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When I am judging a theory, I ask myself whether, if I were God, I would
have arranged the world in such a way.

Albert Einstein

“The New Quotable Einstein”, Chapter XVII





Abstract

This thesis deals with physical limitations on scattering and absorption of acoustic
and electromagnetic waves. A general dispersion relation for the extinction cross
section of such waves is derived from the holomorphic properties of the scattering
amplitude in the forward direction. The result states that for a given volume,
there is only a limited amount of scattering and absorption available in the entire
frequency range. The dispersion relation is shown to be valuable for a broad range
of problems in theoretical physics involving wave interaction with matter over a
frequency interval.

The theory of broadband extinction of electromagnetic waves is also applied to
a large class of causal and reciprocal antennas to establish physical realizability and
upper bounds on bandwidth and directive properties. The results are compared
with classical limitations based on eigenfunction expansions, and shown to provide
sharper inequalities and, more importantly, a new fundamental understanding of
antenna dynamics solely based on static properties. In modeling of metamaterials,
the theory implies that for a narrow frequency band, engineered composite materials
may possess extraordinary characteristics, but tradeoffs are necessary to increase its
bandwidth.
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Sammanfattning (in Swedish)

Avhandlingen behandlar fysikaliska begränsningar p̊a spridning och absorption av
akustiska och elektromagnetiska v̊agor. En dispersionsrelation för utsläckningstvär-
snittet för akustisk och elektromagnetisk v̊agrörelse härleds fr̊an analytiska egen-
skaper p̊a spridningsamplituden i framåtriktningen. Slutsatsen är att det för en
given växelverkande volym endast finns en begränsad mängd spridning och absorp-
tion att tillg̊a i hela frekvensspektrum. Dispersionsrelationen visar sig vara ett
värdefullt verktyg för en bred samling problem i teoretisk fysik med koppling till
växelverkan av v̊agrörelse med materia över ett frekvensintervall.

Teorin för elektromagnetiska v̊agors utsläckning tillämpas ocks̊a p̊a en stor klass
av kausala och reciproka antenner för att fastställa realiserbarhet och övre begräns-
ningar p̊a bandbredd och riktningsberoende egenskaper. Resultaten jämförs med
klassiska begränsningar baserade p̊a egenfunktionsutvecklingar, och där visar re-
sultaten ge s̊aväl skarpare olikheter p̊a antennprestanda som en ny fundamental
först̊aelse för antenners dynamik endast i termer av statiska egenskaper. För mate-
rialmodellering medför teorin att artificiella material mycket väl kan uppvisa en
överd̊adig karakeristik för ett smalt frekvensintervall, men att kompromisser är
nödvändiga för att öka deras bandbredd.
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Summary of included papers

The main thread of this thesis is a forward dispersion relation for the extinction of
acoustic and electromagnetic waves. The included papers focus on various conse-
quences of this summation rule applied to scattering theory, material modeling and
antenna problems.

Paper I

This paper deals with physical limitations on scattering and absorption of electro-
magnetic waves over a frequency interval. The direct scattering problem addressed
here is plane-wave illumination of a bounded obstacle of arbitrary shape. The scat-
terer is modeled by a general set of linear and passive constitutive relations including
both heterogeneous and anisotropic material models. A forward dispersion relation
for the extinction cross section is derived in terms of the static polarizability dyadics,
and various isoperimetric bounds are presented for scattering and absorption over a
frequency interval. The theoretical results are exemplified by numerical simulations
with excellent agreement.

The author of this dissertation carried out most of the analysis and the numerical
simulations.

Paper II

This paper is an application of the physical limitations on scattering and absorp-
tion in Paper I. The paper focuses on temporally dispersive material models which
attain negative values of the real part of the permittivity and/or the permeability,
i.e., metamaterials. It is concluded that for a single frequency, metamaterials may
possess extraordinary properties, but with respect to a frequency interval such mate-
rials are no different from any other naturally formed substances as long as causality
is obeyed. As a consequence, if metamaterials are used to lower the resonance fre-
quency, this is done at the expense of an increasing Q-factor of the resonance. The
theory is illustrated by numerical simulations for a stratified sphere and a prolate
spheroid using the classical Lorentz and Drude dispersion models.

The author of this dissertation carried out most of the analysis and is responsible
for the numerical simulations.

Paper III

This paper focuses on a forward dispersion relation for the combined effect of scat-
tering and absorption of acoustic waves. The derivation is similar to the one for the
electromagnetic waves in Paper I, but additional challenges are introduced when
extending the summation rule to acoustic waves. The effect of both permeable and
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impermeable boundary conditions are presented, and it is concluded that the for-
ward dispersion relation is applicable to the Neumann and transmission problems,
whereas the analysis fails for the Dirichlet and Robin boundary conditions. The
theory is exemplified by both permeable and impermeable scatterers with homoge-
neous and isotropic material properties.

The author of this dissertation carried out a major part of the analysis.

Paper IV

This paper addresses physical limitations on bandwidth, realized gain, Q-factor, and
directivity for antennas of arbitrary shape. Based on the forward dispersion relation
in Paper I, the product of bandwidth and realizable gain is shown to be bounded
from above by the eigenvalues of the long wavelength high-contrast polarizability
dyadics. These dyadics are proportional to the antenna volume and easily deter-
mined for geometries of arbitrary shape. Ellipsoidal antenna volumes are analyzed in
detail and numerical results for some generic antenna geometries are presented. The
theory is verified against the classical Chu limitations, and shown to yield sharper
bounds for the ratio of the directivity and the Q-factor for non-spherical geometries.

The author of this dissertation contributed both to the analysis and the numerical
examples.

Paper V

This paper provides additional theoretical and numerical results on the physical
limitations on antennas in Paper IV. In particular, the interplay between directive
properties and bandwidth is discussed when metamaterials are introduced in the
antenna design. Numerical simulations of a monopole antenna with a finite ground
plane are presented and shown to be in astonishing agreement with the theoretical
bounds.

The author of this dissertation carried out most of the analysis.

Paper VI

This paper presents measurement results on the combined effect of scattering and
absorption of electromagnetic waves by a fabricated sample of metamaterial. This
engineered composite material, designed as a planar array of capacitive and inductive
coupled resonators, is commonly referred to in the literature as a negative permit-
tivity metamaterial. Recent bounds on material modeling presented in Paper II are
reviewed and compared with the outcome of the measurements. The experimental
results are shown to be in good agreement with the theory.

The author of this dissertation carried out a major part of the analysis.
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Introduction and the included papers.

Sölvesborg, July 2007 Christian Sohl
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2 Causality and holomorphic properties 3

. . . “There’s the King’s Messenger. He’s in prison now, being punished:
and the trial doesn’t even begin till next Wednesday: and of course the
crime comes last of all.”

“Suppose he never commits the crime?” said Alice.

Lewis Carroll

“Through the Looking Glass”, Chapter V

1 Introduction

S
ince the introduction of the Kramers-Kronig relations in Refs. 7 and 25
concerning propagation of light in lossy dielectric media, dispersion rela-
tion techniques have been applied successfully to several fields of physics
to establish information about the nature of particle collisions and wave

interaction with matter.1 The underlying idea of dispersion relations is that certain
physical amplitudes with experimental significance are boundary values of holomor-
phic functions of one or more complex variables. The holomorphic nature of these
amplitudes are closely connected with the principle of causality in the form of time
ordered events. In fact, there are at least two remarkable features of dispersion
relations: i) they provide a consistency check if the quantities involved are either
measured or calculated, and ii) they may be used to verify whether a given physical
model or an experimental outcome is causal or not.

The objective of this General Introduction is to illustrate the importance of
causality for propagation of acoustic and electromagnetic waves. Several applications
to material modeling and scattering problems are presented. Linear systems obeying
causality are also crucial in various fields of electrical engineering such as network
theory and broadband circuit design, see Refs. 5 and 11. Dispersion relations with
a somewhat different causality condition in terms of local commutativity of field
operators also play a fundamental role in quantum field theory, see Refs. 37 and 38.

2 Causality and holomorphic properties

This section introduces some elementary properties of linear time-translational in-
variant systems obeying primitive causality. In particular, the damped harmonic
oscillator in classical mechanics is analyzed, and the Kramers-Kronig relations for
light propagation in a dielectric medium are derived. The exposition on the damped
harmonic oscillator follows the outline in Ref. 35 and Problem 3.39 in Ref. 37,
whereas Refs. 19 and 20 have been valuable for the preparation of the Kramers-
Kronig relations. Other important references are Refs. 17, 27, 28, 34, 42 and 47.

1Dispersion relations should not be confused with the connection between energy and momen-
tum, or wave propagation in time and space, which also bear the same name in wave mechanics.
Neither should the term be confused with dispersion models for temporally dispersive matter, e.g.,
the Lorentz model in classical electrodynamics, see Sec. 2.6.



4 General Introduction

2.1 Elementary considerations

Consider an arbitrary physical system subject to an external time-dependent action
or input f(t), to which the system responds by producing a cause or output x(t).
The internal properties of the system are unspecified except for the following general
assumptions:

α) the output x(t) is a linear functional of the input f(t), i.e.,

x(t) =

∫ ∞

−∞
g(t, t′)f(t′) dt′,

where the kernel g(t, t′) is the impulse response of the system at time t when
subject to an input at time t′;

β) the internal properties of the system are independent of time,2 i.e., g(t, t′) =
g(t− t′), or equivalently, if the input f(t) is advanced or delayed by some time
interval, the same shift in time interval occurs for the output x(t);

γ) the system is subject to time-ordered events in the sense that the output x(t)
cannot precede the input f(t), i.e., g(τ) = 0 for τ < 0.

The conditions α), β) and γ) refer to linearity or superposition, time-translational
invariance, and primitive causality, respectively. In contrast to primitive causal-
ity, there is also a relativistic causality condition which states that no signal can
propagate with velocity greater than the speed of light in vacuum. However, the
relativistic causality condition is less general than the primitive since it depends
on the existence of a limiting velocity. Only the primitive causality condition is
therefore addressed in this thesis. Furthermore, non-linear equations of motion are
excluded due to the complication of finding appropriate functionals modeling such
systems. Non-linear systems may also possess self-excitation.

The three conditions α), β) and γ) have far-reaching consequences on the Fourier
transform of g(t), i.e.,

G(ω) =

∫ ∞

0

g(τ)eiωτ dτ. (2.1)

The convergence of (2.1) is guaranteed if, for example, g(τ) is absolutely integrable
on the real axis. However, this assumption can be relaxed be introducing the class
of temperate distributions, see Ref. 18. Throughout this thesis, it is assumed that
g(τ) vanishes sufficiently rapid at infinity such that (2.1) is well-defined. Under
the assumption of absolute integrability, the fact that g(τ) only has support on the
positive real axis implies that (2.1) defines a holomorphic function in the upper
half of the ω-plane. The idea is made plausible by observing that the exponential
function in (2.1) significantly improves the convergence of the Fourier integral for
Im ω > 0. The holomorphic properties of G(ω), or equivalently, the presence of no
singularities in the upper half of the ω-plane, is thus seen to be a direct consequence

2Throughout this thesis, no distinction in notation is made between the one and two variable
functions g(t, t′) and g(τ), where τ = t− t′.
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° °X
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Figure 1: Contours in the complex ω-plane (left figure) and the complex G(ω)-
plane (right figure) in the proof of Mĕıman’s theorem.

of the causality condition.3 Also note that by complex conjugating both sides of (2.1)
and invoking that g(τ) is real-valued, one obtains for Im ω ≥ 0,

G(−ω∗) = G∗(ω), (2.2)

where an asterisk denotes the complex conjugate. The cross symmetry (2.2) implies
that the real part of G(ω) is even and the imaginary part of G(ω) is odd with respect
to the imaginary axis. In particular, G(ω) take real values on the imaginary axis.

Passivity or energy dissipation often implies restrictions on the imaginary part
of G(ω). Extended to the upper half of the ω-plane, the passivity condition states
that, see Ref. 15,

Im(ωG(ω)) ≥ 0. (2.3)

In particular, (2.3) implies that Im G(ω) ≥ 0 for ω > 0 and Im G(ω) ≤ 0 for ω < 0.
Note that (2.3) is consistent with (2.2) in the sense that if the passivity condition
holds for Re ω > 0, the cross symmetry implies that it is also valid for Re ω < 0. A
function like G(ω) which is holomorphic in the upper half of the ω-plane and there
satisfies (2.3) is called a Herglotz function. A general representation of Herglotz
functions in terms of a Riemann-Stieltjes integral is presented in Ref. 35.

The following theorem presented in Ref. 27 establishes some important properties
of G(ω) under the assumption of strict passivity, i.e., Im G(ω) > 0 for ω > 0.4

The theorem resembles Levinson’s theorem for the bound states of the Schrödinger
equation as the roots of the Jost function, see Refs. 34 and 40.

Mĕıman’s theorem. Under the assumption of strict passivity, i.e., Im G(ω) > 0
for ω > 0, G(ω) is non-zero in the upper half of the ω-plane, and does not take real
values at any finite point in that half-plane except on the imaginary axis, where it
decreases monotonically from a positive value to zero at ω = i∞.

3In the lower half of the ω-plane, the integral in (2.1) diverges. In general, G(ω) has singularities
in this region and can be defined there only as the holomorphic continuation of (2.1) from the upper
half-plane.

4The proof of Mĕıman’s theorem can however be extended to include Im(ωG(ω)) ≥ 0.
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Proof. For any real-valued constant ϑ, the function G(ω)− ϑ is holomorphic in the
upper half of the ω-plane, and the argument principle in Ref. 1 yields that

1

2πi

∮

γ

dG(ω)

dω

dω

G(ω)− ϑ
=

1

2πi

∮

γ′

dG(ω)

G(ω)− ϑ
(2.4)

is equal to the number of roots of G(ω)− ϑ within γ′, i.e., the number of points at
which G(ω) = ϑ. Here, the curve γ′ is defined by the map γ′ = G(γ) of the contour
on the left hand side of Fig. 1. This map has the property that the infinite semicircle
is mapped onto G(∞) = 0, and ω = 0 is mapped onto another real-valued point
G(0) > 0.5 Since, by assumption, Im G(ω) > 0 for ω > 0, and therefore Im G(ω) < 0
for ω < 0, the axes ω < 0 and ω > 0 on the left hand side of Fig. 1 are mapped onto
curves (symmetrically distributed with respect to the real axis) which entirely lie
in the lower and upper half parts of the G(ω)-plane, respectively. Thus, it follows
that γ′ on the right hand side of Fig. 1 does not intersect the real axis for any finite
real-valued ω except at G(0).

The argument principle now yields that (2.4) is equal to unity if 0 < ϑ < G(0)
and zero otherwise, or equivalently, in the upper half of the ω-plane, G(ω) takes the
value ϑ once only if 0 < ϑ < G(0). On the other hand, if ϑ > G(0), G(ω) is nowhere
equal to ϑ. Since G(ω) does not have a maximum or minimum on the imaginary
axis, and by contradiction attain some values at least twice, it follows that G(ω)
decreases monotonically from G(0) > 0 at ω = i0 to zero at ω = i∞.6

In the presence of a singularity at ω = 0, this point must be excluded from the
integration contour by a small semicircle of vanishing radius.7

Sofar, only single-input single-output systems with a scalar notation have been
addressed. For multiple-input multiple-output systems, f(t) and x(t) are replaced
by vector-valued functions, and the kernel corresponding to the impulse response
g(τ) becomes dyadic-valued. In Paper III, a single-input single-output system is
used for scattering of acoustic waves, whereas the appropriate formulation for elec-
tromagnetic waves in Papers I–II and IV–VI is based on the multiple-input multiple-
output notation. For convenience, in this General Introduction, both acoustic and
electromagnetic waves are discussed in a single scalar notation.

2.2 The damped harmonic oscillator

An example of a passive system which satisfies the conditions α), β) and γ) above
is given by the damped harmonic oscillator. This system provides a simple, yet
accurate, model employed in many branches of physics involving wave phenomena,
cf., the Lorentz model in Papers I and II for the interaction of electromagnetic

5The fact that G(0) > 0 follows by sending ω → 0+ in (2.23) or (2.25) and invoking the
assumption of strict passivity.

6Recall that the Riemann-Lebesgue lemma implies that G(ω) → 0 as |ω| → ∞ in the upper
half of the ω-plane if g(τ) is absolutely integrable, see Refs. 3 and 41.

7For real-valued ω, only singularities in G(ω) located at ω = 0 are addressed in this thesis.
The assumption of a singularity at origin is motivated by the conductivity model in classical
electrodynamics, see Sec. 2.6.
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waves with temporally dispersive matter. The equation of motion for the damped
harmonic oscillator, when subject to an external driving force f(t) per unit mass,
reads

ẍ + 2γẋ + ω2
0x = f(t), (2.5)

where x denotes its displacement from equilibrium, and dots refer to time derivatives.
Furthermore, γ ≥ 0 and ω0 > 0 are the damping constant and natural frequency of
the oscillator, respectively.

The energy balance for the oscillator is obtained by multiplying (2.5) with ẋ and
integrating from −∞ to t, viz.,

E(t) + 2γ

∫ t

−∞
ẋ2(t′) dt′ =

∫ t

−∞
f(t′)ẋ(t′) dt′, (2.6)

where E(t) = ẋ2(t)/2 + ω2
0x

2(t)/2 is the energy of the oscillator at time t. In (2.6),
it has been assumed that the oscillator is at rest as t → −∞. For γ ≥ 0, the left
hand side of (2.6) is non-negative, and it follows that

∫ t

−∞
f(t′)ẋ(t′) dt′ ≥ 0. (2.7)

The condition (2.7) is a direct consequence of passivity or energy dissipation, see
Refs. 24 and 31.

The solution of (2.5) for the free oscillator with f(t) = 0 is straightforward, viz.,

x0(t) = e−γt
(
a1e

−i(ω2
0−γ2)1/2t + a2e

i(ω2
0−γ2)1/2t

)
, (2.8)

where γ 6= ω0, and the complex-valued constants a1 and a2 are determined from
initial conditions. For an overcritical damping, γ > ω0, the two terms in (2.8) are
exponential functions with negative exponents, whereas the solution for γ < ω0 takes
the form of a damped harmonic oscillation. For the critical damping γ = ω0, the
solution of (2.5) reads x0(t) = e−γt(a1t + a2).

8 From a physical point of view, the
passivity condition γ ≥ 0 is seen to be crucial for preventing a displacement of the
oscillator which increases exponentially with time. Recall that 1/γ is the lifetime or
characteristic time scale over which the damping takes place.

According to the superposition principle, a general solution of (2.5) is given
by (2.8) and the corresponding particular solution when the external driving force
is present on the right hand side of (2.5). In order to determine this heterogeneous
solution, assume that f(t) can be represented by, e.g., the Fourier integral (also the
Laplace transform is applicable)

f(t) =
1

2π

∫ ∞

−∞
F (ω)e−iωt dω.

8For γ = ω0, the oscillator passes the equilibrium at most one time, and has at most one extreme
value (depending on the initial conditions).
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Figure 2: Trajectories for the singularities ω1,2 as function of increasing γ.

Taking the Fourier transform of both sides in (2.5), and invoking the convolution
theorem, implies

x(t) =
1

2π

∫ ∞

−∞
G(ω)F (ω)e−iωt dω =

∫ ∞

−∞
g(t− t′)f(t′) dt′, (2.9)

where G(ω) = −1/(ω − ω1)(ω − ω2) is the frequency response of the oscillator, and
ω1,2 = −iγ ± (ω2

0 − γ2)1/2 are the roots of the polynomial ω2 + 2iγω − ω2
0 = 0.9

The paths described by the singularities ω1,2 in the ω-plane as γ ∈ [0,∞) increases
are depicted in Fig. 2. Note that the singularities coincide for the critical damping
γ = ω0, and that they divide in such a manner that one of them approaches −i∞
as γ →∞, while the other tends to ω = 0.

Since G(ω) is the Fourier transform of g(τ), the problem to represent the solution
of (2.5) as a linear functional is hence reduced to evaluate the Fourier integral

g(τ) =
1

2π

∫ ∞

−∞

−1

(ω − ω1)(ω − ω2)
e−iωτ dω. (2.10)

This is conveniently done by means of residue calculus, see Ref. 1, for which the
damping γ > 0 again plays an important role.10 For τ < 0, (2.10) supports a closure
(in the form of an infinite semicircle) of the contour for Im ω > 0 which does not
contribute to the integral. Since Im ω1,2 < 0, the singularities in G(ω) are located in
the lower half of the ω-plane, and the Cauchy integral theorem implies that g(τ) = 0
for τ < 0. But this property is merely the primitive causality condition introduced
in Sec. 2.1. Hence, the damped harmonic oscillator with γ > 0 is an example of a
linear time-translational invariant system obeying passivity and primitive causality.
For τ > 0, the appropriate region for closure is the lower half of the ω-plane. In this

9For real-valued ω, the passivity condition γ ≥ 0 is equivalent to (2.3).
10For γ = 0, the integrand in (2.10) is singular at ω = ±ω0, and should in this case be interpreted

as a Cauchy principal value integral. Excluding the singularities on the real axis with small
semicircles of vanishing radii yields g(τ) = sin(ω0τ)/ω0 irrespectively of the sign of τ .
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case, the method of residues yields

1

2π

∮ −1

(ω − ω1)(ω − ω2)
e−iωτ dω = i

∑
i=1,2

Res
ω=ωi

1

(ω − ω1)(ω − ω2)
e−iωτ . (2.11)

The additional minus sign on the right hand side of (2.11) is due to the negative
orientation of the contour integral.

A partial decomposition of 1/(ω − ω1)(ω − ω2), and invoking the definition of
the residue at ω = ωi as the coefficient in front of 1/(ω − ωi) in the Laurent series
expansion, yields, for ω1 6= ω2 (or equivalently γ 6= ω0),

Res
ω=ωi

1

(ω − ω1)(ω − ω2)
e−iωτ =

(−1)i+1

ω1 − ω2

e−iωiτ , i = 1, 2. (2.12)

For ω1 = ω2 (or equivalently the critical damping γ = ω0), the residue on the left
hand side of (2.12) is equal to −iτe−γτ (recall that if f(ω) = g(ω)/(ω − ω̄)n for
some positive integer n, where g is holomorphic at ω = ω̄, then Resω=ω̄ f(ω) =
g(n−1)(ω̄)/(n− 1)!). Hence, for τ > 0, (2.10) and (2.11) imply

g(τ) = e−γτ sin((ω2
0 − γ2)1/2τ)

(ω2
0 − γ2)1/2

, (2.13)

which is the impulse response of the oscillator, i.e., its motion due to a Dirac delta
excitation. The impulse response (2.13) is also valid for the critical damping as
γ → ω0, in which case g(τ) → τe−γτ for τ > 0. This result coincides with the one
obtained when inserting the residue −iτe−γτ into (2.11). Note that the oscillator
frequency (ω2

0 − γ2)1/2 and the characteristic time scale 1/γ are related to the real
and imaginary parts of the singularities ω1,2, respectively, whereas the sum of the
moduli of the residua is given by the amplitude (ω2

0 − γ2)1/2e−γτ .
The displacement for the damped harmonic oscillator with γ > 0 is finally ob-

tained by inserting g(τ) into (2.9), viz.,

x(t) =
1

(ω2
0 − γ2)1/2

∫ t

−∞
e−γ(t−t′) sin((ω2

0 − γ2)1/2(t− t′))f(t′) dt′. (2.14)

The upper limit of integration at time t clearly illustrates the idea in Sec. 2.1 that
the displacement x(t) only depends on the external driving force f(t′) for t′ < t with
the entire history of f(t′) included. Recall that the impulse response g(τ) also can
be derived using the Green function techniques in Ref. 39.

2.3 The Abraham-Lorentz equation of motion

A more complicated situation occurs for a charged particle when the phenomeno-
logical damping term 2γẋ in (2.5) is replaced by the radiation reaction, i.e., the
recoil effect of the charged particle on itself. In this case, the Abraham-Lorentz
model11 in Ref. 20, which corresponds to the simplest possible radiation reaction

11Also termed the Abraham-Lorentz-Dirac model since it was generalized by P. A. M. Dirac in
Ref. 8 to account for the effects of special relativity.
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Figure 3: Illustration of the self-acceleration and the associated violation of prim-
itive causality for a charged particle.

consistent with energy conservation, yields a term in (2.5) proportional to the third
time derivative of x(t), viz.,

−α
...
x + ẍ + ω2

0x = f(t), (2.15)

where α > 0 denotes the proportionality factor.12 The physical interpretation of the
radiation reaction is the recoil effect as a consequence of momentum carried away
from the particle.

The equation of motion (2.15) now implies that G(ω) instead is determined by
the roots ωi of the polynomial −iαω3 − ω2 + ω2

0 = 0. From Vieta’s formulae, or the
fundamental theorem of algebra, it follows that these roots satisfy ω1+ω2+ω3 = i/α,
or equivalently, at least one of them are located in the upper half of the ω-plane.
Thus, G(ω) is meromorphic rather than holomorphic in that region. In fact, from the
discussions in Refs. 35 and 36, it is clear that the solution of (2.15) is either violating
causality or passivity; a solution to (2.15) which satisfies passivity is necessary non-
causal and, as a consequence, admits self-acceleration, i.e., the particle starts to
accelerate a time interval of order α before the external driving force f(t) is applied.
Another unpleasant consequence of (2.15) is the runaway solution for ω0 = 0, in
which case passivity is violated and the acceleration ẍ(t) = ẍ(0)et/α of a free particle
increases exponentially with time. These difficulties also persist in the Abraham-
Lorentz-Dirac model consistent with special relativity. For an introduction to the
physical origin of the radiation reaction, see also Ref. 14.

To illustrate the phenomenon of self-acceleration, consider a free, charged particle
subject to the following external driving force per unit mass: f(t) = f0 for 0 < t < T ,
and zero otherwise.13 Then (2.15) with ω0 = 0 reads

−α
...
x + ẍ = f(t). (2.16)

12More explicitly, α = µ0q
2/6πmc0, where q and m denote the charge and mass of the particle,

and µ0 and c0 are the vacuum permeability and velocity of light in free space, respectively. For
the electron, α = 6 · 10−24 s, which is the typical time it takes for light to travel across an electron.

13This is merely the solution to Problem 11.19 in Ref. 14.
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The general solution of (2.16) is continuous in time (just integrate (2.16) from t− ε
to t + ε and send ε → 0+) although f(t) is discontinuous. Imposing the continuity
condition at t = 0 and t = T implies that either the runaway solution for t > T or the
self-acceleration for t < 0 can be eliminated, but not both of them. By preserving
passivity, and thereby preventing an acceleration which increases exponentially with
time for t > T , the solution of (2.16) becomes

ẍ(t) =





f0

(
1− e−T/α

)
et/α, t < 0

f0

(
1− e(t−T )/α

)
, 0 < t < T

0, t > T

. (2.17)

The solution (2.17) is seen to violate primitive causality in the sense that the particle
starts to accelerate a time interval of order α (recall however that α is a small
number) before the external driving force f(t) is applied, see Fig. 3. These absurd
implications are not entirely understood nearly a century ago after the proposal
of the Abraham-Lorentz model. Similar non-causal effects for Condon’s model on
optical activity in classical electrodynamics are addressed in Ref. 26.

2.4 The origin of dispersion relations

The holomorphic properties of G(ω) established in Sec. 2.1 are now used to derive
a common starting point for many classical dispersion relations. For this purpose,
consider the following Cauchy integral with the point ω located inside a closed
contour in the upper half of the ω-plane:

G(ω) =
1

2πi

∮
G(ω′)
ω′ − ω

dω′. (2.18)

Specify the contour by the real axis and an infinite semicircle in the upper half of
the ω-plane, and assume that G(ω′) vanishes sufficiently rapid at infinity. Then, for
any point ω + iε, where ω and ε are real-valued,

G(ω) = lim
ε→0+

1

2πi

∫ ∞

−∞

G(ω′)
ω′ − ω − iε

dω′. (2.19)

The integrand in (2.19) is recognized as the formula for the principal part distribu-
tion, i.e.,

lim
ε→0+

1

ω′ − ω − iε
= P

(
1

ω′ − ω

)
+ iπδ(ω′ − ω), (2.20)

where P denotes Cauchy’s principal value. The interpretation of the delta distri-
bution on the right hand side of (2.20) is the contribution from a small semicircle
on the real axis enclosing the singularity at ω′ = ω, see Fig. 4. This contour is
similar to the integration path in Fig. 2 in Paper I, where the singularity is located
at ω′ = 0.

Under the assumption that G(ω′) is sufficiently well-behaved at origin to inter-
change the Cauchy principal value and the limit ε → 0+, (2.20) inserted into (2.19)
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Figure 4: Integration contour in (2.18) for ω > 0. The radii of the small and large
semicircles approach zero and infinity, respectively.

yields14

G(ω) =
1

iπ
P

∫ ∞

−∞

G(ω′)
ω′ − ω

dω′. (2.21)

The relation (2.21) is recognized as the Hilbert transform in Ref. 41. It can be
split into the first and second Plemelj formulae by applying the real and imaginary
parts on both sides of (2.21). By using the cross symmetry (2.2), i.e., the fact that
Re G(ω′) and Im G(ω′) are even and odd in ω′, respectively, one obtains the following
transform pair which only involves integration over the positive real axis:

Re G(ω) =
2

π
P

∫ ∞

0

ω′ Im G(ω′)
ω′2 − ω2

dω′ (2.22)

Im G(ω) = −2ω

π
P

∫ ∞

0

Re G(ω′)
ω′2 − ω2

dω′ (2.23)

Recall that the Plemelj formulae are a direct consequence of passivity and primitive
causality.

The two formulae in (2.22) and (2.23) imply each other, so it is sufficient to
only keep one of them. For our purpose, (2.22) provides the necessary tool for the
analysis of extinction of acoustic and electromagnetic waves in Papers I and III. In
fact, (2.22) and (2.23) are the starting point of many classical dispersion relations,
including the forward and non-forward dispersion relations for scattering of waves
and particles in Sec. 3. The Plemelj formulae can also be used to derive dispersion
relations for various functions of G(ω) satisfying (2.2), since the sums, products,
and compositions of holomorphic functions also are holomorphic, cf., the dispersion
relation for the reciprocal of G(ω) in Sec. 2.6 (recall that G(ω) is nowhere zero in
the upper half of the ω-plane due to Mĕıman’s theorem on p. 5.) Note that also the

14Here, the Cauchy principal value integral (2.21) is defined as

P
∫ ∞

−∞

G(ω′)
ω′ − ω

dω′ = lim
ε→0+

(∫ ω−ε

−∞
+

∫ ∞

ω+ε

)
G(ω′)
ω′ − ω

dω′.
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frequency response G(ω) = −1/(ω−ω1)(ω−ω2) for the damped harmonic oscillator
in Sec. 2.2 satisfies (2.22) and (2.23).

Another interesting relation for real-valued ω is obtained by considering the
contour integral of ω′G(ω′)/(ω′2 + ω2) with respect to the real axis and an infinite
semicircle in the upper half of the ω′-plane (i.e., the same contour as in Fig. 4
except for the small semicircle centered at ω′ = ω). Under the assumption that
the contribution from the infinite semicircle vanishes, the method of residues yields
(recall that if f(ω) is holomorphic and has a simple singularity at ω = ω̄, then
Resω′=ω̄ f(ω) = limω→ω̄(ω − ω̄)f(ω))

∫ ∞

−∞

ω′G(ω′)
ω′2 + ω2

dω′ = 2πi Res
ω′=iω

ω′G(ω′)
ω′2 + ω2

= iπG(iω), (2.24)

where ω > 0. The real part of the integral in (2.24) vanishes since Re G(ω′) is even
in ω′. Thus, since also the integrand ω′ Im G(ω′)/(ω′2 + ω2) is even in ω′,

G(iω) =
2

π

∫ ∞

0

ω′ Im G(ω′)
ω′2 + ω2

dω′. (2.25)

Integrating both sides in (2.25) with respect to ω ∈ [0,∞) finally yields the summa-
tion rule ∫ ∞

0

G(iω) dω =

∫ ∞

0

Im G(ω) dω, (2.26)

where it has been assumed that G(ω) is sufficiently regular to interchange the order
of integration in the ω and ω′ variables. The relation (2.26) can also be derived by a
direct application of Cauchy’s integral theorem to a quarter circle contour in the first
quadrant of the ω-plane. The interpretation of (2.26) is that it relates the values of
G(ω) on the upper half of the imaginary axis to those of Im G(ω) on the real axis.
Provided that the integral on the left hand side is convergent, (2.26) suggest that
Im G(ω) is integrable rather than square integrable as presented in Titchmarsh’s
theorem below.

