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Some Structural Properties of Il. CONVOLUTIONAL GENERATOR MATRICES OVER RINGS
Convolutional Codes over Rings Let R be a commutative ring with identity and leR[D] be
_ the polynomial ring overR. The trailing coefficient of a nonzero
Rolf Johannessorkellow, IEEE Zhe-Xian Wan, polynomial is the coefficient of the smallest power Bf with a
and Emma WittenmarkStudent Member, IEEE nonzero coefficient. LeR(D) be the set
D) . - -
Abstract—Convolutional codes over rings have been motivated by {i;((—D))H(D),q(D) € R[D], and the trailing coefficient of

phase-modulated signals. Some structural properties of the generator
matrices of such codes are presented. Successively stronger notions of
invertibility of generator matrices are studied, and a new condition for a
convolutional code over a ring to be systematic is given and shown to be
equivalent to a condition given by Massey and Mittelholzer. It is shown . .
that a generator matrix that can be decomposed into a direct sum is basic, Modulo the equivalence relation
minimal, and noncatastrophic if and only if all generator matrices for the

constituent codes are basic, minimal, and noncatastrophic, respectively. (D)  f1(D)
It is also shown that if a systematic generator matrix can be decomposed D ~ D
: . : : a(D)  @(D)
into a direct sum, then all generator matrices of the constituent codes
are systematic, but that the converse does not hold. Some results on
convolutional codes overZ,- are obtained.

¢(D) is a unit inR} 1)

if and only if f(D)g:1(D) = f1(D)q(D). (2)

That this is an equivalence relation follows from the assumption
) ) ] ~ that the trailing coefficients of the denominator polynomials are units.
_ Ind(fex‘ Terms—Convqutlcl)ne_iI coldesaover rings, d_|rect surln Qecolmpgm- The equivalence class ¢{ D)/q( D) will be denoted bm
tion of rings, proper convolutional codes, systematic convolutional codes. or sometimes by the abbreviatigit D) /q(D). It is clear thatR(D)
is a ring with addition and multiplication defined by

|. INTRODUCTION
Massey and Mittelholzer [1] introduced convolutional codes over f(D) , D) = f(D)k(DH' h(D)q(D)
rings together with their motivation by phase-modulated signals. They ¢(D) ~ k(D) 4(D)k(D)

showed that convolutional codes over rings behave very differentl
than convolutional codes over fields. Some structural properties%f
convolutional codes over rings were given in [2] and [3]. Further
structural properties are presented in this correspondence.

For convolutional codes over rings, there are three successively

stronger notions of invertibility of generator matrices. The first is We call R(D) the ring of rational functionsover R in the

transducer invertibility, which is equivalent to a one-to-one m . .
between information words and codewords. It is shown that thisafitrjwsdetermlnateD. EE.iCh _element offf(D) can be expanded into a
.formal Laurent series irD.

equivalent to the rows of the generator matrix being free over the ring
R(D). The second is right invertibility, which is the existence of a Remark: Without the condition in the definition of the ring of
right R(D)-inverse to the generator matrix. The last is the existengational functions oveR?, that the trailing coefficients of the denom-
of a realizable rightR(D)-inverse to the generator matrix, which isinator polynomials are units, then
equivalent to systematicity. Systematicity implies right invertibility
\évglzgtlnag:ﬁs transducer invertibility, but the converse implications % - ﬁgg; it and only if f(D)q1(D) = f1(D)g(D) (3)

In Section Il, we define rings of rational functions and realizable
rational functions and some fundamental coding concepts suchiagot always an equivalence relation. For exampleflet Z4; then
generator matrix, equivalence, right invertibility, catastrophicity, ané/2 ~ 2/D and0/2 ~ 2/D?, but2/D and2/D? are not equivalent.
minimality for the ring case. Section Il is devoted to systematicity Let R.(D) be the subring of?(D) consisting of those elements
of ring codes. After having defined a systematic convolutional codggquivalence classes) which contain a representgtii) /¢( D) with
we give a new condition for a convolutional code over a ring te(0) a unit in &. We call this thering of realizable functionsind the
be systematic. In Section IV, we prove that our new conditioelements ofR, (D) realizable functions
for systematicity is equivalent to a condition given by Massey and
Mittelholzer [2]. Section V treats codes over a direct sum of rings. V\{e
show that if a systematic generator matrix can be decomposed in
a direct sum, then all generator matrices for the decomposed code b -

