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Abstract—This work is part of a research project studying
the learning of fine motor skills in rats. A system for tracking
a rat paw using a system of high-speed cameras is presented
along with preliminary analysis of the correlation between paw
movement and neural data. The tracking method is generative,
modeling the rat paw as a set of linked ellipsoids. To find the most
probable paw pose a number of hypothetical parameter values are
explored. For each set of values the paw model is projected in the
different cameras and compared to the actual measured images.
The pose that is most consistent with the intensity and edge
information in the different views is chosen. By efficient utilization
of integral images, this evaluation can be performed very quickly,
creating a tractable and completely automatic method with good
performance.

I. INTRODUCTION

A. Background

The central nervous system fundamentally deals with the
control of actions. Consequently behavioral studies have of-
ten been a natural starting point for investigations aimed at
understanding its functions. The goal of this work is to study
neuronal activity of the central nervous system during learning
of new behaviours. As shown in [1], we have developed a
system for analysis of motor behaviour of rats during skilled
reaching experiments in order to learn about the changes
occurring in the central nervous system.

There are several ways to improve the system from [1].
Firstly, evaluation of the quality function has been improved
from quadratic time to linear time, with respect to the length
of the shortest side of the videos. This has made available
more advanced methods for quality function optimization,
i.e. both tracking quality and computational efficiency has
been improved. Secondly, the depth of each projected quadric
is used in order to detect occlusions from the experimental
setup. This makes the similarity measures used for quality
evaluation more appropriate. As this is work-in-progress, there
are not yet any behavioural recordings available using the latest
experimental setup, thus there are no results presented using
the new setup.

B. The behavioural task

In the behavioral experiment the rat was placed in the
reaching apparatus from where it could obtain 45 mg food
pellet rewards, positioned in an indentation on the reward shelf,
via controlled reaches through the aperture of the wall. At the
start of the experiment, the rats are slow and inefficient in
this task, but after approximately two weeks of almost daily
training, they have fully learned the reaching behaviour. This

Fig. 1: The experimental setup with four cameras, lights and
a calibration object.

is interesting from a neural point of view as we then can study
what happens in the brain as the rats learn this new behaviour.

C. The videos

An improvement from the setup in [1], is the use of four
front-view cameras, as seen in Figure 1. The previous version
of the setup featured two combined with mirrors, to generate
six views. The use of mirrors introduced problems with the
focus, as the distance for light to travel from the paw through
one of the mirrors to the camera could be as much as twice
as far as the closest distance to the camera. Additionally,
recording speed was increased from 200 frames per second
to 300 frames per second, to enable better tracking of the very
quick movements of the rats. As no behavioural videos are
yet recorded using the new camera setup, the old ones are
presented in Figure 2.

D. Calibration

Calibration was performed by placing an object with known
geometry at a predefined location and then manually selecting
the object corners in each of the videos. Given these selected
image points, the camera matrix was computed using direct
linear transform (DLT) [2].



(a) (b) (c) (d)

Fig. 2: Video inputs from four views in subfigures (a),(b),(c) and (d) with superimposed projections of pose estimation results.
In this particular frame, the paw of the rat is approaching the food pellet through a slit in the wall. The nose can also be seen
in this frame. The digits are illustrated in red, green, blue and cyan, where red corresponds to the human index finger, green
corresponds to the middle finger, etc. Note that the rat paw only has four long digits; the thumb is considered too short and is
not used in this model. The palm of the paw and the forearm are yellow, the nose is black and the food pellet is magenta.

Fig. 3: The model for the paw, nose and pellet, with colors as
explained in Fig 2.

II. TRACKING

A. Related work

The subject of hand pose estimation and tracking has
gained a lot of attention the last 5-10 years as the computa-
tional power available is approaching what is needed for real-
time applications [3]. In human applications it is possible to
use for example colored gloves [4],[5], or using a combination
of normal cameras and depth cameras [6]. However, for the
presented application this is not possible as the movements are
so fast and the paws are so small (less than 1cm in width),
and the rats are not as collaborative as humans can be.

B. Overview of the method

The tracking method is generative, i.e. the paw is modelled
as explained in section II-C, below, with 22 variable parameters
and these parameters are subsequently estimated as the argu-
ment of the maximum of the quality function given in section
II-G. Evaluation of the quality function is derived starting at
the projection of quadrics in section II-D, followed by the

evaluation of the similarity of measured images and estimated
poses in sections II-E, II-F and II-G. A brief presentation of
the algorithm used for maximizing the quality measure in each
frame and over time is presented in section II-H.