In some cases, it is more natural to establish conditions on the asymptotic be-
havior of the frequency response G(ω) for real-valued ω, instead of assuming that
G(ω)/(ω′−ω) vanishes when integrating over a large semicircle or any other similar
contour obtained via holomorphic continuation. For this purpose, the ideas in this
section are restated in a form appropriate for G(ω) when it is square integrable.
From Parseval’s theorem (also termed Plancherel’s theorem in Ref. 10) it then fol-
lows that ∫ ∞

−∞
|G(ω)|2 dω = 2π

∫ ∞

0

|g(τ)|2 dτ < C,

where C is a constant. Introduce ω = ω′ + iω′′, where ω′ and ω′′ are real-valued,
and recall that G(ω′ + iω′′) is the Fourier transform of e−ω′′τg(τ) evaluated at ω′.
For ω′′ > 0, another application of Parseval’s theorem yields

∫ ∞

−∞
|G(ω′ + iω′′)|2 dω′ = 2π

∫ ∞

0

e−2ω′′τ |g(τ)|2 dτ < 2π

∫ ∞

0

|g(τ)|2 dτ,
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which implies that G(ω) belongs to the Hardy class H2, see Refs. 9 and 12, i.e.,

∫ ∞

−∞
|G(ω′ + iω′′)|2 dω′ < C. (2.27)

This is an important result illuminated in a set of theorems in Ref. 41, collectively
referred to as Titchmarsh’s theorem.

Titchmarsh’s theorem. If G(ω) is square integrable on the real axis, the following
three conditions are equivalent:

i. the inverse Fourier transform of G(ω) vanishes for τ < 0, i.e.,

g(τ) =
1

2π

∫ ∞

−∞
G(ω)e−iωτ dω = 0, τ < 0;

ii. G(ω) is, for almost all ω′, the limit as ω′′ → 0+ of the function G(ω′ + iω′′),
which is holomorphic in the upper half of the ω-plane, and there satisfies (2.27);

iii. the real and imaginary parts of G(ω) satisfy any of (2.22) and (2.23).

The equivalence in Titchmarch’s theorem is understood to hold in the sense
that each of the conditions are both necessary and sufficient for the others to be
true. Loosely speaking, the theorem states that for a frequency response vanishing
sufficiently rapid at infinity, the following statements are mainly one single property
expressed in three different ways: i) having a Fourier transform which vanishes on
the negative real axis, ii) being holomorphic in the upper half of the ω-plane, and
iii) obeying a dispersion relation.

2.5 Dispersion relations with one subtraction

The requirement of square integrability in Titchmarsh’s theorem is often violated
in physical problems. In fact, for passive systems with square integrable (or finite
energy) input f(t), there exists a constant C such that the output x(t) satisfies

∫ ∞

−∞
|x(t)|2 dt ≤ C

∫ ∞

−∞
|f(t)|2 dt.

In fact, for many systems, conservation of energy implies that C is bounded from
above by unity. Irrespectively of the value of C, it follows from Parseval’s theorem
that ∫ ∞

−∞
|X(ω)|2 dω =

∫ ∞

−∞
|G(ω)|2|F (ω)|2 dω ≤ C

∫ ∞

−∞
|F (ω)|2 dω,

where X(ω) denotes the Fourier transform of x(t). Thus, G(ω) is bounded rather
than square integrable on the real axis. Although Titchmarsh’s theorem is not
directly applicable in this case, G(ω) is still holomorphic in the upper half of the
ω-plane.
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As pointed out in the previous paragraph, a common situation occurs when
G(ω) is bounded. Then, for an arbitrary point ω̄ in the upper half of the ω-plane,
Titchmarsh’s theorem can be applied to (G(ω) − G(ω̄))/(ω − ω̄), which indeed is
square integrable. Under the assumption that G(ω) is differentiable at ω̄, (2.21)
implies

G(ω) = G(ω̄) +
ω − ω̄

iπ
P

∫ ∞

−∞

G(ω′)−G(ω̄)

ω′ − ω̄

dω′

ω′ − ω
, (2.28)

which is known as a dispersion relation with one subtraction. This relation is partic-
ularly useful when ω̄ = 0 or |ω̄| → ∞. In the latter case with G∞ = lim|ω|→∞ G(ω),

G(ω) = G∞ +
1

iπ
P

∫ ∞

−∞

G(ω′)
ω′ − ω

dω′,

where P ∫∞
−∞ dω′/(ω′ − ω) = 0 has been used. Dispersion relations with more than

one subtraction, suitable for the asymptotic behavior G(ω) = O(ωn) as ω → ∞
where n is a positive integer, are addressed in Ref. 35.

2.6 The Kramers-Kronig relations

Also the Kramers-Kronig relations (named after the contemporary discoveries by
R. de L. Kronig and H. A. Kramers in Refs. 7 and 25), modeling the propaga-
tion of light in a homogeneous and lossy dielectric medium, originate from (2.22)
and (2.23). To illustrate this, introduce the permittivity ε(ω) relative to free space,
and set G(ω) = ε(ω) − ε∞, where ε∞ = limω→∞ ε(ω) for real-valued ω denotes the
instantaneous response of the medium.15 Then G(ω) satisfies (2.2), and, under the
assumption of strict passivity, Im ε(ω) > 0 for ω > 0, it follows from Mĕıman’s
theorem on p. 5 that ε(ω) only is real-valued on the imaginary axis among all finite
points in the upper half of the ω-plane. On the imaginary axis, the modulus of
ε(ω)− ε∞ decreases monotonically as ω tends to infinity.16

Physical reasons in Ref. 20 suggest that for this particular frequency response,
Re G(ω) = O(ω−2) and Im G(ω) = O(ω−3) as ω → ∞ along the real axis. How-
ever, the conductivity model and the Debye model17 vanish slower at infinity than
suggested in Ref. 20, but still sufficiently fast to be square integrable. For the con-
ductivity model, Re G(ω) = 0 and Im G(ω) = O(ω−1), while for the Debye model,
Re G(ω) = O(ω−2) and Im G(ω) = O(ω−1) as ω → ∞. Thus, (2.22) and (2.23)
yield, in the absence of a conductivity term, the following constraints on physical

15The present analysis is not restricted to isotropic media; instead, the formulae presented here
also hold in the anisotropic case for the Rayleigh quotients of the permittivity dyadic ε(ω). It
should also be mentioned that ε(ω) can be replaced by the permeability µ(ω) in the expressions
below.

16This conclusion is merely the first part of the statement in Problem 7.24 in Ref. 20.
17The conductivity model is defined by the additive term iς/ωε0, while the Debye model reads

ε(ω) = ε∞ + (εs − ε∞)/(1− iωτ), where εs denotes the static permittivity. Both the conductivity
ς > 0 and the relaxation time τ > 0 are independent of ω. For an introduction to dispersion
models for temporally dispersive matter, see Ref. 4 and references therein.
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realizability known as the Kramers-Kronig relations:

Re ε(ω) = ε∞ +
2

π
P

∫ ∞

0

ω′ Im ε(ω′)
ω′2 − ω2

dω′ (2.29)

Im ε(ω) = −2ω

π
P

∫ ∞

0

Re ε(ω′)− ε∞
ω′2 − ω2

dω′ (2.30)

Since the instantaneous response is non-unique from a modeling point of view, see
Ref. 16, (2.29) and (2.30) are often phrased with ε∞ = 1. For isotropic media,
the Kramers-Kronig relations can also be formulated in the refractive index n(ω) =
(ε(ω)µ(ω))1/2, see Refs. 19 and 35.

When static conductivity ς > 0 is present in the dielectric medium, (2.29) re-
mains valid whereas the term ς/ωε0 must be included on the right hand side of (2.30),
see Ref. 28 and the discussion in Paper II, i.e.,

Im ε(ω) =
ς

ωε0

− 2ω

π
P

∫ ∞

0

Re ε(ω′)− ε∞
ω′2 − ω2

dω′.

This additional term refers to the contribution from a small semicircle enclosing the
singularity at ω = 0, cf., the integration contour in Fig. 4.

A number of important conclusions can be deduced from the Kramers-Kronig
relations. In particular, assuming that Im ε(ω) is sufficiently well-behaved in the
absence of a conductivity term, yields, when sending ω → 0+, the summation rule

Re ε(0) = ε∞ +
2

π
P

∫ ∞

0

Im ε(ω′)
ω′

dω′. (2.31)

From (2.30) and (2.31) and the passivity condition, it is concluded that the per-
mittivity in the static limit is real-valued and larger or equal to ε∞. This result
is, among other things, important for the analysis of wave interaction with tem-
porally dispersive matter in Paper II. Finally, note that G(ω) = ε(ω) − ε∞ also
satisfies (2.26) provided it vanishes sufficiently fast at infinity, i.e.,

∫ ∞

0

ε(iω)− ε∞ dω =

∫ ∞

0

Im ε(ω) dω, (2.32)

where the right hand side of (2.32) is non-negative due to passivity. Observe that
this summation rule is not applicable to the conductivity model since then both the
left and right hand sides of (2.32) diverge.

Mĕıman’s theorem on p. 5, and the fact that ε∞ is real-valued, implies that ε(ω)
is nowhere zero in the upper half of the ω-plane. Hence, also the inverse of ε(ω) is
holomorphic in that half-plane, and (2.22) and (2.23) hold for G(ω) = ε−1(ω)− ε−1

∞ ,
i.e.,

Re ε−1(ω) = ε−1
∞ +

2

π
P

∫ ∞

0

ω′ Im ε−1(ω′)
ω′2 − ω2

dω′ (2.33)

Im ε−1(ω) = −2ω

π
P

∫ ∞

0

Re ε−1(ω′)− ε−1
∞

ω′2 − ω2
dω′ (2.34)



3 Dispersion relations in scattering theory 17

Both (2.29) and (2.30) as well as (2.33) and (2.34) can be used to derive supercon-
vergent summation rules in terms of the plasma frequency, see Refs. 2 and 20.18 The
reader should, however, be careful to consult Ref. 29 on this topic due to its many
mistakes and absence of physical clarity.

A Gedankenexperiment associated with the Kramers-Kronig relations is pre-
sented in Ref. 17. Consider a pair of spectacles with, say, green glasses subject to a
flashlight in a dark room. The light as a function of time is modeled as a δ-twinkle,
i.e.,

δ(t) =
1

2π

∫ ∞

−∞
eiωt dω. (2.35)

The interpretation of (2.35) is that the δ-twinkle contains all frequencies in such
a way that the waves interfere destructively except at the instant t = 0. Now,
consider a pair of ideal green glasses which transmits green light in some region of
the spectrum, but absorbs all other waves necessary for the mutual cancelation at
time t > 0. Suppose there is no connection between the real and imaginary parts
(i.e., the refractive and absorptive properties) of the refractive index. Why then is
it not possible to see in the dark with the green glasses? An explanation is provided
by the Kramers-Kronig relations which state that the refractive index depends on
ω in such a way that the transmitted waves in the green region obtain the right
phase shifts necessary for the destructive interference at time t > 0. In fact, there
is no green or any other colored glasses which simply absorb a part of the spectrum
without possessing refraction.

An extension of Kramers-Kronig relations to heterogeneous media is presented
in Ref. 46 based on Herglotz functions similar to ω(ε(ω) − ε∞). Kramers-Kronig
relations can also be derived for acoustic waves; the homogeneous case for fluid
media is due to V. L. Ginzberg in Ref. 13.

3 Dispersion relations in scattering theory

Dispersion relations for scattering of acoustic and electromagnetic waves are briefly
discussed in this section as an introduction to Papers I and III.19 The ideas presented
here follow the expositions in Refs. 34 and 47. Dispersion relations for partial
waves, addressed in Refs. 34 and 35, are however excluded from the thesis since
new results soon appear in a forthcoming paper. The basic theory of acoustic and
electromagnetic waves is treated in Refs. 6 and 45. For an introduction to acoustic
and electromagnetic scattering theory, see also Refs. 4, 30, 32 and 43.

18The term superconvergence is referred to the asymptotic behavior of the Hilbert trans-
form (2.21) as ω → ∞ along the real axis, see Ref. 41. Superconvergent summation rules are
often deduced from Kramers-Kronig relations and an additional physical requirement in the high
frequency regime, e.g., the assumption that the electromagnetic response of the medium under
consideration is described by a Lorentz model, or equivalently, the damped harmonic oscillator in
Sec. 2.2, for frequencies far above any resonances of the medium.

19The results in this section also hold for a larger class of symmetric hyperbolic systems including
elastic waves, see Refs. 10 and 45.
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Figure 5: Geometry for non-forward scattering by a spherical symmetric target.

3.1 Non-forward dispersion relations

Non-forward dispersion relations deal with constraints on physical realizable mea-
sures for scattering of wave packages by a fixed obstacle. For simplicity, consider the
spherical symmetric target of radius a in Fig. 5 subject to a plane wave excitation
f(τ) of either acoustic or electromagnetic origin, viz.,

f(τ) =
1

2π

∫ ∞

−∞
F (ω)e−iωτ/c dω, (3.1)

where τ = ct − x. Here, c denotes the phase velocity of the surrounding medium
which is assumed to be lossless, isotropic and homogeneous.20 For a fixed scattering
angle θ, the path difference between a wave deflected at the surface of the scatterer
and a reference wave in free space passing through the origin is, according to Fig. 5,
∆(α) = a(sin α− sin(α−θ)). The maximal path difference hence occurs for α = θ/2
(just solve d∆(α)/dα = 0 to obtain α − θ = ±α + 2πk, where k is an integer, and
use that 0 < α < π/2) with

max
0<α<π/2

∆(α) = 2a sin θ/2.

Thus, the shortest path for the scattered wave to reach any radial distance exterior
to the scatterer is 2a sin θ/2 shorter than the path taken through the origin.

Assume that f(τ) = 0 for τ < 0 (implying that F (ω) is holomorphic in the upper
half of the ω-plane) in the sense that the incident wave front is determined by the
equation ct− x = 0. Consequently, the scattered wave h(τ) at large distances does

20For both acoustic and electromagnetic waves, it is assumed that c exceeds the phase velocity of
the scatterer if the latter is permeable; otherwise, the present analysis should be modified with the
same technique used for the Dirichlet boundary condition in Paper III. An important difference
in scattering of acoustic and electromagnetic waves is that in the former case, the phase velocity
of the scatterer often exceeds c (cf., a metal obstacle embedded in fluid medium such as water or
air at normal pressure), while in the latter case, the surrounding medium is often free space and
the opposite relation holds.



3 Dispersion relations in scattering theory 19
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Figure 6: Light cones for the incident and scattered wave packages, f(τ) and h(τ),
respectively, where τ = ct− x.

not reach the radial distance x until τ > −2a sin θ/2, which is illustrated by the light
cones in Fig. 6. Introduce H(ω) as the Fourier transform of h(τ) analogous to (3.1),
and let S(ω, θ) = xe−iωx/cH(ω)/F (ω) denote the associated scattering amplitude.
Then, for a fixed scattering angle θ, it follows that e2iωa/c sin θ/2S(ω, θ) is holomorphic
in the upper half of the ω-plane, since F (ω) is arbitrary and also holomorphic in
that region.21 However, e2iωa/c sin θ/2S(ω, θ) does not vanish at infinity, since for many
boundary conditions in wave mechanics, S(ω, θ) = O(ω) as ω → ∞ along the real
axis. Thus, S(ω, θ)/ω2 rather than S(ω, θ) vanishes sufficiently rapid at infinity, and
G(ω) = e2iωa/c sin θ/2S(ω, θ)/ω2 inserted into (2.22) yields22

Re

{
e2iωa/c sin θ/2S(ω, θ)

ω2

}
=

2

π
P

∫ ∞

0

ω′

ω′2 − ω2
Im

{
e2iω′a/c sin θ/2S(ω′, θ)

ω′2

}
dω′.

(3.2)
The exponential factor e2iωa/c sin θ/2 corresponds to a time delay of the light cone on
the right hand side of Fig. 6 due to an essential singularity in S(ω, θ) at infinity. In
particular, the exponential factor reduces to e2iωa/c for scattering in the backward
direction θ = π. Note that (3.2) also can be formulated as a dispersion relation with
two subtractions, cf., the discussion in Sec. 2.5.

A drawback of (3.2) for θ 6= 0 is that it depends on the choice of origin,
and that the real and imaginary parts of S(ω, θ) are mixed on both sides due to
the exponential factor. In addition, the signs of the real and imaginary parts of
e2iωa/c sin θ/2S(ω, θ)/ω2 are indefinite, i.e., they take both positive and negative values.
There have been attempts, however unsuccessful, to regard e2iωa/c sin θ/2S(ω, θ)/ω2 as
a function of ω and ζ = 2ω sin θ/2 rather than ω and θ. In this case, the exponential
factor becomes constant for a fixed ζ, and one seeks for a holomorphic continua-
tion of this new function. The difficulties involved in such an extension is briefly
addressed in Refs. 17 and 34.

Jung’s theorem in Ref. 23 can be used to extend (3.2) to include scatterers of

21Here, the argument of the exponential factor e2iωa/c sin θ/2 should be interpreted as 2iωa
c sin θ

2 .
22The asymptotic behavior S(ω, θ) = O(ω) as ω → ∞ is motivated by the forward direction

θ = 0. For non-forward scattering, (3.2) can also be formulated with other weight functions than
1/ω2 which vanish slower at infinity.
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arbitrary shape instead of just spherical symmetric targets. The theorem states that
the radius of the smallest sphere circumscribing any scatterer of diameter D is less
or equal to

√
6D/4, with equality if and only if the scatterer contains the vertices

of a tetrahedron of edge lengths equal to D. Thus, the non-forward dispersion
relation (3.2) also holds for scatterers of arbitrary shape if a in the exponents are
replaced by any a0 satisfying23

a0 ≥
√

6

4
D. (3.3)

In particular, (3.2) subject to the static limit ω → 0+ yields (recall that S(0, θ) =
limω→0+ S(ω, θ) is real-valued)

S(0, θ)

ω2
=

2

π

∫ ∞

0

1

ω′3
Im

{
e2iω′a0/c sin θ/2S(ω′, θ)

}
dω′, (3.4)

where it has been assumed that S(ω, θ) is continuous at ω = 0 and sufficiently regular
to exchange Cauchy’s principal value and the static limit.24 Thus, as a consequence
of passivity and primitive causality, (3.4) holds for any a0 satisfying (3.3) although
the left hand side of (3.4) only depends on the static properties of the scatterer
irrespectively of a0.

3.2 Forward dispersion relations

The dispersion relation (3.2) becomes particularly useful when applied to the forward
direction, i.e., for the scattering angle θ = 0. In this case, the exponential factor
e2iωa/c sin θ/2 vanishes, and (3.2) reduces to

S(ω, 0)

ω2
=

2

π
P

∫ ∞

0

ω′

ω′2 − ω2

Im S(ω′, 0)

ω′2
dω′. (3.5)

Relation (3.5) is given experimental significance by invoking the optical theorem,
σext(ω) = 4πc/ω Im S(ω, 0), which states that the scattering amplitude in the for-
ward direction solely determines the amount of extinction, i.e., the combined effect
of absorption and scattering in all directions. Here, σext(ω) denotes the extinction
cross section defined as the sum of the scattered and absorbed power divided by the
incident power flux. The optical theorem is common to many disparate scattering
phenomena such as acoustic waves, electromagnetic waves, and elementary particles,
see Refs. 34 and 35. A historical survey of the optical theorem from a century ago
to modern applications is given in Ref. 33.

For many boundary conditions in wave mechanics, including the transmission
problems for acoustic and electromagnetic waves, S(ω, 0) = O(ω2) as ω → 0+ along

23Of course, a priori knowledge of the geometry of the scatterer improves the bound on a0. For
example, for a sphere it is sufficient that a0 is greater or equal to D/2, in contrast to (3.3) which
yields the lower bound 0.61D.

24For a non-spherical target, θ refers to the multi-variable (ϑ, φ) of the polar and azimuthal
angles ϑ and φ, respectively.
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Figure 7: Partial wave decompositions of (3.6) for scattering of acoustic and
electromagnetic waves by an impermeable sphere of radius a.

the real axis, and (3.5) implies25

lim
ω→0+

Re
S(ω, 0)

ω2
=

1

2π2c

∫ ∞

0

σext(ω
′)

ω′2
dω′. (3.6)

This forward dispersion relation is particularly useful since the extinction cross sec-
tion per definition is non-negative and therefore the sign of the integrand is definite.
In addition, both the integrand and the left hand side in (3.6) are experimentally
significant, and the important variational results of D. S. Jones in Refs. 21 and 22
can be invoked. Recall that (3.6) holds for arbitrary scatterers since it does not con-
tain any reference to either the shape or composition of the obstacle. Applications
of this relation to various problems in theoretical physics involving wave interaction
with matter are presented in the included papers. In particular, (3.6) is the starting
point for the physical limitations on reciprocal antennas in Papers IV and V.

Scattering of acoustic (Dirichlet & Neumann) and electromagnetic (PEC) waves
by an impermeable sphere of radius a is illustrated in Fig. 7. In the figure, the
extinction cross section is depicted for both the perfectly electric conducting bound-
ary condition, and the Neumann and Dirichlet problems for acoustic waves. In
addition, statistics on the acoustic and electromagnetic partial wave decompositions
of the integral in (3.6) are included on the right hand side of the figure.26 From
the statistics, it is seen that the integral in (3.6) is dominated by the lowest order
multipole for both the PEC and Neumann boundary conditions. Note however the

25The extension to other weight functions than 1/ω2 for a given static limit of S(ω, 0) is addressed
in a forthcoming paper.

26For an introduction to partial waves in scattering by impermeable spheres, see Ref. 44. Ad-
ditional results on the interpretation of (3.6) in terms of partial waves, including a set of peculiar
integral relations for the spherical Bessel and Hankel functions, will be presented in a forthcom-
ing paper. For example, any passive and causal function ε = ε(κ) satisfying the Kramers-Kronig
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absence of a monopole (zeroth order rotationally symmetric multipole) term in the
electromagnetic case due to a result by Brouwer in algebraic topology that a contin-
uous tangential vector field on the unit sphere must vanish somewhere, or simplified,
it is impossible to smoothly comb a hedgehog without leaving a bald spot or making
a parting. The static limit of the Dirichlet condition is the major reason why the
upper curve does not satisfy (3.6), see the discussion in Paper II. Furthermore,
integration by parts in (3.6) becomes particularly useful when the curves in Fig. 7
a priori are known to be monotone. Then a similar identity to (3.6) with a definite
sign in the integrand can be established for the derivative dσext(ω)/ dω. This tech-
nique is feasible for the Neumann problem, but obviously not for the PEC boundary
condition due to its oscillatory character.

The fact that the extinction cross sections in Fig. 7 approach twice the projected
area in the forward direction is known as the extinction paradox. From geometrical
optics one naively expects that at short wavelengths a particle will remove as much
energy as incident upon it. However, in this limit, geometrical optics is not applicable
since the particle always will have edges in the neighborhood of which geometrical
optics fails to be valid. The paradoxical character of the short wavelength limit
is relieved by recalling that the observation is made at great distance far beyond
where a shadow can be distinguished. For example, a meteorite in interstellar space
between a star and one of our telescopes will remove twice the light incident upon it
(when also deflected light at small angles is counted as scattered), while a flower pot
in a window only removes the sunlight falling on it, and not twice this amount. For
a discussion of the extinction paradox in terms of the physical optics approximation,
see Refs. 4 and 43.

Epilogue

The following quote ends this General Introduction by emphasizing the importance
of holomorphic functions in theoretical physics:

Thus, the beautiful mathematical theory of analytic continuation provides
the key to a deeper understanding of some of the most beautiful phenom-
ena displayed in the sky, and also manifested in so many other ways —
through all scales of size — revealing the underlying unity of nature.

Herch Moysés Nussenzveig

“Diffraction Effects in Semiclassical Scattering”, Chapter XVI

relations (2.29) and (2.30) also satisfies the integral identity

Re
∞∑

l=1

(2l + 1)
∫ ∞

0

jl(κ)(κε1/2jl(κε1/2))′ − ε(κjl(κ))′jl(κε1/2)
hl(κ)(κε1/2jl(κε1/2))′ − ε(κhl(κ))′jl(κε1/2)

dκ

κ4
= π lim

κ→0+

ε− 1
ε + 2

,

where jl and hl denote the spherical Bessel and Hankel functions of the first kind, respectively.
Here, (κfl(κ))′ = κf ′l(κ) + fl(κ) for complex-valued κ with f ′l(κ) = lfl(κ)/κ − fl+1(κ), where fl
denotes any of jl and hl. Similar integral identities can be derived for scattering of acoustic waves.
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Abstract

In this paper, new physical limitations on the extinction cross section and
broadband scattering are investigated. A measure of broadband scattering
in terms of the integrated extinction is derived for a large class of scatterers
based on the holomorphic properties of the forward scattering dyadic. Closed-
form expressions of the integrated extinction are given for the homogeneous
ellipsoids and theoretical bounds are discussed for arbitrary heterogeneous
scatterers. Finally, the theoretical results are illustrated by numerical com-
putations for a series of generic scatterers.

1 Introduction

The relation between the extinction cross section and the forward scattering dyadic,
nowadays known as the optical theorem, dates back to the work of Rayleigh more
than a century ago [28]. Since then, the concept has fruitfully been extended to
high-energy physics where it today plays an essential role in analyzing particle col-
lisions [20]. This is one striking example of how results, with minor modifications,
can be used in both electromagnetic and quantum mechanic scattering theory. An-
other example of such an analogy is presented in this paper, and it is believed that
more analogies of this kind exist, see e.g., the excellent books by Taylor [29] and
Nussenzveig [22].

As far as the authors know, a broadband measure for scattering of electromag-
netic waves was first introduced by Purcell [24] in 1969 concerning absorption and
emission of radiation by interstellar dust. Purcell derived the integrated extinction
for a very narrow class of scatterers via the Kramers-Kronig relations [17, pp. 279–
283]. A slightly different derivation of the same result was done by Bohren and
Huffman [4, pp. 116–117]. In both references it was noticed that the integrated
extinction is proportional to the volume of the scatterer, with proportionality factor
depending only on the shape and the long wavelength limit response of the scatterer.
Based upon this observation, Bohren and Huffman conjecture [4, p. 117]:

Regardless of the shape of the particle, however, it is plausible on physical
grounds that integrated extinction should be proportional to the volume
of an arbitrary particle, where the proportionality factor depends on its
shape and static dielectric function.

Curiosity whether this supposition is true and the generalization of the results to a
wider class of scatterers have been the main driving forces of the present study.

Physical limitations on scattering of electromagnetic waves play an important
role in the understanding of wave interaction with matter. Specifically, numerous
papers addressing physical limitations in antenna theory are found in the literature.
Unfortunately, they are almost all restricted to the spherical geometry, deviating
only slightly from the pioneering work of Chu [5] in 1948. In contrast to antenna
theory, there are, however, few papers addressing physical limitations in scattering
by electromagnetic waves. An invaluable exception is given by the fundamental work
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Figure 1: Illustration of the scattering problem. The scatterer V is subject to a
plane wave incident in the k̂-direction.

of Nussenzveig [21] in which both scattering by waves and particles are analyzed in
terms of causality. Other exceptions of importance for the present paper are the
Rayleigh scattering bounds derived by Jones [10, 11].

The results of Purcell mentioned above are generalized in several ways in this
paper. The integrated extinction is proved to be valid for anisotropic heterogeneous
scatterers of arbitrary shape. Specifically, this quantity is analyzed in detail for
the ellipsoidal geometry. Several kinds of upper and lower bounds on broadband
scattering for isotropic material models are presented. These limitations give a
means of determining if an extinction cross section is realizable or not.

The paper is organized as follows: in Section 2, the integrated extinction is
derived for a large class of scatterers based on the holomorphic properties of the
forward scattering dyadic. Next, in Section 3, bounds on broadband scattering are
discussed for arbitrary isotropic heterogeneous scatterers. In the following section,
Section 4, some closed-form expressions of the integrated extinction are given. More-
over, in Section 5, numerical results on the extinction cross section are presented
and compared with the theoretical bounds. Finally, some future work and possible
applications are discussed in Section 6.

Throughout this paper, vectors are denoted in italic bold face, and dyadics in
roman bold face. A hat (̂ ) on a vector denotes that the vector is of unit length.

2 Broadband scattering

The scattering problem considered in this paper is Fourier-synthesized plane wave
scattering by a bounded heterogeneous obstacle of arbitrary shape, see Figure 1. The
scatterer is modeled by anisotropic constitutive relations [17, Ch. XI] and assumed
to be surrounded by free space. The analysis presented in this paper includes the
perfectly electric conducting material model, as well as general temporal dispersion
with or without a conductivity term.
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2.1 The forward scattering dyadic

The scattering properties of V are described by the far field amplitude, F , defined
in terms of the scattered field, Es, as [15, Sec. 2]

Es(t, x) =
F (c0t− x, x̂)

x
+O(x−2) as x →→∞, (2.1)

where c0 is the speed of light in vacuum, and x̂ = x/x with x = |x|. The far field
amplitude is related to the incident field, Ei(c0t− k̂ · x), which is impinging in the
k̂-direction, via the linear and time-translational invariant convolution

F (τ, x̂) =

∫ ∞

−∞
St(τ − τ ′, k̂, x̂) ·Ei(τ

′) dτ ′.

The dimensionless temporal scattering dyadic St is assumed to be causal in the
forward direction, k̂, in the sense that the scattered field cannot precede the incident
field [21, pp. 15–16], i.e.,

St(τ, k̂, k̂) = 0 for τ < 0. (2.2)

The Fourier transform of (2.1) evaluated in the forward direction is

Es(k, xk̂) =
eikx

x
S(k, k̂) ·E0 +O(x−2) as x →∞,

where k is a complex variable in the upper half plane with Re k = ω/c0. Here, the
amplitude of the incident field is E0, and the forward scattering dyadic, S, is given
by the Fourier representation

S(k, k̂) =

∫ ∞

0−
St(τ, k̂, k̂)eikτ dτ. (2.3)

The imaginary part of k improves the convergence of (2.3) and extends the elements
of S to holomorphic functions in the upper half plane for a large class of dyadics St.
Recall that S(ik, k̂) is real-valued for real-valued k and S(ik, k̂) = S∗(−ik∗, k̂) [21,
Sec. 1.3–1.4].

The scattering cross section σs and absorption cross section σa are defined as the
ratio of the scattered and absorbed power, respectively, to the incident power flow
density in the forward direction. The sum of the scattering and absorption cross
sections is the extinction cross section,

σext = σs + σa.

The three cross sections are by definition real-valued and non-negative. The ex-
tinction cross section is related to the forward scattering dyadic, S, via the optical
theorem [20, pp. 18–20]

σext(k) =
4π

k
Im

{
p̂∗e · S(k, k̂) · p̂e

}
. (2.4)
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Figure 2: Integration contour used in the Cauchy integral theorem in (2.5).

Here, k is real-valued, and p̂e = E0/|E0| is a complex-valued vector, independent
of k, that represents the electric polarization, and, moreover, satisfies p̂e · k̂ = 0.

The holomorphic properties of S can be used to determine an integral identity for
the extinction cross section. To simplify the notation, let %(k) = p̂∗e ·S(k, k̂) · p̂e/k

2.
The Cauchy integral theorem with respect to the contour in Figure 2 then yields

%(iε) =

∫ π

0

%(iε− εeiφ)

2π
dφ +

∫ π

0

%(iε + Reiφ)

2π
dφ +

∫

ε<|k|<R

%(k + iε)

2πik
dk, (2.5)

where k in the last integral on the right hand side is real-valued.
The left hand side of (2.5) and the integrand in the first integral on the right

hand side are well-defined in the limit ε → 0 and given by the long wavelength
limit [15, p. 18]

%(iε) =
1

4π
(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) +O(ε) as ε →→ 0. (2.6)

Here, p̂m = k̂× p̂e denotes the magnetic polarization and γe and γm are the electric
and magnetic polarizability dyadics, respectively, see Appendix A for their explicit
definitions. These dyadics are real-valued and symmetric. This result also includes
the effect of a conductivity term [15, pp. 49–51].

