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Wound contraction and macro-deformation
during negative pressure therapy of sternotomy
wounds
Christian Torbrand1, Martin Ugander2, Henrik Engblom2, Håkan Arheden2, Richard Ingemansson3, Malin Malmsjö1*

Abstract

Background: Negative pressure wound therapy (NPWT) is believed to initiate granulation tissue formation via
macro-deformation of the wound edge. However, only few studies have been performed to evaluate this
hypothesis. The present study was performed to investigate the effects of NPWT on wound contraction and
wound edge tissue deformation.

Methods: Six pigs underwent median sternotomy followed by magnetic resonance imaging in the transverse
plane through the thorax and sternotomy wound during NPWT at 0, -75, -125 and -175 mmHg. The lateral width
of the wound and anterior-posterior thickness of the wound edge was measured in the images.

Results: The sternotomy wound decreased in size following NPWT. The lateral width of the wound, at the level of
the sternum bone, decreased from 39 ± 7 mm to 30 ± 6 mm at -125 mmHg (p = 0.0027). The greatest decrease
in wound width occurred when switching from 0 to -75 mmHg. The level of negative pressure did not affect
wound contraction (sternum bone: 32 ± 6 mm at -75 mmHg and 29 ± 6 mm at -175 mmHg, p = 0.0897). The
decrease in lateral wound width during NPWT was greater in subcutaneous tissue (14 ± 2 mm) than in sternum
bone (9 ± 2 mm), resulting in a ratio of 1.7 ± 0.3 (p = 0.0423), suggesting macro-deformation of the tissue. The
anterior-posterior thicknesses of the soft tissue, at 0.5 and 2.5 cm laterally from the wound edge, were not affected
by negative pressure.

Conclusions: NPWT contracts the wound and causes macro-deformation of the wound edge tissue. This shearing
force in the tissue and at the wound-foam interface may be one of the mechanisms by which negative pressure
delivery promotes granulation tissue formation and wound healing.

Introduction
Cardiac surgery is complicated by post-sternotomy med-
iastinitis in 1% to 5% of all procedures [1] and is a life-
threatening complication [2]. The reported early mortal-
ity in post-sternotomy mediastinitis following coronary
artery bypass graft surgery is between 8% and 25% [3,4].
Conventional treatment of post-sternotomy mediastinitis
includes surgical debridement, drainage, irrigation, and
reconstruction using pectoral muscle flap or omentum
transposition. In 1999, Obdeijn and colleagues described
a new method of treatment for post-sternotomy medias-
tinitis using a vacuum-assisted closure technique [5],

which is based on the principle of applying subatmo-
spheric pressure by controlled suction through a porous
dressing. The technique, also known as negative pres-
sure wound therapy (NPWT), has resulted in reduced
mortality in post-sternotomy mediastinitis [6].
Scientific evidence regarding the mechanisms by which

NPWT promotes wound healing has started to emerge.
NPWT results in the drainage of excessive fluid and deb-
ris, removal of wound edema, reduction in bacterial
counts and stimulation of wound edge microvascular
blood flow [7-10]. However, it is now believed that one of
the major driving forces that generate granulation tissue
formation is the macro-deformation of the wound edge
tissue that results from the suction force created by the
negative pressure. To our knowledge, there is only sparse
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scientific evidence for this instantaneous mechanical
effect by NPWT [11].
The present study was performed to in detail investi-

gate the effects of NPWT on wound contraction and
wound edge tissue deformation. Magnetic resonance
imaging (MRI) of the thorax was performed in a porcine
sternotomy wound model. The lateral width of the
wound and anterior-posterior thickness of the wound
edge was measured in the images taken before and after
initiation of NPWT at -75, -125 and -175 mmHg.

Materials and methods
Animals
An uninfected porcine sternotomy wound model was
used in the present study. Six domestic landrace pigs of
both genders, with a mean body weight of 50 kg, were
fasted overnight with free access to water. The study
was approved by the Ethics Committee for Animal
Research, Lund University, Sweden. The investigation
complied with the “Guide for the Care and Use of
Laboratory Animals” as recommended by the U.S.
National Institutes of Health and published by the
National Academies Press (1996).

