LUND UNIVERSITY

A method for evaluation of QRS shape features using a mathematical model for the

ECG
Soérnmo, Leif; Borjesson, Per Ola; Nygards, M.; Pahim, Olle

Published in:
IEEE Transactions on Biomedical Engineering

1981

Link to publication

Citation for published version (APA):

Sérnmo, L., Bérjesson, P. O., Nygards, M., & Pahlm, O. (1981). A method for evaluation of QRS shape features
using a mathematical model for the ECG. IEEE Transactions on Biomedical Engineering, 28(10), 713-717.

Total number of authors:
4

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/1492e77e-0d1b-45f2-8712-b692be2b3cf1

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-28, NO. 10, OCTOBER 1981

frequency allocation for estimating model parameters,” IEEE
Trans. Syst., Man, Cybern., vol. SMC-11, pp. 243-245, 1981.

[4] G. D. Swanson, “Biological signal conditioning for system identi-
fication,” Proc. IEEE, vol. 65, pp. 735-740, 1977.

[S] H.K.Bakker, R. S. Struikenkamp, and G. A. DeVries, “Dynamics
of ventilation, heart rate, and gas exchange: Sinusoidal and im-
pulse work loads in man,” J. Appl. Physiol.: Respirat. Environ.
Exercise Physiol., vol. 48, pp. 289-301, 1980.

[6] F. P. Torres, B. J. Whipp, S. N. Steen, and K. Wasserman, “A
sinusoidal load generator for use in cycle ergometry,” J. Appl.
Physiol., vol. 38, pp. 555-557, 1975.

[7] O. Wigertz, “Dynamics of ventilation and heart rate in response
to sinusoidal work level in man,” J. Appl. Physiol., vol. 29, pp.
208-218, 1970.

[8] C. M. Hesser, D. Linnarson, and H. Bjurstedt, “Cardio-respiratory
and metabolic responses to positive, negative, and minimum-load
dynamic leg exercise,” Respir. Physiol., vol. 30, pp. 51-67, 1977.

[9] G.D. Swanson, “Breath-to-breath considerations for gas exchange

kinetics,” in Exercise, Bioenergetics and Gas Exchange, P. Cerre-

telli and B. J. Whipp, Eds. Amsterdam, The Netherlands: Elsevier/

North-Holland, 1980, pp. 211-222.

R. Casaburi, B. J. Whipp, R. Wasserman, W. L. Beaver, and S. N.

Koyal, “Ventilatory and gas exchange dynamics in response to

sinusoidal work,” J. Appl. Physiol., vol. 42, pp. 300-311, 1977.

G. D. Swanson, “Overview of ventilatory control during exercise,”

Med. Sci. in Sports, vol. 11, pp. 221-226, 1979.

[10]

[11]

A Method for Evaluation of QRS Shape Features Using a
Mathematical Model for the ECG

LEIF SORNMO, PER OLA BORJESSON, MATS-ERIK NYGARDS,
AND OLLE PAHLM

Abstract—Automated classification of ECG patterns is facilitated by
careful selection of waveform features. This paper presents a method
for evaluating the properties of features that describe the shape of a
-ORS complex. By examining the distances in the feature space for a
class of nearly similar complexes, shape transitions which are poorly
described by the feature under investigation can be readily identified.
To obtain a continuous range of waveforms, which is required by the
method, a mathematical model is used to simulate the QRS complexes.

I. INTRODUCTION

In automated ECG monitoring, classification of abnormal
waveforms is of fundamental interest. In many systems this
classification is based on a number of features extracted from
the ECG [1]-[3]. Unpleasant results are likely if the features
give a bad description of the ECG [4]. Small changes in QRS
morphology may cause disproportionately great changes in
various features. Thus, it is of great value to obtain a method
for evaluating the properties of certain features, indicating
their ability or inability to describe the ECG. Such a method
will also enable us to compare the properties of simple features
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Fig. 1. Complexes with equal shapes.

against the properties of more complicated ones. This is of
great interest since “the ultimate objective is to obtain a pattern
space consistent with low dimensionality, retention of sufficient
information and enhancement of distance in pattern space . ..”
[5].