: . R(D)" — R(D)

are systematic, but the converse does not hold. Various examples are
given. We also give some results on convolutional codes Byer u(D) —v(D) 4

F(D) B(D) _ F(DIh(D)
¢(D) k(D) ~ ¢(D)k(D)’

Definition 1: A rate/c convolutional transduceover the ring of
(gional functionsR(D) is a linear mapping
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Definition 2: The set such thatG(D) = T(D)G (D) andG'(D) = S(D)G(D) where
C = {u(D)G(D)lu(D) € R(D)"} ) ui(D) ui(D)

where G(D) is the transfer function matrix of a ratge convolu- ()= : and S(D) = :

tional transducer oveR( D), is arate-b/c convolutional codever R. u, (D) u, (D)
The outputv(D) = u(D)G(D) is the code sequencarising from Hence
the information sequence(D). '

It follows immediately from Definition 2 that a rafe/c convo- G(D) = T(D)GA(D) = T(D)S(D)G(D)

lutional codeC over R with transfer function matrix;(D) can be ang, thus, since the rows 6f( D) are free oveR(D), T(D)S(D) =
regarded as thé(D) row module ofG(D). Hence, it can also be 1, wherel, is theb x b identity matrix. Similarly,S(D)T(D) = I,
regarded as the ratg-c block code over?(D) which hasG(D) as  so thatS(D) is indeed an inverse 6f(D). O
its (block code) generator matrix.

Obviously, we must be able to reconstruct the information sequencétemark: Let G(D) be a matrix overz(D) whose rows are free
u(D) from the code sequenag D) when there is no noise on the °ver R(D) but not over R((D)). Then there exists a(D) €
channel. Therefore, we require that the transducer map be injectifie((D)) such that

i.e., that the rows of the transfer function matéX D) be free over w(D)G(D) =0 € R°(D)
the ring R(D). However, the entries iG/(D) need not be realizable ’
functions. If in Definition 1 input sequences ove®((D)) were allowed, then

we could not have transducer invertibility. Moreover, in our proof

of the converse part of Theorem 1, bdfi{ D) and S(D) would

be matrices oveR((D)), and fromG(D) = T(D)S(D)G(D),

or, equivalently, from(T'(D)S(D) — I)G(D) = 0, we could not

conclude thatl'(D)S(D) = I,. A theory for convolutional codes
Let F((D)) denote the field of formal Laurent series over thever rings without Theorem 1 would be impoverished.

field F in the indeterminateD, and let R((D)) denote the ring

of formal Laurent series over the rinf in the indeterminateD.

Since the seminal work by Forney [4], it is customary to regard

convolutional code over a field as the vector space ovéi((D)) The following theorem shows that this definition is independent of

generated by a generator matrix oMé¢D) or, equivalently, as the the chosen generator matrix.

rated/c block code over the infinite field of formal Laurent series . 7 .

havingG (D) as its generator matrix (see also [5]). Massey, however, 1heorem 2:1f a convolutional codeC has a generator matrix

persists in viewing convolutional codes as tHeD) vector space of G(D) which has a right inverse ovét(D), so does every generator

the generator matrix [6]. Although we prefer the first view in th&natrix for this code.

. U .
field case as being more natural since it does not require information Proof: Let (D) be any generator matrix of the code Then

sequences to be ultimately periodic, we have adopted the secé'?‘ﬁfe exists an invertiblé x ’anatfix T(D) over R(D) such th"f‘t
view in this correspondence in order not to restrict the generafgr(P) = T(D)G(D). Let G™"(D) be a right inverse of+(D);

1 1, . . . . .
matrices overR(D) to those whose rows are free ovBt(D)) (see then”G (D)T (D) is a matrix overR(D) and is a right inverse
Remark after the proof of Theorem 1). Mittelholzer [7] has recentl9f (D). =

shown that there indeed exist generator matrices édp) whose |t js well known that every generator matrix of convolutional
rows are free ove?(D) but not overR((D))! The corresponding codes over a field is right invertible [4], [5]. Over ring® there
problem does not arise in the field case. For rings of practical inter@ist convolutional code€ which are not right invertible. However,
for convolutional codes, for example, finite rings, Mittelholzer hagg recently shown by Mittelholzer, this cannot happengifis
also showed that there is no difference between the rows of témmutative and satisfies the descending chain condition (DCC) [7].
generator matrix being free ov&(D) or overR((D)) [7]. However, Eyery finite ring satisfies the descending chain condition. Thus for

other difficulties will be enCOUntered, for eXample, those Concernir&des over finite commutative rings’ every generator matrix has a
equivalence and in results where Theorem 1 is used. right inverse.