Anesthesia
Anesthesia was induced with ketamine hydrochloride
(Ketaminol Vet™ 100 mg/ml, Farmaceutici Gellini S.p.A,
Aprilia, Italy), 15 mg/kg intramuscularly, and xylazine
(Rompun Vet™ 20 mg/mL, Bayer AG, Leverkusen, Ger-
many), 2 mg/kg intramuscularly. The pigs were intu-
bated and mechanical ventilation was established with a
Siemens-Elema 900B ventilator in the volume-controlled
mode. Anesthesia was maintained by continuous intra-
venous infusion of propofol (Diprivan™, Astra Zeneca,
Sweden), 0.1-0.2 mg/kg/min, in combination with fenta-
nyl (Leptanal™, Lilly, France), 0.05 μg/kg/min, and atra-
curium besylate (Tracrium™, Glaxo, Täby, Sweden),
0.2-0.5 mg/kg/hour.

Surgical procedure
After a midline sternotomy, the pericardium was opened
and a polyurethane foam dressing was placed between
the sternal edges. Two non-collapsible drainage tubes
were inserted into the foam. The open wound was then
sealed with a transparent adhesive drape. The drainage
tubes were connected to a purpose-built vacuum source
(VAC® pump unit, KCI, Copenhagen, Denmark), which
was set to deliver a continuous negative pressure of -75,
-125 or -175 mmHg.

Experimental procedure
MRI was first performed at baseline (0 mmHg). A negative
pressure was then applied and MRI was performed when
the target pressure had been reached. This procedure was

repeated for each negative pressure (-75, -125, and -175
mmHg). In order to eliminate time effects, the sequence
of application of the three different negative pressures was
varied between the animals using a 3 by 3 Latin square
design.

Magnetic resonance imaging
MRI was conducted using a 1.5T system (Intera CV,
Philips Medical Systems, Best, the Netherlands) with a
five-element cardiac coil and the pig in the supine posi-
tion. The images were acquired during ventilator-
controlled end expiratory apnea at the functional residual
lung capacity. Images were acquired in the transverse
and sagittal planes, covering the entire thoracic cavity
using a steady-state free precession sequence. Typical
imaging parameters were: spatial resolution 1.1 × 1.1
mm, slice thickness 5 mm, slice gap 0 mm, repetition
time 3.1 ms, echo time 1.6 ms, flip angle 60°, no ECG
triggering, sensitivity-encoding factor 2.

Image analysis
All images were evaluated using freely available software
(Segment 1.699, available at http://segment.heiberg.se)
[12]. Measurements of wound contraction and soft tis-
sue macro-deformation were performed in the same
transverse image at the cardiac midventricular level that
were acquired before (0 mmHg) and after the applica-
tion of -75, -125 and -175 mmHg. The distance between
the two wound edges of subcutaneous tissue, muscle tis-
sue and sternum bone were measured (lateral wound
width). The anterior-posterior thickness of the soft tis-
sue, including the subcutaneous and muscle tissue, was
measured at a distance of 0.5 cm and 2.5 cm from the
wound edge (Figure 1).

Calculations and statistics
Statistical analysis was performed using paired Student’s
t-test. Significance was defined as p < 0.05. The results
are presented as mean values ± the standard error of
the mean (S.E.M.).

Results
The sternotomy wound changed in appearance and the
lateral wound width decreased when negative pressure
was applied (Figure 2). The lateral wound width
decreased from 39 ± 7 mm to 30 ± 6 mm, for sternum
bone, upon application of -125 mmHg (p = 0.0027, n =
6, Figure 3). The greatest decrease in lateral wound
width, as measured between the sternum bone edges,
occurred when switching from 0 mmHg to -75 mmHg,
and the level of negative pressure did not play a role for
the degree of wound contraction (32 ± 6 mm at -75
mmHg and 29 ± 6 mm at -175 mmHg, for the sternum
bone, p = 0.0897, n = 6, Figure 3).
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The wound edge tissue was also deformed upon applica-
tion of NPWT. The decrease in lateral wound width dur-
ing NPWT was greater in subcutaneous tissue (14 ± 2
mm) than in sternum bone (9 ± 2 mm), which resulted in
a ratio of subcutaneous to sternal decrease in wound
width of 1.7 ± 0.3 (p = 0.0423), suggesting macro-defor-
mation of the wound edge tissue. The major decrease in
lateral wound width occurred when switching from 0 to