The second term on the right hand side of (2.5) is assumed to approach zero and
does not contribute in the limit R →∞. This is physically reasonable since the short
wavelength response of a material is non-unique from a modeling point of view [8].
The assumption is also motivated by the extinction paradox [31, pp. 107–113], i.e.,

%(k) = −A(k̂)

2πik

(
1 +O(|k|−1)

)
as |k| → ∞, Im k ≥ 0,

where A denotes the projected area in the forward direction.
In the last term on the right hand side of (2.5) it is assumed that % is sufficiently

regular to extend the contour to the real axis. Under this assumption, the real part
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of (2.5) yields

%(0) =
1

π

∫ ∞

−∞

Im %(k)

k
dk =

1

4π2

∫ ∞

−∞

σext(k)

k2
dk =

1

4π3

∫ ∞

0

σext(λ) dλ, (2.7)

where we have used the optical theorem, (2.4). In this expression λ = 2π/k is the
vacuum wavelength.

In fact, the assumptions on % can be relaxed, and the analysis can be generalized
to certain classes of distributions [21, pp. 33–43]. However, the integral in (2.7) is
classically well-defined for the examples considered in this paper. The relation (2.7)
can also be derived using the Hilbert transform [30, Ch. V].

2.2 The integrated extinction

We are now ready to utilize the main result in the previous section. Moreover, the
properties of the polarizability dyadics are exploited and different material models
are discussed.

Insertion of the long wavelength limit (2.6) into (2.7) yields the integrated ex-
tinction ∫ ∞

0

σext(λ) dλ = π2 (p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) . (2.8)

Note that (2.8) is independent of any temporal dispersion, depending only on the
long wavelength limit response of the scatterer in terms of γe and γm. Closed-form
expressions of γe and γm exist for the homogeneous ellipsoids, see Section 4. The
polarizability dyadics for more general obstacles are summarized in Kleinman &
Senior [15, p. 31].

For pure electric (γm = 0) and pure magnetic (γe = 0) scatterers, the integrated
extinction depends only on p̂e and p̂m, respectively, and hence not on k̂ = p̂e ×
p̂m. Moreover, the integrated extinction for a scatterer with isotropic polarizability
dyadics, i.e., γe = γeI and γm = γmI, is independent of p̂e and p̂m as well as k̂.

An important model in many applications is the perfectly conducting case (PEC),
which is formally obtained in the long wavelength limit by the limits [15, pp. 39–40]

χe(x) →∞ and χm(x) ↘ −1. (2.9)

Since the long wavelength limit lacks a natural length scale it follows that the
integrated extinction for any heterogeneous scatterer is proportional to the volume
|V | =

∫
V

dVx, where dVx is the volume measure with respect to x — a result
conjectured by Bohren and Huffman [4, p. 117] for spherical scatterers. A brief
derivation of this statement for anisotropic, heterogeneous material parameters is
presented in Appendix A.

Randomly oriented scatterers are valuable in many applications [24]. The broad-
band scattering properties of an ensemble of randomly oriented scatterers is quan-
tified by the averaged integrated extinction,

∫ ∞

0

σ̄ext(λ) dλ =
π2

3
tr(γe + γm). (2.10)



34 Paper I: Physical limitations on broadband scattering . . .

An interesting variational result based on (2.10) states that among all isotropic,
homogeneous scatterers of equal volume and susceptibilities, the spherical scatterer
minimizes the averaged integrated extinction [10, Thm. 3].

3 Bounds on broadband scattering

The main result of Section 2.2 is now exploited. Firstly, upper and lower bounds
on the integrated extinction utilizing the eigenvalue properties of the polarizability
dyadics are established. These estimates are followed by two additional upper and
lower bounds based on the results of Jones [10, 11].

3.1 Bandwidth estimates

Since the extinction cross section is non-negative, it is clear that for any wavelength
interval Λ ⊂ [0,∞),

|Λ|min
λ∈Λ

σ(λ) ≤
∫

Λ

σ(λ) dλ ≤
∫ ∞

0

σext(λ) dλ, (3.1)

where |Λ| is the absolute bandwidth and σ denotes any of the extinction, scattering
and absorption cross sections σext, σs, and σa, respectively. This seemingly trivial
estimate gives a fundamental limitation on the product between the bandwidth and
the amplitude of the cross sections, see Fig. 7.

3.2 Increasing material parameters

An important variational result can be established for isotropic material param-
eters with the long wavelength limit response given by the electric and magnetic
susceptibilities, χe(x) and χm(x), respectively. The result states that the inte-
grated extinction increase monotonically with increasing χe(x) and χm(x) for each
x ∈ R3 [11, Thm. 1], i.e.,

χi1(x) ≤ χi2(x), x ∈ R3 =⇒
∫ ∞

0

σext1(λ) dλ ≤
∫ ∞

0

σext2(λ) dλ, (3.2)

where i = e, m. Recall that Kramers-Kronig relations [17, pp. 279–281] implies that
χe(x) and χm(x) pointwise are non-negative, provided the conductivity is zero. If the
conductivity of the scatterer is non-zero, the electric polarizability dyadic, γe, can be
determined by letting the electric susceptibility becoming infinitely large [15, pp. 49–
50]. As a consequence of (3.2), no heterogeneous scatterer has a larger integrated
extinction than the corresponding homogeneous one with maximal susceptibility.

3.3 Eigenvalue estimates

The static polarizability dyadics γe and γm are real-valued and symmetric, and hence
diagonalizable with real-valued eigenvalues γej and γmj with j = 1, 2, 3, respectively,
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ordered as γe1 ≥ γe2 ≥ γe3 and γm1 ≥ γm2 ≥ γm3. Since the right hand side
of (2.8) is the Rayleigh quotients of γe and γm, their largest and smallest eigenvalues
bound (2.8) according to standard matrix theory,1 viz.,

π2(γe3 + γm3) ≤
∫ ∞

0

σext(λ) dλ ≤ π2(γe1 + γm1), (3.3)

Equality on the left (right) hand side of (3.3) holds when p̂e is a unit eigenvector of
γe with eigenvalue γe3 (γe1) and p̂m simultaneously is a unit eigenvector of γm with
eigenvalue γm3 (γm1).

3.4 Scatterers of arbitrary shape

Broadband scattering in the sense of the integrated extinction is according to (3.3)
directly related to the eigenvalues of the static polarizability dyadics. Lemma 2 in
Jones [11] applied to (3.3) yields

π2

∫

V

χe(x)

χe(x) + 1
+

χm(x)

χm(x) + 1
dVx ≤

∫ ∞

0

σext(λ) dλ ≤ π2

∫

V

χe(x) + χm(x) dVx.

(3.4)
The bounds in (3.4) are sharp in the sense that equality can be obtained as a limiting
process for certain homogeneous ellipsoids, see Section 4.

The right hand side of (3.4) is bounded from above by |V |‖χe + χm‖∞, where
‖f‖∞ = supx∈V |f(x)| denotes the supremum norm. As a consequence, the upper
bound on the integrated extinction for any heterogeneous scatterer is less than or
equal to the integrated extinction for the corresponding homogeneous scatterer with
susceptibilities ‖χe‖∞ and ‖χm‖∞. This observation leads to the conclusion that
there is no fundamental difference on the integrated extinction between scattering
by heterogeneous and homogeneous obstacles.

For weak scatterers in the sense of the Born-approximation, ‖χe + χm‖∞ ¿ 1,
and (3.4) implies

∫ ∞

0

σext(λ) dλ = π2

∫

V

χe(x) + χm(x) dVx +O(‖χe + χm‖2
∞), (3.5)

where the Taylor series expansion 1/(1 + x) = 1 +O(x) for |x| < 1 have been used.
Note that (3.5) reduces to a particularly simple form for homogeneous scatterers.

3.5 Star-shaped scatterers

Due to (3.2), it is possible to derive upper bounds on the integrated extinction by
applying the bounds to the corresponding homogeneous scatterer with susceptibil-
ities ‖χe‖∞ and ‖χm‖∞. To this end, assume V is star-shaped in the sense that
KV 6= ∅, where KV is the set of x ∈ V such that for all y ∈ V and 0 ≤ s ≤ 1

1If the eigenvectors corresponding to the largest eigenvalues are the same for the electric and
the magnetic cases, the bounds in (3.3) can be sharpened.
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Figure 3: Geometry for the star-shape parametrization.

the straight line x + (1− s)y is contained in V , i.e., if it has an interior point from
which its entire boundary can be seen. For a convex scatterer, KV = V .

A refined upper bound on γe1 and γm1 [10, Thm. 5] applied to (3.3), also taking
into account the shape of V , yields the inequality

∫ ∞

0

σext(λ) dλ ≤ π2|V |ψ
( ‖χe‖∞

ψ + ‖χe‖∞ +
‖χm‖∞

ψ + ‖χm‖∞

)
, (3.6)

where the geometrical factor ψ is defined by

ψ =
3

|V | max
j

∫

S

(êj · r)2

r · ν̂ dSr ≤ 9

|V |
∫

S

r2

r · ν̂ dSr. (3.7)

Here, êj denote mutually orthonormal vectors and dSr is the surface measure of S
with respect to r (S is the bounding surface of V ). The denominator in (3.7) is
the distance from the tangent plane to the origin, see Figure 3. The upper bound
in (3.7) is independent of the coordinate system orientation but depends on the
location of the origin.

Furthermore, the right hand side of (3.6) is bounded from above by either ‖χe‖∞
and ‖χm‖∞ or ψ. The first case yields (3.4) for a homogeneous scatterer (material
parameters ‖χe‖∞ and ‖χm‖∞), while the latter implies∫ ∞

0

σext(λ) dλ ≤ 2π2|V |ψ, (3.8)

irrespectively of the material parameters of V . By comparing (3.4) with (3.8), it
is clear that (3.8) provides the sharpest bound when 2ψ < ‖χe + χm‖∞. Note
that (3.2) implies that it is possible to evaluate (3.7) for any surface circumscribing
the scatterer V .

The geometrical factor for the oblate spheroid is ψ = 3(4 + ξ−2)/5 and for the
prolate spheroid ψ = 3(3 + 2ξ−2)/5 (the origin at the center of the spheroid), where
ξ ∈ [0, 1] is the ratio of the minor to the major semi-axis. In particular, ψ = 3 for the
sphere. The bound in (3.6) is isoperimetric since equality holds for the homogeneous
sphere, see Section 4. The geometrical factor ψ for the circular cylinder of radius b
and length ` is2 ψ = max {3 + 3b2/`2, 3 + `2/2b2}.

2This expression deviates from the result of Jones [10].
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3.6 Jung’s theorem

Jung’s theorem [13] gives an optimal upper bound on the radius of a bounded subset
V ⊂ R3 in terms of its diameter, diam V . The theorem states that V is contained
in the unique sphere of radius RV ≤ √

6/4 diam V , with equality if and only if the
closure of V contains the vertices of a tetrahedron of edge lengths equal to diam V .
Since ψ = 3 for the sphere and |V | is bounded from above by the volume of the
sphere of radius RV , (3.6) yields

∫ ∞

0

σext(λ) dλ ≤ π33
√

6

8
(diam V )3

( ‖χe‖∞
3 + ‖χe‖∞ +

‖χm‖∞
3 + ‖χm‖∞

)
. (3.9)

The right hand side of (3.9) can be estimated from above independently of the
material parameters. We get

∫ ∞

0

σext(λ) dλ ≤ π33
√

6

4
(diam V )3,

which is useful in cases where the right hand side of (3.8) diverges.
In this section, we have applied Jung’s theorem to a sphere circumscribing the

scatterer. There are, however, other choices of circumscribing surfaces that can be
utilized [9].

4 Homogeneous ellipsoidal scatterers

For homogeneous, anisotropic ellipsoidal scatterers with susceptibility dyadics χe

and χm, closed-form expressions of γe and γm exist [12], viz.,

γi = |V |χi · (I + L · χi)
−1, i = e, m (4.1)

where L and I are the depolarizing and unit dyadics in R3, respectively. In terms
of the semi-axes aj in the êj-direction, the volume |V | = 4πa1a2a3/3. The depo-
larizing dyadic has unit trace, and is real-valued and symmetric [32], and, hence,
diagonalizable with real-valued eigenvalues. Its eigenvalues are the depolarizing fac-
tors Lj [6, 23]

Lj =
a1a2a3

2

∫ ∞

0

ds

(s + a2
j)

√
(s + a2

1)(s + a2
2)(s + a2

3)
, j = 1, 2, 3. (4.2)

The depolarizing factors satisfy 0 ≤ Lj ≤ 1 and
∑

j Lj = 1.
Closed-form expressions of (4.2) exist in the special case of the ellipsoids of

revolution, i.e., the prolate and oblate spheroids. In terms of the eccentricity e =√
1− ξ2, where ξ ∈ [0, 1] is the ratio of the minor to the major semi-axis, the

depolarizing factors are (symmetry axis along the ê3-direction)

L1 = L2 =
1

4e3

(
2e− (1− e2) ln

1 + e

1− e

)
, L3 =

1− e2

2e3

(
ln

1 + e

1− e
− 2e

)
, (4.3)
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and

L1 = L2 =
1− e2

2e2

(
−1 +

arcsin e

e
√

1− e2

)
, L3 =

1

e2

(
1−

√
1− e2

e
arcsin e

)
,

for the prolate and oblate spheroids, respectively. In particular, Lj = 1/3 for the
sphere.

The integrated extinction for anisotropic homogeneous ellipsoidal scatterers is
given by (4.1) inserted into (2.8). The result is

∫ ∞

0

σext(λ) dλ = π2|V |
∑

i=e,m

p̂∗i · χi · (I + L · χi)
−1 · p̂i. (4.4)

For isotropic material parameters, χe = χeI and χm = χmI, (4.4) reduces to

∫ ∞

0

σext(λ) dλ = π2|V |
3∑

j=1

(
κejχe

1 + χeLj

+
κmjχm

1 + χmLj

)
, (4.5)

where κej = |p̂e · êj|2 and κmj = |p̂m · êj|2 are the polarization vectors projected onto
the mutually orthonormal vectors êj. Note that

∑
j κej =

∑
j κmj = 1, and that the

averaged integrated extinction is characterized by κej = κmj = 1/3. For prolate and
oblate spheroids, which are axially symmetric with respect to the ê3-axis, a plane
wave incident at an angle θ to this axis, yields





κe1 + κe2 = 1

κe3 = 0

κm1 + κm2 = cos2 θ

κm3 = sin2 θ

(TE)





κm1 + κm2 = 1

κm3 = 0

κe1 + κe2 = cos2 θ

κe3 = sin2 θ

(TM)

In the limit as the volume goes to zero, the integrated extinction vanishes for a
scatterer with finite susceptibilities. To obtain a non-zero integrated extinction, the
scatterer has either to be conducting or evaluated in the high-contrast limit, see e.g.,
the PEC disk below. In the long wavelength PEC limit, see (2.9), the integrated
extinction becomes

∫ ∞

0

σext(λ) dλ = π2|V |
3∑

j=1

(
κej

Lj

− κmj

1− Lj

)
. (4.6)

The right hand side of (4.5) is bounded from above by χi and from below by
χi/(1 + χi). The bounds in (3.4) are sharp in the sense that χi and χi/(1 + χi) are
obtained at arbitrary precision for the infinite needle and disk of constant volume |V |,
respectively. In fact, the upper bound holds for an infinite needle oriented along the
ê3-direction (L1 + L2 = 1) with parallel polarization (κi3 = 1). The corresponding
equality for the lower bound holds for the infinite disk with unit normal vector ê3

(L3 = 1) and parallel polarization (κi3 = 1).
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Figure 4: The integrated extinction (4.7) in units of a3 as function of the semi-axis
ratio ξ for the PEC elliptic disk. The notations TE(θ, φ) and TM(θ, φ) refer to the
TE- and TM-polarizations for θ, φ ∈ {0, π/4, π/2}.

A simple example of (4.5) is given by the homogeneous sphere for which the inte-
grated extinction is equal to 3π2|V |∑i χi/(χi+3) independent of κej and κmj, which
also is the result of Bohren and Huffman for the non-magnetic case [4, p. 117]. In
particular, the PEC limit (2.9) implies that the integrated extinction for the sphere
is equal to 3π2|V |/2. Similar results for stratified dielectric spheres are obtained
using recursive compositions of Möbius transformations. For the case of two layers,
see Section 5.5.

The integrated extinction for the PEC elliptic disk is given by (4.6), and the inte-
grals in (4.2), as the semi-axis a3 approaches zero, are available in the literature [6, p.
507], [23]. The result is





L1/|V | = 3

4πa3e2
(K− E)

L2/|V | = 3

4πa3e2

(
E/(1− e2)−K

)

(L3 − 1)/|V | = − 3E

4πa3(1− e2)

where a is the major semi-axis, and E = E(e2) and K = K(e2) are the complete
elliptic integrals of first and second kind, respectively [1, p. 590]. We obtain

∫ ∞

0

σext(λ) dλ =
4π3a3

3





B cos2 φ + C sin2 φ− A sin2 θ (TE)

(
B sin2 φ + C cos2 φ

)
cos2 θ (TM)

(4.7)

where θ and φ are the spherical angles of the incident direction, k̂. The factors A,
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49.6 Vj j 35.9 Vj j 35.0 Vj j 31.4 Vj j 30.9 Vj j

Figure 5: The integrated extinctions for the Platonic solids based on MoM-
calculations [25]. The Platonic solids are from left to right the tetrahedron, hexa-
hedron, octahedron, dodecahedron and icosahedron, with 4, 6, 8, 12 and 20 faces,
respectively.

B, and C are defined as

A =
1− e2

E
, B =

e2(1− e2)

E− (1− e2)K
, C =

e2

K− E
.

Note that the TM-polarization vanishes for θ = π/2 independently of φ ∈ [0, 2π).
The integrated extinction (4.7) can also be derived from the long wavelength limit
of the T-matrix approach [3].

The integrated extinction in the right hand side of (4.7) as function of ξ is
depicted in Figure 4. Note the degeneracy of the integrated extinction at the end
points ξ = 0 and ξ = 1, corresponding to the PEC needle of length 2a and the PEC
circular disk of radius a, respectively.

5 Numerical results

In this section, we illustrate the theoretical results obtained above by several nu-
merical examples. Specifically, we calculate the extinction cross sections and the
eigenvalues of the polarizability dyadics for a set of scatterers with isotropic mate-
rial parameters. These results are then compared to the theoretical results presented
in Sections 2, 3, and 4.

5.1 Platonic solids

Since the homogeneous Platonic solids are invariant under a set of appropriate point
groups, their polarizability dyadics are isotropic. By (2.8) this implies that the
integrated extinctions are independent of both polarization and incident direction.
The five Platonic solids are depicted in Figure 5, see also Table 1, together with the
integrated extinctions in the non-magnetic, high-contrast limit, i.e., χe →∞.

A common lower bound on the integrated extinctions in Figure 5 is obtained
by (4.5) for the volume-equivalent sphere. This lower bound is motivated by Jones’
result [10, Thm. 3], and the fact that the polarizability dyadics are isotropic. The
result is 14.80|V |.
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Platonic solids γe/|V | γe/a
3 Int. ext. |V |/a3

Tetrahedron 5.03 0.593 49.6|V | √
2/12

Hexahedron 3.64 3.64 35.9|V | 1

Octahedron 3.55 1.67 35.0|V | √
2/3

Dodecahedron 3.18 24.4 31.4|V | (15 + 7
√

5)/4

Icosahedron 3.13 6.83 30.9|V | 5(3 +
√

5)/12

Table 1: The eigenvalues γe and the integrated extinction for the Platonic solids
in units of |V | in the high-contrast limit χe →∞. The last column gives the volume
of the Platonic solids expressed in the edge length a.

Upper bounds on the integrated extinctions are given by the smallest circum-
scribing high-contrast spheres, which based on solid geometry are found to be
241.60|V |, 80.54|V |, 61.98|V |, 44.62|V | and 48.96|V | for the tetrahedron, hexahe-
dron, octahedron, dodecahedron and icosahedron, respectively, see (3.2). The upper
and lower bounds are seen to be quite close to the numerical values presented in
Figure 5, at least for the dodecahedron and icosahedron, which do not deviate much
from the volume-equivalent sphere. Since the Platonic solids are star-shaped with
respect to all interior points, a somewhat different set of upper bounds can be derived
from (3.6).

5.2 Dielectric spheroids

The averaged extinction cross section, σ̄ext, as function of the radius ka for a prolate
and oblate spheroid is illustrated in Figure 6. The solid curve depicts the aver-
aged extinction cross section (equal to the extinction cross section) for the volume-
equivalent sphere of radius a, and the dashed and dotted curves correspond to the
prolate and oblate spheroids, respectively, of semi-axis ratio ξ = 1/2. The scatterers
are non-magnetic with electric susceptibility χe = 1. Note that the largest variation
of the curves in Figure 6 occurs for the sphere due to the fact that its extinction
cross section is independent of the polarization and the direction of incidence, which
implies that no resonances are averaged out in contrast to the case for the prolate
and oblate spheroids.

The numerically integrated averaged extinction cross sections for ka ∈ [0, 20]
agree within relative errors of 1.2% with the theoretical values 7.46|V | and 7.48|V |
based on (4.5) for the prolate and oblate spheroids, respectively. The corresponding
values for the sphere are 0.7% and 7.40|V |. The calculations are based on the T-
matrix approach [19].

According to Section 2, a lower bound on the averaged integrated extinctions
for the spheroids is 7.40|V | corresponding to the volume-equivalent sphere. Based
on (3.4), lower and upper bounds common to the three curves in Figure 6 are
4.93|V | and 9.87|V |, respectively. Using the star-shaped bound (3.6), these upper
bounds are improved to 8.57|V | and 8.17|V | for the prolate and the oblate spheroids,
respectively. Both the lower and upper bounds are reasonable close to the theoretical
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Figure 6: The averaged extinction cross section, σ̄ext, in units of πa2 as function
of ka for a prolate (dashed) and oblate (dotted) non-magnetic spheroid with electric
susceptibility χe = 1 and semi-axis ratio ξ = 1/2. The extinction cross section for
the volume-equivalent sphere of radius a (solid) is included.

values.

5.3 Lorentz dispersive circular cylinder

The averaged extinction cross section, σ̄ext, as function of the frequency for a Lorentz
dispersive circular cylinder is depicted in Figure 7. The ratio of the cylinder length
` to its radius b is `/b = 2. The cylinder is non-magnetic with electric susceptibility
given by the Lorentz model [4, Sec. 9.1]

χe(ω) =
ω2

p

ω2
0 − ω2 − iων

,

where ωp is the plasma frequency, ν the collision frequency and ω0 the resonance
frequency. Explicit values of ωp, ω0 and ν are ωp = ω0 = 4π · 109 rad/s, ν =
0.7 · 109 rad/s, and ωp = ω0 = 20π · 109 rad/s, ν = 1010 rad/s, respectively. The
Lorentz parameters are chosen such that all three curves in the left figure have
the same long wavelength susceptibility χe = χe(0) = 1. The first two curves with
peaks at 2 GHz and 10 GHz depict the dispersive case, while the third for comparison
illustrates the results for the non-dispersive case. The three curves in the left figure
have the same integrated extinctions, since their long wavelength susceptibilities
coincide. The calculation is based on the T-matrix approach [19].

A numerical calculation of the eigenvalues of the polarizability dyadic for the
dielectric cylinder is performed by adopting the finite element method (FEM). The
results are 0.773|V |, 0.749|V |, and 0.749|V |. This result implies that the numerically
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Figure 7: The averaged extinction cross section, σ̄ext, in units of πa2 as function of
the frequency in GHz for a non-magnetic Lorentz dispersive circular cylinder with
volume-equivalent sphere of radius a = 1 cm. The three curves in the left figure
have the same long wavelength response χe = 1. The first two curves with peaks at
2 GHz and 10 GHz are Lorentz dispersive, while the third curve is non-dispersive.
The right figure is a close-up of the 2 GHz peak in the left figure.

computed averaged extinction cross section, σ̄ext, in (2.10) is 7.47|V |. The numer-
ically calculated integrated extinction in the interval f ∈ [0, 70] GHz is 7.43|V | for
the first, and 7.44|V | for the second curve in Figure 7.

Common lower and upper bounds on the integrated extinctions based on (3.4) are
4.94|V | and 9.87|V |, respectively. A sharper lower bound is 7.40|V | corresponding
to the volume-equivalent sphere. An upper bound can for comparison be obtained
from (3.6). For `/b = 2 this implies ψ = 5 and the upper bound 8.23|V |, which is
sharper than the bound based on (3.4).

The figure on the right hand side of Figure 7 is a close-up of the 2 GHz peak.
The boundary curve of the box corresponds to an artificial scatterer with averaged
extinction cross section supported at the peak, i.e., for an averaged extinction cross
section that vanishes everywhere outside the box. The integrated extinction for the
boundary curve of the box and the three curves in the left hand side of Figure 7
coincide.

5.4 Debye dispersive non-spherical raindrop

The averaged extinction cross section, σ̄ext, as function of the frequency for a falling
raindrop is depicted in Figure 8. The axially symmetric drop is parameterized by
the polar angle θ and the radial distance

r(θ) = r0

(
1 +

10∑

k=0

ck cos kθ

)
,

where r0 is determined from the condition of the volume-equivalence with the sphere
of radius a, i.e., |V | = 2π

3

∫ π

0
r3(θ) sin θ dθ with |V | = 4πa3/3. The radius of
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Figure 8: The averaged extinction cross section, σ̄ext, in units of πa2 as function
of the frequency in GHz for a raindrop of volume-equivalent radius a = 2 mm. The
smooth curve is for the Debye-model (5.1), while the oscillatory curve is for the
non-dispersive case. The two curves have the same long wavelength response and
therefore also the same integrated extinctions.

the volume-equivalent sphere used in Figure 8 is a = 2 mm with associated shape
coefficients c0 = −0.0458, c1 = 0.0335, c2 = −0.1211, c3 = 0.0227, c4 = 0.0083, c5 =
−0.0089, c6 = 0.0012, c7 = 0.0021, c8 = −0.0013, c9 = −0.0001 and c10 = 0.0008 [2].
The calculation is based on the T-matrix approach [19].

The smooth curve in Figure 8 is for the non-magnetic Debye model [4, Sec. 9.5]

χe(ω) = χ∞ +
χs − χ∞
1− iωτ

, (5.1)

where τ is the relaxation time and χ∞ and χs are the short and long wavelength
susceptibilities, respectively. Pure water at 20◦C is considered with χs = 79.2,
χ∞ = 4.6 and τ = 9.36 ps [14, p. 43]. The curve with largest variation is for the
non-dispersive case with an susceptibility identical to the long wavelength limit, χs,
of (5.1).

Since the long wavelength susceptibilities coincide for the two curves in Figure 8,
their integrated extinctions are equal according to (2.10). The eigenvalues of the
polarizability dyadics for the raindrop can be obtained by numerical computations.
A finite element method (FEM) computation gives the three eigenvalues: 2.43|V |,
3.21|V |, and 3.21|V |, respectively. This result implies that the numerically com-
puted averaged extinction cross section, σ̄ext, in (2.10) is 29.1|V |. If we numerically
integrate the average extinction cross section in Figure 8 over f ∈ [0, 100] GHz, we
get 26.4|V | for the dispersive and 25.6|V | for the non-dispersive curve, respectively.
The reason why the numerically integrated extinctions are about 10% below the
FEM values is due to the finite integration interval.
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Figure 9: The extinction cross section, σext, in units of 2πa2 as function of the
radius ka for a dielectric stratified sphere with two layers of equal volume. The
electric and magnetic susceptibilities are χe1 = 2 and χm1 = 1 for the core and
χe2 = 1 and χm2 = 2 for the outer layer.

Lower and upper bounds on the integrated extinctions, given by (3.4), are 9.75|V |
and 782|V |, respectively, which are rather crude. A more accurate lower bound
is given by the non-magnetic, volume-equivalent sphere with static susceptibilities
χe = χs, for which (4.5) yields 28.5|V |. The star-shaped bound in Section 3.5 is also
applicable. The result for the raindrop is 32.15|V |. We observe that both the lower
and upper bounds approximate the true value very well.

5.5 Dielectric stratified sphere

Due to spherical symmetry, the polarizability dyadics of a stratified sphere are
isotropic and easily computed by recursive applications of Möbius transformations.
In particular, the integrated extinction for two layers with electric and magnetic sus-
ceptibilities χe1 and χm1 in the core, and χe2 and χm2 in the outer layer, respectively,
is

∫ ∞

0

σext(λ) dλ = 3π2|V |
∑

i=e,m

χi2(χi1 + 2χi2 + 3) + ς3(2χi2 + 3)(χi1 − χi2)

(χi2 + 3)(χi1 + 2χi2 + 3) + 2ς3χi2(χi1 − χi2)
, (5.2)

where ς is the ratio of the inner to the outer radius. The special cases ς = 0 and ς = 1
correspond to homogeneous spheres with susceptibilities χi2 and χi1, respectively,
see Section 4. Moreover, both χi1 = χi2 and χi2 = 0 yield the homogeneous sphere
of susceptibility χi1, with the volume of the sphere being a fraction ς3 of the volume
|V | in the latter case.

The extinction cross section, σext, as function of the radius ka for the stratified
sphere with two layers of equal volume, ς = 1/ 3

√
2, is depicted in Figure 9. The
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used susceptibilities are χe1 = 2 and χm1 = 1 in the core, and χe2 = 1 and χm2 = 2
in the outer layer. The calculations are based on the Mie-series approach [18].
Note that the curve in Figure 9 approaches twice the geometrical cross section
area in the short wavelength limit. Compare this observation with the extinction
paradox [31, pp. 107–108].

The numerically integrated extinction is 19.1|V | for ka ∈ [0, 30] and 19.3|V | for
ka ∈ [0, 100], with relative errors of 1.7% and 0.5%, respectively, compared to the
theoretical value 19.4|V | given by (5.2).

Lower and upper bounds on the integrated extinction based on the inequal-
ity in (3.2) are 14.8|V | and 23.7|V |, respectively, corresponding to the volume-
equivalent homogeneous sphere with minimal and maximal susceptibilities, infx∈V χi

and supx∈V χi, respectively. Note that this upper bound coincides with the one ob-
tained from (3.6), but that both the lower and upper bounds based on (3.2) are
sharper than the ones given by (3.4).

5.6 PEC circular disk

The integrated extinction for the PEC circular disk of radius a is given by (4.7) in
the limit ξ → 1. The result is

∫ ∞

0

σext(λ) dλ =
8π2a3

3





1 + cos2 θ (TE)

2 cos2 θ (TM)

(5.3)

The right hand side of (5.3) can also be derived from the long wavelength limit of
the T-matrix approach [16].

The extinction cross section, σext, as function of the radius ka for the PEC circu-
lar disk is depicted in Figure 10. The notations TE(θ) and TM(θ) refer to the TE-
and TM-polarizations, respectively, and the stars denote the short wavelength limit
cos θ given by the extinction paradox [31, pp. 107–108]. Note the degeneracy of both
polarizations for normal incidence, and that the extinction cross section vanishes
identically for TM(π/2). The calculation is based on the T-matrix approach [16].

To find the numerically integrated extinctions, the integration interval ka ∈
[0, 15] does not suffice to get reasonable accuracy. However, by extending the in-
tegrand above ka = 15 by the expected short wavelength limit, we obtain relative
errors of 0.5% compared to the exact results of (5.3).

The bounds discussed in Section 3 are not directly applicable to the PEC circular
disk since the disk has zero volume. However, a crude upper bound is obtained by
the circumscribing PEC sphere. The result is 1.5π2, in units of the volume of the
circumscribing sphere. Compare this with the exact results of (5.3) in terms of the
volume of the circumscribing sphere — the factor 1.5 for the circumscribing sphere
is to be compared with 4/π ≈ 1.27 at θ = 0 incidence.
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Figure 10: The extinction cross section, σext, in units of 2πa2 as function of the
radius ka for the PEC circular disk. The solid and dashed lines are for the TE- and
TM-polarizations, respectively, and the stars denote the short wavelength limits
cos θ.

5.7 PEC needle

The integrated extinction for the PEC needle of length 2a oriented along the ê3-
direction is given by (4.3) and (4.6) in the limit ξ → 0. The result is

∫ ∞

0

σext(λ) dλ =
4π3a3

3





O(ξ2) (TE)

sin2 θ

ln 2/ξ − 1
+O(ξ2) (TM)

(5.4)

The right hand side of (5.4) can also be derived from the long wavelength limit of
the T-matrix [3].

