rates for PA and PE are presented in Table 6.4
for ε = 0. It is obvious that PA segments are more accurately classified than
are those with PE. The average classification rate improved for PE when in-
formation on harmonics was added, increasing from 93.9% to 96.5% and 95.8%
depending on if S1 and S2 or a was added, however, the already high rate for
PA (99.6%) did not improve.

Table 6.4: Average classification rate as percentage of correctly classified 10-s
segments on a patient basis, expressed as median and interquartile range.

Feature vector Paroxysmal AF Persistent AF
y1 99.6 (99.4–100) 93.9 (51.8–99.3)
y2 98.7 (88.2–100) 96.5 (57.0–99.2)
y3 99.3 (91.9–100) 95.8 (61.1–98.7)
y4 99.0 (91.6–100) 91.9 (42.7–98.2)

The region of convergence (ROC) curves that resulted from the classifiers
based on y1, y2, y3, and y4 are presented in Fig. 6.6. Each curve was obtained
by averaging the results from all 10-s segments of each patient group. The three
classifiers based on sample entropy performed better than did the classifier
based on f0. The best performance in terms of area under the ROC curve
(AROC) was obtained with y3.

The study shows that short segments with paroxysmal and persistent AF
can be classified with good accuracy in ambulatory recordings. The sample
entropy of the dominant atrial frequency subband, combined with the relative
harmonics energy, was found to produce an AROC which was superior to clas-
sification based on the dominant atrial frequency only. Considering the highly
variable signal quality of an ambulatory recording, it can be concluded that the
proposed signal processing techniques offer a robust approach to the analysis
of atrial activity in the surface ECG.

6.5 Paper V: Model Based Analysis of the Ven-
tricular Response during Atrial Fibrillation

The aim of this study is to develop an AV model whose parameters can be
estimated from the ECG. Our model incorporates the concepts of dual AV nodal
paths, relative refractoriness, and concealed conduction. Information contained
in the RR series as well as in the atrial activity of the ECG are combined to find
the optimal model parameters, using maximum likelihood estimation. Thus, a
set of parameters related to the electrophysiological characteristics of the AV
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Figure 6.6: ROC curves for AF classifiers based on different feature
vectors. The performance for ε = 0 is marked with “o”. The area under
the ROC (AROC) equals 0.913, 0.900, 0.923, and 0.826 for y1, y2, y3,
and y4, respectively.

node can be obtained for each analyzed signal.
In this model, atrial impulses are assumed to arrive to the AV node accord-

ing to a Poisson process with mean arrival rate λ. Each atrial impulse results
in a ventricular contraction unless it is blocked at the AV node; the probability
of an atrial impulse being blocked β(t), is dependent on the time elapsed since
the previous ventricular activation t.

Atrial impulses are blocked when the cells of the AV node are refractory.
The refractory period consists of a deterministic part τ , and a stochastic pro-
longation τp modeling concealed conduction and relative refractoriness. The
length of the extended refractory period is assumed to be uniformly distributed
in the interval [0, τmaxp ]. Hence, all atrial impulses arriving at the AV node be-
fore the end of the refractory period τ are blocked, no impulses arriving after
the end of the maximally extended refractory period τ +τmaxp are blocked, and
the likelihood of an atrial impulse being blocked between τ and τ + τmaxp is
assumed to be linearly decreasing.
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The deterministic part of the refractory period can take on two different
values, τ1 and τ2, corresponding to dual AV nodal paths. The maximal prolon-
gation τmaxp is assumed to be equal for the two paths. Hence, the probability
of an atrial impulse being blocked in the two paths paths is given by β1(t) and
β2(t), respectively, where

βi(t) =


1, t < τi

1− t− τi
τmaxp

, τi < t < τi + τmaxp , i = 1, 2

0, t > τi + τmaxp .

(6.12)

The probability of an atrial impulse taking the path corresponding to the short-
est refractory period τ1 is given by α. Hence, the probability of an atrial impulse
being blocked, denoted β(t), is given by β1(t) and β2(t),

p(β(t) = βi(t)) =
{
α, i = 1
1− α, i = 2. (6.13)

Using this model, a PDF of the RR interval lengths x can be derived,

px(x) = αpx,1(x) + (1− α)px,2(x), (6.14)

where

px,i(x) =



0, x < τi

λ(x− τi)
τmaxp

exp
{
λ(x− τi)2

2τmaxp

}
, τi < x < τi + τmaxp , i = 1, 2

λ exp
{
λτmaxp

2
− λ(x− τi − τmaxp )

}
, x > τi + τmaxp .