Analogously to the field case we introduce

Definition 3: The transfer function matrixG(D) of a rateb/c
convolutional transducer oveR(D) is a generator matrixof the
corresponding raté/c code overR if its entries are all realizable
functions.

Definition 5: A convolutional codé&’ is right invertibleif it has a
generator matrbdG (D) which has a right inverse oveR(D).

Example 1: Consider the convolutional cod® over the integers
Definition 4: Two generator matrices aexjuivalentif they gen- 7 with the 1 x 1 generator matrix

erate the same code.
. - . . . G(D)=(2+ D).

A square matrixZ'(D) is invertible over R(D) if there exists
a square matrixI” (D) of the same size oveR(D) such that The row is free oveZ( D), but G(D) does not have a right inverse
T(D)T'(D) = T'(D)T(D) = I. The inverse is obviously unique over Z(D) and hence’ is not right invertible.
and is denoted”'(D). However, the code oveZ; (the ring of integers modulo 4),
with G(D) = (2 4+ D) has a right inverse oveZ,(D), namely,
G (D) = ((2+ D)/D*), and hence the convolutional coGeover
Z, with generator matrixG(D) is right invertible.

Theorem 1: Two rated/c generator matrice&(D) and G'(D)
are equivalent if and only if there existsbax b invertible matrix
T(D) over R(D) such thatG(D) = T(D)G'(D).

Proof: If G(D) =T(D)G (D), whereT (D) is invertible over Remark: The convolutional code ovef in Example 1—with bi-
R(D), then the generator matricé® D) and G'(D) are obviously infinite code sequences—appears as [8, Example 6], where it was
equivalent. shown that the trellis of(D) generates an incomplete code. The

Conversely, assume th&(D) and G'(D) are equivalent. Then deep reason why#(D) does not have a right inverse is the lack of
we can find input sequences;(D),u!(D) € R(D)",1 < i < b, the DCC property [7].
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Theorem 3: Let G(D) be ab x c generator matrix. If there exists A generator matrixG(D) of a convolutional code in the field case
a b x b submatrix of G(D) whose determinant is a unit iR(D), is said to becatastrophidf there exists an information sequenegD )
then the convolutional codé generated by+(D) is right invertible. with an infinite number of nonzero symbols that gives a codeword
Proof: Without loss of essential generality, assume that(D) of finite weight, a definition that we also take over to the ring
G(D) = (A(D) B(D)), where A(D) is theb x b submatrix whose case.

determinant is a unit ilR(D). Then, A(D) has an inversel ~'(D) A convolutional code over a ringR can be regarded as a group
over R(D). Letting code. Define
41 Cor ={v€Clvi=0 Vi<O0}
D) = <A (D))
0 and

. Co- ={veCCvi=0 Vi>0}.
gives
B Then(C,+ and(C,- are R-submodules of. The quotientkR-module
G(D)G' (D) = (A(D) B(D)) <A (D)> s C/(Co— + Cy+) is called thecode state spacef_c at time0 [10]. _
0 In the case of convolutional codes over a field, a generator matrix
) o is defined to be minimal when the abstract state space is of minimal
so thatG'(D) is a right inverse of(D) and hence the cod€é  gimension. It has been proved that this is fulfilled if and only if the
generated by+(D) is right invertible. U abstract state space is isomorphic to the code state space [3], [11]. It
is hence natural in the case of convolutional codes over aRing
define a generator matrix to beinimal when this is fulfilled [3].
Corollary 4: If a generator matrixG(D) of a convolutional code  Surprisingly enough, there exist convolutional codes over rings
C has ab x b submatrix whose determinant is a unitif{D), so do  which do not have a minimal generator matrix, e.g., the convolutional

From Theorem 1 follows immediately

all the generator matrices f. code overZ, generated by=(D) = (2 2+ D) [3].
It is worth noting that the corresponding conclusion for units over
the ring ofrealizablerational functionsR, (D) does not hold. That a 1. SYSTEMATIC CONVOLUTIONAL CODES OVERRINGS

convolutional cod& has a generator matrix having& b submatrix A convolutional generator matrix is said to tsystematicif it
whose determinant is a unit i®,.(D) does not imply that every causes the information symbols to appear unchanged among the code
generator matrix of has ab x b subdeterminant which is a unit in symbols, i.e., if somé of its columns form the identity matrix. Here

R, (D), as the following example shows. a symbol means an element &{ D).