-75 mmHg and the level of negative pressure did not play
a significant role for the degree of wound contraction
(23 ± 4 mm at -75 mmHg and 19 ± 2 mm at -175 mmHg,
for muscle tissue p = 0.0982, n = 6, Figure 3).
The anterior-posterior thickness of the soft tissue,

including subcutaneous and muscle tissue, at 0.5 and
2.5 cm laterally from the wound edge, was not affected by
negative pressure (13 ± 2 mm at 0 mmHg and 14 ± 2 mm

Foam                

Adhesive drape                  

0.5 cm         2.5 cm         

Subcutaneous           

Muscle         

Sternum bone         

Figure 1 Schematic illustration showing a transverse section through a sternotomy wound and the location of the wound dimension
measurements. The thick bracketed horizontal lines illustrate the lateral wound width at the level of subcutaneous tissue, muscle tissue and
sternum bone. The thick bracketed vertical lines illustrate the anterior-posterior thickness of the soft tissue, including the muscle and
subcutaneous tissue, at a lateral distance of 0.5 cm and 2.5 cm from the wound edge.

Figure 2 Transverse magnetic resonance images at the cardiac midventricular level illustrating the wound contraction upon negative
pressure wound therapy application. The images were obtained before (0 mmHg) and after the application of -125 mmHg. The lower panels
are enlargements of the insets in the upper panels and illustrate the position of the measurements taken. Note how negative pressure wound
therapy pulls the two sternotomy wound edges closer together.
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at -125 mmHg, 0.5 cm from the wound edge, p = 0.1111,
n = 6, Figure 4).

Discussion
The present study shows wound contraction upon appli-
cation of NPWT in a porcine sternotomy wound model.
Furthermore, it provides detailed evidence for the
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Figure 3 Graphs showing wound contraction upon negative
pressure application. The distance between the wound edges
(lateral wound width) in subcutaneous tissue (A), muscle tissue (B)
and sternum bone (C), measured in transverse magnetic resonance
images in sternotomized pigs before (0 mmHg) and after the
application of negative pressure wound therapy (NPWT) at -75, -125
and -175 mmHg. Results are presented as mean values ± S.E.M.
Statistical comparison was performed using Student’s paired t-test.
Significance is defined as p < 0.05 (*) and p < 0.01 (**) and n.s.
denotes non-significance. Note the decrease in lateral wound width
upon application of NPWT.
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Figure 4 Graphs showing anterior-posterior thickness of
subcutaneous tissue and muscle tissue upon negative pressure
application. The anterior-posterior thickness of subcutaneous tissue
and muscle tissue at 0.5 cm (A) and 2.5 cm (B) from the wound
edge, measured in transverse magnetic resonance images in
sternotomized pigs before (0 mmHg) and after the application of
negative pressure wound therapy at -75, -125 and -175 mmHg.
Results are presented as mean values ± S.E.M. Statistical comparison
was performed using Student’s paired t-test. Significance is defined
as p < 0.05 and n.s. denotes non-significance.
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deformation of the wound edge tissue. Pulling forces by
the negative pressure move the subcutaneous tissue
wound edges together to a greater extent than the
wound edges of the sternum bone. This presumably cre-
ates shearing forces in the tissue and at the wound-foam
interface. This so called macro-deformation of the tissue
is believed to be one of the fundamental mechanisms
by which NPWT results in wound healing [11]. This
mechanical effect of NPWT is thought to initiate a cas-
cade of inter-related biological effects including the pro-
motion of wound edge microvascular blood flow,
removal of bacteria and stimulation of granulation tissue
formation [7,10,13,14].