A possible way of evaluation is to employ a comprehensive
ECG database. From a medical point of view, such an evalua-
tion should always be performed to verify the clinical useful-
ness of its features. However, to determine the performance
of a feature in more detail, it is difficult to organize and man-
age the large ammount of data that is needed. A complement to
this approach is to use a mathematical model for simulation of
ECG data. If the limitations of this approach are kept in mind,
the mathematical model can be a valuable tool in developing
well-behaved features. An important advantage when applying
an ECG model, as compared to a database, is the ability of
varying the QRS morphology in a controllable and continuous
way. Representations of the ECG are discussed within various
contexts in [3] and [6]-[12].

This paper describes a method which employs simulated
ECG data to evaluate features describing the shape of a QRS
complex. We define the complexes g4 (¢) and g4 (¢) to have the
same shape if and only if

qo(t)=aq(Br+71) (1)

for some >0, §> 0, and 7. Thus, according to our defini-
tion, the shape of a complex is invariant for a change in ampli-
tude (@), width (B), and reference time (7). This property is
illustrated in Fig. 1 where three different complexes with equal
shape are shown. Furthermore, we define a shape feature as
any functional I' (g (¢)) which isinvariant for a change in ampli-
tude, width, and reference time, i.e.,

F) = T(aqBt+1) o, B>0. (2)

In order to investigate the properties of a shape feature,
distances in the feature space between a reference complex and
a class of complexes with nearly similar shapes are examined.
To determine this class, a measure of dissimilarity is defined
which describes the dissimilarity in shape between two QRS
complexes as a modified mean-square difference. We expect
that for complexes which deviate by the same amount from
the reference complex, according to this measure, a negligible
variation of the corresponding distances in the feature space
should be found. The examination of distances is repeated for
reference complexes with different shapes. Finally, the po-
tential of the method is illustrated by the evaluation of a
simple shape feature. From the obtained results, the feature
is modified to eliminate inherent instabilities.

II. MODELING OF QRS COMPLEXES

Earlier investigations [6], [7] indicate that QRS complexes,
recorded with various lead configurations from a normal in-
dividual, can be well-represented by three orthonormal basis
functions, which are essentially mono-, bi-, and triphasic.
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Fig. 2. Basis functions for QRS modeling: (a) ¢o(?), (b) ¢1(¢), and
() ¢2(2).

Thus, a linear combination of three orthonormal basis func-
tions ¢;(¢),

2
q(t) =3 a;¢:(2),

i=0

(3)

seems appropriate for modeling most QRS complexes seen in
normal individuals.

To simplify the model, the most significant basis functions
as described in [6], [7] are approximated by the set of ortho-
normal functions defined by

l e_t2/2b2

Bo(t) = (4a)

(4b)

(4¢)

The parameter b determines the width of the QRS complex.
These functions, shown in Fig. 2, are known as the three first
Hermite functions.

To investigate the validity of the model not only for normal
ECG’s, but also for abnormal patterns, we have tested the
model on a material of 200 QRS waveforms, recorded from
126 nonselected patients in a coronary care unit. In this mate-
rial, the above functions accounted for an average of 98.6 per-

cent of the total energy of the QRS complexes. The results -

indicate that with the proposed model, it is possible to repre-
sent the essential shape of most normal and abnormal patterns
seen in ECG monitoring.

Since we are not interested in amplitude and width changes,
the four-dimensional space (ag, @, @, b) can be reduced to a
two-dimensional one. We assume that the width » and the
energy of the complex E,

5= [

are constant. For convenience, we make both these constants
equal to 1. All possible complexes define a sphere with radius
1 in the (ap, a,, a,) space. We now introduce spherical co-
ordinates (r, ¢, ¥) defined by Fig. 3, i.e.,

q?() dt = i i (5)

i=0

ag =7 cosycos Y
a; =rsinypcos ¥
(6)

where 0° <9 <360° and -90° <y <90°. Since the energy,
and thus also the radius r, is constant for all complexes, only

a, =rsiny
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Fig. 3. Definition of spherical coordinates (r, ¢, V).