Systematic rational generator matrices are of prime interest in
connection with iterative decoding of convolutional codes [2]. The
systematic bits seem to give a “leg up” in decoding. Also, it was
recently shown that systematic polynomial generator matrices are
superior to other types of generator matrices with ligt-algorithm)

In connection with Example 2, Forney [9] suggested the notion decoding of convolutional codes; they support a spontaneous recovery
causal equivalence. of a lost correct path [13].

For convolutional codes over fields, every code has both systematic
and nonsystematic generator matrices. Thus in the field case, being
systematic is an encoder property. However, this is not the case for
codes over rings. In the ring case, being systematic is a code property
[2]. Hence, we have

Example 2: Consider thel x 1 generator matrixG(D) = (1)
over the ringZ ;. Its determinant], is a unit in(Zx/),- (D), but the
equivalent generator matri¥’ (D) = (D) does not have a realizable
inverse.

Definition 6: Two generator matrice& (D) and G'(D) are said
to be causally equivalentif there exists ab x b matrix T(D)
which is realizable and has a realizable inverse such @id?) =
T(D)G'(D).

From Theorem 1 it is quite easy to show that having & b
submatrix whose determinant is a unitif (D) is a property which
is preserved between causally equivalent generator matrices.

Definition 7: A convolutional code” over a ringR is systematic
if it has a systematic generator matrix.

The following theorem states precisely when a convolutional code

Theorem 5: If a generator matrixG(D) of a convolutional code over a ring is systematic.

C has ab x b submatrix whose determinant is a unit (D), so
do all causally equivalent generator matricesCof Theorem 6: A convolutional cod&” over a ringR is systematic if

and only if it has a generator matri¥( D) that has a x b submatrix

The f‘?”"W'”g example S_h(_)ws that for a generato_r matrix to ha\(ﬁhose determinant is a unit R, (D), the ring of realizable functions
a right inverse overR(D) it is not necessary that it hastax b

. . . . over R.
submatrix whose determinant is a unit (D). Proof: Assume that the generator matiix( D) is systematic,
Example 3: The generator matrix i.e., G(D) can be written a€7(D) = (I, G'(D)). The determinant
( . of I, is a unit in R (and in R,.(D)). Conversely, assume that
G(D)=(23) a generator matrixG(D) has ab x b submatrix A(D) whose

determinant is a unit i?,- (D). Without loss of essential generality,
let G(D) = (A(D) B(D)). Then, A(D) has an inversed™" (D)
over R.(D) and

G YD) = <2> Guye(D) = A=/(D)G(D) = (I, B'(D))

overZs(D) does not have & x 1 submatrix whose determinant is a
unit in Zs(D), but it does have a right inverse, viz.,

1
is an equivalent generator matrix for the cadeHence,C has a
In the field case, a convolutional generator matrix is said to Isystematic generator matrix. (I
basicif it is polynomial and has a polynomial right inverse; we use An element that is a unit iR,.(D) is also a unit inR(D). Thus
this definition for the ring case as well. Theorem 3 immediately implies
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Corollary 7: Let C be a systematic convolutional code. Thems where thel is in the ith position. We now want to show that the

right invertible. matrix
It is not required thaeverygenerator matrix of a systematic code vi(D)
C has ab x b submatrix whose determinant is a unitf. (D). For G(D) =

example, the determinant of the generator mat¥ixD) = (D) in
Example 2 is not a unit i?,-( D), but the equivalent generator matrix
G(D) = (1) is trivially systematic and hence the code generated hy a generator matrix for the code Consider any causal codeword
G'(D) = (D) is systematic. However, by combining Theorem 6 ang( D). Since{v;(0),1 < i < b} generategy, there exists a, € R’

'L’b(.D)

