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TABLE II 
ONE MAXPOL FOR GIVEN DEGREE 

MAXPOL 

PP 
1 2 

P 5P 
0 1 

P 2P P 

PO 3P1P2 

P14P1P2 
1 2 

P 5P P 
0 1 2 

P 6P P 
0 1 2 

P 3P P 
0 1 4 

PPP 
1 2 4 

pO3 
PPG 

1 2 3 

pO2 
PPP 

1 2 4 

Po3P P P 
1 2 4 

Po4P P P 
1 2 4 

Po5P P P 
1 2 4 

Exponent 

6 

12 

15 

24 

30 

60 

60 

120 

120 

204 

255 

420 

510 

1020 

1020 

2040 

- 
Degree 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

Po6P P  P  
1 2 4 

P 5P P G 
0 1 2 5 

PPP 
1 2 8 

P 3P P G 
0 127 

PPPG 
1 2 4 5 

Po3P 1 P 2 P 8 

P 2P P P G 
0 1 2 4 5 

P 3P P P G 
0 1 2 4 5 

PPPG 
1247 

pO5 
PPPG 

1 2 4 5 

PPPP 
1 2 4 8 

P3PPPG 
0 1 2 4 7 

P2PPPP 
0 1 2 4 8 

pO3 
PPPP 

1 2 4 8 

Po4P P  P  P  
1 2 4 8 

MAXPOL Exponent 

2040 

3720 

3855 

7620 

7905 

15420 

15810 

31620 

32385 

63240 

65535 

129540 

131070 

262140 

262140 

This theorem establishes a reduced exhaustive search method 
for a MAXPOL of any given degree. One searches all k, the ml, 
and the mj such that k > 0, r = k + 2(Zmi + Xmj), mi > 1, 
mj > 3, and mi # mj. Compute the exponent by 

e = [log, k] [lcm ((2”’ + 1),(2”j - l)}] 
i,j 

and keep the combination that yields the maximum e. (1x1 
denotes the upper integer part of .x.) This search was program- 
med in a simple APL routine that produced the list in Table II 
of one MAXPOL per given degree. We observe that the MAX- 
POL exponents are very near to 2(‘+3)/2 for which we have no 
explanation at this time. 
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Robustly Optimal Rate One-Half Binary Convolutional 
Codes 

ROLF JOHANNESSON 

Abstract-Three optimality criteria for convolutional codes are con- 
sidered in this correspondence: namely, free distance, minimum distance, 
and distance profile. Here we report the results of computer searches for 
rate one-half binary convolutional codes that are “robustly optimal” in 
the sense of being optimal for one criterion and optimal or near-optimal 
for the other two criteria. Comparisons with previously known codes are 
made. The results of a computer simulation are reported to show the 
importance of the distance profile to computational performance with 
sequential decoding. 

Manuscript received August 14, 1974. This work was supported by the 
National Aeronautics and Space Administration under Grant NGL 
15-004-026 at the University of Notre Dame in liaison with the Com- 
munications and Navigation Division, Goddard Space Flight Center. 

The author was with the Department of Electrical Engineering, Univer- 
sity of Notre Dame, Notre Dame, Ind. 46556. He is now with Telecom- 
munication Theory, Lund Institute of Technology, Lund, Sweden. 

Several distance measures have been proposed for convolu- 
tional codes, each of which is important for particular applica- 
tions. In this correspondence we report the results of the search 
for “robustly optimal” convolutional codes, i.e., codes that are 
optimal for one distance measure and are also optimal or near- 
optimal for the other two distance measures. We have limited 
the search to binary codes of rate R = 3 as the case of greatest 
practical interest. 

In a rate R = 3 binary convolutional code, the information 
sequence iO,il ,i2, l  . . is encoded as the sequence 

t0 
(f),to(2),tl(l),t1(2),tZ(l),t2(2), . . . 

where 
M  

t (k) = 
c 

(W 
U iu-jsj l  

j=O 

The parameter 1M is the code memory and 
G(k) = [go(k),gl(k), . l  l  ,sM’k’] 

for k = 1,2, are the code generators. The code is systematic 
when G(l) = [l,O,* l  l  ,O]. The code is a quick-look-in (QLI) 
code [l ] when 

1 
sj’l’, 

gjt2) = 1 + gltl), 
j#l 
j = 1. 