C. Rat model

The rat paw consists of four long digits (”fingers”) and
each digit consists of three phalanges (bones). The paw is
modelled by 13 quadrics, of which 12 represent ellipsoids for
the phalanges and one represents an ellipsoid for the palm of
the paw. Furthermore, the forearm is modelled as an ellipsoid
and the nose is modelled as an elliptic paraboloid. In total, the
rat pose is modelled using 15 quadrics, as seen in Figure 3.
Due to anatomical constraints, the kinematics of each digit
can be modelled using only four degrees of freedom - one
for adduction/abduction at the proximal joint and three for
flexion at each one of the joints. Consequently, the paw can
be modelled using 16 parameters for the digits, four constant
vectors representing the metacarpal bones and 6 parameters
for position and rotation of the palm of the paw. Furthermore,
the forearm is assumed to be fixated at the wrist and can rotate
along all three axes in space. This amounts to a total of 22
parameters.

D. Projection of quadrics

A quadric surface in 3D can be described as the solutions
X = (X,Y, Z) to the quadratic equation

[X Y Z 1]C

XYZ
1

 = 0 (1)

The projection of such a surface onto an image plane is a conic
section which can be described as the solutions x = (x, y) to
the quadratic equation

[x y 1]C

[
x
y
1

]
= 0 (2)

As described by [7], the conic matrix C can be easily computed
along with the depth of any projected point on the quadric.
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Fig. 4: An image (a) with superimposed projections of pose estimation results and a horizontal dotted line depicting the row
of choice for (b). (b) is an illustration of the row shown in (a), where the red line shows where the image is covered by the
estimated paw pose and the green line is the grayscale values of the row. (c) is an illustration of the edge-probability used in
(7) and (d) is, analogously to (b), an illustration of the particular row of choise in (c).

E. The quality function

The quality function used here is a measure of how well
an estimated pose fits the intensity and edges of an image. The
area quality function for one view is defined as

qA =

∑
x,y min(P (x, y), F (x, y))∑
x,y max(P (x, y), F (x, y))

(3)

where P is the projection of the estimated paw pose and F
is the measured foreground image. Here P is binary while
F is normally not. Note that for binary functions, the quality
function is identical to the Jaccard index, which is used in [1].
The measured foreground image F is defined as the image
minus the background, i.e. F = I −B. The projection of the
paw pose, P , is defined as the binary image with 1’s at each
pixel covered by a projected quadric of the estimated pose,
and 0’s elsewhere. Thus, we are interested in evaluating how
much of the projection of a quadric covers the foreground of
an image, i.e. to compute the sum of the elements in an image
that are covered by the filled conic. The naive way to evaluate
which pixels are covered by a conic is to evaluate (2) for each
pixel, which would require MN evaluations of (2). This is the
method used in [1] and is very time consuming. This can be
improved by noting that for each fixed x0 ∈ [1,M ],

[x0 y 1]C

[
x0
y
1

]
= 0, (4)

is a quadratic equation in y. Then the line segment {y0} ×
[y0, y1], where y0 and y1 are solutions to (4), covers the conic.

Each such slice can be computed by finding the real roots of
the quadratic equation. If there are no real roots, the conic
does not intersect that particular row, x0. As the estimated
paw pose consists of 16 quadrics, for each row x0 there is a
(potentially empty) set of intervals that cover parts of the row.
After merging overlapping intervals, we get a set of disjoint
intervals for each row. Computing the contribution to (3) from
one such interval, can be done very efficiently using integral
images. Let IF (x, y) be the integral foreground image

IF (x, y) =

y∑
j=0

F (x, j) (5)

Then the contribution to (3) from an interval [y0, y1] is given
by

IF (x, y1)− IF (x, y0) (6)

Thus the cover of a projected quadric can be computed in
linear time (with respect to the smallest side of an image). For
each row, 16 equations equations need to be solved, up to 16
intervals merged into disjoint intervals and grayscale values of
the integral images at the endpoints of each interval needs to
be evaluated. This is considerably faster than naive evaluation
of (3).