Corollary 4 we obtain such that
Corollary 8: A generator matrixG(D) that does not have lax b 2(0) = uoG(0)
submatrix whose determinant is a unit (D), the ring of rational
functions, cannot generate a systematic code. and hencev(D) — uoG(D) is a causal codeword with constant

term. We writev(D) —uoG(D) = Dv'(D) wherev' (D) is a causal
codeword. There exists & € R such thaty’(0) = u:G(0) and
hencev(D) — (uo+u1 D)G(D) is a causal codeword whose constant
term and coefficient ofD both are zero. Continuing in the same
manner, we can find a sequeneeD) € R[[D]]’ such that

The generator matrixG(D) = (2 + D) over Z4(D) in Example
1 generates a systematic code since it is equivale6t @) = (1),
though it has no right inverse ovéZ.), (D). The generator matrix
G(D) over Zs(D) in Example 3 has a right inverse ovég[D],
but no1 x 1 submatrix whose determinant is a unit (D), so
it genera_tes a right invertible convolutional codebut C is not o(D) = u(D)G(D).
systematic.
Let v4(D) and G+(D) denote the firstt components ofv(D)
1IV. AN ALTERNATIVE CONDITION FOR SYSTEMATICITY and the firstb columns of the matrixG(D), respectively. Then,
(D) = u(D)G,(D). The determinantlet(Gy (D)) is a causal

Let Cy be thestart moduleof a rateb/c convolutional codeC . ) .
0 /¢ rational function andlet(G5(0)) = 1, i.e.,

over a ringR; i.e., Co consists of alle-tuplesv(0) for which v(D)
is a causal codeword id. Massey and Mittelholzer [2] defined a det(Gy(D)) = 1+ Dr(D)
convolutional codeC over a ring R to be proper if C; is a free -
R-module of rankb and one can seleét components such that thewherer (D) is a causal rational function so thitt (G5 (D)) is a unit
c-tuples inCo, when restricted to these components, form the frag R, (D). The sequenca(D) can then be expressed as
module R®. Then they proved

D) = vy(D)Gy(D)™!
Proposition 1: A convolutional code is systematic if and only if u(D) = vs(D)Ge(D)
It Is proper. which shows that(D) is ab-tuple of rational functions. Moreover,
every causal codeword éhcan be generated by the matéX D) and,

We now prove the following result: A caliod! LU )
sinceC is time-invariant, so can every codeword®flt has already

Theorem 9: Proposition 1 is equivalent to Theorem 6. peen shown that the generator mat€ixD) has ab x b submatrix
Proof: Assume that the codé has a generator matri& (D) whose determinant is a unit iR, (D) and hence, by Theorem 6,
that has & x b submatrix whose determinant is a unit (D). s systematic. O

Without loss of essential generality, 16¢(D) = (A(D) B(D))
where det A(D) is a unit in R,-(D). Then, A(D) has an inverse
A~'(D) over R,(D) and the matrix V. CONVOLUTIONAL CODES OVERZ s
In this section we mainly consider ralge convolutional codes
G'(D)=A""(D)G(D)= (I, A '(D)B(D)) over ringsZy;s where M = p$t---pSm andps, - -, p,, are distinct
primes. The rind is finite and can be decomposed into a direct sum
is an equivalent generator matrix of the cadlevhich is systematic. of ringsZ,; ~ Zyr @B Lyem. The results in this section reduce
The rows ofG'(0) are free overR and generate the start modulethe study of generator matrices ov&r; to the study of generator
The c-tuples inCo, when restricted to the firdt components, form matrices ovez,,-. Apart from the mere results, it simplifies the study
the free moduleR’. Hence, the code is proper. of generator matrices, which is especially nice when working with

Conversely, assume that the codds proper. We can then find concrete examples. We start more generally as follows.
b causal codewords ) )
Theorem 10: Suppose that the rin¢ can be decomposed into a

{vi(D) = (v}(D)---v{(D)), 1 <i<b} direct sum of ideals a® = R, ©® R: @ ... ® R,. Then

i) the ring R(D) of rational functions can be decomposed into

such that{v;(0), 1 <7 < b} is a free basis of, and we can select a corresponding direct sum of rings of rational functions, i.e.,

b components of the codewords such that R(D) ~ Ri(D) @ Ro(D) -+ & Ry(D);
(02(0) = (011(0) -+ 072 (0)), ¢ = ju, -1 js} ii) the ring R-(D) of realizable rational functions can be decom-
' P ' ’ o posed into a corresponding direct sum of rings of realizable
form the free moduleR®. Without loss of essential generality, we rational functions, i.e.,
can take

Rr(D) =~ (R1)r(D)@® (R2)r (D) -+ B (Rs)r(D);
D) = (v} e Y (DY i 1
{vilD) = (vi(D), -, vi(D)), 1 T < b} iy the ring R[D] of polynomials can be decomposed into a
and corresponding direct sum of rings of polynomials, iR[.D] ~
vi(0)=(0---010 --- 0) Ri[D] @ R2[D] @ --- @ R.[D].



