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Abstract

In this paper, we describe how we generate Functional
Mock-up Units (FMUs) for the automation block lan-
guage Bloqqi. This allows Bloqqi control programs to
be tested with simulations of the physical processes they
control. The physical process can be specified in any tool
that supports the Functional Mockup-Interface (FMI)
standard. For example, we have successfully run Blo-
qqi programs together with Modelica models exported
as FMUs. Bloqqi programs execute at discrete times, and
we describe how this is handled in the implementation of
the DoStep function, specified in the standard.
Keywords: FMI; Bloqqi; code generation

1 Introduction

Automation control systems are usually programmed us-
ing block diagrams. These diagrams contain blocks
and connections that describe the data-flow between the
blocks. Examples of languages include Function Block
Diagrams from the standard IEC 61131, Bloqqi (Fors
and Hedin, 2016) and ControlBuilder from the company
ABB. Before these programs are deployed in a plant,
they are tested, often with test cases written in the lan-
guage itself. For more complex dynamic processes, there
are other tools more suitable for describing the dynam-
ics of the processes, for example, the modeling language
Modelica (Modelica, 2018). Thus, it would be useful to
write the control program as a block diagram and specify
the model of the physical process in a modeling language
and test them together.

The functional mock-up interface (FMI) (Blochwitz
et al., 2012) is a standard that allows dynamic models
described by different tools to be used together. For ex-
ample, one part of a composed model can be exported
by one tool and another part can be exported by another
tool. Many Modelica tools allow models to be exported
as functional mockup units (FMUs).

In this paper, we describe how programs in the block
language Bloqqi can be exported as (Co-Simulation
source) FMUs. Bloqqi is an object-oriented language for
automation control systems that supports the specializa-
tion mechanisms connection interception and block re-

declaration. The language also has support for feature
mechanisms, making it possible to describe variants in
libraries that the user can select from. The Bloqqi tools
are open source and covered by the Modified BSD Li-
cense.

The contribution of this paper is partly a description
of how Bloqqi programs are executed by describing how
they are translated to C code. The C code can be gener-
ated without any external dependencies, making it easy
to integrate the code into existing systems and run it on
embedded systems. The paper also contributes with a
description of how the C code is adapted for the FMI
standard, and how the DoStep function defined in the
standard is implemented. A Bloqqi FMU is a bit differ-
ent than a FMU for a continuous-time physical system,
since a Bloqqi FMU only executes at discrete time steps
according to the sampling period. We also give some ex-
amples of Bloqqi programs exported as FMUs and sim-
ulated together with models specified in Modelica.

This paper begins with background on FMI and SSP
in Section 2. SSP is a standard for specifying the com-
position of FMUs. Then, the Bloqqi language is intro-
duced in Section 3, and Section 4 describes how Bloqqi
diagrams are translated to C programs. These C pro-
grams are then adapted for FMI, which is described in
Section 5. Examples of how we have used FMUs are de-
scribed in Section 6. The paper ends with a discussion of
related work in Section 7 and conclusions in Section 8.

2 Background

2.1 FMI

The Functional Mock-up Interface (FMI) is a tool-
independent standard with support for both model ex-
change and co-simulation of dynamic models (Blochwitz
et al., 2012). Version 1.0 of the standard was released in
2010, followed by version 2.0 in 2014. Using the FMI
standard, models can be shared across all the 100+ tools
that are currently supporting the standard. FMI uses a
combination of XML-files and compiled C-code to cre-
ate a Functional Mock-up Unit (FMU). An FMU is a zip-
file with two major parts: a model description in XML-
format, and a number of compiled binaries. Each FMU



can contain multiple binaries to support different plat-
forms. The standard defines two kinds of FMUs: Model
Exchange FMUs and Co-Simulation FMUs. A Model
Exchange FMU requires an external solver for the FMU
to be simulated. A Co-Simulation FMU on the other
hand has a solver embedded.

2.2 SSP

In order to create simulation models for complex sys-
tems it is often convenient to separate the system into its
components, and perform the necessary simulations in
a tool suitable for the domain. However, with increas-
ingly complex systems and large dependencies between
components, full system simulations are essential. Sys-
tem Structure and Parameterization (SSP) (Köhler et al.,
2016) is a new open standard (under development by
the Modelica Association) defining a standardized for-
mat for the connection structure of a network of FMUs.
It also defines a standardized way to store and apply pa-
rameters to such a structure. Utilization of the FMI and
SSP standard will allow for components to be developed
in the tool best suited for the domain, while still allowing
for system simulations including all system components.

3 Bloqqi

Bloqqi is a data-flow language (Fors and Hedin, 2016;
Fors, 2016) for programming the control subsystem part
of automation systems. The language is a prototype
language used for experimenting with language mech-
anisms for reuse. It has been developed in collaboration
with ABB Automation Systems and specifically with the
department responsible for development of tools for dis-
tributed control systems. Existing tools are based on the
IEC 61131 standard for automation languages, which
contains a family of five programming languages. The
Bloqqi language is inspired by the Function Block Dia-
gram language defined in this standard.

In Bloqqi, programs are specified as diagrams, where
each diagram consists of blocks and connections be-
tween them that describe the data-flow. The blocks
can be instances of other diagrams (which may be user-
defined), making it possible to create hierarchical pro-
grams.

Bloqqi programs are executed periodically. For exam-
ple, a program may run ten times per second. In each
period, input values are read that are used to compute
control signals. The control signals are then the output
values of the program. Typically, input values are read
from sensors and output values are sent to actuators that
control the physical process.