F. Edge quality function

Let D be a matrix where, for each coordinate (x, y),
D(x, y) is the shortest distance from (x, y) to an edge in an
image I (can be computed efficiently using distance trans-
forms). Then for each point (x, y) on the edge of the projected
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Fig. 5. Neural correlation to motor components. Examples of neurons correlated to individual motor components. Reach attempts are sorted depending on the peak value
for a motor component during the attempt, as shown in the left column. The top row is sorted for advance so that the shortest extensions are pooled into the blue group, the
intermediate extensions into the purple group and the longest into the red group. In the same manner, the middle row is sorted for arpeggio and the bottom row is sorted
for grasp. The middle column show standardized peri-event firing rates and raster plots of individual trials for each group, aligned to time point of maximum paw extension
and averaged over all attempts in each group. A green line indicates a significant difference in firing rates between any of the three groups (p < 0.05). The right column shows
the autocorrelogram and waveform for each presented neuron.

addition of artificial noise or manipulation of free parameters over
a wide range. Thus, under the variations of normal experimental
conditions the pose estimates provided by the system appears to
be reliable enough for the desired applications. It is also illustrated
how this more detailed kinematic description can be used as a basis
for new analytical approaches in neurophysiological investigation
of motor signals. In fact, several examples of specific firing rate
modulations in single cells relating to the actuation of the individual
motor components were found. Although a more comprehensive
analysis of motor coding in corticostriatal circuits would require a
significantly larger data set the current results nevertheless clearly
indicate that the obtained kinematic data opens up for very detailed
neurophysiological studies of motor control circuits. These find-
ings are encouraging since the demand for detailed tracking of
movement kinematics with high temporal precision is steadily
increasing in neurophysiological research to permit interpretation
of the rapidly growing neuronal data sets of freely behaving animals
(Hoffman and McNaughton, 2002; Kruger et al., 2010; Nicolelis,
2001). Hence, automated methods like the one described in this
paper could potentially become an important tool in basic and
applied neuroscience. However the described method could likely
also improve the quality of behavioral experiments in many other
fields and partly reduce the need for the elaborate and time con-
suming process of manual scoring that, in addition, often requires
extensive training to ensure reliable and reproducible identifica-
tion of movement patterns (Cenci and Lundblad, 2007; Eshkol,
1958; Whishaw and Pellis, 1990; von Laban, 1980).

In the current study previously identified motor components
(advancement/retraction, arpeggio and grasping) was used as a
starting point for analysis. Nevertheless, the decomposition of any

movement into motor components can naturally be done in many
different ways once the detailed movements over individual joints
have been extracted by the system. This flexibility in the choice of
bases functions and spatial coordinate system for the description of
movements may prove particularly important in investigations of
supraspinal motor control systems given the ongoing controversy
regarding the primary coding strategy used by these systems (see
for example; Georgopoulos et al., 1986; Loeb et al., 1996; Todorov
and Jordan, 2002).

For experiments requiring an even higher level of detail in
motion tracking a few improvements to the current system could
be made. In our current model design, the distal interphalangeal
joint of the digits is assumed to have the same angle as the proxi-
mal interphalangeal joint due to the small size of the 3rd phalanx
(up to a maximum distal joint flexion angle of 60 degrees). While
this is a reasonable approximation when considering the anatomi-
cal constraints of the muscles and tendons of the digits (Landsmeer,
1963) and was deemed sufficient for the current purposes, it may
be desirable in other applications to have independent tracking of
movements around this joint. Similarly, additional parameters such
as separate metacarpal bones, a shoulder and an elbow joint could
be beneficial to add to the model. Indeed, in a recently published
study using X-ray video techniques to track skeletal bones during
reaching movements in rats, complex coordination of the proximal
parts of the limb and trunk were found (Alaverdashvili et al., 2008).
In relation to our data it is worth noting that the X-ray images highly
resemble the projections of our 3D paw model onto these viewing
planes, although in our study images of the paw were also obtained
from an additional viewing plane. Finally, as neural data is sampled
in magnitudes of tens of kilohertz it would in some experiments be

(a)
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Fig. 5. Neural correlation to motor components. Examples of neurons correlated to individual motor components. Reach attempts are sorted depending on the peak value
for a motor component during the attempt, as shown in the left column. The top row is sorted for advance so that the shortest extensions are pooled into the blue group, the
intermediate extensions into the purple group and the longest into the red group. In the same manner, the middle row is sorted for arpeggio and the bottom row is sorted
for grasp. The middle column show standardized peri-event firing rates and raster plots of individual trials for each group, aligned to time point of maximum paw extension
and averaged over all attempts in each group. A green line indicates a significant difference in firing rates between any of the three groups (p < 0.05). The right column shows
the autocorrelogram and waveform for each presented neuron.