The integrated extinction (5.4) is seen to vanish for both polarizations in the
limit ξ → 0. Since the extinction cross section is non-negative, this implies that
it vanishes almost everywhere except on a set of measure zero consisting of the
denumerable resonances for which an integer multiple of λ/2 coincides with the
length of the needle. This result is illustrated numerically in Figure 11, which shows
the extinction cross section, σext, for the PEC needle for the TM-polarization at
normal incidence. Note that, due to symmetry, only resonances corresponding to ka
equal to an odd multiple of π/2 are excited at normal incidence. The numerically
integrated extinctions in Figure 11 agree well with (5.4). The relative errors are less
than 0.5% with an integration interval ka ∈ [0, 12] for the three curves.
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Figure 11: The extinction cross section, σext, in units of 2πa2 as function of ka
for the PEC needle of length 2a. The needle is approximated by a prolate spheroid
with semi-axis ratio 10−3 for the outermost, 10−5 for the intervening, and 10−7 for
the innermost curve. The calculation is based on the T-matrix approach [3].

6 Concluding remarks

The integrated extinction is an example of what is referred to in modern physics as
a dispersion relation [21]. The basic idea for the dispersion relations is that certain
linear and causal physical quantities with known high-frequency (short wavelength)
asymptotic are boundary values of holomorphic functions of one or more complex
variables.

The major results of this paper are the proof and illustrations of the integrated
extinction for linear, passive, and anisotropic scatterers. It is shown that the inte-
grated extinction is monotonically increasing in the material properties. Moreover,
the electric and magnetic material properties contribute equally to the integrated ex-
tinction. It is also shown that the integrated extinction is useful in deriving physical
limitations on broadband scattering.

The integrated extinction is particularly important from an antenna point of
view, since it generalizes the physical limitations on the antenna performance de-
rived by Chu [5] for the smallest circumscribing sphere. These new limitations,
which can be shown to relate bandwidth and directivity of any antenna in terms
of volume and shape, are reported in [7]. The integrated extinction is also of great
interest in applications to broadband scattering by artificial material models such as
metamaterials. In this application, it provides physical limitations on scattering by
general material models [27]. Moreover, the bounds presented in Section 3 may be
of use to bound material parameters in inverse scattering problems. All these ap-
plications to material modeling and inverse scattering problems are currently under
investigation, and will be reported in forthcoming papers.



A The polarizability dyadics 49

Additional theoretical work on the integrated extinction also includes bi-aniso-
tropy and diamagnetics, which will be reported elsewhere. Finally, it should be
noted that the concept of the integrated extinction with minor changes also holds
in linear acoustics [26].
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Appendix A The polarizability dyadics

For an anisotropic scatterer modeled by the material dyadic τ (electric susceptibility
dyadic χe without a conductivity term, or magnetic susceptibility dyadic χm), the
total electric field E (similarly for the magnetic field H) satisfies

{
∇×E(x) = 0

∇ · ((τ (x) + I) ·E(x)) = 0
x ∈ R3

Here, τ is assumed to be a symmetric dyadic at all points x and sufficiently regular
to justify the operations below.

Decompose the total field E as Ej = E0êj +Esj, where j = 1, 2, 3. The pertinent
partial differential equation for the scattered field Esj is then

{
∇×Esj(x) = 0

∇ · ((τ (x) + I) ·Esj(x)) = −E0∇ · (τ (x) · êj)
x ∈ R3 (A.1)

together with the asymptotic condition Esj(x) → O(|x|−3) as |x| → ∞.
The first condition in (A.1) implies that there exists a potential Φj related to

the scattered field as Esj = −∇Φj satisfying

{
∇ · ((τ (x) + I) · ∇Φj(x)) = E0∇ · (τ (x) · êj)

Φj(x) → O(|x|−2) as |x| → ∞ x ∈ R3 (A.2)

This problem has a unique solution. The entries of the polarizability dyadic γ (γe or
γm depending on whether the problem is electric or magnetic) is then (i, j = 1, 2, 3)

êi · γ · êj =
1

E0

êi ·
∫

R3

τ (x) ·Ej(x) dVx. (A.3)

Scale this solution by a factor α, i.e., let x −→ x′ = αx, with material dyadic
τ ′(x′) = τ (x), and denote the solution to the new problem by Φ′

j(x
′). The new

problem then satisfies
{
∇′ · ((τ ′(x′) + I) · ∇′Φ′

j(x
′)
)

= E0∇′ · (τ ′(x′) · êj)

Φ′
j(x

′) → 0 as |x′| → ∞ x′ ∈ R3
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or in the unscaled coordinates{
α−2∇ · ((τ (x) + I) · ∇Φ′

j(αx)
)

= E0α
−1∇ · (τ (x) · êj)

Φ′
j(αx) → 0 as |x| → ∞ x ∈ R3

Due to the unique solubility of the boundary value problem (A.2), Φ′
j(x

′) = αΦj(x),
and consequently E′

j(x
′) = Ej(x) = Ej(x

′/α). The polarizability dyadic for the
scaled problem then becomes

êi · γ ′ · êj = êi ·
∫

R3

τ ′(x′) ·E′
j(x

′) dVx′ = α3êi ·
∫

R3

τ (x) ·Ej(x) dVx,

and we see that γ scales with the volume |V | ∼ α3.

A.1 Symmetry

The polarizability dyadic γ is symmetric, since τ is assumed symmetric at all points
x. In fact, from (A.3),

êi · γ · êj = êi ·
∫

R3

τ (x) · êj dVx − 1

E0

êi ·
∫

R3

τ (x) · ∇Φj(x) dVx. (A.4)

The last integral in (A.4) is rewritten as

êi ·
∫

R3

τ (x) · ∇Φj(x) dVx

=

∫

R3

∇ · (êi · τ (x)Φj(x)) dVx −
∫

R3

∇ · (êi · τ (x)) Φj(x) dVx

= −
∫

R3

∇ · (τ (x) · êi) Φj(x) dVx

= − 1

E0

∫

R3

∇ · ((τ (x) + I) · ∇Φi(x)) Φj(x) dVx,

due to (A.2) provided τ is symmetric at all points x. Furthermore,

êi ·
∫

R3

τ (x) · ∇Φj(x) dVx

= − 1

E0

∫

R3

∇ · {((τ (x) + I) · ∇Φi(x)) Φj(x)} dVx

+
1

E0

∫

R3

∇Φj(x) · ((τ (x) + I) · ∇Φi(x)) dVx

=
1

E0

∫

R3

∇Φj(x) · ((τ (x) + I) · ∇Φi(x)) dVx.

The polarizability dyadic (A.4) therefore becomes

êi · γ · êj = êi ·
∫

R3

τ (x) · êj dVx − 1

E2
0

∫

R3

∇Φj(x) · ((τ (x) + I) · ∇Φi(x)) dVx,

which clearly is symmetric in the indices i and j if τ is symmetric at all points x.
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A.2 High-contrast limit

In the high-contrast limit, when the entries of the material dyadic become infinitely
large independent of x, the appropriate surface integral representation of the polar-
izability dyadic is [15, p. 22]

êi · γ · êj =
1

E0

êi ·
N∑

n=1

∫

Sn

(ν̂(x)Φj(x)− xν̂(x) · ∇Φj(x)) dSx,

where Sn, n = 1, 2, . . . , N denote the bounding surfaces (outward-directed unit
normal ν̂) of the domain outside the material (we assume that τ is compactly
supported). Moreover, Ψj(x) = Φj(x)− E0xj, is the solution to (n = 1, 2, . . . , N)





∇2Ψj(x) = 0, x outside Sn∫

Sn

ν̂(x) · ∇ Ψj(x)|+ dSx = 0

Ψj(x) → −E0xj +O(|x|−2) as |x| → ∞
With similar arguments as above, we find that the eigenvalues of the high-contrast
polarizability dyadic also scale with the volume. For the relation with the capaci-
tance concept, we refer to [15].
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Abstract

A limitation on the extinction cross section, valid for all scatterers satisfying
some basic physical assumptions, is investigated. The physical limitation is
obtained from the holomorphic properties of the forward scattering dyadic.
The analysis focuses on the consequences for materials with negative per-
mittivity and permeability, i.e., metamaterials. From a broadband point of
view, the limitations imply that there is no fundamental difference between
metamaterials and ordinary materials with respect to scattering and absorp-
tion. The analysis is illustrated by three numerical examples of metamaterials
modeled by temporal dispersion.

1 Introduction

Since the introduction of negative refractive index materials by V. G. Veselago in
Ref. 14, there has been an enormous theoretical and experimental interest in the
possibilities of such materials. These materials are often referred to as metamateri-
als, even though a metamaterial in general is a much broader concept of a structured
material, and not necessarily composed of materials with negative permittivity and
permeability values. Negative refractive index materials seem not to occur naturally,
and if they can be manufactured, they possess extravagant properties promising for
various physical applications, see Refs. 9 and 11, and references therein.

The scattering properties of obstacles consisting of metamaterials have been of
considerable scientific interest during the last decade. Mostly canonical geometries,
such as the spheres, see e.g., Ref. 10, have been employed, and the design of scatterers
that both increases and decreases the scattering properties have been reported.

The analysis presented in this paper show that, from a broadband point of view,
the scattering and absorption properties of any material (not just metamaterials)
that satisfy basic physical assumptions, are limited by the static electric and mag-
netic behavior of the composed materials. In particular, we show that, when these
limitations are applied to low-frequency resonances on metamaterials, large scatter-
ing effects have to be traded for bandwidth. Specifically, the lower the resonance
frequency, the higher its Q-factor. For a single frequency, metamaterials may pos-
sess exceptional characteristics, but, since bandwidth is essential, it is important to
study metamaterials over a frequency interval, and with physically realistic disper-
sion models.

The results presented in this paper are independent of how the material that
constitutes the scatterer is constructed or produced. This broad range of material
models is a consequence of the fact that the analysis is solely based on the principles
of energy conservation and causality applied to a set of linear and time-translational
invariant constitutive relations.

The present paper is a direct application of the theory for broadband scattering
introduced in Ref. 12. In addition to material modeling, the theory has also been
applied successfully to physical limitations on arbitrary antennas in Refs. 1 and 3.
The underlying mathematical description for broadband scattering is motivated by
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the study of causality and dispersion relations in the scattering theory of waves and
particles in Refs. 7 and 8.

2 Derivation of the integrated extinction

Consider a localized and bounded scatterer V ⊂ R3 of arbitrary shape. The dy-
namics of the material in V is modeled by the Maxwell equations with general
heterogeneous and anisotropic constitutive relations. The constitutive relations are
expressed in terms of the electric and magnetic susceptibility dyadics, χe and χm,
respectively. Due to the heterogeneous character of χe and χm, V can be interpreted
both as a single scatterer and as a set of multiple scatterers. The present analysis
includes the perfectly conducting material model as well as general temporal disper-
sion with or without a conductivity term. The analysis can also be extended with
minor changes to bianisotropic materials with the same conclusions drawn.

The direct scattering problem addressed in this paper is Fourier-synthesized
plane wave scattering by V . Due to the linearity of the Maxwell equations, it is
sufficient to consider monochromatic plane waves with time dependence e−iωt. The
incident wave is assumed to impinge in the k̂-direction with an electric field Ei de-
pending only on the difference τ = c0t− k̂ · x, where x denotes the space variable.
Introduce the far field amplitude F via Es = F (c0t− x, x̂)/x +O(x−2) as x →∞,
where Es represents the scattered electric field. Under the assumption that the
constitutive relations of V are linear and time-translational invariant, F is given by
the convolution

F (τ, x̂) =

∫ ∞

−∞
St(τ − τ ′, k̂, x̂) ·Ei(τ

′) dτ ′.

Here, St is assumed to be primitive causal in the forward direction, i.e., St(τ, k̂, k̂) =
0 for τ < 0, see Ref. 8. Furthermore, introduce the forward scattering dyadic S as
the Fourier transform of St evaluated in the forward direction, i.e.,

S(k, k̂) =

∫ ∞

0−
St(τ, k̂, k̂)eikτ dτ, (2.1)

where k = ω/c0. The extension of (2.1) to complex-valued k with Im k > 0 improves
the convergence of the integral and implies that S is holomorphic in the upper half of
the complex k-plane. Recall that the cross symmetry relation S(k, k̂) = S∗(−k∗, k̂)
is a direct consequence of such an extension.

Introduce E0 as the Fourier amplitude of the incident wave, and let p̂e = E0/|E0|
and p̂m = k̂ × p̂e denote the associated electric and magnetic polarizations, respec-
tively. Recall that E0 is subject to the constraint of transverse wave propagation,
i.e., E0 · k̂ = 0. Under the assumption that p̂e and p̂m are independent of k, it
follows from the analysis above that also %(k) = p̂∗e · S(k, k̂) · p̂e/k

2 is holomorphic
for Im k > 0. Cauchy’s integral theorem applied to % then yields, see Ref. 12,

%(iε) =

∫ π

0

%(iε− εeiφ)

2π
dφ +

∫ π

0

%(iε + Reiφ)

2π
dφ +

∫

ε<|k|<R

%(k + iε)

2πik
dk. (2.2)
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Here, it is assumed that % is sufficiently regular to extend the contour to the real-axis
in the last integral on the right hand side of (2.2). Relation (2.2) is subject to the
limits ε → 0 and R →∞.

The long wavelength limit of % on the left hand side of (2.2) and the integrand in
the first integral on the right hand side can be derived from a power series expansion
of the Maxwell equations. The result is, see Ref. 4,

%(ε) =
1

4π
(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) +O(ε) (2.3)

as ε → 0, where γe and γm denote the electric and magnetic polarizability dyadics,
respectively. For the appropriate definitions of γe and γm, and some of their prop-
erties, see Ref. 12 and references therein.

The second integral on the right hand side of (2.2) vanishes in the limit as R →∞
according to the extinction paradox in Ref. 13. In terms of %, a generalization of
the extinction paradox states that %(k) = −A/(2πik) + O(|k|−2) as |k| → ∞. The
constant A is real-valued since S(ik, k̂) is real-valued for real-valued k. For a large
class of scatterers, A coincides with the projected area in the forward direction.
The disappearance of the second integral on the right hand side of (2.2) is also
supported by the fact that the high-frequency response of a material is non-unique
from a modeling point of view, see Ref. 2.

From the details above, it is clear that the real part of (2.2) when subject to the
limits ε → 0 and R →∞, yields

%(0) =
1

2
%(0) +

1

8π2

∫ ∞

−∞

σext(k)

k2
dk, (2.4)

where the optical theorem σext(k) = 4πk Im %(k) has been invoked, see Ref. 12. Here,
the extinction cross section σext is defined as the sum of the scattered and absorbed
power divided by the power flow density of the incident wave. Recall that the optical
theorem is a direct consequence of energy conservation, see Ref. 7. Relation (2.3)
inserted into (2.4) using the wavelength variable λ = 2π/k finally yields

∫ ∞

0

σext(λ) dλ = π2 (p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) . (2.5)

The left hand side of (2.5) is referred to as the integrated extinction. For additional
details on the derivation of (2.5), see Ref. 12.

Relation (2.5) is slightly modified when an isotropic conductivity term iς/ωε0

is introduced in χe for some region of V , see Ref. 12. The scalar conductivity ς is
non-negative and assumed independent of ω. In the presence of a conductivity term,
the analysis in Ref. 4 shows that the right hand side of (2.5) should be evaluated
in the limit as the eigenvalues of χe approach infinity independently of χm. The
perfectly conducting case is obtained as the eigenvalues of χm in addition approach
−1.

Electric and magnetic material properties are seen to be treated on equal foot-
ing in (2.5), both in terms of polarization and material description. Furthermore,
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the right hand side of (2.5) depends solely on the long wavelength limit or static
response of V , while the left hand side is a dynamic quantity which unites the scat-
tering and absorption properties of V . Recall that γe and γm only are functions of
the geometry of V and the long wavelength susceptibilities χe(0) = limω→0 χe(ω)
and χm(0) = limω→0 χm(ω). Here, χe(0) and χm(0) are real-valued in the case of
vanishing conductivity. For heterogeneous structures, the long wavelength suscepti-
bilities χe(0) and χm(0) also depend on the space variable x.

In many applications, the scatterer is randomly oriented with respect to an
ensamble of incident waves. For this purpose, the averaged extinction cross section
σ̄ext is conviniently introduced by averaging (2.5) over the unit sphere in R3, i.e.,

∫ ∞

0

σ̄ext(λ) dλ =
π2

3
trace(γe + γm). (2.6)

For non-spherical particles, (2.6) provides a neat verification of (2.5) without spec-
ifying the orientation of V with respect to the incident wave, see Sec. 4.1.

3 Bounds on scattering and absorption

For applications to exotic material models such as metamaterials, it is beneficial
to introduce the high-contrast polarizability dyadic γ∞ as the limit of either γe or
γm when the eigenvalues of χe(0) or χm(0) simultaneously become infinitely large.
From the variational properties of γe and γm discussed in Ref. 12 and references
therein, it follows that both γe and γm are bounded from above by γ∞, i.e.,

∫ ∞

0

σext(λ) dλ ≤ π2 (p̂∗e · γ∞ · p̂e + p̂∗m · γ∞ · p̂m) . (3.1)

The right hand side of (3.1) is independent of any material properties, depending
only on the geometry and the orientation of V with respect to the incident wave.
The right hand side can, independent of p̂e and p̂m, further be estimated from above
by the eigenvalues of γ∞, see Ref. 12.

The integrated extinction can be used to derive various bounds and variational
principles for broadband scattering. Since the extinction cross section σext by def-
inition is non-negative, the left hand side of (2.5) can be estimated from below
as

|Λ| inf
λ∈Λ

σ(λ) ≤
∫

Λ

σ(λ) dλ ≤
∫ ∞

0

σext(λ) dλ, (3.2)

where Λ ⊂ [0,∞) denotes an arbitrary wavelength interval with absolute band-
width |Λ|. Here, σ represents any of the scattering, absorption and extinction cross
sections, see Ref. 12 for their appropriate definitions. The quantity |Λ| infλ∈Λ σ(λ)
in (3.2) is particularly useful for box-shaped limitations, viz.,

|Λ| inf
λ∈Λ

σ(λ) ≤ π2 (p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) . (3.3)

From (3.2) and (3.3) it is clear that the long wavelength limit response of V also
provides upper bounds on scattering and absorption within any finite wavelength
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interval Λ. Analogous to (3.1), the right hand side of (3.3) can also be estimated from
above by γ∞ and its eigenvalues. An important consequence of the fact that (2.5)
and (3.3) only depend on the long wavelength limit response of V is that they are
independent of any temporal dispersion.

The fact that (2.5) and (3.3) are independent of any temporal dispersion implies
that there is no fundamental difference in scattering and absorption (in a broadband
sense) between metamaterials and ordinary materials, as long as the static proper-
ties of the material are identical. In fact, it is well known that passive materials
must be temporally dispersive since the Kramers-Kronig relations imply that χe(0)
and χm(0) element-wise are non-negative in the absence of a conductivity term,
see Ref. 5. Recall that the Kramers-Kronig relations are a direct consequence of
primitive causality, see Ref. 8.

When an isotropic conductivity term iς/ωε0 is present in χe, the Kramers-Kronig
relations must be modified due to the singular behavior of χe. As mentioned above,
the analysis in Ref. 4 shows that the introduction of such a term in χe implies that
γe should be substituted for γ∞ in the right hand side of (2.5) and (3.3).

Two popular models for temporal dispersion for metamaterials are the Drude
and Lorentz models, see (4.2) and Ref. 8, respectively. The Drude model is often
preferred over the Lorentz model since it provides a wider bandwidth over which
the eigenvalues of χe and χm attain values less than −1. However, based on the
arguments above, it is uninteresting from the point of view of (2.5) and (3.3) which
temporal dispersion model is used to characterize metamaterials as long as the model
satisfies primitive causality.

In summary, the physical limitations on scattering and absorption discussed in
Ref. 12 also hold for any metamaterials satisfying primitive causality. For a single
frequency, metamaterials may possess extraordinary physical properties, but over
any bandwidth they are with respect to scattering and absorption not different from
materials with the eigenvalues of χe and χm non-negative.

4 Numerical synthesis of metamaterials

In this section, numerical results for three temporally dispersive scatterers are dis-
cussed in terms of the physical limitations in Sec. 3. The examples are chosen to
provide a fictitious numerical synthesis of metamaterials. For convenience, the ex-
amples are restricted to isotropic material properties, i.e., χe = χeI and χm = χmI,
where I denotes the unit dyadic. A similar example for the Lorentz dispersive cylin-
der is given in Ref. 12.

4.1 The Lorentz dispersive prolate spheroid

The averaged extinction cross section σ̄ext for a homogeneous and non-magnetic
(χm = 0) prolate spheroid with semi-axis ratio ξ = 1/2 is depicted in Fig. 1. The
prolate spheroid is temporally dispersive with electric susceptibility given by the
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Figure 1: The averaged extinction cross section σ̄ext as function of the frequency
in GHz for a prolate spheroid with semi-axis ratio ξ = 1/2. Note the normalization
with πa2, where a = 1 cm denotes the radius of the volume-equivalent sphere.

Lorentz model, see Ref. 8,

χe(ω) =
ω2

p

ω2
0 − ω2 − iων

,

where (ω − ω0) Re χe(ω) ≤ 0 and Im χe(ω) ≥ 0 for ω ∈ [0,∞). Explicit values of
ωp, ω0 and ν for the two curves with peaks at 2 GHz and 10 GHz are ωp = ω0 =
4π · 109 rad/s, ν = 7 · 108 rad/s, and ωp = ω0 = 20π · 109 rad/s, ν = 1010 rad/s,
respectively. The third curve in the left figure corresponds to the non-dispersive
case with χe = 1, independent of ω. Since the three curves in the left figure have the
same values of χe in the long wavelength limit, i.e., χe(0) = 1, it follows from (2.5)
that their integrated extinctions coincide.

Closed-form expressions of the averaged integrated extinction (2.6) exist for the
prolate and oblate spheroids, see Ref. 12. For a non-magnetic spheroid with semi-
axis ratio ξ, ∫ ∞

0

σ̄ext(λ) dλ =
4π3a3

9

3∑
j=1

1

1 + Lj(ξ)
, (4.1)

where Lj(ξ) denote the associated depolarizing factors and a is the radius of the
volume equivalent sphere. For a prolate spheroid with semi-axis ratio ξ = 1/2, the
depolarizing factors are approximately given by L1(1/2) = L2(1/2) = 0.4132 and
L3(1/2) = 0.1736, see Ref. 12. For the prolate spheroid in Fig. 1, a = 1 cm, and the
right hand side of (4.1) is equal to 31.24 cm3. The integrated extinction 31.24 cm3

is also numerically confirmed with arbitrary precision for the three curves in Fig. 1.
The right figure in Fig. 1 is a close-up of the 2 GHz peak in the left figure.

The shaded box represents a realization of an artificial scatterer with the averaged
integrated extinction 31.24 cm3 centered around the peak. The integrated extinction
for the boundary curve of the box and the three curves in the left figure coincide.
Note that the width of the box is approximately equal to the bandwidth of the
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Figure 2: The extinction cross section σext as function of the frequency in GHz for
a stratified sphere which attains simultaneously negative values of the permittivity
and the permeability. Note the normalization with the geometrical cross section
πa2, where a = 1 cm denotes the outer radius of the sphere.

peak when evaluated at half amplitude. The calculation in Fig. 1 is based on the
implementation of the T-matrix approach in Ref. 6. For a similar example given by
the Lorentz dispersive cylinder, see Ref. 12.

4.2 The Drude dispersive stratified sphere

The extinction cross section σext for a stratified sphere with two layers of equal
volume is depicted in Fig. 2. The stratified sphere is temporally dispersive with
identical electric (` = e) and magnetic (` = m) material properties given by the
Drude model

χ`(ω) =
iς

ε0ω(1− iωτ)
, ` = e, m, (4.2)

where ς > 0 and τ > 0. The real and imaginary parts of (4.2) read

χ`(ω) =
−ςτ

ε0(1 + ω2τ 2)
+ i

ς

ε0ω(1 + ω2τ 2)
. (4.3)

Since Re χ`(ω) < 0 for ω ∈ [0,∞), the stratified sphere in Fig. 2 attains simulta-
neously negative values of the permittivity and the permeability. The calculation
in Fig. 2 is based on a Möbius transformation applied to the classical Mie series
expansion in Refs. 7 and 8.

The two curves in the upper figure with peaks at 0.97 GHz (dotted line) and
3.0 GHz (dashed line) correspond to a homogeneous sphere with identical material
properties in the inner and outer layers. These two curves are characterized by
the relaxation times τ = 10−8 s and τ = 10−9 s, respectively, and with conductivity
ς = 10 S/m in both cases. For the third curve (solid line) with peaks at 0.67 GHz and
1.6 GHz, the material parameters of the outer layer are τ = 8·10−9 s and ς = 10 S/m,
while the inner layer is non-dispersive with χe1 = 10 and χm1 = 0 independent of ω.
The lower figure provides a close-up of the peaks at 0.67 GHz and 0.97 GHz.
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Closed-form expressions of the electric polarizability dyadic γe exist for the strati-
fied sphere, see Ref. 12. For a stratified sphere of two layers, the integrated extinction
can be expressed as

∫ ∞

0

σext(λ) dλ = 4π3a3
∑

`=e,m

χ`2(χ`1 + 2χ`2 + 3) + ζ3(2χ`2 + 3)(χ`1 − χ`2)

(χ`2 + 3)(χ`1 + 2χ`2 + 3) + 2ζ3χ`2(χ`1 − χ`2)
, (4.4)

where a denotes the outer radius, and χ`1 and χ`2 represent the long wavelength
susceptibilities of the inner and outer layers, respectively. Furthermore, ζ ∈ [0, 1]
denotes the quotient between the inner and the outer radii.

Since (4.2) is characterized by a conductivity term which is singular at ω = 0,
the discussion above implies that the right hand side of (4.4) is subject to the
limits χe2 → ∞ and χm2 → ∞. Based on this observation, it is concluded that
the integrated extinction for all three curves in Fig. 2 coincide and are equal to
8π3a3 or 248.0 cm3, where a = 1 cm has been used. In contrast to the limits χe1 →
∞ and χm1 → ∞, this result is independent of ζ as well as χe1 and χm1. Note
that (2.3) and (2.5) yield that the integrated extinction 8π3a3 is equivalent to the
long wavelength limit %(0) = 2a3. The integrated extinction 248.0 cm3 is numerically
confirmed with arbitrary precision for the three curves in Fig. 2.

The physical limitation (3.3) is depicted by the shaded boxes in Fig. 2. These
boxes correspond to artificial scatterers with extinction cross sections supported at
the peaks 0.67 GHz, 0.97 GHz and 3.0 GHz. The integrated extinction of each box is
equal to 248.0 cm3 and coincides with the integrated extinction for any other curve
in the figure. From Fig. 2 it is seen how the width of the box increases as the peaks
are suppressed in magnitude and shifted toward higher frequencies. Note that the
tiny peaks at 0.36 GHz (solid line) and 1.2 GHz (dashed line) constitute a large part
of the integrated extinction, thus implying that the peaks at 0.67 GHz and 3.0 GHz
do not fit the boxes that well in comparison with the box centered at 0.97 GHz.
Recall that the area of the boxes in Fig. 2 only depends on the properties of V in
the long wavelength limit, and is hence independent of any temporal dispersion for
ω > 0.

The extinction cross section for a non-magnetic stratified sphere with two layers
of equal volume is depicted in Fig. 3. The stratified sphere is temporally dispersive
with electric susceptibility χe given by the Drude model (4.2). The two curves
in the left figure with peaks at 0.96 GHz (dotted line) and 2.7 GHz (dashed line)
correspond to the homogeneous case with identical material parameters in both
layers: τ = 10−8 s and τ = 10−9 s, respectively, with ς = 10 S/m in both cases. For
the third curve with peak at 1.4 GHz (solid line), the material parameters of the
outer layer is ς = 10 S/m and τ = 10−8 s, while the inner layer is non-dispersive
with χe1 = 10 independent of ω. The left figure in Fig. 3 is a close-up of the peaks
at 0.96 GHz and 1.4 GHz with the associated box-shaped limitations.

Since the stratified sphere in Fig. 3 has the same electric long wavelength response
as the scatterer in Fig. 2 but in addition is non-magnetic, it follows from (4.4) that
the integrated extinction of the scatterer in Fig. 3 is half the integrated extinction
of the scatterer in Fig. 2, i.e., 4π3a3 or 124.0 cm3. This observation is a direct
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Figure 3: The extinction cross section σext as function of the frequency in GHz for
a non-magnetic stratified sphere which attain negative values of the permittivity.
Note the normalization with the geometrical cross section πa2, where a = 1 cm
denotes the outer radius of the sphere.

consequence of the symmetry of (4.4) with respect to electric (` = e) and magnetic
(` = m) material properties. The result is also supported by the fact that the
amplitude of, say, the peak at 0.97 GHz in Fig. 2 is approximately twice as large as
the corresponding peak at 0.96 GHz in Fig. 3.

5 Conclusions

The conclusions of the present paper are clear: independent of how the materials
in the scatterer are defined and modeled by temporal dispersion (i.e., irrespective
of the sign of the permittivity and permeability), the holomorphic properties of the
forward scattering dyadic imply that, from a broadband point of view, there is no
fundamental difference in scattering and absorption between metamaterials and or-
dinary materials. For a single frequency, metamaterials may possess extraordinary
properties, but with respect to any bandwidth such materials are no different from
any other naturally formed substances as long as causality is obeyed. As a conse-
quence, if metamaterials are used to lower the resonance frequency, this is done to
the cost of an increasing Q-factor of the resonance. The present analysis includes
materials modeled by anisotropy and heterogeneity, and can be extended to gen-
eral bianisotropic materials as well. For example, the introduction of chirality does
not contribute to the integrated extinction since all chiral effects vanish in the long
wavelength limit.

It is believed that there are more physical quantities that apply to the theory
for broadband scattering in Ref. 12. Thus far, the theory has been applied fruitfully
to arbitrary antennas in Refs. 1 and 3 to yield physical limitations on antenna
performance and information capacity. Similar broadband limitations on cloaking
and invisibility using metamaterials and other exotic material models are currently
under investigation.
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Abstract

In this paper, physical limitations on scattering of acoustic waves over a fre-
quency interval are discussed based on the holomorphic properties of the scat-
tering amplitude in the forward direction. The result is given by a dispersion
relation for the extinction cross section which yields an upper bound on the
product of the extinction cross section and the associated bandwidth of any
frequency interval. The upper bound is shown to depend only on the geome-
try and static material properties of the scatterer. The results are exemplified
by permeable and impermeable scatterers with homogeneous and isotropic
material properties.

1 Introduction

Linear acoustics with propagation and scattering of waves in air and water has been
a subject of considerable interest for more than a century. Major contributions
to the scattering theory of both acoustic and electromagnetic waves from bounded
obstacles was provided by Rayleigh in a sequence of papers. From a theoretical
point of view, scattering of acoustic waves share many features with electromagnetic
and elastodynamic wave interaction. For a comprehensive introduction to linear
acoustics, see, e.g., Refs. 5 and 11.

The objective of this paper is to derive physical limitations on broadband scat-
tering of acoustic waves. In more detail, the scattering problem discussed here
involves how a scatterer of arbitrary shape perturbs some known incident field over
a frequency interval. The analysis is based on a forward dispersion relation for the
extinction cross section applied to a set of passive and linear constitutive relations.
This forward dispersion relation, known as the integrated extinction, is a direct
consequence of causality and energy conservation via the holomorphic properties of
the scattering amplitude in the forward direction. As far as the authors knows, the
integrated extinction was first introduced in Ref. 7 concerning absorption and emis-
sion of electromagnetic waves by interstellar dust. The analysis in Ref. 7, however,
is restricted to homogeneous and isotropic spheroids. This narrow class of scatter-
ers was generalized in Ref. 8 to include anisotropic and heterogenous obstacles of
arbitrary shape.

The present paper is a direct application to linear acoustics of the physical limita-
tions for scattering of electromagnetic waves introduced in Refs. 8 and 9. The broad
usefulness of the integrated extinction is illustrated by its diversity of applications,
see, e.g., Ref. 9 for upper bounds on the bandwidth of metamaterials associated
with electromagnetic interaction. The integrated extinction has also fruitfully been
applied to antennas of arbitrary shape in Ref. 2 to establish physical limitations on
directivity and bandwidth. The theory for broadband scattering of acoustic waves is
motivated by the summation rules and the analogy with causality in the scattering
theory for particles in Ref. 6.

In Sec. 2, the integrated extinction is derived based on the holomorphic properties
of the scattering amplitude in the forward direction. The derivation is based on a
exterior problem, and is hence independent of the boundary conditions imposed on
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V

k̂

x̂ui

us

Figure 1: Illustration of the direct scattering problem: the scatterer V is subject to
a plane wave ui = eikk̂·x impinging in the k̂-direction. The incident field is perturbed
by V and a scattered field us is detected in the x̂-direction.

the scatterer. The effect of various boundary conditions are discussed in Sec. 3, and
there applied to the results in Sec. 2. In the final section, Sec. 4, the main results
of the paper are summarized and possible applications of the integrated extinction
are discussed.