Shearing forces at the foam-wound interface
Contraction of the wound and macro-deformation of
the wound edge tissue upon NPWT, as shown in the
present study, causes mechanical stress in the tissue.
Mechanical stress is known to promote the expression
of growth factors (e.g., vascular endothelial growth fac-
tor and fibroblast growth factor-2) and to stimulate
granulation tissue formation and angiogenesis [15-17].
In a computerized model of negative pressure-induced
wound deformation, most elements were stretched five
to twenty percent by NPWT [11], which is similar to
in vitro strain levels shown to promote cellular prolifera-
tion. The beneficial effects of NPWT on healing may
depend on these macro-mechanical effects and the
shearing forces at the foam-wound interface.

Blood flow
The mechanical effect of NPWT on the wound edge tis-
sue is also believed to alter microvascular blood flow.
Close to the wound edge there is contraction of the tis-
sue resulting in hypoperfusion [18-20]. Factors released
in response to hypoperfusion are strong stimulators of
angiogenesis and granulation tissue formation, which
may be one of the mechanisms governing the positive
effects of NPWT. Pressure against the wound wall may
also be beneficial since it has been shown to tamponade
superficial bleedings during surgical procedures [18] and
reduce wound edge edema. Further away from the
wound edge, microvascular blood flow is increased upon
negative pressure application. It may be speculated that
the pulling forces on the wound edge tissue opens up
capillary beds and surges blood to the area. The present
study shows differences in the wound edge tissue defor-
mation when comparing subcutaneous and muscle tis-
sue. Similarly, blood flow effects by NPWT are different
in subcutaneous and muscle tissue [19,20]. It may be
speculated that the mechanical effects that NPWT result
in depend on the density of the tissue and the tissue
composition of the treated wound.

Sternum stability
In sternotomy wounds, there are underlying vital struc-
tures and an important aspect during treatment of these
wounds is the heart and lung function and the recon-
struction of a stable thorax. The present study shows
that the sternotomy wound contracts during NPWT.
This is in concordance with one of our previous studies
showing that the sternum is stabilised and can withstand
external forces during NPWT [21]. Stabilization of the
sternum enables early mobilization which is crucial for
the clinical outcome [22,23].

Heart and lung function
As shown by the present study, NPWT contracts the
wound and draws the two sternal edges together, thereby
resealing the thoracic cavity. NPWT thus largely restores
the macroscopic anatomical conditions in the thorax,
which may explain the clinical benefits of NPWT over
open-chest care, including reduced need for mechanical
ventilation [24,25]. Sternotomy wound contraction and
resealing of the sternum also has effects on the heart
pumping function. The findings that cardiac output
decreases during NPWT [26,27] have been a reason for
concern. However, we now believe that cardiac output
increases and the energy efficiency of cardiac pumping
decreases upon sternotomy and both these measures
return to pre-sternotomy levels when the thorax is
resealed by NPWT [28]. It is reassuring to know that the
effects on cardiac pumping function upon resealing of
the thorax is physiological since many patients with deep
sternal wound infections suffer impaired cardiac function
and heart failure and may thereby be especially vulner-
able to increased cardiac load.

Different levels of negative pressure
In the present study, the greatest change in wound dia-
meter was observed between 0 and -75 mmHg, and the
level of negative pressure did not play a significant role
for the degree of wound contraction. Similar findings
were shown in a study by Isago et al [29], carried out in
peripheral rat wounds and using polyurethane foam.
Negative pressures of -50, -75 and -125 mmHg caused
similar reduction in wound area. Furthermore, in a pig
sternotomy wound model [21], the wound contraction
upon NPWT application was similar in wounds treated
with low (-50 to -100 mmHg) and high (-150 to -200
mmHg) negative pressures. Thus, both low and high
levels of negative pressure will induce macro-mechanical
deformation during NPWT.

Conclusions
In conclusion, NPWT contracts the wound and causes
macro-deformation of the wound edge tissue. This
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mechanical stress in the tissue and at the wound-foam
interface creates shearing forces that is known to pro-
mote granulation tissue formation and facilitate healing.
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