¢ and Y have to be varied, i.e., we have a two-dimensional
parameter space. It should be emphasized that some areas of
the sphere are of little interest since they correspond to QRS
shapes which are very unlikely to occur in reality.

III. A MEASURE OF DISSIMILARITY —AFE

Suppose we have two complexes qo(¢) and g;(¢f) which are
both given by (3), corresponding to some (p, ¥) and (¢ + Ay,
VY + Ay), respectively. To measure the dissimilarity in shape
between go(t) and q,(¢), we use the normalized mean-square
difference, or in other words, the energy of the difference
between the complexes normalized with the energy of gq(¢).
Since the energy of q¢(¢) was made 1, the measure is defined
by

oo

AE = f [g1(6) - o ()12 dt. M

Despite the fact that the complexes gqo(¢) and g(¢) are gen-
erated from (3) with the same width parameter b and the same
energy, a lower AE may result from varying the amplitude,
width, and reference time of one of the complexes. Hence,
we redefine (7) such that the measure of dissimilarity is given

by

AE = minJ lag, (Bt +7) - go(2)|? dt,

8,7

(8)

i.e., we determine those parameter values oy, Bar, and Ty
which minimize AE. To do this, we take the partial derivatives
of AFE with respect to each parameter and set these derivatives
equal to zero. Since the integrands of AE and its derivatives
are continuous functions, the differentiation can be performed
without problems. Another way to reduce the influence of
the amplitude, width, and reference time is to normalize both
qo(t) and g, (¢) with respect to &, , and 7 [13].

IV. EUCLIDEAN DISTANCES FOR A CLASS OF
NEARLY SIMILAR COMPLEXES

In order to describe the properties of a shape feature I', we
examine the distances in the feature space for a class of com-
plexes with nearly similar shape. It is assumed that Iis either
a scalar or an n-dimensional vector where each component of
=@, -, Ty, T, is defined over an interval of certain
length c; <T; <c¢} where |¢j | <% and |¢] | <.

Let g be a reference complex located on the sphere, say go =
(o, ¥o). Now we want to determine a class of complexes

{qi},-K:, in which all g; have the same degree of dissimilarity
compared to go:
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Fig. 4. A class of complexes nearly similar in shape to the reference

complex plotted in the center, (g, ¥) = (0°,0°). The constant C,
which' defines the dissimilarity, is given the value 4 - 102,

i=1,2,:- K. ®
This is possible if the constant C is chosen sufficiently small
and positive. Thus, in each direction 6,- on the sphere from
qo, there exists a g; at a distance 8(6;) (measured on the sur-
face of the sphere). We let 6; = 2@/K *j and for each 0; de-

termine the smallest distance 6(8;) > 0. [Thus, g; corresponds
to some complex located on the sphere (9o + Ay;, Yo +AY))
and (Ay;, AY;)) #(0,0).]

We now proceed with observations in the feature space for
the class {g;} which corresponds to the reference complex
q(po, Vo). The Euclidean distance d;(go, Yo, 8;) can be com-
puted between the two points in the feature space

di(po, Yo, 07) = 1IT(gp) - T(q0) | (10)

where the notation r(q,.) denotes that the shape feature is com-
puted for the complex g;. In order to obtain a description of
the properties of I" for complexes spread over the entire sphere,
the class {g;} may be determined.for reference complexes
q (9o, Vo) where 0° <@, <360° and - 90° <Y, <90°. How-
ever, due to the above choice of the QRS model and AE, it is
sufficient to consider the area 0° <y <90° and - 90° < Y <
90°. Classes outside this area are obtained by one of the three
reflections: change of polarity, and/or reversion of the time
scale.