2 The integrated extinction

Consider a time-harmonic plane wave ui = eikk̂·x (complex excess pressure) with
time dependence e−iωt impinging on a bounded, but not necessary simply connected,
scatterer V ⊂ R3 of arbitrary shape, see Figure 1. The plane wave is impinging in
the k̂-direction, and x denotes the position vector with respect to some origin. The
scatterer V is assumed to be linear and time-translational invariant with passive
material properties modeled by general anisotropic and heterogeneous constitutive
relations. The analysis includes the impermeable case as well as transmission prob-
lems with or without losses. The scatterer V is embedded in the exterior region
R3 \ V , which is assumed to be a compressible homogeneous and isotropic fluid
characterized by the wave number k = ω/c. The material properties of R3 \ V are
assumed to be lossless and independent of time.

Let u = ui+us denote the total field in R3\V , where the time-dependent physical
excess pressure p is related to u via p = Re{ue−iωt}. The scattered field us represents
the disturbance of the field in the presence of V . It satisfies the Helmholtz equation
in the exterior of V , see Ref. 11, i.e.,

∇2us + k2us = 0, x ∈ R3 \ V . (2.1)

The boundary condition imposed on us at large distances x = |x| is the Sommerfeld
radiation condition

lim
x→∞

x

(
∂us

∂x
− ikus

)
= 0, (2.2)

which is assumed to hold uniformly in all directions x̂ = x/x. The condition (2.2)
establishes the outgoing character of us, and provides a condition for a well-posed
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exterior boundary value problem. For a discussion of various boundary conditions
imposed on V , see Sec. 3.

From the integral representations in Ref. 10 it is clear that every solution to (2.1)
satisfying (2.2) has an asymptotic behavior of an outgoing spherical wave, i.e.,

us =
eikx

x
S(k, x̂) +O(x−2) as x →∞.

The scattering amplitude S is independent of x and describes the interaction of V
with the incident field. From a time-domain description of the problem it follows
that S is the Fourier transform of some temporal scattering amplitude St. Assume
St is causal in the forward direction in the sense that St(τ, k̂, k̂) = 0 for τ < 0,
where τ = ct − k̂ · x. Based on this condition, the Fourier transform of St reduces
to an integral over τ > 0, i.e.,

S(k, k̂) =

∫ ∞

0

St(τ, k̂, k̂)eikτ dτ. (2.3)

The convergence of (2.3) is improved by extending its domain of definition to
complex-valued k with Im k > 0. Such an extension defines a holomorphic func-
tion S in the upper half plane Im k > 0, see Sec. 1 in Ref. 6. Note that S in general
is not a holomorphic function at infinity for Im k > 0 in the absence of the causality
condition.

The description of broadband scattering is simplified by introducing a weighted
function % of the scattering amplitude in the forward direction. For this purpose,
let % denote the holomorphic function

%(k) = S(k, k̂)/k2, Im k > 0.

Since St is real-valued it follows from (2.3) that % is real-valued on the imaginary
axis, and that it satisfies the cross symmetry %(−k∗) = %∗(k) (the star denotes
complex conjugation) for complex-valued k. Assume that % vanishes uniformly as
|k| → ∞ for Im k ≥ 0. This assumption is justified by the argument that the high-
frequency response of a material is non-unique from a modeling point of view. The
assumption is also supported by the extinction paradox Im %(k) = O(k−1) as k →∞
for real-valued k, see Ref. 8 and references therein.

An important measure of the total energy that V extracts from the incident field
in the form of radiation or absorption is given by the extinction cross section σext.
The extinction cross section is related to % via the optical theorem, see Ref. 6,

σext = 4πk Im %, (2.4)

where k ∈ [0,∞). The optical theorem is a direct consequence of energy conservation
(or probability in the scattering theory of the Schrödinger equation) and states that
the total energy removed from the incident field is solely determined by Im %. The
extinction cross section is commonly decomposed into the scattering cross section
σs and the absorption cross section σa, i.e.,

σext = σs + σa. (2.5)
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Here, σs and σa are defined as the scattered and absorbed power divided by the
incident power flux. The scattering and absorption cross sections are related to us

and u on the boundary ∂V via, see Ref. 1,

σs =
4π

k
Im

∫

∂V

u∗s
∂us

∂n
dS, σa =

4π

k
Im

∫

∂V

u
∂u∗

∂n
dS,

where the normal derivative ∂/∂n is evaluated with respect to the outward pointing
unit normal vector. In the permeable and lossy case, the absorption cross section
σa represents the total energy absorbed by V . For a lossless scatterer, σa = 0.

Under the assumption that % vanishes uniformly as |k| → ∞ for Im k ≥ 0,
it follows from the analysis in Ref. 6 that % satisfies the Hilbert transform or the
Plemelj formulae

Re %(k′) =
1

π
P

∫ ∞

−∞

Im %(k)

k − k′
dk, (2.6)

where k′ is real-valued and P denotes Cauchy’s principal value. It is particularly
interesting to evaluate (2.6) in the static limit. For this purpose, assume that
Re %(k′) = O(1) and Im %(k′) = O(k′) as k′ → 0, and that % is sufficiently regular
to interchange the principal value and the static limit. Based on these assump-
tions, (2.4) yields

lim
k→0

Re %(k) =
2

π

∫ ∞

0

Im %(k)

k
dk, (2.7)

where it has been used that Im %(k) = − Im %(−k) for real-valued k. The optical
theorem (2.4) inserted into (2.7) finally yields

∫ ∞

0

σext(k)

k2
dk = 2π2 lim

k→0
Re %(k). (2.8)

The left hand side of (2.8) is referred to as the integrated extinction. The identity
provides a forward dispersion relation for the extinction cross section as a direct
consequence of causality and energy conservation. In fact, due to the lack of any
length scale in the static limit as k → 0, the right hand side of (2.8) is proportional
to the volume of V . Furthermore, the right hand side of (2.8) depends only on the
static properties of V , and is presented in Sec. 3 for a large class of homogeneous
and isotropic scatterers.

The weak assumptions imposed on % in the derivation above is summarized
as follows: %(k) → 0 uniformly as |k| → ∞ for Im k ≥ 0, and Re %(k) = O(1) and
Im %(k) = O(k) as k → 0 for real-valued k. In general, the integrated extinction (2.8)
is not valid if any of these assumptions are violated, as illustrated in Sec. 3.3. In fact,
the requirements above can be relaxed by the introduction of the Plemelj formulae
for distributions. The integrated extinction (2.8) can also be derived using Cauchy’s
integral theorem, see Ref. 8.

The integrated extinction (2.8) may be used to establish physical limitations on
broadband scattering by acoustic waves. Since σext is defined as the sum of the
scattered and absorbed power divided by the incident power flux, it is by definition
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non-negative. Hence, the left hand side of (2.8) is estimated from below by

|K|min
k∈K

σ(k)

k2
≤

∫

K

σ(k)

k2
dk ≤

∫ ∞

0

σext(k)

k2
dk, (2.9)

where |K| denotes the absolute bandwidth of any K ⊂ [0,∞), and σ represents
either σext, σs or σa. By combining the left hand side of (2.9) with the right hand
side of (2.8), one obtain the fundamental inequality

|K|min
k∈K

σ(k)

k2
≤ 2π2 lim

k→0
Re %(k). (2.10)

The interpretation of (2.10) is that it yields an upper bound on the absolute band-
width |K| for a given scattering and/or absorption cross section mink∈K σ(k)/k2.
From (2.10), it is seen that the static limit of Re % bounds the total amount of
power extracted by V within K. The electromagnetic analogy to (2.10) is, inter
alia, central for establishing upper bounds on the performance of antennas of arbi-
trary shape, see Ref. 2.

3 The effect of various boundary conditions

In this section, the static limit limk→0 Re % is examined for various boundary condi-
tions and applied to the integrated extinction (2.8). For this purpose, V is assumed
to be homogeneous and isotropic with sufficiently smooth boundary ∂V to guarantee
the existence of boundary values in the classical sense.

3.1 The Neumann or acoustically hard problem

The Neumann or acoustically hard problem corresponds to an impermeable scatterer
with boundary condition ∂u/∂n = 0 for x ∈ ∂V . The physical interpretation of
the Neumann boundary condition is that the velocity field on ∂V is zero since no
local displacements are admitted. From the fact that us only exists in R3 \ V , it
follows that the corresponding scattered field in the time-domain cannot precede the
incident field in the forward direction, i.e., the causality condition imposed on St in
Sec. 2 is valid for the Neumann problem. The static limit of S is derived in Refs. 1
and 3 from a power series expansion of ui and us. The result in terms of Re % reads

lim
k→0

Re %(k) =
1

4π
(k̂ · γm · k̂ − |V |), (3.1)

where |V | denotes the volume of V . Here, γm models the scattering of acoustic
waves in the low frequency limit. In analogy with the corresponding theory for elec-
tromagnetic waves in Ref. 8, γm is termed the magnetic polarizability dyadic. The
magnetic polarizability dyadic is proportional to |V |, and closed-form expressions of
γm exist for the ellipsoids.
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An expression of the integrated extinction for the Neumann problem is obtained
by inserting (3.1) into (2.8), viz.,

∫ ∞

0

σext(k)

k2
dk =

π

2
(k̂ · γm · k̂ − |V |). (3.2)

Note that (3.2) is independent of k̂ when γm is isotropic, i.e., γm = γmI where
I denotes the unit dyadic, corresponding to a scatterer which is invariant under
certain point groups, see Ref. 8 and references therein. The product k̂ · γm · k̂ on
the right hand side of (3.2) can be estimated from above by the largest eigenvalue
of γm, and associated upper bounds on these eigenvalues are extensively discussed
in Ref. 8. The static limit of Re % in (3.1) can also be inserted into the right hand
side of (2.10) to yield an upper bound on the scattering and absorption properties
of V within any finite interval K.

The integrated extinction (3.2) takes a particularly simple form for the sphere.
In this case, γm is isotropic with γm = 3|V |/2, see Refs. 3 and 8, and the right hand
side of (3.2) is reduced to π|V |/4. This result for the sphere has numerically been
verified using the classical Mie-series expansion in Ref. 5.

3.2 The transmission or acoustically permeable problem

In addition to the exterior boundary value problem (2.1) and (2.2), the transmission
or acoustically permeable problem is defined by the interior requirement that ∇2us+
k2

?us = 0 for x ∈ V with the induced boundary conditions u+ = u− and ρδ∂u+/∂n =
∂u−/∂n. Here, k? = ω/c? denotes the wave number in V , and u+ and u− represents
the limits of u from R3 \ V and V , respectively. The quantity ρδ is related to the
relative mass density ρrel = ρ?/ρ via ρδ = ρrel/(1− iωδ?κ?), where κ? and ρ? denotes
the compressibility and the mass density of V , respectively. The compressibility
represents the relative volume reduction per unit increase in surface pressure. The
conversion of mechanical energy into thermal energy due to losses in V are modeled
by the compressional viscosity δ? > 0, which represents the rate of change of mass
per unit length. In the lossless case, δ? = 0, the phase velocity is c? = 1/

√
κ?ρ? and

ρδ = ρrel.
The causality condition introduced in Sec. 2 is valid for the transmission prob-

lem provided Re c? < c, i.e., when the incident field precedes the scattered field in
the forward direction. Unless V does not fulfill this requirement, % is not holomor-
phic for Im k > 0 and the analysis in Sec. 2 does not hold. Hence, the integrated
extinction (2.8) is not valid if Re c? ≥ c. This defect can partially be justified by
replacing the definition of % by % = e2ikaS(k, k̂)/k2, where a > 0 is sufficiently large
to guarantee the existence of causality in the forward direction. The compensating
factor e2ika corresponds to a time-delayed scattered field, and for homogenous and
isotropic scatterers, a sufficient condition for a is 2a > diam V , where diam V de-
notes the diameter of V . A drawback of the introduction of the factor e2ika in the
definition of % is that the optical theorem no longer can be identified in the deriva-
tion. Instead, the integrated extinction for scatterers which not obey the causality
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condition reduce to integral identities for Re % and Im %. Unfortunately, in this case
the integrands have not a definite sign and therefore the estimate (2.10) is not valid.

The static limit of the scattering amplitude S for the transmission problem is
derived in Refs. 1 and 3. The result in terms of Re % reads

lim
k→0

Re %(k) =
1

4π
((κrel − 1)|V | − k̂ · γ(ρ−1

rel ) · k̂), (3.3)

where κrel = κ?/κ denotes the relative compressibility of V , and γ represents the
general polarizability dyadic. In the derivation of (3.3), it has been used that possi-
ble losses δ? > 0 in V do not contribute in the static limit of Re %, which motivates
that the argument in γ is ρrel rather than ρδ. Analogous to γm, the general po-
larizability dyadic is proportional to |V |, and closed-form expressions for γ exist
for the ellipsoids, see Refs. 1, 3 and 8. From the properties of γ and γm in the
references above, it follows that γ(ρ−1

rel ) → −γm as ρrel → ∞, and hence the static
limit of Re % reduces to (3.1) for the Neumann problem as κrel → 0+ and ρrel →∞.
Another interesting limit corresponding to vanishing mass density in V is given by
γ(ρ−1

rel ) → γe as ρrel → 0+, where γe is termed the electric polarizability dyadic in
analogy with the low frequency scattering of electromagnetic waves, see Refs. 1, 3
and 8.

The integrated extinction for the transmission problem is given by (3.3) inserted
into (2.8). The result is

∫ ∞

0

σext(k)

k2
dk =

π

2
((κrel − 1)|V | − k̂ · γ(ρ−1

rel ) · k̂), (3.4)

Note that (3.4) is independent of any losses δ? > 0, and that the directional charac-
ter of the integrated extinction only depends on the relative mass density ρrel. For
ρrel → 1, i.e., identical mass densities in V and R3 \ V , the integrated extinction is
independent of the incident direction k̂, depending only on the relative compress-
ibility κrel. Furthermore, the integrated extinction (3.2) vanishes in the limit as
κrel → 1 and ρrel → 1, corresponding to identical material properties in V and
R3 \ V . Due to the non-negative character of the extinction cross section, this limit
implies that σext = 0 independent of the frequency as expected. Analogous to the
Neumann problem, (3.4) is also independent of the incident direcion k̂ for scatterers
with γ = γI for some real-valued γ. The product k̂ · γ · k̂ on the right hand side
of (3.4) is estimated from above by the largest eigenvalue of γ, and associated upper
bounds on these eigenvalues are discussed in Ref. 8. The static limit of Re % in (3.1)
can also be inserted into the right hand side of (2.10) to yield an upper bound on
the scattering and absorption properties of V over any finite interval K.

For the isotropic and homogenous sphere, γ = 3|V |(1 − ρrel)/(2ρrel + 1), and
the right hand side of (3.3) is independent of the incident direction as required by
symmetry. Also this result for the sphere has been verified numerically to arbitrary
precision using the classical Mie-series expansion.
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3.3 Boundary conditions with contradictions

The integrated extinction (2.8) and the analysis in Sec. 2 are not applicable to
the Dirichlet or acoustically soft problem with u = 0 for x ∈ ∂V . The physical
interpretation of the Dirichlet boundary condition is that the scatterer offers no
resistance to pressure. The Dirichlet problem defines an impermeable scatterer for
which us only exist in R3 \ V . Hence, the causality condition introduced in Sec. 2 is
valid. However, the assumption that Re %(k) = O(1) as k → 0 for real-valued k is
not valid in this case. Instead, Refs. 1 and 3 suggest that

Re %(k) = O(k−2) as k → 0

for real-valued k. The conclusion is therefore that the integrated extinction (2.8) is
not valid for the Dirichlet problem.

The same conclusion also holds for the Robin problem with impedance boundary
condition ∂u/∂n+ikνu = 0 for x ∈ ∂V . The Robin problem models an intermediate
behavior between the Dirichlet and Neumann problems, see Ref. 1. The real-valued
constant ν is related to the exterior acoustic impedance η (defined by the ratio of
the excess pressure and the normal velocity on ∂V ) via ην =

√
ρ/κ, where κ and ρ

denotes the compressibility and mass density of R3 \ V , respectively. In the limits
ν → 0+ and ν → ∞, the Robin problem reduces to the Neumann and Dirichlet
problems, respectively. For the Robin problem, the static limit of Re % for ν 6= 0
reads, see Refs. 1 and 3,

Re %(k) = O(k−1) as k → 0

for real-valued k. Hence, the assumption in Sec. 2 that Re %(k) = O(1) as k → 0
is not valid for the Robin problem either. The question whether a similar identity
to the integrated extinction exists for the Dirichlet and Robin problems with other
weight functions than 1/k2 in (2.8), is addressed in a forthcoming paper.

4 Conclusion

The static limits of Re % in Sec. 3 can be used in (2.10) to establish physical limi-
tations on the amount of energy a scatterer can extract from a known incident field
in any frequency interval K ⊂ [0,∞). Both absorbed and radiated energy is taken
into account. From the analysis of homogeneous and isotropic scatterers in Sec. 3,
it is clear that the integrated extinction holds for both Neumann and transmission
problems. However, the present formulation of the integrated extinction fails for the
Dirichlet and Robin problems since the assumption in Sec. 2 that Re %(k) = O(1)
as k → 0 for real-valued k is violated for these boundary conditions. In fact, the
eigenvalues of the polarizability dyadics γ, γe and γm are easily calculated using the
finite element method (FEM). Some numerical results of these eigenvalues are pre-
sented in Refs. 8 and 9 together with comprehensive illustrations of the integrated
extinction for electromagnetic waves.
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The integrated extinction (2.8) can also be used to establish additional infor-
mation on the inverse scattering problem of linear acoustics. One advantage of
the integrated extinction is that it only requires measurements of the scattering
amplitude in the forward direction. The theory may also be used to obtain addi-
tional insights into the possibilities and limitations of manufactured materials such
as acoustic metamaterials in Ref. 4. However, the main importance of the integrated
extinction (2.8) is that it provides a fundamental knowledge of the physical processes
involved in wave interaction with matter over any bandwidth. It is also crucial to
the understanding of the physical effects imposed on a system by the first principles
of causality and energy conservation.
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Abstract

In this paper, physical limitations on bandwidth, realized gain, Q-factor, and
directivity are derived for antennas of arbitrary shape. The product of band-
width and realizable gain is shown to be bounded from above by the eigenval-
ues of the long wavelength high-contrast polarizability dyadics. These dyadics
are proportional to the antenna volume and easily determined for an arbitrary
geometry. Ellipsoidal antenna volumes are analyzed in detail and numeri-
cal results for some generic geometries are presented. The theory is verified
against the classical Chu limitations for spherical geometries, and shown to
yield sharper bounds for the ratio of the directivity and the Q-factor for non-
spherical geometries.

1 Introduction

The concept of physical limitations for electrically small antennas was first intro-
duced more than half a century ago in Refs. 3 and 24, respectively. Since then,
much attention has been drawn to the subject and numerous papers have been pub-
lished, see Ref. 12 and references therein. Unfortunately, almost all these papers
are restricted to the sphere via the spherical vector wave expansions, deviating only
slightly from the pioneering ideas introduced in Ref. 3.

The objective of this paper is to derive physical limitations on bandwidth, real-
ized gain, Q-factor, and directivity for antennas of arbitrary shape. The limitations
presented here generalize in many aspects the classical results by Chu. The most
important advantage of the new limitations is that they no longer are restricted to
the sphere but instead hold for arbitrary antenna volumes. In fact, the smallest cir-
cumscribing sphere is far from optimal for many antennas, cf., the dipole and loop
antennas in Sec. 8. Furthermore, the new limitations successfully separate the elec-
tric and magnetic material properties of the antennas and quantify them in terms
of their polarizability dyadics.

The new limitations introduced here are also important from a radio system
point of view. Specifically, they are based on the bandwidth and realizable gain
as well as the Q-factor and the directivity. The interpretation of the Q-factor in
terms of the bandwidth is still subject to some research, see Ref. 25. Moreover,
the new limitations permit the study of polarization effects and their influence on
the antenna performance. An example of such an effect is polarization diversity for
applications in MIMO communication systems.

The present paper is a direct application of the physical limitations for broad-
band scattering introduced in Refs. 19 and 20, where the integrated extinction is
related to the long wavelength polarizability dyadics. The underlying mathematical
description is strongly influenced by the consequences of causality and the sum-
mation rules and dispersion relations in the scattering theory for the Schrödinger
equation, see Refs. 16, 17 and 22.
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Figure 1: Illustration of a hypothetic antenna subject to an incident plane-wave
in the k̂-direction.

2 Scattering and absorption of antennas

The present theory is inspired by the general scattering formalism of particles and
waves in Refs. 16 and 22. In fact, based on the assumptions of linearity, time-
translational invariance and causality there is no fundamental difference between
antennas and properly modeled scatterers. This kind of fruitful equivalence between
antenna and scattering theory has already been encountered in the literature, cf.,
the limitations on the absorption efficiency in Ref. 2 and its relation to minimum
scattering antennas. Without loss of generality, the integrated extinction and the
theory introduced in Ref. 19 can therefore be argued to also hold for antennas of
arbitrary shape. In contrast to Ref. 19, the present paper focuses on the absorption
cross section rather than scattering properties.

For this purpose, consider an antenna of arbitrary shape surrounded by free
space and subject to a plane-wave excitation impinging in the k̂-direction, see Fig. 1.
The antenna is assumed to be lossless with respect to ohmic losses and satisfy the
fundamental principles of linearity, time-translational invariance and causality. The
dynamics of the antenna is modeled by the Maxwell equations with general reciprocal
anisotropic constitutive relations. The constitutive relations are expressed in terms
of the electric and magnetic susceptibility dyadics, χe and χm, respectively, which
are functions of the material properties of the antenna.

The assumption of a lossless antenna is not severe since the analysis can be
modified to include ohmic losses, see the discussion in Sec. 9. In fact, ohmic losses
are important for small antennas, and taking such effects into account, suggest that
the lossless antenna is more advantageous than the corresponding antenna with
ohmic losses. Recall that χe and χm also depend on the angular frequency ω of the
incident plane-wave in the presence of losses.

The bounding volume V of the antenna is of arbitrary shape with the restriction
that the complete absorption of the incident wave is contained within V . The
bounding volume is naturally delimited by a reference plane or a port at which a
unique voltage and current relation can be defined, see Fig. 1. The present definition
of the antenna structure includes the matching network and is of the same kind as
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the descriptions in Refs. 3 and 25. The reflection coefficient Γ at the port is due
to the unavoidable impedance mismatch of the antenna over a given wavelength
interval, see Ref. 5. The present analysis is restricted to single port antennas with a
scalar (single) reflection coefficient. The extension to multiple ports is commented
briefly in Sec. 9.

For any antenna, the scattered electric field Es in the forward direction k̂ can
be expressed in terms of the forward scattering dyadic S as, see Appendix A,

Es(k, xk̂) =
eikx

x
S(k, k̂) ·E0 +O(x−2) as x →∞. (2.1)

Here, E0 denotes the Fourier amplitude of the incident field Ei(c0t−k̂ ·x), and k is a
complex variable with Re k = ω/c0 and Im k ≥ 0. For a large class of antennas, the
elements of S are holomorphic in k and Cauchy’s integral theorem can be applied
to

%(k) =
1

k2
p̂∗e · S(k, k̂) · p̂e, k ∈ C. (2.2)

Here, p̂e = E0/|E0| denotes the electric polarization, which is assumed to be inde-
pendent of k.1 The complex-valued function (2.2) is referred to as the extinction
volume and it provides a holomorphic extension of the extinction cross section to
Im k ≥ 0, see Appendix A.

A dispersion relation or summation rule for the extinction cross section can be
derived in terms of the electric and magnetic polarizability dyadics γe and γm,
respectively. The derivation is based on energy conservation via the optical theorem
in Refs. 16 and 22. The optical theorem σext = 4πk Im % and the asymptotic behavior
of the extinction volume % in the long wavelength limit, |k| → 0, are the key building
blocks in the derivation. The result is the integrated extinction

∫ ∞

0

σext(λ) dλ = π2(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m), (2.3)

where the magnetic (or cross) polarization p̂m = k̂ × p̂e has been introduced. The
functional dependence on k̂ and p̂e is for simplicity suppressed from the argument
on the left hand side of (2.3). Note that (2.3) also can be formulated in k = 2π/λ via
the transformation σext(λ) → 2πσext(2π/k)/k2. For details on the derivation of (2.3)
and definition of the extinction cross section σext and the polarizability dyadics γe

and γm, see Appendix A and B. The integrated extinction applied to scattering
problems is exploited in Ref. 19.

It is already at this point important to notice that the right hand side of (2.3)
only depends on the long wavelength limit or static response of the antenna, while
the left hand side is a dynamic quantity which includes the absorption and scattering
properties of the antenna. Furthermore, electric and magnetic properties are seen
to be treated on equal footing in (2.3), both in terms of material properties and
polarization description.

1Observe that the assumption that p̂e is independent of k does not imply that the polarization
of the antenna in Fig. 1 is frequency independent.
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Figure 2: Illustration of the two types of physical limitations considered in this
paper: GΛB represented by the shaded box (left figure) and D/Q related to the
dotted resonance model (right figure).

The antenna parameters of importance in this paper are the partial gain G and
the partial directivity D, see Appendix E and Ref. 13. In general, both G and D
depend on the incident direction k̂ and the electric polarization p̂e as well as the
wave number k. In addition, the partial realized gain, (1 − |Γ |2)G, depends on
the reflection coefficient Γ . In the forthcoming analysis, the relative bandwidth B,
the Q-factor, and the associated center wavelength λ0 are naturally introduced as
intrinsic parameters in the sense that neither of them depend on k̂ or p̂e for a given
single port antenna.

Two different types of bounds on the first resonance of an antenna are addressed
in this paper, see Fig. 2. The bounds relate the integral (2.3) of two generic in-
tegrands to the polarizability dyadics. The bound on the partial realized gain,
(1− |Γ |2)G, in the left figure takes the form of a box, i.e., it estimates the integral
with the bandwidth times the partial realized gain. The bound in the right figure
utilizes the classical resonance shape of the integrand giving a bound expressed in
terms of the partial directivity and the associated Q-factor.

3 Limitations on bandwidth and gain

From the definition of the extinction cross section σext it is clear that it is non-
negative and bounded from below by the absorption cross section σa. For an
unmatched antenna, σa is reduced by the reflection loss 1 − |Γ |2 according to
σa = (1 − |Γ |2)σa0, where σa0 denotes the absorption cross section or partial ef-
fective area for the corresponding perfectly matched antenna, see Refs. 18 and 13.
The absorption cross section σa0 is by reciprocity related to the partial antenna
directivity D as D = 4πσa0/λ

2, see Ref. 18. Thus, for any wavelength λ ∈ [0,∞),

σext ≥ σa = (1− |Γ |2)σa0 =
1

4π
(1− |Γ |2)λ2D. (3.1)
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Recall that D depends on the electric polarization p̂e as well as the incident direction
k̂. In the present case of no ohmic losses, the partial gain G coincides with the partial
directivity D.

Introduce the wavelength interval Λ = [λ1, λ2] with center wavelength λ0 =
(λ2 + λ1)/2 and associated relative bandwidth

B = 2
λ2 − λ1

λ2 + λ1

= 2
k1 − k2

k2 + k1

,

where 0 < B ≤ 2 and k = 2π/λ ∈ K denotes the angular wave number in K =
[k2, k1]. Thus, for any wavelength interval Λ, the estimate σext ≥ σa in (3.1) yields

∫ ∞

0

σext(λ) dλ ≥
∫

Λ

σa(λ) dλ =
1

4π

∫

Λ

(1− |Γ |2)λ2G(λ) dλ, (3.2)

where D = G is used.2

In order to simplify the notation, introduce GΛ = infλ∈Λ(1− |Γ |2)G as the min-
imum partial realized gain over the wavelength interval Λ. Following this notation,
the integral on the right hand side of (3.2) can be estimated from below as

∫

Λ

(1− |Γ |2)λ2G(λ) dλ ≥ GΛ

∫

Λ

λ2 dλ = λ3
0GΛB

(
1 +

B2

12

)
. (3.3)

Without loss of generality, the factor 1 + B2/12 can be estimated from below by
unity. This estimate is also supported by the fact that B ¿ 2 in many applications.
Based upon this observation, (2.3), (3.2) and (3.3) can be summarized to yield the
following limitation on the product GΛB valid for any antenna satisfying the general
assumptions stated in Sec. 2:

GΛB ≤ 4π3

λ3
0

(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m). (3.4)

Relation (3.4) is one of the main results of this paper. Note that the factor 4π3/λ3
0

neatly can be expressed as k3
0/2 in terms of the angular wave number k0 = 2π/λ0.

The estimate 1+B2/12 ≥ 1 in (3.3) is motivated by the simple form of (3.4). In
broadband applications, B is in general not small compared to unity, and the higher
order term in B should be included on the left hand side of (3.4).

The right hand side of (3.4) depends on both p̂e and k̂ = p̂e× p̂m, as well as the
long wavelength limit (static limit with respect to k = 2π/λ) material properties
and shape of the antenna. It is indeed surprising that it is just the long wavelength
limit properties of the antenna that bound the product GΛB in (3.4). Since γe and
γm are proportional to the volume V of the antenna, see Ref. 19, it follows from (3.4)
that the upper bound on the product GΛB is directly proportional to V/λ3

0 or k3
0a

3,
where a denotes the radius of the volume-equivalent sphere.

2The equality sign on the left hand side in (3.2) is motivated by the broadband absorption
efficiency introduced in (3.7).
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In many antenna applications it is desirable to bound the product GΛB inde-
pendently of the material properties. For this purpose, introduce the high-contrast
polarizability dyadic γ∞ as the limit of either γe or γm when the elements of χe

or χm in the long wavelength limit simultaneously approach infinity.3 Note that
this definition implies that γ∞ is independent of any material properties, depending
only on the geometry of the antenna. From the variational properties of γe and
γm discussed in Ref. 19 and references therein, it follows that both γe and γm are
bounded from above by γ∞. Hence, (3.4) yields

GΛB ≤ 4π3

λ3
0

(p̂∗e · γ∞ · p̂e + p̂∗m · γ∞ · p̂m). (3.5)

The introduction of the high-contrast polarizability dyadic γ∞ in (3.5) is the starting
point of the analysis below.

The high-contrast polarizability dyadic γ∞ is real-valued and symmetric, and
consequently diagonalizable with real-valued eigenvalues. Let γ1 ≥ γ2 ≥ γ3 denote
the three eigenvalues. Based on the constraint p̂e · p̂m = 0, which is a consequence of
the free space plane-wave excitation, the right hand side of (3.5) can be estimated
from above as

sup
p̂e·p̂m=0

GΛB ≤ 4π3

λ3
0

(γ1 + γ2). (3.6)

The interpretation of the operator supp̂e·p̂m=0 is polarization matching, i.e., the
polarization of the antenna coincides with the polarization of the incident wave.
In the case of non-magnetic antennas, γm = 0, the second eigenvalue γ2 in (3.6)
vanishes. Hence, the right hand side of (3.6) can be improved by at most a factor of
two by utilizing magnetic materials. Note that the upper bounds in (3.5) and (3.6)
coincide when γ∞ is isotropic.

Since γ1 and γ2 only depend on the long wavelength properties of the antenna,
they can easily be calculated for arbitrary geometries using either the finite element
method (FEM) or the method of moments (MoM). Numerical results of γ1 and γ2

for the Platonic solids, the rectangular parallelepiped and some classical antennas
are presented in Secs. 7 and 8. Important variational properties of γj are discussed
in Ref. 19 and references therein. The influence of supporting ground planes and
the validity of the method of images for high-contrast polarizability calculations are
presented in Appendix C.

The estimate in (3.2) can be improved based on a priori knowledge of the scat-
tering properties of the antenna. In fact, σext ≥ σa in (3.1) may be replaced by
σext = σa/η, where 0 < η ≤ 1 denotes the absorption efficiency of the antenna, see
Ref. 2. For most antennas at the resonance frequency, η ≤ 1/2, but exceptions from
this rule of thumb exist. In particular, minimum scattering antennas (MSA) defined
by η = 1/2 yield an additional factor of two on the right hand side of (3.1). The
inequality in (3.2) can be replaced by the equality∫

Λ

σext(λ) dλ = η̃−1

∫

Λ

σa(λ) dλ. (3.7)

3Recall that χe and χm are real-valued in the long wavelength limit. In the case of finite or
infinite conductivity, see Appendix B.
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The constant η̃ is bounded from above by the absorption efficiency via η̃ ≤ supλ∈Λ η,
and provides a broadband generalization of the absorption efficiency. If η̃ is invoked
in (3.2), the right hand side of the inequalities (3.4), (3.5), and (3.6) are sharpened
by the multiplicative factor η̃.