addition of artificial noise or manipulation of free parameters over
a wide range. Thus, under the variations of normal experimental
conditions the pose estimates provided by the system appears to
be reliable enough for the desired applications. It is also illustrated
how this more detailed kinematic description can be used as a basis
for new analytical approaches in neurophysiological investigation
of motor signals. In fact, several examples of specific firing rate
modulations in single cells relating to the actuation of the individual
motor components were found. Although a more comprehensive
analysis of motor coding in corticostriatal circuits would require a
significantly larger data set the current results nevertheless clearly
indicate that the obtained kinematic data opens up for very detailed
neurophysiological studies of motor control circuits. These find-
ings are encouraging since the demand for detailed tracking of
movement kinematics with high temporal precision is steadily
increasing in neurophysiological research to permit interpretation
of the rapidly growing neuronal data sets of freely behaving animals
(Hoffman and McNaughton, 2002; Kruger et al., 2010; Nicolelis,
2001). Hence, automated methods like the one described in this
paper could potentially become an important tool in basic and
applied neuroscience. However the described method could likely
also improve the quality of behavioral experiments in many other
fields and partly reduce the need for the elaborate and time con-
suming process of manual scoring that, in addition, often requires
extensive training to ensure reliable and reproducible identifica-
tion of movement patterns (Cenci and Lundblad, 2007; Eshkol,
1958; Whishaw and Pellis, 1990; von Laban, 1980).

In the current study previously identified motor components
(advancement/retraction, arpeggio and grasping) was used as a
starting point for analysis. Nevertheless, the decomposition of any

movement into motor components can naturally be done in many
different ways once the detailed movements over individual joints
have been extracted by the system. This flexibility in the choice of
bases functions and spatial coordinate system for the description of
movements may prove particularly important in investigations of
supraspinal motor control systems given the ongoing controversy
regarding the primary coding strategy used by these systems (see
for example; Georgopoulos et al., 1986; Loeb et al., 1996; Todorov
and Jordan, 2002).

For experiments requiring an even higher level of detail in
motion tracking a few improvements to the current system could
be made. In our current model design, the distal interphalangeal
joint of the digits is assumed to have the same angle as the proxi-
mal interphalangeal joint due to the small size of the 3rd phalanx
(up to a maximum distal joint flexion angle of 60 degrees). While
this is a reasonable approximation when considering the anatomi-
cal constraints of the muscles and tendons of the digits (Landsmeer,
1963) and was deemed sufficient for the current purposes, it may
be desirable in other applications to have independent tracking of
movements around this joint. Similarly, additional parameters such
as separate metacarpal bones, a shoulder and an elbow joint could
be beneficial to add to the model. Indeed, in a recently published
study using X-ray video techniques to track skeletal bones during
reaching movements in rats, complex coordination of the proximal
parts of the limb and trunk were found (Alaverdashvili et al., 2008).
In relation to our data it is worth noting that the X-ray images highly
resemble the projections of our 3D paw model onto these viewing
planes, although in our study images of the paw were also obtained
from an additional viewing plane. Finally, as neural data is sampled
in magnitudes of tens of kilohertz it would in some experiments be
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for a motor component during the attempt, as shown in the left column. The top row is sorted for advance so that the shortest extensions are pooled into the blue group, the
intermediate extensions into the purple group and the longest into the red group. In the same manner, the middle row is sorted for arpeggio and the bottom row is sorted
for grasp. The middle column show standardized peri-event firing rates and raster plots of individual trials for each group, aligned to time point of maximum paw extension
and averaged over all attempts in each group. A green line indicates a significant difference in firing rates between any of the three groups (p < 0.05). The right column shows
the autocorrelogram and waveform for each presented neuron.

addition of artificial noise or manipulation of free parameters over
a wide range. Thus, under the variations of normal experimental
conditions the pose estimates provided by the system appears to
be reliable enough for the desired applications. It is also illustrated
how this more detailed kinematic description can be used as a basis
for new analytical approaches in neurophysiological investigation
of motor signals. In fact, several examples of specific firing rate
modulations in single cells relating to the actuation of the individual
motor components were found. Although a more comprehensive
analysis of motor coding in corticostriatal circuits would require a
significantly larger data set the current results nevertheless clearly
indicate that the obtained kinematic data opens up for very detailed
neurophysiological studies of motor control circuits. These find-
ings are encouraging since the demand for detailed tracking of
movement kinematics with high temporal precision is steadily
increasing in neurophysiological research to permit interpretation
of the rapidly growing neuronal data sets of freely behaving animals
(Hoffman and McNaughton, 2002; Kruger et al., 2010; Nicolelis,
2001). Hence, automated methods like the one described in this
paper could potentially become an important tool in basic and
applied neuroscience. However the described method could likely
also improve the quality of behavioral experiments in many other
fields and partly reduce the need for the elaborate and time con-
suming process of manual scoring that, in addition, often requires
extensive training to ensure reliable and reproducible identifica-
tion of movement patterns (Cenci and Lundblad, 2007; Eshkol,
1958; Whishaw and Pellis, 1990; von Laban, 1980).