QLI codes have some advantages in recovering the information 
sequence from the encoded sequence compared to general 
nonsystematic codes. 

We shall find it convenient to write 

q0,n-J = (to (l),to(2),t1(l),t1(2), . . . ,t,(l),t,(2)) 

for the encoded path containing the first yt + 1 “branches” of 
the encoded sequence. The encoded path t[()M1 is called the first 
constraint length of the code. The jth order column distance [2] 
dj is the minimum Hamming distance between some tco jl 
resulting from an information sequence with i. = 1 and some 
tLo,jl with i. = 0. By linearity, dj is also the minimum of the 
Hamming weights of the paths tco j] resulting from information , 
sequences with i. = 1. 

The quantity & is called the minimum distance of the con- 
volutional code and determines the guaranteed error-correcting 
capability when the code is decoded by a “feedback decoder” [3]. 
The quantity & is called the free distance of the code and has 
been found to be the principal determiner of decoding error 
probability when maximum-likelihood (or nearly so) decoding 
is used, i.e., for Viterbi decoding or sequential decoding [l 1, [4]. 

It has also been observed [l ] that for good computational 
performance with sequential decoding, the column distances 
should “grow as rapidly as possible.” We are led then to define 
the distance profile of the code as the (M + 1).tuple 

d = [d,,d~,* l  *&!,I 

and to say that a distance profile d is superior to a distance profile 
d’ when there is some n such that 

j = 0, l,a**, n - 1 
.I = n . 

Thus d > d’ implies that the “early growth” of dj with j is 
greater than that of dj’ with j. (It could, of course, happen that 
for sufficiently large j, dj < dj’.) 

We notice that only in the range 0 5 j 5 1M is each branch 
on a path tco,j3 affected by a new portion of the generator as one 
penetrates into the tree. The great dependence of the branches 
thereafter militates against the semi-infinite choice da = 



CORRESPONDENCE 465 

TABLE I 
ODP SYSTEMATICCONVOLUTIONAL CODES WITH RATE *WHICH ARE 

ALSO OMD CODES 

TABLE III 
ODPQLI CODESWITHRATE~ 

$) #paths dam ck 

3 

43 
4 

: 
: 
6 
6 
6 
6 
7 

% 
7 0 
0 
ii 
ii 
8 
9 

; 
ii 
9 

lo, 
10 
10 
10 
10 
10 
10 
11 
11 

#paths 

1 
1 
1 
1 
1 
2 
1 
1 
1. 
1 
1 
2 
1 
2 
1 
5 
1 
1 
2 
1 
2 
1 

1' 

% 
2 
1 
1 
1 
1 
2 
1 
2 
1 
2 
1 
1 

M 

7 
0 
9 

10 

11 

12 
13 

14 

15 

16 

17 

10 

19. 
20 

21 

22 

23 

7 
0 

9 

10 

ll 

12 

iz 

#paths #paths 

6 
7 
74 
72 
71 
75 

:9 
742 
742 
7464 
7434 
7406 
7422 
7421 

4 
5 
54 

;: 

$4 
514 
542 
542 
5404 
5434 
5406 
5422 
5421 

2 
1 
3 
1 

3 

2 
6 

I 
7 
0 
9 
9 
9 

10 
10 
11 
*ll 
12 
11 
11 
13 
11 
14 
13 
14 
14 
15 
15 
16 
15 
16L 

6 
7 
64 
72 
73 :z 
714 z:: ;::i 
6710 
7152 
6711 
7153 
67114 
67x14 
67~5 

2 
1 
3 
1 
5 
2 
3 

11 

43 
4 

i 
6 
6 
6 
7 
7 
7 
0 
7 
0 
0 
9 
9 
9 

10 

1 
a 
1 
2 
3 
3 
1 
2 
2 
1 
1 
4 
1 
3 
2 
3 
1 
1 
4 

5 

6 
6 
6 
6 
7 
7 
7 
7 
0 

ii 

5 
6 

B 1 
3 

12 
13 

5 
6 

29 
I.2 

6 

B 

B 5435 
54044 29 

12 
17 

6 
7 
1 
3 

10. 
22 

7 
9 

B 
B 

;t::; 
740414 
740470 
740416 
740462 
740415 
740463 
7404244 
7404634 
7404242 
7404241 
7404155 
74042404 
74041550 
74041566 
74042436 
74042417 
74041567 