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 2, MARCH 1998

Proof:
i) The identity element of the rind@(D) is the element = 1/1.
We have the following decompositioris= e; @ --- I es Wheree;
is the identity element oR?;,i = 1,2,---, s, and

R(D)=R(D)e1 & --- % R(D)es.
It remains to prove thaR(D)e; ~ R;(D). Define the mapy by

v: R(D)e; — R;(D)
#(D)_ . f(D)e,
¢(D) " q(D)e

(7)
where

f(D)ei = ae; + are;D 4+« + ane; D"

f(Dy=av+a1D+---+a,D",a; €R.

The trailing coefficient ofg(D) is a unit in the ringR so, for all
i =1,---,s, the trailing coefficient ofy(D)e; is a unit in R;, and
hence

f(D)e; c R

q(D)e; «(D)-

843

Theorem 12: Suppose that the ring is a direct sum of ideals
Ry,Rz,---,Rs;ie., R=R; & Ry & --- & R, and that a generator
matrix G(D) over R(D) has been decomposed into

G(D)=Gi(D)# G2(D) -+ & G(D).

Then
i) G(D) is basic if and only ifG;(D) is basic fori = 1,2, - -, s;
i) G(D) is noncatastrophic if and only if7;(D) is noncatas-
trophic fori = 1,2,---.s;
i) G(D) is minimal if and only if G;(D) is minimal fori: =
1,2,--,s.
Proof:

i) and ii) are obvious; iii) follows from the facts that the abstract
state space of relative toG(D) is a direct sum of abstract state
spaces of’; relative toG; (D) fori = 1,2,---, s and that the code
state space of at time0 is isomorphic to the direct sum of code
state spaces af; fori =1,2,---,s. (I

For a generator matrix that can be decomposed into a direct sum,
we have the following

Theorem 13: Suppose that the ringg can be decomposed into a
direct sum of idealsR = R & R2 @ - -- 9 R,. If a generator matrix

G(D)=G1(D)& G2(D) & --- & Gs(D)

The map~ is well-defined; it preserves addition and multiplication

and it is both injective and surjective. Hend®,D)e; ~ R, (D) and
R(D) ~ Ri(D) & --- & Rs(D).

ii) Following the proof of part i), for the ring?,-(D) we have the
decomposition

R.(D)=R,(D)ey & - & R, (D)es.

For

f(D)

q(D)

the element(0) is a unit in R so, for all: = 1,---, s, the constant
term of ¢(D)e; is a unit in R;. Hence, we haveR.(D)e; ~
(R;)-(D) and

R.(D)~ (Ry).(D)& -+ & (R.).(D).

€ R.(D)

iii) Follows from the proof of part i).
From Theorem 10 we have immediately

Theorem 11: Suppose that the rin@ is a direct sum of ideals
Ri,Ry,---,Rs;i.e, R=Ri DR, & --- & R,. Let G(D) be a
matrix over R(D). Under the isomorphism

R(D)~Ri(D)& R:(D)&®--- ¢ Rs(D)

denote the image off/(D) in R;(D) by G;(D). We write symbol-
ically

G(D)=Gi(D)D G2(D) D -+ D Gs(D)

whereG; (D) is a matrix overR;(D) fori =1,2,---,s. Then
i) G(D) is polynomial over R[D] if and only if G;(D) is
polynomial overR;[D] fori = 1,2,---,s;
i) G(D) is a generator matrix oveR,- (D) if and only if G;(D)
is a generator matrix oveiR;),(D) fori =1,2,---,s;
iii) G(D) has a right inverse oveR(D) (or overR,.(D) or over
R[D)) if and only if G;(D) has a right inverse oveR;(D)
(or over(R;).(D) or overR;[D]) fori =1,2,---,s.

From Theorem 11 follows

of a convolutional code oveR is systematic, ther#;(D) is also
systematic fori = 1,2,---, s.
Proof: If the generator matrix

G(D) = G1(D) D G2(D) @ -+ B G (D)

has ab x b submatrix whose determinant is a unit Ry (D), then,
since R(D) is a direct sumG;(D) must have & x b submatrix
whose determinant is a unit iR;)-(D) fori =1,2,---,s. O

The following example shows that the converse of Theorem 13
does not hold.