In the current study previously identified motor components
(advancement/retraction, arpeggio and grasping) was used as a
starting point for analysis. Nevertheless, the decomposition of any

movement into motor components can naturally be done in many
different ways once the detailed movements over individual joints
have been extracted by the system. This flexibility in the choice of
bases functions and spatial coordinate system for the description of
movements may prove particularly important in investigations of
supraspinal motor control systems given the ongoing controversy
regarding the primary coding strategy used by these systems (see
for example; Georgopoulos et al., 1986; Loeb et al., 1996; Todorov
and Jordan, 2002).

For experiments requiring an even higher level of detail in
motion tracking a few improvements to the current system could
be made. In our current model design, the distal interphalangeal
joint of the digits is assumed to have the same angle as the proxi-
mal interphalangeal joint due to the small size of the 3rd phalanx
(up to a maximum distal joint flexion angle of 60 degrees). While
this is a reasonable approximation when considering the anatomi-
cal constraints of the muscles and tendons of the digits (Landsmeer,
1963) and was deemed sufficient for the current purposes, it may
be desirable in other applications to have independent tracking of
movements around this joint. Similarly, additional parameters such
as separate metacarpal bones, a shoulder and an elbow joint could
be beneficial to add to the model. Indeed, in a recently published
study using X-ray video techniques to track skeletal bones during
reaching movements in rats, complex coordination of the proximal
parts of the limb and trunk were found (Alaverdashvili et al., 2008).
In relation to our data it is worth noting that the X-ray images highly
resemble the projections of our 3D paw model onto these viewing
planes, although in our study images of the paw were also obtained
from an additional viewing plane. Finally, as neural data is sampled
in magnitudes of tens of kilohertz it would in some experiments be

(c)

Fig. 5: Neural correlation to motor components. Examples of neurons correlated to individual motor components. Reach attempts
are sorted depending on the peak value for a motor component during the attempt, as shown in (a). (b) is sorted for grasp so that
the lowest degree of fist closure are pooled into the blue group, the intermediate closures into the purple group and the highest
into the red group. (b) show standardized peri-event firing rates and raster plots of individual trials for each group, aligned to time
point of maximum paw extension and averaged over all attempts in each group. A green line indicates a significant difference in
firing rates between any of the three groups (p < 0.05). (c) shows the autocorrelogram and waveform for each presented neuron.
Modified from [1].

paw pose, 1
D(x,y)+1 is related to the probability of (x, y)

corresponding to an edge. The edge quality function is defined
as

qE =
1

|∂P |
∑

(x,y)∈∂P

1

D(x, y) + 1
. (7)

G. The quality function

For a predicted paw pose, a point in time and each camera,
the quality function is defined as (3). The quality in each of the
views are multiplied to give the quality function for a predicted
pose and a point in time:

q =

N∏
k=1

(
q
(k)
A λ+ (1− λ)q(k)E

)
(8)

H. Maximizing the quality function

As the movement of the paw was so quick with respect to
the recording speed, using temporal consistency to improve
tracking proved to be difficult. Thus the method presented
here is only based on frame-by-frame pose estimation. For
each frame, a number of previously encountered poses together
with the pose of the previous frame was evaluated, to find
an appropriate starting point. Then a gradient-descent like
optimization method was applied to find a local maxima, which
given that the more coarse global optimization is close to the
global maxima, is also the global maxima.

III. ALIGNMENT OF NEURAL RECORDINGS TO KINEMATIC
DATA

Nerve cells in the brain communicate by briefly altering
their membrane potential, these impulses are referred to as
action potentials. Already in the first analyses of the changes
in neuronal activity patterns related to different aspects of the
motor output, we could identify single nerve cells that appeared
to show specific modulations in the frequency of emitted action
potentials in relation to specific parts of the motor sequence.

In Figure 5, the recorded neuronal activity of a nerve cell, in
multiple reaching trials, was aligned to the part of the reaching
movement where grasping is initiated. It was noted that the
average number of action potentials detected scaled with the
degree of fist closure suggesting that this nerve cell may have
a role in controlling this part of the reaching and grasping
compound movement.

IV. DISCUSSION

The presented system uses a calibration procedure (DLT)
that is easy to code but is numerically unstable and is a
potential bottleneck for the rest of the system. Even though
calibration quality has been improved by using views with
higher resolution, we aim to improve this part by using a new
calibration method that will also be easier to perform during
the experiments.
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