54042 
54046 
54042 
54047 
540414 
540470 
540416 
540462 
540415 
540463 
5404244 
5404634 
5404242 
5404241 
5404155 
54042404 
54041550 
54041566 
54042436 
54042417 
54041567 

Rote: B denotes that this generator was previously found by 
B~~wus t& ' 

TABLE II 
ODP SYSTEMATICCONVOLUTIONALCODESWITH RATE+ 2 

31 
13 
10 

4 
0 
1 
0 

27 
32 

O(2) 

714474 

76:%2 
~:::2 
6711454 
7144616 
7144616 
7144761 
67114544 
71446162 
71446166 
67114543 
67115143 
714461654 
671151434 
714461654 
671145536 
671145431 
671151433 
7144616264 
7144760524 
6711454306 
6711514332 
7144616573 
7144760535 
7144616~654 
67114543064 
714461G2654 
67114543066 
71446162655 
71447605247 
714461626554 
671145430654 
714461626554 
714461625306 
714461625313 
714461626555 

#paths 

l's 
22 

7 
13 

3 

E 
10 

4 

i 
27 
32 

2 

; 

: 

2 
0 

13 

ii 
43 
44 
15 24 

4 
13 

1 
4 

34 42 
14 
19 

doa 

10 
10 
12 
3.1 
12 
12 
12 
12 
12 
12 
13 
14 
14 
14 
15 
15 
15 
15 

2 
14L 
16 
16 
16 
uL 
10 
16L 
16L 
16~ 
18 
17L 
18L 
18L 
18L 
18L 
~8~ 
18L 
lgL 

#paths 

1 
1 

13 
1 

Y 

z 
1 
1 
2 
6 
6 
2 

45 
5 
3 
1 
0 

i 
3 
3 

22 
2 
1 
2 

11 
2 
2 
5 
1 
5 
1 
3 
2 

H 

15 
16 

17 

10 
19 
20 

21 
22 

23 

24 

25 

26 

27 

20 

29 

30 

31 

32 

33 

34 

35 

41 
8 
9 
9 
9 
9 
9 

10 
10 
10 
10 
10 
10 
IA 
11 
11 
11 
11 
11 
11 
11 
12 
12 
12 
12 
12 
12 
13 
13 
13 
13 
13 
13 
13 
13 
14 
14 
14 
14 

number is actually d71 which is a Note: L denotes that this 
lower bound on dap. 

TABLE IV 
NONSYSTEMATIC QLI CODES WITH MAXIMUM FREEDISTANCEFOR 

QLI CODES 

&I p 
54 Ypatha drn #path@ n 

6 
7 
74 
66 
75 
654 
742 

4 1,2,3 3 
5 L2.3 
54 1.W t 
46 1, 3 4 
55 1,2,3 5 
454 
542 2,: 5 
551 3 6 
5664 5 
5506 3 7 
5503 6 
56414 7 
46716 6 

2 
1 
3 

z 
3 

ll 
7 

1: 

9 
1 

3 1 
z 1 

1 
7 2 
0 
9 : 
9 1 

10 1 
11 
I.2 i 
'12 10 8 

14 3 

1 
2 
3 
4 
S 
6 
7 
0 
9 

10 

E 
13 

751 
7664 

Rote8: 1. This code is OFD. 
2. Thir code is ODP. 
3. Thi8 code ir om. 

Note: L denotes that this number is actually d71 which is a 
lower bound on dm. 

TABLE V 
NONSYSTEMATIC CODES WHICH ARE SIMULTANEOUSLY ODP,OMD, 

AND OFD [d,,d,, l  l  ’ ,d, 1, as does the fact that d* is probably a description 
of the remainder of the column distances, which is quite adequate 
for all practical purposes. 

We shall say that a code is an optimum minimum distance 
(OMD) code (or an optimum jkee distance (OFD) code or an 
optimum distanceprofile (ODP) code) when its minimum distance 
(or free distance or distance profile) is equal to or superior to 
that of any code with the same memory. 