4 Limitations on Q-factor and directivity

Under the assumption of N non-interfering resonances characterized by the real-
valued angular wave numbers kn, a multiple resonance model for the absorption
cross section is

σa(k) = 2π
N∑

n=1

%n
Qnkn

1 + Q2
n(k/kn − kn/k)2/4

, (4.1)

where k is assumed real-valued and %n are positive weight functions satisfying∑
n %n = %(0). Here, the Q-factor of the resonance at kn is denoted by Qn, and

for Qn À 1, the associated relative half-power bandwidth is Bn ∼ 2/Qn, see Fig. 3.
Recall that Qn ≥ 1 is consistent with 0 < Bn ≤ 2. For the resonance model (4.1),
one can argue that Qn in fact coincides with the corresponding antenna Q-factor in
Appendix F when the relative bandwidth 2/Qn is based on the half-power threshold,
see also Refs. 6 and 25. In the case of strongly interfering resonances, the model (4.1)
either has to be modified or the estimates in Sec. 3 have to be used.

The absorption cross section is the imaginary part, σa = 4πk Im %a, of the func-
tion

%a(k) =
N∑

n=1

%n
iQnkn/(2k)

1− iQn (k/kn − kn/k) /2
, (4.2)

for real-valued k. The function %a(k) is holomorphic for Im k > 0 and has a symmet-
rically distributed pair of poles for Im k < 0, see Fig. 3. The integrated absorption
cross section is

1

4π2

∫ ∞

−∞

σa(k)

k2
dk = %a(0) = η̃%(0) ≤ %(0), (4.3)

where %(0) is given by the long wavelength limit (A.4).
For antennas with a dominant first resonance at k = k1, it follows from (3.1)

and (4.1) that the partial realized gain G satisfies

(1− |Γ |2)G =
k2σa

π
≤ %(0)

2k2Qk1

1 + Q2(k/k1 − k1/k)2/4
, (4.4)

where %1 ≤ %(0) has been used. The right hand side of (4.4) reaches its maximum
value %(0)2k3

1Q/(1−Q−2) at k0 = k1(1−2Q−2)−1/2 or k0 = k1 +O(Q−2) as Q →∞.
Hence, k0 is a good approximation to k1 if Q À 1. For a lossless antenna which is
perfectly matched at k = k0, the partial realized gain (1−|Γ |2)G coincides with the
partial directivity D. Under this assumption, (4.4) yields D/Q ≤ %(0)2k3

1/(1−Q−2)
which further can be estimated from above as

D

Q
≤ k3

0

2π
(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) , (4.5)
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Figure 3: The symmetrically distributed pair of poles (×) of the extinction volume
% in the complex k-plane (left figure) and the corresponding single resonance model
of Im % when Qn À 1 (right figure).

where (A.4) have been used. Relation (4.5) together with (3.5) constitute the main
results of this paper.

Analogous to (3.5) and (3.6), it is clear that (4.5) can be estimated from above
by the high-contrast polarizability dyadic γ∞ and the associated eigenvalues γ1 and
γ2, viz.,

sup
p̂e·p̂m=0

D

Q
≤ k3

0

2π
(γ1 + γ2). (4.6)

Here, (4.6) is subject to polarization matching and therefore independent of the
electric and magnetic polarizations, p̂e and p̂m, respectively. Note that the upper
bounds in (4.5) and (4.6) only differ from the corresponding results in (3.5) and (3.6)
by a factor of π, i.e., GΛB ≤ πC and D/Q ≤ C. Hence, it is sufficient to consider
either the GΛB bound or the D/Q bound for a specific antenna. The estimates (4.5)
and (4.6) can be improved by the multiplicative factor η̃ if a priori knowledge of the
scattering properties of the antenna (3.7) is invoked in (4.4).

The resonance model for the absorption cross section in (4.1) is also directly
applicable to the theory of broadband scattering in Ref. 19. In that reference, (4.1)
can be used to model absorption and scattering properties and yield new limitations
on broadband scattering.

5 Comparison with Chu and Chu-Fano

In this section, the bounds on GΛB and D/Q subject to matched polarizations, i.e.,
inequalities (3.6) and (4.6), are compared with the corresponding results by Chu
and Fano in Refs. 3 and 5, respectively.
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5.1 Limitations on Q-factor and directivity

The classical limitations derived by Chu in Ref. 3 relate the Q-factor and the di-
rectivity D to the quantity k0a of the smallest circumscribing sphere. Using the
notation of Secs. 3 and 4, the classical result by Chu for an omni-directional an-
tenna (for example in the azimuth plane) reads

sup
p̂e·p̂m=0

D

Q
≤ 3

2

k3
0a

3

k2
0a

2 + 1
=

3

2
k3

0a
3 +O(k5

0a
5) as k0a → 0. (5.1)

In the general case of both TE- and TM-modes, (5.1) must be modified, see Ref. 12,
viz.,

sup
p̂e·p̂m=0

D

Q
≤ 6k3

0a
3

2k2
0a

2 + 1
= 6k3

0a
3 +O(k5

0a
5) as k0a → 0. (5.2)

Note that (5.2) differs from (5.1) by approximately a factor of four when k0a ¿ 1.
The bounds in (5.1) and (5.2) should be compared with the corresponding result

in Sec. 4 for the sphere. For a sphere of radius a, the eigenvalues γ1 and γ2 are
degenerated and equal to 4πa3, see Sec. 6. Insertion of γ1 = γ2 = 4πa3 into (4.6)
yields supp̂e·p̂m=0 D/Q ≤ C, where the constant C is given by

C = 4k3
0a

3, C = 2k3
0a

3, C = k3
0a

3. (5.3)

The three different cases in (5.3) correspond to both electric and magnetic material
properties (C = 4k3

0a
3), pure electric material properties (C = 2k3

0a
3), and pure

electric material properties with a priori knowledge of minimum scattering charac-
teristics (C = k3

0a
3 with η̃ = 1/2), respectively. Note that the third case in (5.3)

more generally can be expressed as C = 2k3
0a

3η̃ for any broadband absorption effi-
ciency 0 < η̃ ≤ 1. The bounds in (5.2) and (5.3) are comparable although the new
limitations (5.3) are sharper. In the omni-directional case, (5.1) provides a sharper
bound than (5.3), except for the pure electric case with absorption efficiency η̃ < 3/4.

5.2 Limitations on bandwidth and gain

The limitation (3.6) should also be compared with the result of Chu when the Fano
theory of broadband matching is used. The Fano theory includes the impedance
variation over the frequency interval to yield limitations on the bandwidth, see
Ref. 5. For a resonance circuit model, the Fano theory yields that the relation
between B and Q is, see Ref. 6,

B ≤ π

Q ln 1/|Γ | . (5.4)

The reflection coefficient Γ is due to mismatch of the antenna. It is related to the
standing wave ratio SWR as |Γ | = (SWR− 1)/(1 + SWR).

Introduce Qs as the Q-factor of the smallest circumscribing sphere with 1/Qs =
k3

0a
3 +O(k5

0a
5) as k0a → 0 for omni-directional antennas. Under this assumption, it
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follows from (5.1) that supp̂e·p̂m=0 D ≤ 3Q/2Qs. Insertion of this inequality into (5.4)
then yields

sup
p̂e·p̂m=0

GΛB ≤ 3π

2

1− |Γ |2
ln 1/|Γ | k

3
0a

3. (5.5)

For a given k0a, the right hand side of (5.5) is monotone in |Γ | and bounded from
above by 3πk3

0a
3. However, note that the Chu-Fano limitation (5.5) is restricted to

omni-directional antennas with k0a ¿ 1.
Inequality (5.5) should be compared with the corresponding result in Sec. 3 for

the smallest circumscribing sphere. Since the upper bounds (3.6) and (4.6) only
differ by a factor of π, i.e., supp̂e·p̂m=0 GΛB ≤ C ′ and supp̂e·p̂m=0 D/Q ≤ C where
C ′ = πC, it follows from (5.3) that

C ′ = 4πk3
0a

3, C ′ = 2πk3
0a

3, C ′ = πk3
0a

3. (5.6)

The three cases in (5.3) correspond to both electric and magnetic material properties
(C ′ = 4πk3

0a
3), pure electric material properties (C ′ = 2πk3

0a
3), and pure electric

material properties with a priori knowledge of minimum scattering characteristics
(C ′ = πk3

0a
3), respectively.

The limitations on GΛB based on (5.6) are comparable with (5.5) for most re-
flections coefficients |Γ |. For |Γ | < 0.65 the Chu-Fano limitation (5.5) provides a
slightly sharper bound on GΛB than (5.6) for pure electric materials. However, re-
call that the spherical geometry gives an unfavorable comparison with the present
theory, since for many antennas the eigenvalues γ1 and γ2 are reduced considerably
compared with the smallest circumscribing sphere, cf., the dipole in Sec. 8.1 and the
loop antenna in Sec. 8.2.

6 Ellipsoidal geometries

Closed-form expressions of γe and γm exist for the ellipsoidal geometries, see Ref. 19,
viz.,

γe = V χe · (I + L · χe)
−1, γm = V χm · (I + L · χm)−1. (6.1)

Here, I denotes the unit dyadic and V = 4πa1a2a3/3 is the volume of ellipsoid in
terms of the semi-axes aj. The depolarizability dyadic L is real-valued and symmet-
ric, and hence diagonalizable with real-valued eigenvalues. The eigenvalues of L are
the depolarizing factors Lj, given by

Lj =
a1a2a3

2

∫ ∞

0

ds

(s + a2
j)

√
(s + a2

1)(s + a2
2)(s + a2

3)
, j = 1, 2, 3. (6.2)

The depolarizing factors Lj satisfy 0 ≤ Lj ≤ 1 and
∑

j Lj = 1. The semi-axes aj are
assumed to be ordered such that L1 ≤ L2 ≤ L3. Closed-form expressions of (6.2)
in terms of the semi-axis ratio ξ = (minj aj)/(maxj aj) exist for the ellipsoids of
revolution, i.e., the prolate spheroids (L2 = L3) and the oblate spheroids (L1 = L2),
see Appendix G.
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Figure 4: The eigenvalues γ1 ≥ γ2 ≥ γ3 (left figure) and the quotient D/Q (right
figure) for the prolate and oblate spheroids as function of the semi-axis ratio ξ.
Note the normalization with the volume Vs = 4πa3/3 of the smallest circumscribing
sphere.

The high-contrast polarizability dyadic γ∞ is given by (6.1) as the elements of
χe or χm simultaneously approach infinity. From (6.1) it is clear that the eigen-
values of γ∞ are given by γj = V/Lj. For the prolate and oblate spheroids, V is
neatly expressed in terms of the volume Vs = 4πa3/3 of the smallest circumscribing
sphere. The results are V = ξ2Vs and V = ξVs for the prolate and oblate spheroids,
respectively. The eigenvalues γ1 and γ2 for the prolate and oblate spheroids are
depicted in the left figure in Fig. 4. Note that the curves for the oblate spheroid
approach 4/π in the limit as ξ → 0, see Appendix G. The corresponding limiting
value for the curves as ξ → 1 is 3.

The general bound on GΛB for arbitrary ellipsoidal geometries is obtained by
inserting (6.1) into (3.4), i.e.,

GΛB ≤ 4π3V

λ3
0

(
p̂∗e · χe · (I + L · χe)

−1 · p̂e + p̂∗m · χm · (I + L · χm)−1 · p̂m

)
. (6.3)

Independent of both material properties and polarization effects, the right hand side
of (6.3) can be estimated from above in analogy with (3.6). The result is

sup
p̂e·p̂m=0

GΛB ≤ 4π3V

λ3
0

(
1

L1

+
1

L2

)
. (6.4)

In the non-magnetic case, the second term on the right hand side of (6.3) and (6.4)
vanishes. For the prolate and oblate spheroids, the closed-form expressions of Lj in
Appendix G can be introduced to yield explicit upper bounds on GΛB.

The corresponding results for the quotient D/Q are obtained from the observa-
tion that GΛB ≤ πC is equivalent to D/Q ≤ C, see Sec. 4. For the general case
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Figure 5: Geometry of the circular disk and needle.

including polarization and material properties, (6.3) yields

D

Q
≤ k3

0V

2π

(
p̂∗e · χe · (I + L · χe)

−1 · p̂e + p̂∗m · χm · (I + L · χm)−1 · p̂m

)
. (6.5)

Analogous to (6.4), the restriction to matched polarizations for the quotient D/Q
reads

sup
p̂e·p̂m=0

D

Q
≤ k3

0V

2π

(
1

L1

+
1

L2

)
. (6.6)

The upper bound in (6.6) is depicted in the right figure in Fig. 4 for the prolate and
oblate spheroids. The solid curves correspond to combined electric and magnetic
material properties, while the dashed curves represent the pure electric case. The
non-magnetic minimum scattering case (η̃ = 1/2) is given by the dotted curves.
Note that the three curves in the right figure vanish for the prolate spheroid as
ξ → 0. The corresponding limiting values for the oblate spheroid are 16/3π, 8/3π
and 4/3π, see Appendix G.

The curves depicted in the right figure in Fig. 4 should be compared with the
classical results for the sphere in (5.1) and (5.2). The omni-directional bound (5.1)
and its generalization (5.2) are marked in Fig. 4 by Chu (TE) and (TE+TM), re-
spectively. From the figure, it is clear that (6.6) provides a sharper bound than (5.2).
For omni-directional antennas, (5.1) is slightly sharper than (6.6) for the sphere, but
when a priori knowledge of minimum scattering characteristics (η̃ = 1/2) is used, the
reversed conclusion holds. Recall that the classical results in Sec. 5.1 are restricted
to the sphere, in contrast to the theory introduced in this paper.

Based on the results in Appendix G, it is interesting to evaluate (6.4) in the limit
as ξ → 0. This limit corresponds to the axially symmetric needle and circular disk
in Fig. 5. For a needle of length 2a with semi-axis ξ ¿ 1, (G.3) inserted into (6.4)
yields

GΛB ≤ 16π4a3

3λ3
0

f(θ)

ln 2/ξ − 1
+O(ξ2) as ξ → 0. (6.7)

Here, f(θ) = sin2 θ for the TE- and TM-polarizations in the case of both electric
and magnetic material properties. In the non-magnetic case, f(θ) = 0 for the TE-
and f(θ) = sin2 θ for the TM-polarization. Note that the sin2 θ term in (6.7) and
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Figure 6: The eigenvalues γ (upper row) for the five Platonic solids and the sphere.
The number in parenthesis are γ in units of 4πa3, where a denotes the radius of the
smallest circumscribing sphere.

the logarithmic singularity in the denominator agree with the radiation pattern and
the impedance of the dipole antenna in Sec. 8.1, see Ref. 4.

The corresponding result for the circular disk of radius a is non-vanishing in the
limit as ξ → 0, viz.,

GΛB ≤ 64π3a3

3λ3
0

f(θ). (6.8)

Here, f(θ) = 1+cos2 θ for the TE- and TM-polarizations in the case of both electric
and magnetic material properties. In the non-magnetic case, f(θ) = 1 for the TE-
and and f(θ) = cos2 θ for the TM-polarization. Note the direct application of (6.8)
for planar spiral antennas.

7 The high-contrast polarizability dyadic

In this section, some numerical results of γ∞ are presented and analyzed in terms
of the physical limitations discussed in Sec. 3.

7.1 The Platonic solids

Since the Platonic solids are invariant under appropriate point groups, see Ref. 11,
their corresponding high-contrast polarizability dyadics γ∞ are isotropic, i.e., γ∞ =
γ∞I, where I denotes the unit dyadic in R3. Let γ = γj represent the eigenvalues of
γ∞ for j = 1, 2, 3. The Platonic solids are depicted in Fig. 6 together with the eigen-
values γ in terms of the volume V of the solids. The five Platonic solids are from left
to right the tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron,
with 4, 6, 8, 12 and 20 facets, respectively. Included in the figure are also γ in units
of 4πa3, where a denotes the radius of the smallest circumscribing sphere. This
comparison with the smallest circumscribing sphere is based on straightforward cal-
culations which is further discussed in Sec. 7.2. The numerical values of γ in Fig. 6
are based on Method of Moments (MoM) calculations, see Ref. 19 and references
therein.

Since the upper bound in (3.6) is linear in γ, it follows that among the Platonic
solids, the tetrahedron provides the largest upper bound on GΛB for a given volume
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(1) (0.050) (0.056)(0.42) (0.24)

Figure 7: The eigenvalue γ1 in units of 4πa3, where a denotes the radius of
the smallest circumscribing sphere. The prolate spheroid, the circular ring and the
circular cylinder correspond to the generalized semi-axis ratio ξ = 10−3.

V . The eigenvalues γ in Fig. 6 are seen to approach 3V as the number of facets
increases. This observation is confirmed by the variational principle discussed in
Ref. 19, which states that for a given volume the sphere minimizes the trace of γ∞
among all isotropic high-contrast polarizability dyadics. Hence, a lower bound on γ
is given by the sphere for which γ = 3V .

For matched polarizations, the eigenvalues in Fig. 6 can directly be applied
to (3.6) to yield an upper bound on the performance of any antenna circumscribed
by a given Platonic solid. For example, the non-magnetic tetrahedron yields GΛB ≤
624V/λ3

0 or GΛB ≤ 0.19 for V = 1 cm3 and center frequency c0/λ0 = 2 GHz. The
corresponding bound on the quotient D/Q differ only by a factor of π, i.e., D/Q ≤
0.059.

It is interesting to note that the pertinent point group symmetries of the Platonic
solids are preserved if their geometries are altered appropriately. Such symmetric
changes yield a large class of geometries for which γ∞ is isotropic and the upper
bound on GΛB is independent of the polarization. This observation together with
the fact that the variational principle discussed above also can be applied to arbi-
trary isotropic high-contrast polarizability dyadics, are particularly interesting from
a MIMO-perspective, see Ref. 9 and references therein.

7.2 Comparison with the sphere

From the discussion of the polarizability dyadics in Ref. 19, it is clear that both
γ1 and γ2 are directly proportional to the volume of the antenna with a purely
geometry dependent proportionality factor. For the circular disk, it follows from
Appendix G that even though the volume of the disk vanishes, the eigenvalues γ1

and γ2 are non-zero. This result is due to the fact that the geometry dependent
proportionality factors 1/L1 and 1/L2 approach infinity in the limit as the semi-axis
ratio approaches zero. In other words, it is not sufficient to only consider the volume
part of γ1 and γ2 to draw conclusions of the potential in antenna performance for a
given volume. In addition, also the shape dependent proportionality factor must be
taken into account.

Motivated by the discussion above, it is interesting to compare γ1 and γ2 for the
different geometries discussed in Secs. 7 and 8, and in Ref. 7. The comparison refers
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to the smallest circumscribing sphere with radius a, for which γ1 and γ2 are equal
to 4πa3, see Ref. 7. For this purpose, introduce γ1/4πa3, which, in the case of pure
electric material properties, yields a direct measure of the antenna performance in
terms of (3.6) and (4.6). The main question addressed in this section is therefore:
how much antenna performance can be gained for a given geometry by instead
utilizing the full volume of the smallest circumscribing sphere?

In Fig. 7, the goodness number γ1/4πa3 are presented for the sphere, circular
disk, toroidal ring, and prolate and cylindrical needles, respectively. The generalized
semi-axis ratio4 for the toroidal ring and the prolate and cylindrical needles are
ξ = 10−3. The values for the prolate needle and the toroidal ring are given by (G.3)
and (H.5), respectively, while the cylindrical needle is based on FEM simulation for
the dipole antenna in Sec. 8.1. The value for the circular disk is 4/3π ≈ 0.42 given
by (G.4).

The results in Fig. 7 should be compared with the corresponding values in Fig. 6
for the Platonic solids. For example, it is seen that the potential of utilizing the
tetrahedron is about 20.5% compared to the smallest circumscribing sphere. Since
the high-contrast polarizability dyadics γ∞ are isotropic for the Platonic solids and
the sphere, it follows that the results in Fig. 6 also hold for the second and third
eigenvalues, γ2 and γ3, respectively. This is however not the case for the geometries
depicted in Fig. 7 since the circular disk, toroidal ring, and the prolate and cylindrical
needles have no isotropic high-contrast polarizability dyadics. For the circular disk
and the toroidal ring, γ1 and γ2 are equal, and therefore yield the same results as in
Fig. 7 for combined electric and magnetic material properties.

In Fig. 7, it is seen that the physical limitations on GΛB and D/Q for any two-
dimensional antenna confined to the circular disk corresponds to about 42% of the
potential to utilize the full sphere. This result is rather surprising since, in contrast
to the sphere, the circular disk has zero volume. In other words, there is only a
factor of 1/0.42 ≈ 2.4 to gain in antenna performance by utilizing three-dimensions
compared to two for a given maximum dimension a of the antenna. Since the prolate
and cylindrical needles vanish in the limit as the semi-axis ratio approaches zero,
the performance of any one-dimensional antenna restricted to the line is negligible
as compared to the performance of an antenna in the sphere.

Since γ1 and γ2 in the right hand side of (3.6) and (4.6) are determined from sep-
arate electric and magnetic problems in the long wavelength limit, see Appendix B,
it is clear that electric and magnetic material properties, and hence also γ1 and γ2,
can be combined separately. For example, any antenna with magnetic properties
confined to the circular disk and electric properties confined to the toroidal ring has
a potential which is 100(0.42+0.24) = 66% of the sphere with no magnetic material
properties present.

4The generalized semi-axis ratio for the cylindrical needle and the toroidal ring are defined by
ξ = b/a, where a and b are given in Figs. 9 and 11, respectively.
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Figure 8: The eigenvalues γ1, γ2 and γ3 as function of the ratio a2/a1 for a
rectangular parallelepiped of edge lengths a1, a2 and a3. The solid curves are for
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1/6 of the sphere of radius a1/2.

7.3 The rectangular parallelepiped

The rectangular parallelepiped is a generic geometry that can be used to model, e.g.,
mobile phones, laptops, and PDAs. The eigenvalues γ1, γ2 and γ3 for a rectangular
parallelepiped with edge lengths a1, a2 and a3 are shown in Fig. 8 as a function of the
ratio a2/a1. The solid and dotted curves correspond to a1/a3 = 5 and a1/a3 = 10,
respectively. The eigenvalues are ordered γ1 ≥ γ2 ≥ γ3 and the principal axes of
the eigenvalues γi correspond to the directions parallel to ai if a1 ≥ a2 ≥ a3. The
eigenvalues degenerate if the lengths of the corresponding edges coincide.

The performance of any non-magnetic antenna inscribed in the parallelepiped is
limited as shown by (3.5) with γm = 0. Specifically, the limitations on antennas
polarized in the ai direction are given by the eigenvalue, γi. Obviously, it is advan-
tageous to utilize the longest dimension of the parallelepiped for the polarization of
single port antennas. The limitation (3.5) also quantifies the degradation in using
the other directions for the polarization. This is useful for the understanding of
fundamental limitations and synthesis of MIMO antennas.

For example, a typical mobile phone is approximately 10 cm high, 5 cm wide,
and 1 cm to 2 cm thick. The corresponding eigenvalues γ1, γ2 and γ3 for a1 =
10 cm are seen in Fig. 8 for a3 = 2 cm (solid lines) and a3 = 1 cm (broken lines).
The distribution of the eigenvalues γ1, γ2 and γ3 quantifies the trade off between
pattern and polarization diversity for multiple antennas systems in the mobile phone.
Pattern diversity utilizes the largest eigenvalue but requires an increased directivity
at the cost of bandwidth (3.5). Similarly, polarization diversity utilizes at least two
eigenvalues. It is observed that it is advantageous to use polarization and pattern
diversity for a2 ≈ a1 and a2 ¿ a1, respectively. For a mobile phone where a2 ≈ a1/2,
either pattern diversity or a combined pattern and polarization diversity as linear
combinations of the a1 and a2 directions can be used. Moreover, note that magnetic
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Figure 9: The extinction and absorption cross sections (left figure) and the real-
ized gain (right figure) for a cylindrical dipole antenna with axial ratio b/a = 10−3.
The different curves correspond to Hallén’s integral equation (solid curves), direc-
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materials, increase the bound (3.5) and offer additional possibilities.

8 Analysis of some classical antennas

In this section, numerical simulations of some classical antennas are presented and
analyzed in terms of the physical limitations discussed in Sec. 3.

8.1 The dipole antenna

The cylindrical dipole antenna is one of the simplest and most well known antennas.
Here, the MoM solution of the Hallén’s integral equation in Ref. 10 together with a
gap feed model is used to determine the cross sections and impedance for a cylindrical
dipole antenna with axial ratio b/a = 10−3. The extinction and absorption cross
sections and the realized gain are depicted in Fig. 9. The antenna is resonant at
2a ≈ 0.48λ with directivity D = 1.64 and radiation resistance 73 Ω. The half-power
bandwidth is B = 25% and the corresponding Q-factor is estimated to Q = 8.3 by
numerical differentiation of the impedance, see Ref. 25. The absorption efficiency η
is depicted in Fig. 10. It is observed that η ≈ 0.5 at the resonance frequency and
η̃ = 0.52 for 0 ≤ 4a/λ ≤ 3.

The MoM solution is also used to determine the forward scattering properties of
the antenna. The forward scattering is represented by the extinction volume % in
Fig. 10. Recall that %(0) and Im % directly are related to the polarizability dyadics
and the extinction cross section, see Sec. 3.

Moreover, since Re % ≈ 0 at the resonance frequency, it follows that the real-
valued part of the forward scattering is negligible at this frequency. This observation
is important in the understanding of the absorption efficiency of antennas, see Ref. 2.
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Figure 10: The extinction volume % (left figure) and the absorption efficiency η
(right figure) as function of 4a/λ for the dipole antenna.

FEM simulations are used to determine the polarizability dyadic and the eigen-
values of the cylindrical region in Fig. 9. The eigenvalue γ1, corresponding to a
polarization along the dipole, is γ1 = 0.71a3 and the other eigenvalues γ2 = γ3

are negligible. The result agrees with the integrated extinction (2.3) of the MoM
solution within 2% for 0 ≤ 4a/λ ≤ 3.

The eigenvalues γ1 = 0.71a3 and γ2 = 0 inserted into (4.6) give physical lim-
itations on the quotient D/Q of any resonant antenna confined to the cylindrical
region, i.e.,

sup
p̂e·p̂m=0

D

Q
≤ η̃

k3
0γ1

2π
≈ 0.39η̃. (8.1)

The corresponding bound on the Q-factor is Q ≥ 8.1, if D = 1.64 and η̃ = 0.52 are
used. In Fig. 9, it is observed that the single resonance model (dashed curves)
with Q = 8.5 is a good approximation of the cross sections and realized gain.
The corresponding half-power bandwidth is 24%. The eigenvalue γ1 also gives a
limitation on the product GΛB in (3.6) as illustrated with the rectangular region in
the right figure for an arbitrary minimum scattering antenna (η̃ = 0.5). The realized
gain GΛ = 1.64 gives the relative bandwidth B = 38%.

It is also illustrative to compare the physical limitations with the MoM simulation
for a short dipole. The resonance frequency of the dipole is reduced to 2a ≈ 0.2λ
with an inductive loading of 5 µH connected in series with the dipole. The MoM
impedance computations of the short dipole give the half-power bandwidth B =
1.4% and the radiation resistance 8 Ω. The D/Q bound (4.6) gives Q ≥ 110 for
the directivity D = 1.52 and an absorption efficiency η̃ = 1/2 corresponding to the
half-power bandwidth B ≤ 1.8%.

Obviously, the simple structure of the dipole and the absence of broadband
matching networks make the resonance model favorable. The limitation (4.6) is in
excellent agreement with the performance of the dipole antenna for the absorption
efficiency η̃ = 0.52, i.e., Q ≥ 8.1 from (4.6) compared to Q = 8.3 from the MoM
solution. The GΛB bound overestimates the bandwidth, but a broadband matching
network can be used to enhance the bandwidth of the dipole, see Ref. 5.
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Observe that the dipole antenna has a circumscribing sphere with ka ≈ 1.5 and
is not considered electrically small according to the Chu limitations in Ref. 3. The
corresponding limit for the 2a ≈ 0.2λ0 dipole (ka ≈ 0.63 and D = 1.52) is Q ≥ 5.6
and the half-power bandwidth of 36% À 1.4%. In conclusion, the dipole utilizes the
cylindrical region very efficiently but obviously not the spherical region.

8.2 The loop antenna

The magnetic counterpart to the dipole antenna in Sec. 8.1 is the loop antenna. The
geometry of the loop antenna is conveniently described in toroidal coordinates, see
Sec. H. Laplace’s equation separates in the toroidal coordinate system and hence
permits an explicit calculation of the high-contrast polarizability dyadic γ∞. In this
section the attention is restricted to the loop antenna of vanishing thickness and
non-magnetic material properties. Under the assumptions of vanishing thickness,
the analysis in Sec. H yields closed-form expressions of the eigenvalues γ1, γ2 and
γ3. Recall that the loop antenna coincides with the magnetic dipole in the long
wavelength limit a/λ ¿ 1.

In order to quantify the vanishing thickness limit, introduce the semi-axis ratio
ξ = b/a, where a and b denote the axial and cross section radii, respectively, see
Fig. 11. The three eigenvalues γ1 = γ2 and γ3 are seen to vanish in the limit ξ → 0.
However, γ1 and γ2 vanish slower than γ3, see Sec. H. The eigenvalues in the limit
ξ → 0 inserted into (4.5) yields

D

Q
≤ πk3

0a
3 f(θ)

ln 2/ξ − 1
+O(ξ2) as ξ → 0, (8.2)

where f(θ) = 1 for the TE- and f(θ) = cos2 θ for the TM-polarization. Here,
θ ∈ [0, π] is the polar angle measured from the z-axis of symmetry in Fig. 11. Note
that the logarithmic singularity in (8.2) is the same as for the dipole antenna, see
Sec. H. Since the axial radius a is the only length scale that is present in the loop
antenna in the limit ξ → 0, it is natural that γ1, γ2, and γ3 are proportional to a3,
see Appendix B.

By comparing the discussion above with the results in Ref. 7 and Sec. 8.1, it
is concluded that there is a strong equivalence between the electric and magnetic
dipoles. For the most advantageous polarization the upper bound on GΛB is a factor
of 3π/2 larger for the loop antenna compared to the electric dipole.

The results are exemplified for a self-resonant loop with k0a = 1.1 and a ca-
pacitively loaded loop, C = 10 pF, with k0a = 0.33, both with ξ = 0.01. The
corresponding limitations (4.6) are D/Q ≤ 0.95η̄ and D/Q ≤ 0.025η̄, respectively.
The MoM is used to determine the impedance and realized gain of the loop antenna
with a gap feed at φ = 0, see Fig. 11. The Q-factor of the self-resonant antenna
is estimated to Q = 5 from numerical differentiation of the impedance, see Ref. 25.
The corresponding main beam is in the ẑ-direction with a directivity D = 2.36
giving D/Q = 0.47. Similarly, the tuned loop has Q ≈ 164 and D = 1.43 in θ = 90◦

and φ = 90◦ giving D/Q ≈ 0.0086.
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Figure 11: The realized partial gain of two loop antennas for θ = 0◦, 90◦. One
self resonant (ka ≈ 1) and one capacitively tuned to ka ≈ 1/3.

It is observed that the physical limitations (4.6) of the loops agree well with
the MoM results. This difference can be reduced by introducing the appropriate
absorption efficiency in the physical limitation. The corresponding results for the
Chu limitation are D/Q ≤ 2.3 for k0a = 1.1 and D/Q ≤ 0.18 for k0a = 0.33, where
the combined TE- and TM-case have been used as the loops are not omnidirectional,
see Refs. 3 and 12.

8.3 Conical antennas

The bandwidth of a dipole antenna increases with the thickness of the antenna. The
bandwidth can also be increased with conical dipoles, i.e., the biconical antenna.
The corresponding conical monopole and discone antennas are obtained by replacing
one of the cones with a ground plane, see Ref. 21.

In Fig. 12, the eigenvalues γx = γy and γz, corresponding to horizontal and
vertical polarizations, respectively, are shown as a function of the ground plane
radius, b, for the conical monopoles with angles θ = 10◦ and 30◦. The eigenvalues
are normalized with a3, where a is the height of the cone. It is observed that the
eigenvalues increase with the radius, b, of the ground plane and the cone angle θ.
This is a general result as the polarizability dyadic is non-decreasing with increasing
susceptibilities, see Ref. 19.