(6.15)
Since ventricular activations are triggered according to a Poisson process,

the time intervals between consecutive ventricular activations are independent.
Hence, the joint probability of an RR series is given by

px(x1, x2, . . . xM ) =
M∏
m=1

px(xm) (6.16)

=
M∏
m=1

(αpx,1(xm) + (1− α)px,2(xm)),

where px,1(xm) and px,2(xm) are given by (6.15).



Chapter 6. Summary of Included Papers 67

A functional dependence of the deterministic part of the refractory period
τ on the previous RR interval is included in the model, such that a longer RR
interval is followed by a longer refractory period,

τi,m = τmini + sτdRR,m−1, i = 1, 2. (6.17)

where τmini and sτ defines the linear dependence, and τi,m denotes the refrac-
tory period following the m:th ventricular activation. The magnitude of the
linear dependence sτ is assumed to be equal for τ1 and τ2, so that the difference
between the two refractory periods ∆τ is constant.

τ2,m = τmin2 + sτdRR,m−1 (6.18)

= τmin1 + sτdRR,m−1 + ∆τ
= τ1,m + ∆τ

Estimation of model parameters from ECG signals is based on the detected
RR series as well as on the atrial activity; the arrival rate of atrial impulses to
the AV node λ is estimated by the dominant AF frequency. The parameters
defining the functional refractory period, sτ and τmin1 , are obtained from the
lower envelope of the Poincaré plot of the RR series.

The model parameters

θ =

 α
∆τ
τmaxp

 , (6.19)

related to the dual AV nodal paths and prolongation of the refractory pe-
riod, are estimated by maximizing the joint probability px(x1, x2, . . . xM ) given
in (6.16). However, in order to reduce the dependences of consecutive RR
intervals x′1, x

′
2, . . . x

′
M the following simple transformation is used

xm = x′m − sτx′m−1. (6.20)

The number of RR intervals required for accurate estimation was tested us-
ing simulated RR series; for most parameter settings, less than 500 RR intervals
were required for the estimates to converge. The model was evaluated on con-
secutive 30-min segments of Holter-ECG signals from 40 patients with AF. A
measure of model fit U based on the joint area of the estimated model PDF
and an empirical PDF estimated using wavelet-based density estimation [103]
was computed; the mean value of fit was U = 84.4 ± 5.1%. In 85.7% of the
analyzed 30-min segments (1729 out of 2018), U > 80% which in this study is
considered as a sufficiently accurate model fit.

An example of two PDFs from 30-min segments from the same patient are
displayed in Figs. 6.7(b) and (c). In these examples, U = 92.6% and 90.9%,
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respectively. The trends of the estimated model parameters over 24 h are
displayed in Fig. 6.7(a). For this patient, a decrease in λ is associated with
an increase in τmin1 , a decrease in α and a slight increase in τmaxp . This result
suggests that the refractory period of both AV nodal paths increases, that the
probability of conduction through the path with the shorter refractory period
decreases, and that there is an extended prolongation of the refractory periods.
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Figure 6.7: (a) Trends of estimated model parameters and sequential
RR interval histograms from a patient with sustained AF. The PDFs
corresponding to the encircled parameters are displayed in (b) and (c),
respectively. Since α = 1, ∆τ presents an undefined value at t = 18 h.

Figure 6.8 displays an example with RR interval histograms, Poincaré plots
and estimated model PDFs during a head-up tilt test. The atrial activity and
ventricular response are altered when the patient is tilted; the atrial rate λ in-
creases, while the RR intervals are shorter due to increase in α, and decrease in
∆τ and τmin1 . This suggests that the refractory period of both AV nodal paths
decreases, the longer one more than the shorter one, and that the probability
of conduction through the path with the shorter refractory period increases.

In conclusion, our model of AV nodal function during AF, which incorpo-
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Figure 6.8: (top) Histogram of x′, (middle) Poncaré plot of x′ with esti-
mated lower envelope, and (bottom) histogram of x with corresponding
estimated model PDF from the same patient during (a) rest and (b)
head-up tilt. (a) Fit: U = 84.8%. Estimated parameter values: λ̂ = 6.6
Hz, τ̂min1 = 0.31 s, ŝτ = 0.10, α̂ = 0.54, ∆̂τ = 0.22 s and τ̂maxp =0.05
s. (b) Fit: U = 82.3%. Estimated parameter values: λ̂ = 6.9 Hz,
τ̂min1 = 0.26 s, ŝτ = 0.14, α̂ = 0.84, ∆̂τ = 0.17 s and τ̂maxp =0.07 s.

rates the concepts of dual AV nodal paths, concealed conduction and relative
refractoriness, can represent a wide variety of RR interval distributions, and
the model parameters can be accurately estimated from ECGs.
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