In Tables I-V we report the results of computer searches for 
binary convolutional codes that are robustly-optimal, i.e., 
optimal for one of the preceding distance measures and optimal 
or near-optimal for the other two. In cases where the optimum 
code is not unique, we have chosen a code with the fewest number 
of low-weight paths for the distance measure in question, e.g., 

H ,(l) Gw 
41 #paths do0 lpaths 

1 
2 

43 
5 
6 
7 
0 
9 

10 
11 
12 
13 

6 
7 
74 
62 
75 
634 
626 

4 
5 
54 
56 

$4 
572 
557 
5714 
5562 

2 
1 
3 

: 
3 

11 
6 
2 

13 

3 

ii 
7 
0 

10 
10 
12 
12 
14 
15 
16 
16 

1 
1 
1 
2 
2 

12 
1 

10 
1 

19 

5 

751 
7664 
7512 

60676 45662" 

a The search for the code with the smallest number of d-=16 paths 
wa8 not exhaustive and hence a slightly better code might l xis t . 
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18 . . 

16 -9 

14 l  ’ 

:: 12 .- 

% 
g 10,. 
4 
n 

8 . . 

6 . . 

dOo for systematic ODP codes (actually d 
M=30,32,33,34 and 71 for 

35.) 

----- doD for systematic 
.-.-.-.-. s for ODP codes 

Costello Algorithm A6 codes 

. . . . . . . . . . . . . . . . . . dM for codes of Bussgang (OeJMe-15), 

Lin-Lyne (16~20) and Forney (21<M<35) -- -- 
S-Y-%-*-l Gilbert bound 

.-. 
r / .** 

--.-.w . . . . . l  

/ .a*  

/ 

.-.a . . . . . *  

/ 
.-.-.-. / 

1-U-1-U 

r/ 

a  J .-.-.-./ 

/ / 

%-X-X-* 
/ 

. . . . . -.-. 

:-- / 

x-x-x-x-x 

--“s 
/ 

*  x x,x-w-x-x 

--- 

/ 

/ 

%-%-X-X 

0 5 10 15 20 25 30 35 
Memory M 

Fig. 1. Minimum distance dM and free distance da for some rate 3 convolutional codes. 

d for ODP QLI codes (actually d for 
vz18,20,21,22,23 and 24) 71 

28 l  m  

26 I. 

24 . . 

22 -- 

20 -. 

18 -- 

t: 16 -- 
% 
ti l d  14 -- 
n 

12 l  - 

10 .L 

8 -- 

6 -= 

w---v dm for Bahl-Jelinek codes 
. . . . . . . . . . . . . . . . . . d- for ODP and OFD codes 
.a.-.-.-. dy for ODP codes 

x-x-x-%-x dM for Massey-Costello QLI codes 

0 5 10 15 20 25 30 35 
Memory M 

Fig. 2. Minimum distance & and free distance dco for some rate 3 convolutional codes. 
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the fewest number of paths +,M1 with Hamming weight dM 
resulting from information sequences with i0 = 1 when dM 
is the distance measure in question. 

TABLE VI 
SIMULATIONRESULTSFORDECODING ~OOOFRAMES OF 256 BITS 

EACH FORTHE BSC WITHP = 0.045 
(R = R. = 0.50; R. = homP) 

In Table I we list ODP systematic codes for the range 1 5 
2M i 14. In all the tables we write the generators in the octal - 
form where the first octal digit denotes [gO(k),gl(k),gz(k)], the 
second denotes [g3’k’, gqtk) ,gstk)], etc. (It should be noted that 
the “customary” octal notation for generators [5] uses 
[g,,,g,_ IgM] for the last octal digit, etc., so that the generators 
[llll ] and. [llllol ] become 17 and 75, respectively. In the 
notation here these would be 74 and 75, which we think better 
shows the fact that the former is a truncation of the latter.) In 
case of ties not resolved by the number of weight dM paths, we 
have chosen for Table I a code with the greatest d,. The codes 
in Table I are all OMD codes as well as ODP codes. Since the 
“truncation” to smaller memory of an ODP code must give an 
ODP code for the reduced memory, the 2M = 14 code in Table I 
can be used to obtain an ODP code for all 2M 5 14 but not 
necessarily one with the least number of low-weight paths. 