Since I is to be used for classification purposes, it is of in-
terest to study the behavior of I' when representing complexes
with minor variation in shape. By choosing the constant C in
(9) such that the variation within the class is of the same order
as the beat-to-beat variation for a QRS complex, information
may be gained about this behavior. Fig. 4 shows a choice of
the class {g;} where the reference complex is plotted in the
center.

To obtain a description of the distances d;(yo, Yo, ;) for a
class, we use the mean [14]

AE(q0,4)=C

j=1,2,-",K

1 K
m(go, Vo) =7 > dj(¢o, Vo, 6)) (11
KA
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Fig. 5. Transitions between mono- and biphasic QRS complexes. Note
that ¢~ and ¢* “coincide.”
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Fig. 6. The mean Euclidean distance m(yp, y) calculated for I'y and I'g.
@) ¢ =0° (b)p=90°

and the within-class scatter

1 K
$%(¢o, Yo) =Ej_lz (dj(¢o, Yo, 8;)~ m(vo, Yo))>.
i=

(12)

Now, since the shape of each complex in the class in a sense,
AE, deviates by the same amount from g, we desire that for
I the distance d;j(go, Vo, 8;) is such that

m(po, Yo)=Em Voo, Yo (13a)
and
S(po, Vo) =0 Vyq, ¥o. (13b)

The value of m in (13a) depends on the choice of C, i.e., the
dissimilarity in shape within the class. If m(pq, Vo) varies for
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Fig. 7. The within-class scatter SGp, ¥) calculated for Ty and TI'p.
(@) ¢ =0° (b) p =90°.

different ¢ and ¥, this variation should be small compared
to the longest possible distance dp,,y in the n-dimensional fea-
ture space, where d .4 = ll¢* - ¢~||. Furthermore, if the mean
m(go, Yo) or even some d;j(po, Yo, 0;) is equal to zero, there
exist at least two complexes with dlfferent shapes which cannot
be separated by I'. Alargescatter S(9g, ¥o) >>> 0 reveals that
for small changes in QRS shape, dlsproportlonately great
changes can occurin .

V. EVALUATION OF A ONE-DIMENSIONAL SHAPE
FEATURE—AN EXAMPLE

To illustrate the use of the method, we will describe and evalu-
ate a feature with a simple structure, representing the QRS
shape with a scalar. In the search for such a one-dimensional
representation, certain attributes of the shape must be treated
as being of minor importance. Otherwise, it appears almost
impossible to gather all relevant information about the shape
in a scalar. To overcome these difficulties, we formulate the
problem as one of finding a representation which is able to
describe the transition between mono- and biphasic complexes
(see Fig. 5). Thus, in a sense, the asymmetric component of
the complex forms the attribute to be translated into a shape
feature. For example, such transitions are simulated by linear
combinations of the basis functions in (4a), (4b). The Euclid-
ean distance in this one-dimensional feature space is given by
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Fig. 8. Examples of transformations which preserve the asymmetric
component of the QRS complexes.

di(po, Yo, 0;) = IT'(g;) - T(go)| (14)

where ¢” <I'<¢*. Since the points ¢~ and ¢* “coincide” (see
Fig. 5), the longest possible distance is dpax = (c* - ¢7)/2.
Then, if (14) yields a distance greater than d,,,, it is modified
so that

dj(o, Yo, 0;) = 2dmax = dj(@o, Yo, 0;). (15)

A very simple way to obtain information on the shape is to
make use of the relation between the peaks of a QRS complex.
By means of the QRS model, we can generate complexes which
have, at most, three phases, and thus the resulting sequence of
peak amplitudes is of a length of three orless. In this sequence,
which we denote {M,}, there exists an index j such that
either M; or M;,, is the maximal absolute peak amplitude.
Now, let us define the function I'y as

min [ [M;], IM;,, 1]
Tr=2 TR (16)

1M1+ | My, |

which describes the transition between mono- and biphasic
complexes. By normalizing with the peak-to-peak amplitude,
I’z will be invariant to changes in the amplitude of ¢ (z). Note
that in using only the peaks My of the complex, 'z is already
invariant to changes in width. With the definition in (16),
I'z equals zero for a monophasic complex, while for a sym-
metric biphasic complex I'y is equal to one. In order to
separate the four different transitions in Fig. 5, we first
introduce

Yy =max [ M, [M;, 1],

17
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The shape feature I' 4 is then defined as

I'r M; =Ty
2-T Miq =7
FA= T i j+1 M (18)
2+FT M]‘='7M
4’FT Ml‘+1=7M.