The horizontal eigenvalues γx = γy are dominated by the ground plane and
increase approximately as b3 according to the polarizability of the circular disk, see
Appendix C. The vertical eigenvalue γz approaches γbz/2 as b → ∞, where γbz

denotes the vertical eigenvalue of the corresponding biconical antenna.
It is interesting to compare the D/Q estimate (4.6) for the biconical antenna

and conical monopole antenna with a large but finite ground plane. The vertical
eigenvalue γz of the conical monopole antenna is approximately half of the corre-
sponding eigenvalue of the biconiocal antenna and the Q-factors of the two antennas
are similar. The physical limitation on the directivity in the θ = 90◦ direction of
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Figure 12: The vertical and horizontal eigenvalues γz and γx as function of the
radius b for a biconical antenna of half vertex angle 10◦ and 30◦, respectively.

the conical monopole is hence half of the directivity of the corresponding biconical
antenna. This might appear contradictory as it is well known that the maximal di-
rectivity of a monopole is approximately twice the directivity of the corresponding
dipole. However, the θ = 90◦ direction is on the border between the illuminated
and the shadow regions. The integral representation of the far field shows that the
induced ground-plane currents do not contribute to the far field in this direction,
implying that the directivity is reduced a factor of four as suggested by the physical
limitations, see Appendix D.

The rapid increase in γx = γy with the radius of the ground plane suggests that
it is advantageous to utilize the polarization in the theses directions. This is done by
the discone antenna that has an omnidirectional pattern with a maximal directivity
above θ = 90◦.

9 Conclusion and future work

In this paper, physical limitations on reciprocal antennas of arbitrary shape are de-
rived based on the holomorphic properties of the forward scattering dyadic. The
results are very general in the sense that the underlying analysis solely depends on
energy conservation and the fundamental principles of linearity, time-translational
invariance, and causality. Several deficiencies and drawbacks of the classical limita-
tions of Chu and Wheeler in Refs. 3 and 24 are overcomed with this new formulation.
The main advantages of the new limitations are at least fivefold: 1) they hold for
arbitrary antenna geometries; 2) they are formulated in the gain and bandwidth
as well as the directivity and the Q-factor; 3) they permit study of polarization
effects such as diversity in applications for MIMO communication systems; 4) they
successfully separate electric and magnetic antenna properties in terms of the in-
trinsic material parameters; 5) they are isoperimetric from a practical point of view
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in the sense that for some geometries, physical antennas can be realized which yield
equality in the limitations.

The main results of the present theory are the limitations on the partial real-
ized gain and partial directivity in (3.4) and (4.5), respectively. Since the upper
bounds in (3.4) and (4.5) are proportional to k3

0a
3, where a denotes the radius of,

say, the volume equivalent sphere, it is clear that no broadband electrically small
antennas exist unless gain or directivity is sacrificed for bandwidth or Q-factor. This
is also the main conclusion in Ref. 12, but there presented on more vague grounds.
Furthermore, the present theory suggests that, in addition to electric material prop-
erties, also magnetic materials could be invoked in the antenna design to increase
the performance, cf., the ferrite loaded loop antenna in Ref. 4.

In contrast to the classical results by Chu and Wheeler in Refs. 3 and 24, these
new limitations are believed to be isoperimetric in the sense that the bounds hold for
some physical antenna. A striking example of the intrinsic accuracy of the theory
is illustrated by the dipole antenna in Sec. 8.1. In fact, many wire antennas are
believed to be close to the upper bounds since these antennas make effective use of
their volumes.

It is important to remember that a priori knowledge of the absorption efficiency
η = σa/σext can sharpen the bounds in (3.4) and (4.5), cf., the half-wave dipole
antenna in Sec. 8.1 for which η̃ ≈ 1/2 is used. Similarly, a priori knowledge of the
radiation efficiency, ηr, can be used to improve the estimate in (3.2) using G = ηrD.

The performance of an arbitrary antenna can be compared with the upper bounds
in Secs. 3 and 4 using either the method of moments (MoM) or the finite difference
time domain method (FDTD). For such a comparison, it is beneficial to deter-
mine the integrated extinction and compare the result using (2.3) rather than (3.4)
and (4.5). The reason for this is that the full absorption and scattering proper-
ties are contained within (2.3) in contrast to (3.4) and (4.5). In fact, (2.3) is the
fundamental physical relation and should be the starting point of much analysis.

In addition to the broadband absorption efficiency η̃, several implications of the
present theory remains to investigate. Future work include the effect of non-simple
connected geometries (array antennas) and its relation to capacitive coupling, and
additional analysis of classical antennas. From a wireless communication point of
view it is also interesting to investigate the connection between the present theory
and the concept of correlation and capacity in MIMO communication systems. Some
of the problems mentioned here will be addressed in forthcoming papers.
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Appendix A Details on the derivation of (2.3)

Consider a plane-wave excitation Ei(c0t − k̂ · x) incident in the k̂-direction, see
Fig. 1. In the far field region, the scattered electric field Es is described by the far
field amplitude F as

Es(t, x) =
F (c0t− x, x̂)

x
+O(x−2) as x →∞, (A.1)

where c0 denotes the speed of light in vacuum, and x̂ = x/x with x = |x|. The far
field amplitude F in the forward direction k̂ is assumed to be causal and related to
the incident field Ei via the linear and time-translational invariant convolution

F (τ, k̂) =

∫ τ

−∞
St(τ − τ ′, k̂, k̂) ·Ei(τ

′) dτ ′.

Here, τ = c0t− x and St is the appropriate dimensionless temporal dyadic.
Introduce the forward scattering dyadic S as the Fourier transform of St evalu-

ated in the forward direction, i.e.,

S(k, k̂) =

∫ ∞

0−
St(τ, k̂, k̂)eikτ dτ, (A.2)

where k is complex-valued with Re k = ω/c0. Recall that S(ik, k̂) is real-valued
for real-valued k and that the crossing symmetry S(k, k̂) = S∗(−k∗, k̂) holds for
complex-valued k. For a large class of temporal dyadics St, the elements of S are
holomorphic in the upper half plane Im k > 0.

From the analysis above, it follows that the Fourier transform of (A.1) in the
forward direction reads

Es(k, xk̂) =
eikx

x
S(k, k̂) ·E0 +O(x−2) as x →∞,

where E0 is the Fourier amplitude of the incident field. Introduce the extinction
volume %(k) = p̂∗e · S(k, k̂) · p̂e/k

2, where p̂e = E0/|E0| and p̂m = k̂ × p̂e denote
the electric and magnetic polarizations, respectively. Since the elements of S are
holomorphic in k for Im k > 0, it follows that also the extinction volume % is a
holomorphic function in the upper half plane. The Cauchy integral theorem with
respect to the contour in Fig. 13 then yields

%(iε) =

∫ π

0

%(iε− εeiφ)

2π
dφ +

∫ π

0

%(iε + Reiφ)

2π
dφ +

∫

ε<|k|<R

%(k + iε)

2πik
dk. (A.3)

Here, it is assumed that the extinction volume % is sufficiently regular to extend
the contour to the real-axis in the last integral on the right hand side of (A.3).
Relation (A.3) is subject to the limits as ε → 0 and R →∞.

The left hand side of (A.3) and the integrand in the first integral on the right
hand side are well-defined in the limit as ε → 0. For a sufficiently regular % in the
vicinity of the origin, the analysis in Ref. 14 yield

%(iε) =
1

4π
(p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) +O(ε) as ε → 0. (A.4)
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Figure 13: Integration contour in the complex k-plane used in (A.3).

Here, γe and γm denote the electric and magnetic polarizability dyadics in Ap-
pendix B. Since the short wavelength response of a material is non-unique from a
modeling point of view, see Ref. 8, the second term on the right hand side of (A.3) is
assumed to approach zero in the limit R →∞. In fact, for a large class of temporal
dyadics St, the integrand %(iε + Reiφ)/2π is proportional to the projected area A in
the forward direction, viz.,

%(k) = −A(k̂)

2πik
+O(|k|−2) as |k| → ∞, Im k ≥ 0. (A.5)

The asymptotic behavior (A.5) is known as the extinction paradox, see Ref. 23. The
constant A is real-valued since S(ik, k̂) is real-valued for real-valued k.

In order to proceed, the scattering, absorption and extinction cross sections
are introduced. The scattering cross section σs and absorption cross section σa

are defined as the ratio of the scattered and absorbed power, respectively, to the
incident power flow density in the forward direction. The sum of the scattering and
absorption cross sections is the extinction cross section σext = σs + σa. The three
cross sections σs, σa and σext are by definition real-valued and non-negative. The
principle of energy conservation takes the form as a relation between the extinction
volume % and the extinction cross section. The relation is known as the optical
theorem, see Refs. 16 and 22,

σext(k) = 4πk Im %(k), (A.6)

where k is real-valued.
In summary, the real part of (A.3) subject to the limits ε → 0 and R → ∞

yields

%(0) =
1

π

∫ ∞

−∞

Im %(k)

k
dk. (A.7)

The optical theorem (A.6) applied to (A.7) then implies

%(0) =
1

4π2

∫ ∞

−∞

σext(k)

k2
dk =

1

4π3

∫ ∞

0

σext(λ) dλ, (A.8)
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where the wavelength λ = 2π/k has been introduced. Hence, invoking (A.4) finally
yields the integrated extinction

∫ ∞

0

σext(λ) dλ = π2 (p̂∗e · γe · p̂e + p̂∗m · γm · p̂m) . (A.9)

In fact, the already weak assumptions on the extinction volume % in the analysis
above can be relaxed via the introduction of certain classes of distributions, see
Ref. 17.

Appendix B The polarizability dyadics

Let τ denote a finite material dyadic (χe without a conductivity term, or χm) with
compact support. The entries of the polarizability dyadic γ (γe or γm depending
on whether the problem is electric or magnetic) are defined as the volume integral

êi · γ · êj =
1

E0

êi ·
∫

R3

τ (x) ·Ej(x) dVx, i, j = 1, 2, 3. (B.1)

Here, the total field E has been decomposed as Ej = E0êj +Esj with respect to the
mutually orthonormal vectors êj. In the electric and magnetic cases, E represents
the electric and magnetic field, respectively.

In the high-contrast limit, when the entries of τ simultaneously approach infinity
uniformly in x, the pertinent definition of the high-contrast polarizability dyadic γ∞
is, see Ref. 14,

êi · γ∞ · êj =
1

E0

êi ·
N∑

n=1

∫

Sn

(ν̂(x)Φj(x)− xν̂(x) · ∇Φj(x)) dSx. (B.2)

The surface integral representation (B.2) holds for N disjunct bounding surfaces Sn

with outward-directed unit normal vectors ν̂. The potential Ψj(x) = Φj(x)−E0xj

is for each n = 1, 2, . . . , N the solution to the boundary value problem




∇2Ψj(x) = 0, x outside Sn∫

Sn

ν̂(x) · ∇Ψj(x) |+ dSx = 0

Ψj(x) → −E0xj +O(|x|−2) as |x| → ∞
The presence of a finite or infinite conductivity term in χe is discussed in Ref. 14.

The conclusion is that the electric polarizability dyadic γe should be replaced by
γ∞ independently of the real-part of χe when a conductivity term is present. This
may at first seem contradictory, since there is no continuity in the limit as the
conductivity vanishes.

In Ref. 19, the polarizability dyadic γ is proved to be symmetric provided τ is
symmetric at all points x. The dyadic γ is real-valued, and hence diagonalizable
with real-valued eigenvalues. The corresponding set of orthogonal eigenvectors are
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Figure 14: Illustration of an arbitrary antenna volume supported by a ground
plane (left figure) and its corresponding mirror object (right figure).

the principal axes of the obstacle under consideration. The principal axes are partic-
ularly easy to determine for obstacles with continuous or discrete symmetries, e.g.,
the ellipsoids and the Platonic solids in Sec. 7.1.

An important property of γ which is proved in Ref. 19, is that it is proportional
to the volume of the support of τ . This is a direct consequence of the absence of
any length scales in the long wavelength limit.

Appendix C Supporting ground planes

Supporting ground planes are central structures in many antenna applications. Con-
sider an arbitrary volume, modeling the antenna, situated above a supporting ground
plane of finite or infinite extent, see Fig. 14. To simplify the terminology, use
monopole to denote object with a ground plane and dipole to denote the object
together with its mirror object. The ground plane is assumed to be a circular disk
of radius b with vanishing thickness. Since γ∞ is independent of any coordinate
representation, let the ground plane be given by z = 0.

For a polarization parallel with the ground plane, i.e., spanned by êx and êy, it
is clear from the results in Appendix B of the circular disk that the contribution to
γ∞ from the ground plane is large. Indeed, a circular ground plane of radius b yields
γx = γy = 16b3/3, where γx and γy denote the eigenvalues of γ∞ corresponding to
the êx and êy directions, respectively (G.4).

The polarizability of the monopole for an electric polarization parallel with the
êz-direction has one contribution from the charge distribution on the object z >
0 and one part from the charge distribution on the ground plane z = 0. The
contribution from the ground plane vanishes in (B.2) since z = 0. For a ground
plane of infinite extent the method of images is applicable to determine the charge
distribution for z > 0. In this method, the ground plane is replaced with a copy of
the object placed in the mirror position of the object, i.e., the dipole. The charge
distribution is odd in z and the charge distribution for z > 0 is identical in the
monopole and dipole cases. The polarizability of the dipole is hence exactly twice
the polarizability of the corresponding monopole.
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The difference between the finite and infinite ground planes is negligible as long
as the charge distribution on the monopole can be approximated by the charge
distribution in the corresponding dipole case.

Appendix D Directivity along ground planes

The integral representation of the far-field can be used to analyze the directivity of
antennas in directions along the supporting ground plane. The pertinent integral
representation reads

F (r̂) =
ikZ0

4π

∫

S

r̂ × (J(x)× r̂)e−ikr̂·x dSx, (D.1)

where J and Z0 denote the induced current and the free space impedance, respec-
tively.

Consider a monopole, i.e., an object on a large but finite ground plane, at z = 0
with êz as a symmetry axis, see Fig. 14. The far-field of the monopole (D.1) can
be written as a sum of one integral over the ground plane and one integral over
the object. Let S+ and S0 denote the corresponding surfaces of the object and
the ground plane, respectively. Assume that the ground plane is sufficiently large
such that the currents on the monopole can be approximated with the currents
on the corresponding dipole case for z > 0. Moreover, assume that the current is
rotationally symmetric and that the current in the φ-direction is negligible giving
an omni-directional radiation pattern. Hence, it is sufficient to consider the far-field
pattern in the r̂ = êx-direction.

The induced currents on the ground plane are in the radial direction giving the
term êx × (J(x) × êx) = êyJρ(ρ) sin φ in (D.1). It is seen that the currents on the
ground plane does not contribute to the far field as

F (êx) = êy
ikη

4π

∫

S0

e−ikρ cos φJρ(ρ) sin φρ dφ dρ = 0. (D.2)

The contribution from the currents on the object can be analyzed with the method
of images. From (D.2), it is seen the it is only the currents in the êz-direction that
contributes to the far field, i.e.,

F (êx) = êz
ikη

4π

∫

S+

e−ikρ cos φJz(ρ, z) dS, (D.3)

where Jzêz = êx × (J × êx). The method of images shows that Jz is even in z so
the z-directed currents above and below the ground plane give equal contributions
to the far field. The directivity of the monopole antenna is hence a quarter of the
directivity of the corresponding dipole antenna in the êx-direction.

Appendix E Definition of some antenna terms

The following definitions of antenna terms are based on the IEEE standard 145-
1993 in Ref. 13. The definitions refer to the electric polarization p̂e (co-polarization)
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rather than the magnetic polarization p̂m = k̂× p̂e (cross-polarization). The anten-
nas are assumed to reciprocal, i.e., they have similar properties as transmitting and
receiving devices.

Absolute gain G(k̂). The absolute gain is the ratio of the radiation intensity in
a given direction to the intensity that would be obtained if the power accepted by
the antenna was radiated isotropically.

Partial gain G(k̂, p̂e). The partial gain in a given direction is the ratio of the
part of the radiation intensity corresponding to a given polarization to the radiation
intensity that would be obtained if the power accepted by the antenna was radiated
isotropically. The absolute gain is equal to the sum of the partial gains for two
orthogonal polarizations, i.e., G(k̂) = G(k̂, p̂e) + G(k̂, p̂m).

Realized gain G(k̂, Γ ). The realized gain is the absolute gain of an antenna
reduced by the losses due to impedance mismatch of the antenna, i.e., G(k̂, Γ ) =
(1− |Γ |2)G(k̂).

Partial realized gain G(k̂, p̂e, Γ ). The partial realized gain is the partial gain
for a given polarization reduced by the losses due to impedance mismatch of the
antenna, i.e., G(k̂, p̂e, Γ ) = (1− |Γ |2)G(k̂, p̂e).

Absolute directivity D(k̂). The absolute directivity is the ratio of the radiation
intensity in a given direction to the radiation intensity averaged over all directions.
The averaged radiation intensity is equal to the total power radiated divided by 4π.

Partial directivity D(k̂, p̂e). The partial directivity in a given direction is the
ratio of that part of the radiation intensity corresponding to a given polarization to
the radiation intensity averaged over all directions. The averaged radiation intensity
is equal to the total power radiated divided by 4π.

Absorption cross section σa(k̂, p̂e, Γ ). The absorption cross section for a given
polarization and incident direction is the ratio of the absorbed power in the antenna
to the incident power flow density when subject to a plane-wave excitation. For a
perfectly matched antenna, the absorption cross section coincides with the partial
effective area.

Scattering cross section σs(k̂, p̂e, Γ ). The scattering cross section for a given
polarization and incident direction is the ratio of the scattered power by the antenna
to the incident power flow density when subject to a plane-wave excitation.

Extinction cross section σext(k̂, p̂e, Γ ). The extinction cross section for a given
polarization and incident direction is the sum of the absorbed and scattered power
of the antenna to the incident power flow density when subject to a plane-wave
excitation, i.e., σext(k̂, p̂e, Γ ) = σa(k̂, p̂e, Γ ) + σs(k̂, p̂e, Γ ).
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Figure 15: The RCL circuits corresponding to the plus (left figure) and minus
(right figure) signs in (F.1).

Absorption efficiency5 η(k̂, p̂, Γ ). The absorption efficiency of an antenna for a
given polarization and incident direction is the ratio of the absorbed power to the
total absorbed and scattered power when subject to a plane-wave excitation, i.e.,
η(k̂, p̂e, Γ ) = σa(k̂, p̂e, Γ )/σext(k̂, p̂e, Γ ).

Quality factor Q. The quality factor of a resonant antenna is the ratio of 2π
times the energy stored in the fields excited by the antenna to the energy radiated
and dissipated per cycle. For electrically small antennas, it is equal to one-half the
magnitude of the ratio of the incremental change in impedance to the corresponding
incremental change in frequency at resonance, divided by the ratio of the antenna
resistance to the resonant frequency.

Appendix F Q-factor and bandwidth

The quality factor, or Q-factor, is often used to estimate the bandwidth of an an-
tenna. It is defined as the ratio of the energy stored in the reactive field to the
radiated energy, i.e., Q = 2ω max(Wm,We)/P , see Appendix E and Refs. 6 and 25.
Here, We and Wm denote the stored electric and magnetic energies, respectively, P is
the dissipated power, and ω = kc0 the angular frequency. At the resonance, k = k0,
there are equal amounts of stored electric and magnetic energy, i.e., We = Wm.

For many applications it is sufficient to model the antenna as a simple RCL
resonance circuit around the resonance frequency. The reflection coefficient Γ of the
antenna is then given by

Γ =
Z(k)−R

Z(k) + R
= ± 1− (k/k0)

2

1− (k/k0)2 − 2ik/(k0Q)
(F.1)

where Z denotes the frequency dependent part of the impedance, and the plus
and minus signs in (F.1) correspond to the series and parallel circuits in Fig. 15,
respectively. The reflection coefficient Γ is holomorphic in the upper half plane
Im ω > 0 and characterized by the poles

k = ±k0

√
1−Q−2 − ik0/Q, (F.2)

5This term is not defined in Ref. 13; the present definition is instead based on Ref. 2.
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which are symmetrically distributed with respect to the imaginary axis.
The bandwidth of the resonances in (F.2) depends on the threshold level of the

reflection coefficient. The relative bandwidths of half-power, |Γ |2 ≤ 0.5, is given by
B ≈ 2/Q. The corresponding losses due to the antenna mismatch are calculated
from

1− |Γ |2 =
1

1 + Q2(k/k0 − k0/k)2/4
. (F.3)

The definition of the Q-factor in terms of the quotient between stored and radi-
ated energies is however not adequate for the present analysis. This is because the
decomposition of the total energy into the stored and dissipated parts is a funda-
mentally difficult task. As noted in Refs. 6 and 25, the Q-factor at the resonance
frequency k = k0 can instead be determined by differentiating the reflection coeffi-
cient or impedance, i.e., ∣∣∣∣

∂Γ

∂k

∣∣∣∣ =
1

2R

∣∣∣∣
∂Z

∂k

∣∣∣∣ =
Q

k0

, (F.4)

where the derivatives in (F.4) are evaluated at k = k0. Relation (F.4) is exact
for the single resonance circuit and is also a good approximation for multiple res-
onance models if Q is sufficiently large. In Sec. (4), a multiple resonance model is
considered for the extinction volume % introduced in Appendix A. The multiple
resonance model is obtained by superposition of single resonance terms with poles
of the type (F.2).

Appendix G The depolarizing factors

For the ellipsoids of revolution, i.e., the prolate and oblate spheroids, closed-form
expressions of (6.2) exist in terms of the semi-axis ratio ξ ∈ [0, 1]. The result for
the prolate spheroid is (a2 = a3)





L1(ξ) =
ξ2

2(1− ξ2)3/2

(
ln

1 +
√

1− ξ2

1−
√

1− ξ2
− 2

√
1− ξ2

)

L2(ξ) = L3(ξ) =
1

4(1− ξ2)3/2

(
2
√

1− ξ2 − ξ2 ln
1 +

√
1− ξ2

1−
√

1− ξ2

) (G.1)

while for the oblate spheroid (a1 = a2)





L1(ξ) = L2(ξ) =
ξ2

2(1− ξ2)

(
−1 +

arcsin
√

1− ξ2

ξ
√

1− ξ2

)

L3(ξ) =
1

1− ξ2

(
1− ξ arcsin

√
1− ξ2

√
1− ξ2

) (G.2)

The depolarizing factors (G.1) and (G.2) are depicted in Fig. 16. Note that (G.1)
and (G.2) differ in indices from the depolarizing factors in Ref. 19 due to the order
relation L1 ≤ L2 ≤ L3 assumed in Sec. 6 in this paper.
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Figure 16: The depolarizing factors for the prolate (solid) and oblate (dashed)
spheroids as function of the semi-axis ratio ξ. Note the degeneracy for the sphere.

Introduce the eigenvalues γj(ξ) = V (ξ)/Lj(ξ) of the high-contrast polarizability
dyadic. In terms of the radius a of the smallest circumscribing sphere, the spheroidal
volume V (ξ) is given by ξ24πa3/3 and ξ4πa3/3 for the prolate and oblate spheroids,
respectively. For the analysis in Sec. 6, the limit of γj(ξ) as ξ → 0 is particular
interesting, corresponding to the circular needle for the prolate spheroid and the
circular disk for the oblate spheroid. The result for the circular needle reads





γ1(ξ) =
4πa3

3

1

ln 2/ξ − 1
+O(ξ2)

γ2(ξ) = γ3(ξ) = O(ξ2)

as ξ → 0 (G.3)

while for the circular disk,





γ1(ξ) = γ2(ξ) =
16a3

3
+O(ξ)

γ3(ξ) = O(ξ)

as ξ → 0 (G.4)

Closed-form expressions of (6.2) can also be evaluated for the elliptic needle and disk
in terms of the complete elliptic integrals of the first and second kind, see Ref. 19.
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Figure 17: The toroidal ring and the Cartesian coordinate system (x1, x2, x3).

Appendix H The toroidal ring

The general solution to Laplace’s equation for the electrostatic potential ψ in toroidal
coordinates6 is, see Ref. 15,

ψ(u, v, φ) =
√

cosh v − cos u

∞∑
n,m=0

(am cos mφ + bm sin mφ) ·

(cm cos nu + dm sin nu)
(
AmnPm

n− 1
2
(cosh v) + BmnQm

n− 1
2
(cosh v)

)
,

where Pm
n−1/2 and Qm

n−1/2 are the ring functions of the first and second kinds, respec-
tively, see Ref. 1. The toroidal ring of axial radius a and cross section radius b is
given by the surface v = v0, see Fig. 17. Introduce the semi-axis ratio ξ ∈ [0, 1] as
the quotient ξ = b/a = 1 cosh v0.

In this appendix, the eigenvalues of the high-contrast polarizability dyadic are
derived for the loop antenna in Sec. 8.2 of vanishing thickness. Due to rotational
symmetry in the x1x2-plane, the analysis is reduced to two exterior boundary value
problems defined by the region v ∈ [0, v0] and u, φ ∈ [0, 2π). Due to the singular
behavior of Qm

n−1/2(cosh v) as v → 0 it is required that Bmn = 0. In addition, the

electrostatic potential must vanish at infinity, i.e., ψ(u, v, φ) → 0 when u, v → 0
simultaneously. On the surface of the toroidal ring the two different boundary
conditions of interest are, ψ(u, v0, φ) = x1 and ψ(u, v0, φ) = x3, see Appendix B.
The following representations of the Cartesian coordinates in terms of Qm

n−1/2 are

6The toroidal coordinate system (u, v, φ) is defined in terms of the Cartesian coordinates
(x1, x2, x3) as

x1 =
ζ sinh v cos φ

cosh v − cos u
, x2 =

ζ sinh v sin φ

cosh v − cos u
, x2 =

ζ sin u

cosh v − cos u
,

where u, φ ∈ [0, 2π) and v ∈ [0,∞). The toroidal ring of axial radius a and cross section radius b
is described by the surface v = v0, where a = ζ coth v0 and b = ζ/ sinh v0. Note that the present
notation (u, v, φ) differs from (η, µ, φ) in Ref. 15.
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proved to be useful:





x1 = −ζ
√

8 cos φ

π

√
cosh v0 − cos u

∞∑
n=0

εnQ1
n− 1

2
(cosh v0) cos nu

x3 =
ζ
√

8

π

√
cosh v0 − cos u

∞∑
n=1

nQn− 1
2
(cosh v0) sin nu

(H.1)

Two different boundary value problems are associated with the loop antenna in
Sec. 8.2 depending on whether the magnetic polarization p̂m is parallel or orthogonal
to the x3-axis. The solution of these boundary value problems are then closely
related to the components of the electric polarizability dyadic. Only the case when
the thickness of the toroidal ring vanishes, i.e., when ξ → 0 or equivalently v0 →∞,
is treated here.

H.1 Magnetic polarization perpendicular to the x3-axis

A magnetic polarization p̂m perpendicular to the x3-axis is via the plane-wave condi-
tion k̂ = p̂e× p̂m equivalent to the electric polarization p̂e parallel with the x3-axis.
A straightforward calculation to this problem can be proved to yield

ψ(u, v, φ) =
ζ
√

8

π

√
cosh v − cos u

∞∑
n=1

n
Qn− 1

2
(cosh v0)

Pn− 1
2
(cosh v0)

Pn− 1
2
(cosh v) sin nu.

In terms of the normal derivative ∂ψ/∂ν evaluated at v = v0, the third eigenvalue
of γ∞ is given by

γ3 = 2π

∫ 2π

0

x3
∂ψ(u, v0, φ)

∂ν

ζ2 sinh v0

(cosh v0 − cos u)2 du (H.2)

By insertion of (H.1) into (H.2), the asymptotic behavior of γ3 in the limit ξ → 0,
or equivalently v0 →∞, can be proved to be (ζ → a as v0 →∞)

γ3 = O(ξ2) as ξ → 0. (H.3)

Hence, the third eigenvalue γ3 of the high-contrast polarizability dyadic vanishes as
the thickness of the toroidal ring approaches zero.

H.2 Magnetic polarization parallel with the x3-axis

The solution to the boundary value problem with the magnetic polarization p̂m

parallel with the x3-axis, i.e., p̂e perpendicular to the x1-axis, is

ψ(u, v, φ) = −ζ
√

8 cos φ

π

√
cosh v − cos u

∞∑
n=0

εn

Q1
n− 1

2

(cosh v0)

P1
n− 1

2

(cosh v0)
P1

n− 1
2
(cosh v) cos nu,
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where εn = 2− δn0 is the Neumann factor. In terms of the normal derivative ∂ψ/∂ν
evaluated at v = v0, the first and second eigenvalues of γ∞ are

γ1 = γ2 =

∫ 2π

0

∫ 2π

0

x1
∂ψ(u, v0, φ)

∂ν

ζ2 sinh v0

(cosh v0 − cos u)2 dφ du, (H.4)

where x1 as function of u and φ is given by (H.1). The asymptotic behavior of (H.4)
as ξ → 0, or equivalently v0 →∞, can be proved to be (ζ → a as v0 →∞)

γ1 = γ2 =
2π2a3

ln 2/ξ − 1
+O(ξ2) as ξ → 0. (H.5)

Note that (H.5) vanishes slower than (H.3) as ξ → 0 due to the logarithmic singu-
larity.

References

[1] M. Abramowitz and I. A. Stegun, editors. Handbook of Mathematical Functions.
Applied Mathematics Series No. 55. National Bureau of Standards, Washington
D.C., 1970.

[2] J. B. Andersen and A. Frandsen. Absorption efficiency of receiving antennas.
IEEE Trans. Antennas Propagat., 53(9), 2843–2849, 2005.

[3] L. J. Chu. Physical limitations of omni-directional antennas. Appl. Phys., 19,
1163–1175, 1948.

[4] R. S. Elliott. Antenna Theory and Design. IEEE Press, New York, 2003.
Revised edition.

[5] R. M. Fano. Theoretical limitations on the broadband matching of arbitrary
impedances. Journal of the Franklin Institute, 249(1,2), 57–83 and 139–154,
1950.

[6] M. Gustafsson and S. Nordebo. Bandwidth, Q-factor, and resonance models of
antennas. Progress in Electromagnetics Research, 62, 1–20, 2006.

[7] M. Gustafsson, C. Sohl, and G. Kristensson. Physical limitations on antennas
of arbitrary shape. Proc. R. Soc. A, 463, 2007. doi:1098/rspa.2007.1893.

[8] M. Gustafsson. On the non-uniqueness of the electromagnetic instantaneous
response. J. Phys. A: Math. Gen., 36, 1743–1758, 2003.

[9] M. Gustafsson and S. Nordebo. Characterization of MIMO antennas using
spherical vector waves. IEEE Trans. Antennas Propagat., 54(9), 2679–2682,
2006.



References 117

[10] E. Hallén. Theoretical investigations into the transmitting and receiving quali-
ties of antennae, volume 11, No. 4 of Nova acta Regiae Societatis Scientarium
Upsaliensis IV. Almqvist & Wiksell, Stockholm, 1938. ISSN 0029-5000; Ser. 4,
11:4.

[11] M. Hamermesh. Group theory and its application to physical problems. Dover
Publications, New York, 1989.

[12] R. C. Hansen. Electrically small, superdirective, and superconductive antennas.
John Wiley & Sons, New Jersey, 2006.

[13] IEEE Standard Definitions of Terms for Antennas, 1993. IEEE Std 145-1993.
ISBN 1-55937-317-2.

[14] R. E. Kleinman and T. B. A. Senior. Rayleigh scattering. In V. V. Varadan
and V. K. Varadan, editors, Low and high frequency asymptotics, volume 2 of
Acoustic, Electromagnetic and Elastic Wave Scattering, chapter 1, pages 1–70.
Elsevier Science Publishers, Amsterdam, 1986.

[15] P. M. Morse and H. Feshbach. Methods of Theoretical Physics, volume 2.
McGraw-Hill, New York, 1953.

[16] R. G. Newton. Scattering Theory of Waves and Particles. Springer-Verlag,
New York, 1982.

[17] H. M. Nussenzveig. Causality and dispersion relations. Academic Press, Lon-
don, 1972.

[18] S. Silver. Microwave Antenna Theory and Design, volume 12 of Radiation
Laboratory Series. McGraw-Hill, New York, 1949.

[19] C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on broadband
scattering by heterogeneous obstacles. Accepted for publication in J. Phys. A:
Math. Theor., 2007.