Example 4: The generator matricess (D) (2 0) and
G2(D) = (0 3) overZs andZ-, respectively, are both systematic.
However, the generator matrix

G(D) = G\(D) T Go(D) = (2 3)

does not have &x b submatrix whose determinant is a unit®{ D)
(see Example 3), so that the convolutional code generate@ (1)
is not systematic.

Remark: Note that Theorem 13 implies that if a convolutional
codeC = C; $C: & --- B Cs over R is systematic, thert’; is
systematic fori = 1,2,---,s.

Now, if G(D) is a generator matrix ovef,,, then

where

Gi(D) =G(D) mod pi',1 <i < m.
By the foregoing discussion, the study of codes o¥er can be
reduced to the study of codes ov&g-. This follows also from the
fundamental theorem of finite Abelian groups as was already pointed

out in [14], cf. also [15]-[19].
Consider a generator matr(D) over Z,-. We can write

G(D) = GO(D) + Gl(D)p+ et G(:—l(D)p671

where the entries of allG;(D) are over (Z,).(D). Then,
G(D) mod p = Go(D). The relation between the generator matrix
G(D) and G(D) mod p will be studied next.
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Theorem 14:Let G(D) be a generator matrix ovef,-. Then Conversely, assume thaét (D) is basic. Then there existscax b
) G(D) is catastrophic ifG(D) mod p is catastrophic and, Polynomial matrixGiy ' (D) over Z, such that
for polynomial generator matrices, only (D) mod p is Go(D)Gy (D) = I, mod p.

catastrophic.
i) Assuming thatG(D) is polynomial,G(D) is basic if and only We will constructe x b polynomial matricesz; ' (D), ---, G2, (D)
if G(D) mod p is basic. such thatG(D)G™' (D) = I, where

 Proof. . _ G (D) =Gy (D) + Gy (Dp+ -+ Gy (D)p™™
i) Assume thatG(D) mod p = Go(D) is catastrophic. Then
we can find an input sequeneg D) which has infinite weight and ~ Consider the product

where everyu; € Z?, such that(D)Go(D) has finite weight. Then G(D)G™(D) = (Go(D) + Gr (D)p+ -+ + Gt (D)p™™ )
u(D)p°~" also has infinite weight and (G (D) + G D + ; G’i D))
1 1, (Yo 1 P e—1 P
uD) T G(D) = (D" (Go(D) =Go(D)G7 (D) + (Go(D)GT (D)
- - 0 1
+ DIyt 4 Gera (D)) +G1(D)Gy H(D))p +
A
=u(D)p“~'Go(D).
D Go(D) + (Go(D)GZ'4(D) + G1(D)GZ', (D) +
This shows thak(D)p* 'G(D) also has finite weight and hence + Gﬁl(D)GDfl(D))pefl

that G(D) is catastrophic. ) 4
To prove the converse part whe®(D) is polynomial, suppose Where the operations are done modufo We have