For 2M = 15, we have found that an ODP code has d15 = 8 
whereas an OMD code has d15 = 9 so there is no code that 

Fraction of Frames with Coqmtation 
Nore than N 

ODP QLI code Massey-Costello code hhl-Jelinek code 
N M-23 hi=23 X=23 

278 1.000 1.000 1.000 

z: 0.555 0.582 0.571 
0.418 0.437 0.418 

450 0.227 0.254 0.227 600 0.123 0.13h O.u8 
1100 0.047 0.051 0.047 
1700 0.028 0.029 0.033, 
2700 0.017 0.019 0.018 

Fraction of F’rames Decoded ‘in Error 

0,000 0.000 0.000 

TABLE VII 
SIMULATION RJBULTSFORDECODMG 1000 FRAMES OF 256 BITS 

EACHFORTHE BSC WITH p = 0.057 
(R = l.lRo = 0.50) 

Fraction of b&es with Computation 
More thaq N 

is both ODP and OMD for 1M = 15. We know of no other 1M ODP QLI code Massey-Costello *code Bahl-Jelinek .code 

in the range 15 5 IM 5 35 with this property. In Table II we ’ M=23 M=23 Mm23 

list the systematic ODP codes that we have found, for 15 5 278 1.000 1.000 1.000 

1M < 35. For M > 16, the value of d’ for OMD codes is ;z 
0.851 0.869 0.860 
0.731 0.757 0.731 

unknown, but the codes in Table II have dM as large as any 450 0.532 0.553 0.537 
600 0,359 0.377 0.365 

previously known codes. In fact, for 1M = 30 and 2M = 34, 1100 0.182 0.189 0.178 
1700 0.125 0.134 0.128 

the codes in Table II have larger dM than any codes previously 2700 0,083 0.090 0.084 

known. Moreover, the 1M = 35 code in Table II has da superior Fraction of Frames Decoded in Error 
to the best previously known systematic code, viz., the adjoint 0.000 0.000 0.000 
[6] code of Forney’s extension [7] of one of Bussgang’s optimal 
codes [6]. 

The excellence as regards dM of the systematic ODP codes in of Table IV appear attractive for use with Viterbi decoders for 
Tables I and II can be seen from Fig. 1 in which we have plotted 1 2 1M 5 5. 
dM for these codes and for the best of the codes found previously In Table V, we list ODP general nonsystematic convolutional 
by Bussgang [6], Lin-Lyne [8], and Forney [7]. For comparison, codes with ties resolved first according to da and then according 
we have also plotted the Gilbert lower bound [3] on dM. To to dM. The codes for 1M 5 10 and 1M = 13 are all OFD codes 
show the excellence of their d,, we have also plotted da for the [5], and it is surprising that the ODP property can be obtained 
ODP systematic codes and for the systematic codes found by over such a wide range at no sacrifice in free distance. 
Costello [2]. The excellence as regards do0 of the codes in Table V can be 

It should be mentioned that, in Table II (as well as later in seen from Fig. 2 where we have plotted their do0 as well as that 
Table III), a notation of L indicates that d,l which is a lower of the “complementary codes” found earlier by Bahl-Jelinek 
bound on drx, is actually given rather than dm, which is unknown. [9]. The codes of Table V are attractive candidates for use with 
It is likely, however, that dT1 = d, in most, if not all, of these Viterbi decoding when the QLI feature is of no interest. The 
cases. 1M = 5 code in Table V is quite remarkable being simultaneously 

In Table III, we list the ODP QLI codes we have found for optimal for all three distance measures and also being QLI. 
1 < IM 5 23. These codes, except when 1M = 1, are nonsystem- - To illustrate the importance of the ODP property for sequential 
atic. QLI codes can generally achieve a greater dm for a given IM decoding computation, we have simulated the performance of a 
than is possible with systematic codes. stack sequential decoder [lo] on a binary symmetric channel 

The excellence of the ODP QLI codes of Table III as regards (BSC) for 1) the ODP QLI code with 1M = 23, do0 2 dql = 19, 
dM and do0 can be seen from Fig. 2 where we have plotted dM and dM = 11 of Table III; 2) the 1M = 23 Massey-Costello 