Since 0 <T'y <1, we have 0 <I'y <4. Thus, ¢c™=0,c* =4,
and dp,x = 2.

The mean m 4 (¢, ¥) and the within-class scatter S 4 (o, ¥) are
shown for I'y in Figs. 6 and 7, respectivelg/. Each diagram is
plotted for a constant angle ¢ (0° or 90°). For essentially
symmetric triphasic complexes, we observe that S 4 (¢, ¥)>>
0, which indicates that jittering of I'y occurs when representing
such complexes (see Fig. 7). We may conclude that I'y best
describes predominantly biphasic complexes (see Fig. 7(b) for
[y 1<70°).

The results demonstrated the inability of I'y to represent
symmetric triphasic complexes. In order to fit such complexes
into the representation in Fig. 5, we must modify the shape
‘feature considerably. This could be done by preserving the
asymmetric component of the complex, e.g., to let a symmetric
triphasic complex be represented as a monophasic one. This
transformation is exemplified in Fig. 8. The peaks My and M3
are then shrunk until one peak equals zero and the magnitude
of the other one equals the difference between M; and M.
When using this modified sequence, we denote the resulting
feature with I'g. The results from the evaluation of I'g are
shown in Figs. 6 and 7 (dashed line). It should be observed
that the jittering for symmetric complexes is substantially
smaller when using I'g instead of I"4. '

VI. CONCLUSIONS

A method for describing properties of shape features has been
presented. [Essentially, the method embraces three different
concepts: a model for generating QRS complexes, a measure
for the dissimilarity in shape between different complexes,
and the examination of distances in the feature space. Linear
combinations of a number of basis functions model the QRS
complexes. However, by choosing functions different from
the ones in this paper, QRS morphologies of special interest
may be studied. The method may possibly be extended to the
evaluation of features which, e.g., describe the reference time
or the width of a QRS complex, provided that a suitable mea-
sure of dissimilarity is defined. The use of the method is
illustrated by means of a simple shape feature, in this case
revealing an inability of the feature to represent symmetric
triphasic complexes.
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X-Ray Compton Scatter Imaging Using a High Speed
Flying Spot X-Ray Tube

BRUCE C. TOWE aND ALAN M. JACOBS

Abstract—A system of Compton scatter medical X-ray fluoroscopy is
investigated in this research which uses a specially constructed flying
spot X-ray tube, The imaging system uses a narrow pinpoint X-ray
beam which scans an object in near real time and creates a penetrating
frontal view radiograph of variable penetration into the object. The re-

‘sults of our initial work with X-ray Compton backscatter imaging

were presented in a previous paper, and this research seeks to demon-
strate an improved X-ray generator which allows the radiographs to be
produced much more rapidly. One application of the system may be to
provide an X-ray frontal backprojection view of the moving heart epi-
cardial surface which could be useful as a noninvasive diagnostic of
cardiac function.

INTRODUCTION

X-ray Compton scatter imaging is a method of creating
penetrating radiographs by using the radiation that is Compton
scattered by an object when illuminated by a beam of high
energy X-rays. Our previous work presented a new type of X-
ray Compton backscatter radiography as a method of creating
a frontal backprojection view of the body interior [4]. The
principal advantage of this form of radiography is that it pro-
duces an image of different appearance and contrast from con-
ventional radiography and may give the physician new infor-
mation about the body interior. Since high energy X-rays
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