thatG(l?) i§ c.at.astrophic. Then there exists an informgtion sequence Go(D)G7 (D) =T,
u(D) with infinite weight such thau(D)G(D) has finite weight.
We can write in Z,.We can assume that
(D) = uo(D) +ui (D)p ++++ + w1 (D)p ™" Go(D)Gg (D) = Iy+pk1 (D)+p" Ko (D)+++p" " K. 1(D)
where eachu, (D) belongs toZ,(D)". Then at least ona;(D) has in Z,e. Then
infinite weight. Suppose that G(D)G™' (D) =T, + (K:(D) + Go(D)GT'(D)
wo(D), w1 (D), -, u;—1(D) (1<j<e) + Gi(D)GTH DY)+
have finite weight and:;(D) has infinite weight. Then + (Ke—1(D) + Go(D)GZ!, (D)
u(D)G(D) = (uo(D) + ui (D)p+ -+ +uc—i (D)p ") +G(D)G 5 (D) +---
A(Go(D)+ G1(D)p+ -+ Ger (D)p~") + G (D)G5 '(D))p !
=uo(D)Go(D) + (we(D)G (D) and we can choose
+u1(D)Go(D))p+--- GY'(D) = -Gy '(D)(I(D)+ G1(D)Gy (D))
+ (uo(D)Ge—1(D) + w1 (D)Ge—2(D) + - -- where the operations are done modylcClearly, G7'(D) is poly-
+ 1 (D)Go(D))p ! nomial and
- Vo1 -1 _
has finite weight and the coefficients pf,p'.---,p“~" all have Ei(D) +Go(D)Gy (D) + Gi(D)Go (D) =0
finite weight. In particular, the coefficient @f , which is in Z,. We can assume that
uo(D)G;(D) + w1 (D)Gj—1(D) + - + u;(D)Go(D). Ki(D) + Go(D)GT ' (D) + G1(D)Gy (D)
has finite weight. Sinc&(D) is polynomial, =pLi(D)+p°La(D)+ -+ +p"~'Le_1(D)
uo(D)G;(D), ur(D)G-1(D), -+, u;—1(D)G1(D) in Zpe. Then
all have finite weight. Hencas,; (D)Gy (D) has finite weight showing G(D)G (D) =1, + Op + (K2(D) + L1 (D
that Go(D) is catastrophic. + Go(D)Gy (D) + G ( D)G1 (D)
ii) If G(D) is basic, then there exists a polynomial magix* (D) + Ga(D)Gy (D) + -
such thatG(D)G~1(D) = I, wherel, is theb x b identity matrix. 2 0 s
We can write 4+ (K.—1(D)+ L.—2(D)

+ Go(D)G.24(D)
+ G (D Te— Z(D
+ Ge1(D)Gy (D))"

D)= Go (D) + G D)+ -+ G (D)
whereG; (D) is polynomial,0 < i < e — 1. Then

(Go(D)+ Gi(D)p+ -+ Ge1(D)p™ )

_ _ _ o and we can choose
(G (D) + G D+ + GL(Dp T =1,

_ G7'(D) ==G5 ' (D)(K2(D)+ Li(D) + Go(D)G5 (D)
which shows that " Gl(D)GTI(D) " GQ(D)Go’l(D))

Go(D)Gy ' (D) = I,
where the operations are done modul@henG ' (D) is polynomial

Thus Go(D) = G(D) mod p has a right polynomial inverse andand the coefficient op® in G(D)G~'(D) is 0. Contlnumg in the
hence is basic. same way, we can choose polynomial matriégs'(D),1 < i <
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e — 1, in such a way that#(D)G~"'(D) = I. ThusG(D) has a
polynomial inverse and is basic. O 7
Theorem 14 i) implies that, for a polynomial generator matrix

G(D) overZ,e, G(D) is catastrophic if and only i€7(D) mod p is
catastrophic, which was pointed out by Massey and Mittelholzer i,{8]
[1]. The following example shows that for a nonpolynomial generator
matrix G(D) over Z,-, the catastrophicity ofz(D) does not imply  [9]
catastrophicity ofG(D) mod p. [10]

Example 5: Let C be a convolutional code over the ring,e
generated by7(D) = 1 + (1/(1 — D))p. The infinite weight input [11]

sequence
D D \? D\ [12]
1+p+<1+p> +<m) o

gives a finite weight output(D)G(D) = 1 + p and hence the [13]
generator matrix is catastrophic. Howevét(D) mod p = (1) is
noncatastrophic ovez,,.

u(D) = (1- D) <1+

[14]
The following result on systematicity of codes over the rfg-
was stated by Mittelholzer in 1993 [3] and can be proved in the sartie]
way as Theorem 14.

Theorem 15: A convolutional code’ is systematic if and only if (16]
it has a generator matri&'( D) such thatG(0) mod p has full rank

[17]
over Z,.

There is no correspondingly simple relation between the minimali{)llg]
of the generator matrig/( D) and that ofG(D) mod p. An example
is given here of a generator matrix which is not minimal over thE9]
ring Z,- but is minimal overZ,.

Example 6: Consider the polynomial generator mati( D) =
(14 pD) over Z,2. This generator matrix is not minimal since
G(D) is equivalent to the generator matkiX (D) = (1). However,
G(D) mod p = (1) is minimal overZ,.

VI.

For fields we usually define convolutional codes for inputs that are
Laurent series, but for general rings we have to restrict the inputs to
be rational functions. However, when considering rings satisfying the
descending chain condition we could allow Laurent series as inputs.
Even for these rings many important properties differ from the field
case.
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