QLI code [l ] with da 2 dyl = 17 and dM = 9, which is 
currently being used by NASA in several deep-space programs; 
and 3) the 1M = 23 Bahl-Jelinek complementary code [9] with 
dm = 24 and dM = 10. The results of decoding 1000 frames of 
256 information bits in length for each of these codes are given 
in Tables VI and VII for BSC’s with crossover probability p 
of 0.045 and 0.057, respectively. No decoding errors were made 
in any case. It can be seen from Tables VI and VII that the 
computational performance of the ODP QLI code is far superior 
to the Massey-Costello QLI code and slightly better than the 
Bahl-Jelinek code that (while having larger da) lacks the desir- 
able QLI property. 

and da for these codes and dM for the QLI codes of Massey- 
Costello [l 1. The ODP QLI codes of Table III appear very 
attractive for use with sequential decoding since 1) their QLI 
structure guarantees easy recovery of the information sequence 
from the encoded sequence with small “error amplification” [l ] ; 
2) their ODP property ensures good computational performance; 
and 3) their large d, ensures a small decoding error probability. 

In Table IV, we list the QLI codes that we have found to have 
the greatest da for any QLI codes for 1 ,( M 5 13. For 1M 5 5 
these codes are also OFD, but for 1M 2 6 larger dm is possible 
only with more general nonsystematic codes. Ties were resolved 
using first dco and then dM as further optimality criteria. The codes 
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A Class of Binoid Single-Error-Correcting Codes 

VASILE V. MASGRAS 

Abstract-A new class of group binoid single-error-correcting codes is 
given. The codes are nonbinary group codes over the additive group of 
integers modulo q. 

I. NOTATION AND DEFINITIONS 

Let n and q (yt > q) be two positive integers. We denote by 
(& the radix-q representation of ~1. We suppose that this rep- 
resentation has s digits. Let &j be the following set: 

= {i 1 1 5 i 5 n, (i>, = i1,* “,ik-1jik+19* ’ l ,is}, 

We denote by Z4 the additive group of integers (mod q). 
Definition 1: The set C c 24” is the nonbinary group code [3], 

such that 

if and only if 

c ci = 0 (mod q), lljsq- 1, 1 5 k 5 s. (1) 
iSIkj 
If we let r = # {I2 1 Ikj # 4, 1 ,( j 5 q - 1, 1 s k 5 s}, 
then the group code has r check symbols and m  = YI - r 
information symbols. 
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ii) the set A is a group with respect to the 0 operation. 

A binoid (A&M) is called distributive if the 0 operation is 
distributive with respect to the @  operation, and it will be 
termed commutative if A is a commutative group. The set 
A* = (alaEA,a@ m # a@ m’;Vm,m’EiW,m # m’> is 
called the univalence domain. If, in addition, we have A* = 
A- {0}, (A,M) is termed a completely univalent binoid. 

Definition 3: A set C c An is a binoid code [4], if there is a 
set 1M such that following conditions are satisfied: 

i) (A,M ) is a binoid; 
ii) C is a nonbinary group code (of length n); 

iii) the parity check matrix of C has its components from iM. 

II. LINK THEOREM 

Taking into account Definitions 1 and 3, we may formulate 
the following theorem. 

Theorem 1: The nonbinary group code C of Definition 1 is 
always a binoid code for 1M = {0,1 }, where @  is modulo q 
addition and 0 is ordinary multiplication. 

Proof: This is obvious if we note that the code C is the null 
space of the matrix H = [6(j,k)i], where d(j,k)i E 1M = {O,l} are 
defined in the following way: 

Q.E.D. 

Any group code C may be regarded as a binoid code. The 
binoid (A,M ) is completely univalent. 

III. DETECTION AND CORRECTION OF SINGLE ERROR 

Theorem 2: The nonbinary group code C c Zsn of Definition 
1 is a single-error-correcting code. 

Proof: Let c = (cl,* l  9 ,c,) be a codeword and b = 
(b 19 . l  l ,b,) be the received vector. We define 

dkj = ,gkj bt (mod 4). (2) 

If we assume that no more than a single error occurred, then we 
suppose 

bi = “’ for i # h 
ch + .P crnod d, for i = h 

where p and h are the value and position of the error. We have 
bl = Ci @  &p, where dih is the Kronecker symbol. 

From the (2) congruences we have 

dkj = C bi = i 6 (j,W 0 i x b i 
i E  IkJ l - 

L- 
1 

= o + &j,k:P = 
P, if h E Ikj 
0 

9 if h & Ikj. 