[20] C. Sohl, M. Gustafsson, and G. Kristensson. Physical limitations on meta-
materials: Restrictions on scattering and absorption over a frequency interval.
Technical Report LUTEDX/(TEAT-7154)/1–11/(2007), Lund University, De-
partment of Electrical and Information Technology, P.O. Box 118, S-221 00
Lund, Sweden, 2007. http://www.eit.lth.se.

[21] W. L. Stutzman and G. A. Thiele. Antenna Theory and Design. John Wiley
& Sons, New York, second edition, 1998.

[22] J. R. Taylor. Scattering theory: the quantum theory of nonrelativistic collisions.
Robert E. Krieger Publishing Company, Malabar, Florida, 1983.

[23] H. van de Hulst. Light Scattering by Small Particles. John Wiley & Sons, Inc.,
New York, 1957.



118 Paper IV: Physical limitations on antennas . . .

[24] H. A. Wheeler. Fundamental limitations of small antennas. Proc. IRE, 35(12),
1479–1484, 1947.

[25] A. D. Yaghjian and S. R. Best. Impedance, bandwidth, and Q of antennas.
IEEE Trans. Antennas Propagat., 53(4), 1298–1324, 2005.



Paper V

A survey of isoperimetric
limitations on antennas

Christian Sohl, Mats Gustafsson, and Gerhard Kristensson

Based on: C. Sohl, M. Gustafsson, and G. Kristensson. A survey of isoperimet-
ric limitations on antennas. Technical Report LUTEDX/(TEAT-7157)/1–9/(2007),
Lund University.





2 Physical limitations on GKB and D/Q 121

Abstract

In this paper, physical limitations on antennas are presented based on the
holomorphic properties of the forward scattering dyadic. As a direct conse-
quence of causality and energy conservation, a forward dispersion relation for
the extinction cross section is established, and isoperimetric inequalities for
the partial realized gain and partial directivity are derived for antennas of
arbitrary shape. Closed-form expressions for the prolate and oblate spheroids
are compared with Chu’s classical result for the sphere, and the effect of invok-
ing metamaterials in the antenna design is discussed. The theory is illustrated
by numerical simulations of a monopole antenna with a finite ground plane.

1 Introduction

Two questions of fundamental nature are addressed in this paper. For an arbitrary
geometry, what is the upper bound on the performance of any antenna enclosed
by this volume? Can electrically small broadband antennas exist unless directive
properties are sacrificed for bandwidth? The history of these questions traces back
to Chu and Wheeler in Refs. 1 and 9 more than half a century ago. Since then, much
attention has drawn to the subject and numerous papers have been published, see
Ref. 4 for a recent summary of the field. However, as far as the authors know,
few successful attempts have been made to solve these problems rigorously for other
geometries than the sphere. This restriction is mainly due to the failure of extending
the spherical vector waves to form a set of orthogonal eigenfunctions on non-spherical
surfaces. In this paper, physical limitations on antennas are presented which apply
to arbitrary geometries without introducing orthogonal eigenfunctions.

The present paper is based on Refs. 2, 3 and 7, and the forward dispersion rela-
tion for the extinction cross section in Ref. 6. The theory has also successfully been
applied to metamaterials in Ref. 8 to yield physical limitations on scattering and
absorption by artificial materials over a frequency interval. The underlying mathe-
matical description is influenced by the theory of dispersion relations for scattering
of waves and particles in Ref. 5.

2 Physical limitations on GKB and D/Q

It is advantageous to picture the schematic antenna in Fig. 1 from a scattering point
of view, i.e., consider an antenna of arbitrary shape surrounded by free space and
subject to a plane wave with time dependence e−iωt impinging in the k̂-direction.
The material of the antenna is assumed to be lossless and satisfy the principles of
reciprocity, linearity and time-translational invariance. The material properties are
modeled by general anisotropic and heterogeneous constitutive relations in terms
of the electric and magnetic susceptibility dyadics χe and χm, respectively. The
bounding volume of the antenna is naturally delimited by a reference plane at which
a unique voltage and current relation is defined, see Fig. 1. Note that the present
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arbitrary

element

matching

network

k̂

x̂

¡

antenna

reference plane

Figure 1: Illustration of a hypothetic antenna subject to a plane wave impinging
in the k̂-direction. The incident wave is perturbed by the antenna and a scattered
field is detected in the x̂-direction.

analysis is restricted to single port antennas with a frequency dependent scalar
reflection coefficient Γ .

The scattered field caused by an incident plane wave with Fourier amplitude E0

and electric polarization p̂e = E0/|E0| has the asymptotic behavior of an outgoing
spherical wave, see Ref. 8, i.e.,

Es =
eikx

x
S(k, x̂) ·E0 +O(x−2) as x →∞,

where x denotes the position vector with respect to some origin, and x̂ = x/x
with x = |x|. Here, S is independent of x and represents the scattering dyadic in
the x̂-direction. Introduce the scattering cross section σs and the absorption cross
section σa as the scattered and absorbed power divided by the incident power flow
density, respectively. The principle of energy conservation then takes the form of a
relation between the extinction cross section σext = σs + σa and the imaginary part
of the complex-valued function % = p̂∗e · S(k, k̂) · p̂e/k

2. This relation is known as
the optical theorem and states that σext = 4πk Im % for k ∈ [0,∞).

Since the inverse Fourier transform of S is causal in the forward direction with
respect to time ordered events, i.e., the forward scattered field cannot precede the
incident field, it can be shown that % is a holomorphic function of k for Im k > 0.
Based on the optical theorem and the static limit of % as k → 0, Plemelj’s formulae
in Ref. 5 can be used to derive a forward dispersion relation for the extinction cross
section. The result is

∫ ∞

0

σext(k)

k2
dk =

π

2

∑
i=e,m

p̂∗i · γi · p̂i, (2.1)

where p̂m = k̂× p̂e, and γe and γm denotes the electric and magnetic polarizability
dyadics, respectively. For details on the derivation of (2.1) including definitions of
the pertinent boundary value problems for γe and γm, see Refs. 2 and 6.

The forward dispersion relation (2.1) can be used to establish upper bounds on
the partial realized gain G and the relative bandwidth B of the schematic antenna
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in Fig. 1. In fact, for any finite interval K ⊂ [0,∞),

∫ ∞

0

σext(k)

k2
dk ≥

∫

K

σa(k)

k2
dk = π

∫

K

(1− |Γ |2)G(k)

k4
dk, (2.2)

where 1 − |Γ |2 represents the impedance mismatch of the antenna. In the last
equality, it has been used that the absorption cross section is related to the partial
realized gain as σa = π(1− |Γ |2)G/k2, see Ref. 2. The estimate in (2.2) is generally
not isoperimetric but can be sharpened by a priori information of the scattering
properties of the antenna. For this purpose, introduce the quantity

ηK =

∫

K

σa(k)

k2
dk

/∫

K

σext(k)

k2
dk , (2.3)

which is related to the absorption efficiency η = σa/σext via ηK ≤ supk∈K η. In
particular, minimum scattering antennas defined by supk∈K η = 1/2 contribute with
at most an additional factor two on the right hand side of the inequality in (2.2).

Introduce the minimum partial realized gain GK = infk∈K(1 − |Γ |2)G and the
relative bandwidth B =

∫
K

dk/k0, where k0 denotes the center wave number in K.
Then the integral on the right hand side of (2.2) is estimated from below by

∫

K

(1− |Γ |2)G(k)

k4
dk ≥ GK

∫

K

dk

k4
=

GKB

k3
0

1 + B2/12

(1−B2/4)3
≥ GKB

k3
0

. (2.4)

The inequality on the right hand side of (2.4) is motivated by the fact that B ¿ 1
in many applications. Based on this observation, (2.2) and (2.4) inserted into (2.1)
yields the fundamental inequality

GKB ≤ k3
0

2

∑
i=e,m

p̂∗i · γi · p̂i. (2.5)

The corresponding physical limitation for the partial directivity D and the Q-factor
Q is obtained from a resonance model for the absorption cross section, see Ref. 2.
Under the assumption of a perfectly matched antenna at k = k0, the upper bound
on D/Q differs only by a factor π from (2.5), viz.,

D

Q
≤ k3

0

2π

∑
i=e,m

p̂∗i · γi · p̂i. (2.6)

Recall that GK and D both depend on the incident direction k̂ and the electric
polarization p̂e.

It is intriguing that it is just the static response of the antenna that bound the
quantities GKB and D/Q. From the right hand side of (2.5) and (2.6), it is clear
that the upper bounds on GKB and D/Q are independent of any coupling between
electric and magnetic effects. Instead, electric and magnetic properties are seen to
be treated on equal footing both in terms of material parameters and polarization
description. For non-magnetic materials, i.e., γm = 0, the sum on the right hand
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sides of (2.5) and (2.6) is simplified to only include electric quantities. Moreover,
since both γe and γm are proportional to the volume V of the antenna, it follows
that the bounds in (2.5) and (2.6) scale as k3

0a
3, where a denotes the radius of, say,

the volume-equivalent sphere.
In many antenna applications, it is desirable to bound GKB and D/Q inde-

pendently of both polarization states and material parameters. For this purpose,
introduce the high-contrast polarizability dyadics γ∞ as the limit of either γe or
γm when the elements of χe and χm become infinite large. From the variational
properties of γe and γm discussed in Ref. 6, it then follows that

sup
p̂e·p̂m=0

GKB ≤ k3
0

2
(γ1 + γ2), sup

p̂e·p̂m=0

D

Q
≤ k3

0

2π
(γ1 + γ2), (2.7)

where γ1 and γ2 denote the largest and second largest eigenvalue of γ∞, respectively.
The interpretation of (2.7) is polarization matching, i.e., the polarization of the
antenna coincides with the polarization of the incident wave. For non-magnetic
material parameters, γ2 vanishes in (2.7), and the upper bounds on GKB and D/Q
are sharpened by at most a factor of two. Recall that γ1 and γ2 are easily calculated
for arbitrary geometries using either the finite element method (FEM) or the method
of moments (MoM).

3 Comparison with classical limitations

Closed-form expressions of γ1 and γ2 exist for the homogeneous ellipsoids, viz.,
γ1 = V/L1 and γ2 = V/L2, where L1 and L2 denotes the smallest and second smallest
depolarizing factor, respectively. The depolarizing factors satisfy 0 ≤ Lj ≤ 1 and∑

j Lj = 1 and are defined by

Lj =
a1a2a3

2

∫ ∞

0

ds

(s + a2
j)

√
(s + a2

1)(s + a2
2)(s + a2

3)
, j = 1, 2, 3. (3.1)

Closed-form expressions of (3.1) in terms of the semi-axis ratio ξ = minj aj/ maxj aj

exist for the ellipsoids of revolution, i.e., the prolate (L2 = L3) and oblate (L1 = L2)
spheroids.

The eigenvalues γ1, γ2 and γ3 (smallest eigenvalue γ3 = V/L3) are depicted in
Fig. 2 for the prolate and oblate spheroids as function of ξ. The solid curves on the
right hand side of Fig. 2 correspond to the combined electric and magnetic case,
while the dashed curves represent pure electric material parameters. Non-magnetic
material parameters with minimum scattering characteristics, i.e., supk∈K η = 1/2,
is depicted by the dotted curves. In fact, the three curves for the prolate spheroid
in the right figure vanish as ξ → 0, while the corresponding curves for the oblate
spheroid approach 16/3π, 8/3π, and 4/3π, respectively.

A simple example of the upper bound on D/Q in (2.7) is given by the sphere
of radius a for which γ1 = γ2 = 4πa3. In this case, D/Q is bounded from above
by 4k3

0a
3, which is sharper than the classical limitation 6k3

0a
3 when both TE- and
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Figure 2: The eigenvalues γj (left figure) and the quotient D/Q (right figure)
for the prolate and oblate spheroids as function of the semi-axis ratio ξ. Note the
normalization with the volume Vs of the smallest circumscribing sphere.

TM-polarizations are present, see Ref. 4. For omni-directional antennas with non-
magnetic material parameters, the upper bound on D/Q is still slightly sharper than
Chu’s limit 3k3

0a
3/2 in Ref. 1 when minimum scattering characteristics (MSA) are

assumed. Recall however that the classical results 6k3
0a

3 and 3k3
0a

3/2 are restricted
to the sphere in the limit as k0a → 0, which is not the case for the theory set forth
in this paper.

4 The effect of metamaterials

The fact that (2.5) and (2.6) are independent of any temporal dispersion implies
that there is no difference in the upper bounds of GKB and D/Q if metamateri-
als are invoked in the antenna design instead of ordinary materials with identical
static material parameters. In fact, it is well known that passive metamaterials are
temporal dispersive since the Kramers-Kronig relations imply that limω→0+ χe(ω)
and limω→0+ χm(ω) elementwise are non-negative in the absence of a conductivity
term, see Ref. 8. When an isotropic conductivity term iς/ωε0 (scalar conductivity
ς > 0 independent of ω) is present in χe, the Kramers-Kronig relations is modified
due to the singular behavior of χe in the static limit. In the presence of a conduc-
tivity term, the analysis in Ref. 8 shows that the right hand side of (2.5) and (2.6)
instead should be evaluated in the limit as the eigenvalues of χe approach infinity
independently of χm. Metamaterials may have the ability to lower the resonance
frequency, but from the point of view of maximizing GKB and D/Q, such materials
are believed to be of limited use.
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Figure 3: The extinction and absorption cross section for the monopole antenna
(left figure) and the corresponding absorption efficiency (right figure). The different
curves in the left figure correspond to a MoM solution (solid curves), Q-factor ap-
proximation (dashed curves), and limitation on the extinction cross section (shaded
box).

5 A numerical example: the monopole antenna

The monopole antenna in Fig. 3 with a wire ground plane is used to illustrate the
physical limitations introduced in Sec. 2. A monopole antenna behaves similar to a
dipole antenna and the method of images can be used to analyze the antenna if the
ground plane is sufficiently large, see Ref. 3. Here, a monopole antenna with height
` and ground plane radius `/2 is considered. The wires are cylindrical with radius
2.5 · 10−5`. A MoM solution together with a gap feed model is used to determine
the cross sections and impedance of the antenna.

The antenna is first considered as a passive scatterer loaded with 25 Ω in the gap
feed. The extinction and absorption cross sections for an incident wave polarized
matched at θ = 90◦ are depicted in the left figure in Fig. 3. It is observed that the
antenna is resonant for ` ≈ 0.27λ, where λ = 2π/k denotes the wavelength in free
space. The corresponding absorption efficiency is depicted on the right hand side
of Fig. 3. It is observed that η ≈ 0.5 at the resonance frequency, with ηK ≈ 0.5 for
`/λ ∈ [0, 1]. Note that the rather small ground plane gives a dipole-like radiation
pattern at the quarter wavelength resonance.

The maximal gain, the partial gain at θ = 90◦, and the partial realized gain at
θ = 90◦ for the antenna are depicted in the left figure in Fig. 4. At the resonance
frequency, it is observed that the gain (and directivity) is 1.52 and that the radiation
resistance is 25 Ω. The Q-factor is estimated to Q = 22 by numerical differentiation
of the reflection coefficient. The MoM solution is also used to determine the forward
scattering properties of the antenna in terms of the extinction volume % on the right
hand side of Fig. 4.

The physical limitations in (2.7) require calculation of the eigenvalues γ1 and γ2.
An electrostatic MoM simulation of the monopole antenna with a ground plane in
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Figure 4: The maximal gain, the partial gain at θ = 90◦, and the partial real-
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monopole antenna. The different curves in the right figure correspond to a MoM
solution (solid curves) and Q-factor approximation (dashed curves). The low fre-
quency estimates of the monopole antenna with wire ground plane is indicated by
the cross.

the form of a circular disk yields γ1 = 0.2`3 and hence Q ≥ 19 if D = 1.52 and
ηK = 0.5 are used in (2.7). Note that γ2 vanishes from the upper bounds in (2.7)
since no magnetic materials are present. As the circular ground plane contains more
material than the wire ground plane it is clear that γ1 for the monopole antenna
with wire ground plane is smaller than γ1 for the corresponding antenna with circular
disk ground plane, cf., the variational results in Ref. 6. The eigenvalue γ1 for the
monopole with the wire ground plane can either be determined by an electrostatic
MoM solution or estimated by the forward dispersion relation (2.1). The latter
method yields γ1 ≥ 0.18`3, and assuming γ1 = 0.18`3 in (2.7) implies Q ≥ 22.

In Figs. 3 and 4 it is observed that the single resonance model (dashed curves)
with Q = 22 is a good approximation of the cross sections, extinction volume, and
partial realized gain. Note also that the dipole antenna has a circumscribing sphere
with ka > 1 and is therefore not considered electrically small according to the
classical limitations in Ref. 1. In summary, the monopole antenna with wire ground
plane show excellent agreement with the theory introduced in Sec. 2.

6 Conclusion

In this paper, physical limitations on reciprocal antennas of arbitrary shape are
presented based on the holomorphic properties of the forward scattering dyadic.
Upper bounds on GKB and D/Q are derived in terms of the electric and magnetic
polarizability dyadics, γe and γm, respectively. Since these bounds are proportional
to the volume of the antenna, it is clear that for electrically small antennas, partial
realized gain or partial directivity must be sacrificed for bandwidth or Q-factor.
Based on the limitations, it is also concluded that metamaterials and other exotic
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material models do not contribute to the upper bounds of GKB and D/Q in any
larger extent than naturally formed substances.

The inequalities introduced in this paper are isoperimetric in the sense that
equality in (2.5) and (2.6) hold for some physical antennas. For example, it is well
known that the impedance of a cylindrical dipole antenna posses a reversed logarith-
mic singularity as the radius of the cylinder vanishes. In Ref. 2, this singularity is
shown to coincide with the corresponding behavior of γ1 for the prolate spheroid as
ξ → 0. In fact, numerical simulations of the dipole antenna in Ref. 3 show excellent
agreement with the bounds presented in this paper. The present limitations are
believed to be isoperimetric for a large class of antennas if a priori information of
ηK from antenna simulations is taken into account.

The analysis in this paper generalizes in many aspects the classical results by
Chu and Wheeler in Refs. 1 and 9. The main advantages of the new formulation
are sixfold: 1) they hold for arbitrary geometries; 2) they are formulated both in
terms of gain and bandwidth as well as directivity and Q-factor; 3) they include
polarization effects with applications to diversity in MIMO communication; 4) they
successfully separate electric and magnetic antenna properties in terms of the nature
of the intrinsic materials; 5) they are isoperimetric; 6) a priori information about
the scattering characteristics in the form of ηK improves the bounds.
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Abstract

In this paper, measurements are presented on the combined effect of scattering
and absorption of electromagnetic waves by a fabricated sample of metama-
terial. This engineered composite material, designed as a planar array of
inductive and capacitive resonators, is commonly referred to in the literature
as a negative permittivity metamaterial. A scattering and absorption identity
based on the holomorphic properties of the forward scattering dyadic are pre-
sented and compared with extinction measurements in the frequency interval
[3.2, 19.5]GHz. The experimental results are shown to be in good agreement
with the theory.

1 Introduction

Since the contemporary discoveries of the equations in Refs. 4 and 9 which nowadays
are termed the Kramers-Kronig relations, dispersion relation techniques have been
applied successfully to disparate wave phenomena to reveal the underlying struc-
ture of wave interaction with matter. There are at least two main advantages of
dispersion relations for the analysis of wave propagation in matter: i) they provide
a consistency check of measured or calculated quantities, and ii) they may be used
to verify whether a given model or an experimental outcome is causal or not. In
addition, dispersion relations can be used to establish non-trivial relationships be-
tween various physical quantities, cf., the fundamental bounds on scattering and
absorption in Ref. 15. A comprehensive review of dispersion relations in material
modeling and scattering theory is presented in Ref. 16.

The optical theorem relates the extinction cross section, i.e., the measure of the
effective area of absorption and scattering, to the forward scattering dyadic, see
Refs. 11 and 12. As a consequence, the magnitude and phase of the scattered field
in a single direction solely determines the extinction properties of the scatterer. In
a series of papers in Refs. 15, 17 and 18, the use of a forward dispersion relation
is exploited by invoking the optical theorem. In particular, it is established that
the extinction cross section integrated over all frequencies is related to the static
polarizability dyadics of the scatterer. This result is rather intriguing, and one of its
many applications on antennas in Refs. 5 and 6 shows great potential. The present
paper provides a first experimental verification of these new findings.

Although, the theory of broadband extinction of acoustic and electromagnetic
waves by now is well established, and numerical simulations show excellent agree-
ment with the theory, its experimental verification is of scientific importance. More-
over, scattering measurements in the forward direction offer several new experimen-
tal challenges to master. To circumvent the weak signal strength of the scattered
field in comparison with the incident field, the present paper utilizes the idea that,
for a specific class of targets, the scattered field in the forward and backward direc-
tions are identical.

The design of the engineered composite material used in this paper is similar to
the structure reported in Ref. 14. As far as the authors know, the present paper
is the first attempt to experimentally determine forward scattering properties of
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metamaterials. In addition, the results provide an experimental verification of the
theory governing the physical limitations in Refs. 15 and 18.

2 A forward dispersion relation

Consider the direct scattering problem of a plane electromagnetic wave E0e
iωk̂·x/c0

with time dependence e−iωt impinging in the k̂-direction on a bounded scatterer
surrounded by free space (c0 is the phase velocity in free space). The material of
the scatterer is modeled by a set of linear and passive constitutive relations which
satisfy primitive causality and are independent of time, i.e., no material ageing. The
scattering properties in the x̂-direction for an arbitrary frequency f = ω/2π and a
fixed polarization E0/|E0| is quantified by the differential cross section, see Ref. 2,

dσ

dΩ
(k̂, x̂) =

|S(k̂, x̂) ·E0|2
|E0|2 . (2.1)

Here, the scattering dyadic S is expressed in terms of the scattered electric field Es

as
S(k̂, x̂) ·E0 = lim

x→∞
xe−iωx/c0Es(k̂,x),

where x = |x| denotes the magnitude of the position vector x, and x̂ = x/x. In
particular, (2.1) evaluated in the backward direction x̂ = −k̂ yields the well-known
monostatic radar cross section (RCS) in Ref. 8.

The scattering cross section σs is defined as the total scattered power in all
directions divided by the incident power flux. It is obtained by integrating (2.1)
over the unit sphere with respect to x̂, i.e.,

σs(k̂) =

∫
dσ

dΩ
(k̂, x̂) dΩ. (2.2)

Here, dΩ = sin θ dθ dφ denotes the differential solid angle in terms of the polar and
azimuthal variables θ ∈ [0, π] and φ ∈ [0, 2π), respectively. Based on (2.2), the
extinction cross section σext = σs + σa is defined as the sum of the scattering and
absorption cross sections, where the latter is a measure of the absorbed power in
the scatterer. The extinction cross section can also be determined from the forward
scattering dyadic via the optical theorem

σext(k̂) =
2c0

f
Im

{
E∗

0 · S(k̂, k̂) ·E0

|E0|2
}

, (2.3)

where an asterisk denotes the complex conjugate. The relation (2.3) can be applied
to a wide range of wave phenomenon including acoustic waves, electromagnetic
waves, and elementary particles, see Refs. 12 and 16.

From the integral representations in Ref. 19 or the discussion in Ref. 13, it follows
that for a non-magnetic, planar, and infinitely thin scatterer subject to a plane wave
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impinging at normal incidence, the scattering dyadic in the forward and backward
directions are identical i.e.,

S(k̂, k̂) ·E0 = S(k̂,−k̂) ·E0. (2.4)

The interpretation of (2.4) is that it enables extinction measurements to be carried
out by only observing the scattered field in the backward direction. Of course,
both the magnitude and phase of Es(k̂,−xk̂) as x → ∞ have to be identified.
In particular, (2.4) implies that the differential cross section in the forward and
backward directions are equal.

A dispersion relation for the combined effect of scattering and absorption of
electromagnetic waves is derived in Ref. 15 from the holomorphic properties of the
forward scattering dyadic. The result is a summation rule for the extinction cross
section valid for any linear and time-translational invariant scatterer obeying pas-
sivity and primitive causality. In the absence of magnetic properties in the static
limit, the summation rule reads

c0

4π3

∫ ∞

0

σext(f)

f 2
df =

E∗
0 · γe ·E0

4π|E0|2 , (2.5)

where the frequency dependence has been made explicit in the argument of the
extinction cross section. Observe that the right hand side of (2.5) only depends on
the static properties of the scatterer via the electric polarizability dyadic γe. This
dyadic is defined in Refs. 3 and 15 together with closed-form expressions for the
prolate and oblate spheroids and other generic geometries.

According to Ref. 7, the right hand side of (2.5) is equal to the static limit %(0)
of the extinction volume

%(f) =
c2
0

4π2f 2

E∗
0 · S(k̂, k̂) ·E0

|E0|2 . (2.6)

This quantity satisfies Re % = H(Im %) and Im % = −H(Re %), where H denotes the
Hilbert transform in Refs. 16 and 20. The imaginary part of % is related to the optical
theorem via σext(f) = 8π2f Im %(f)/c0. The fact that σext is non-negative implies
that the left hand side of (2.5) can be estimated from below by the corresponding
integral over the arbitrary frequency interval [f1, f2], viz.,

c0

4π3

∫ f2

f1

σ(f)

f 2
df ≤ c0

4π3

∫ ∞

0

σext(f)

f 2
df = %(0), (2.7)

where σ denotes any of σext, σs and σa. The interpretation of (2.7) is that there is
only a limited amount of scattering and absorption available in the range [f1, f2],
cf., the physical limitations on broadband scattering in Refs. 15 and 18. This means
that the total amount of scattering and absorption is bounded from above by the
static limit %(0) of the extinction volume.
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Figure 1: The pattern of the fabricated sample (left figure) and the geometry of
the square unit cell (right figure). The line width of the printed circuit board is
0.1 mm.

3 Measurements on metamaterials

In this section, extinction measurements by a fabricated sample of metamaterial
are presented. The sample design and experimental setup are described, and the
outcome of the measurements is compared with the theoretical results in Sec. 2.

3.1 Sample design and experimental setup

The fabricated sample is designed as a single-layer planar array of inductive and
capacitive resonators tuned for resonance at 8.5 GHz. It consists of 29 × 29 unit
cells supported by a square FR4 substrate of edge length a = 140 mm and thickness
0.3 mm, see Fig. 1. The dielectric constant of the substrate varies between 4.2 and
4.4 in the frequency interval [3.2, 19.5] GHz, with an overall loss factor less than
0.02. The design of the sample is similar to the structure addressed in Ref. 14.

Measurements were performed in the anechoic chamber at Saab Bofors Dynam-
ics in Linköping, Sweden. The fabricated sample was mounted on an expanded
polystyrene sample holder placed on a pylon. The chamber was set up for RCS
measurements with dual polarized ridged circular waveguide horns positioned at a
distance of 3.55 m from the sample, see Fig. 2. An Agilent Performance Network
Analyzer (PNA) was used for the measurements, and the transmitted waveform was
a continuous wave without online hard or software gating. The original frequency
interval [2, 20] GHz was reduced to [3.2, 19.5] GHz due to range domain filtering of
the data. The latter frequency interval was sampled with 7246 equidistant points
corresponding to an unambiguous range of 66.7 m sufficient to avoid influence of
room reverberations.

Calibration was performed using a metal plate with the same outer dimensions
as the sample depicted in Fig. 2. The metal plate was also used to align the ex-
perimental setup using the specular reflection of the metal plate. The sample was
measured, the background was subtracted coherently, and the data were calibrated.
The data were then transformed to the range domain, where the response from the
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Figure 2: The experimental setup in the anechoic chamber (left figure) and the
fabricated sample with 29 × 29 unit cells supported by a square FR4 substrate of
edge length 140 mm (right figure).

sample was selected from the range profile using a 1.1 m spatial gate. Finally, the
selected data was transformed back to the frequency domain.

3.2 Measurement results and comparison with theory

The measured RCS is depicted by the solid line on the left hand side in Fig. 3. In
the figure, the first resonance at f0 ≈ 8.5 GHz is observed as well as an increase
in RCS with frequency, consistent with the specular reflection of the sample. As
the sample is non-magnetic and sufficiently thin, the forward scattering dyadic is
approximated by the scattering dyadic in the backward direction according to (2.4).
In particular, this approximation is used to calculate the extinction cross section σext

via the optical theorem (2.3). The extinction cross section is depicted on the right
hand side in Fig. 3. From the figure it is seen that σext is non-negative confirming the
validity of (2.4) since phase deviations in the scattering dyadic introduce significant
errors in the extinction cross section.

The forward scattering dyadic is also used to determine the extinction volume
%, see (2.6), on the left hand side in Fig. 4. Here, it is observed that the real part of
% vanishes at the resonance frequency f0 ≈ 8.5 GHz, whereas the imaginary part of
% attains its maximum value. Note that the frequency scaling in (2.6) amplifies the
noise in the measurements for low frequencies as noted in the figure. Finally, the
function ζ(f) = 2 Im %(f)/πf , corresponding to the integrand in (2.5), is depicted
on the right hand side in Fig. 4 with additional noise amplification for low frequen-
cies. The shaded area on the right hand side is estimated by numerical integration
to 26.0 cm3 and indicated by the dot in the left figure. Since ζ is non-negative, the
value 26.0 cm3 yields a lower bound on %(0) according to (2.7). Obviously, %(0) is un-
derestimated by the integral as the integrand does not vanish outside the frequency
interval [3.2, 19.5] GHz, cf., the properties of holomorphic functions in Ref. 1.

According to the variational results in Ref. 15, %(0) is bounded from above by
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Figure 3: The monostatic radar cross section (left figure) and the extinction cross
section (right figure) in units of the projected area a2 in the forward direction. The
solid lines correspond to measured data whereas the dashed lines are based on the
approximation (3.1).
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figure). The solid lines correspond to measured data whereas the dashed lines are
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Figure 5: The real and imaginary parts of the extinction volume (solid lines) and
the corresponding reconstructed quantities using the Hilbert transform H (dashed
lines).

the corresponding quantity for a thin square metal plate with edge length 140 mm.
Based on the method of moments, this static limit for the metal plate is computed
to 222 cm3. The upper bound should also be compared with the corresponding value
412 cm3 for the smallest circumscribing circular disk of radius 140/

√
2 mm, cf., the

closed-form expressions of %(0) in Ref. 15. As the upper bound 222 cm3 is too rude,
more appropriate techniques for estimating %(0) should be invoked. A possible such
technique is given by the Hilbert transform H as depicted in Fig. 5. In the figure, it
is observed that H(Im %) and −H(Re %) resemble the overall frequency dependence
of the real and imaginary parts of %, respectively. However, it is clear from the figure
that the finite frequency interval of the measured data limits its usefulness.

Another feasible technique to approximate % is the use of meromorphic functions
with roots and zeros in the lower half of the complex f -plane. Numerical tests using
the algorithm in Ref. 10 indicate that it is sufficient to consider rational functions
with numerator and denominator of second and fourth degree, respectively, to ap-
proximate % over [3.2, 19.5] GHz.1 Such functions can be represented by the sum of
two Lorentzian terms according to

%appr(f) =
2∑

n=1

%n
f 2

n + ifνn

f 2
n + 2iffn/Qn − f 2

. (3.1)

The approximation (3.1) is depicted by the dotted lines in Fig. 4. Here, f1 =
9.3 GHz, Q1 = 7.8, %1 = 4.6 cm3, ν1 = −27 GHz, f2 = 20 GHz, Q2 = 1.6, %2 =
36 cm3, and ν2 = 3.6 GHz. Note that %appr(0) = %1 + %2 ≈ 40 cm3. The approxima-
tion %appr is also used to extrapolate the RCS and the extinction volume in Fig. 3
as depicted by the dotted lines. Recall that ζ(f) = O(1) as f → 0 is supported by
the static limit of the extinction cross section for a lossy target, see Ref. 3.

1The algorithm in Ref. 10 is implemented in the Signal Processing Toolbox in Matlab under
the command invfreqs.
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4 Conclusions

This paper reports on measurements of the extinction cross section and the extinc-
tion volume for a fabricated sample of metamaterial. It is found that the extinction
cross section integrated over the frequency interval [3.2, 19.5] GHz yields a lower
bound on the static limit of the extinction volume according to (2.7). As already
pointed out in Ref. 18, there is no fundamental difference between metamaterials
and naturally formed substances as far as scattering and absorption quantified by
the forward dispersion relation (2.5) is concerned. Similar measurements of the
extinction volume for split ring resonators will be presented in a forthcoming pa-
per. Forward scattering measurements with bulk material targets introduce new
experimental challenges that will be addressed in the future.
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