This is illustrated in the diagram in Figure 1. Input
values are blocks prefixed with the input keyword and
the prefix output is used for output values. The block
regulator is a normal block with an input port and an

Main

diagramtype Main {
input sensor: Int;
output actuator: Int;
regulator: Regulator;
connect(sensor, regulator.in);
connect(regulator.out, actuator);

}

Figure 1. A simple program in Bloqqi with an input value, a
block and an output value. Both the visual and textual syntax
are shown.

output port and is defined by another diagram. As can be
seen in the figure, Bloqqi has both a visual and a texutal
syntax. The textual syntax is used as the serialization
format when the diagrams are stored.

3.1 Diagram Inheritance

The Bloqqi language is similar to Modelica in that it
supports diagram inheritance. A diagram S can extend
another diagram T , making all blocks, connections, and
parameters reusable in the subtype S. The subtype can
also introduce new blocks, connections and parameters.
There are two specialization mechanisms in Bloqqi: con-
nection interception (Fors and Hedin, 2014) and block re-
declaration. Connection interception allows the subtype
to replace a connection defined in a supertype to instead
go via a block added in the subtype. The connections in
Bloqqi are directed, in contrast to Modelica where con-
nections are undirected. Block redeclaration allows the
subtype to specialize the type of a block that is defined
in a supertype, similar to redeclare in Modelica.

3.1.1 Inheritance Example

Inheritance and the interception mechanism are illus-
trated in Figure 2. The diagram P describes a propor-
tional regulator (P) with three input parameters: refer-
ence value (r), mesaured value (y) and the proportional
coefficient (kP). The output parameter u is computed by
taking the difference between the reference value and
the measured value (the error), and then multiplying that
with the coefficient. An instance of diagram P would
then show the input parameters as input ports and the
output parameter as output port.

The P-regulator is then extended with an integral part
to incorporate the history of the error as well, as seen
for diagram PI. The grey parts with dashed lines of the
diagram are inherited from the supertype P and the blue
parts with solid lines are declared locally in PI. The his-
tory of the error is stored in the block acc that simply
accumulates the error value over time. The accumu-
lated value is then multiplied with the integral coeffi-



P

PI extends P

Figure 2. P-regulator (P) that is extended with an integral part
in diagram PI. The connection to the output parameter u de-
fined in P is intercepted in the subtype PI to add the integral
part.

cient, which is added to the control signal. Here, the
addition block intercepts the connection defined in the
supertype P to go via locally declared addition block.

The accumulator block in the diagram PI contains a
state to store the value to be used in the next execution
period. The Bloqqi language has support for states in the
form of variables, which are stored between the periods.
When the variable is read, the value from the previous
period is used, and when the variable is written to, a new
value is stored to be used in the next period. Thus, the
accumulator block contains a variable to accumulate the
error value.

Currently, the Bloqqi language does not allow data-
flow cycles. Instead, the user needs to break the cycle by
introducing a variable.

3.2 Features

Bloqqi has also feature-based language mecha-
nisms (Fors and Hedin, 2016). These allow the library
developer to add optional features to diagrams, which
can be selected by the library user, when the diagrams
are instantiated. For example, consider the P-regulator
in Figure 2; the integral part and the derivative part (not
shown) can be seen as optional features to the diagram
P. Speciyfing this using the feature-based mechanisms in
Bloqqi would show an automatically generated wizard
when the diagram P is instantiated as a block, as can be
seen in Figure 3. The user can then select what features
the block contains (in this case, both the features are
selected).

4 Code Generation

Bloqqi programs are executed by first compiling them to
C code. Running a Bloqqi program one period amounts
to calling a C function. The function needs to know the
input values and the state variables from the previous pe-
riod, and store the new state variables to the next period

Figure 3. Feature-wizard for diagram P when the integral and
derivate part are specified as features using the feature-based
mechanisms in Bloqqi.

and the output values. All the values are stored in a C
struct and passed around as parameters. For example,
the following C code will run the program in Figure 1
one period with the input value 10 for the sensor and
printing the output value actuator.

Main_VARS v;
v.input.sensor = 10;
bloqqi(&v);
print(v.output.actuator);

The Bloqqi compiler can generate a driver function that
calls the bloqqi function a fixed number of times per
second.

Each diagram is translated to a C function and each
block is translated to a function call. The connections
determine how the data flows between the function calls.
Input parameters are mapped to function parameters and
output parameters are mapped to the return value. Since
diagrams can have several output parameters and C func-
tions can only have one return value, the output param-
eters are wrapped in a struct and a value of this struct is
returned. For example, the code implementing the dia-
gram Main in Figure 1 is as follows:

void Main(
Main_INPUT* _input,
Main_OUTPUT* _output) {

Regulator_RES regulator
= Regulator(_input->sensor);

_output->actuator = regulator.out;
}

The function has two parameters: a struct representing
input values and another struct representing output val-
ues. The block regulator is translated to a function
call and the value of the output port is stored in the
struct Regulator_RES. Here, the only argument to the
Regulator call is the value of the input port. If this
block would have contained input values and output val-
ues, these would also be passed as arguments.

The entry point of a Bloqqi program is the diagram
called Main with no parameters. The generated function
bloqqi will just call the generated function Main.



A

B extends A

diagramtype A(in: Int => out: Int) {
connect(in, out);

}
diagramtype B extends A {
x: X;
intercept out with x.in, x.out;

}

Figure 4. Diagram B extends diagram A and intercepts the
connection declared in A.

diagramtype B(in: Int => out: Int) {
x: X;
connect(in, x.in);
connect(x.out, out);

}

Figure 5. Inheritance removed for diagram B defined in Fig-
ure 4 in the flattening process before C code is generated.

4.1 Inheritance Flattening

Before the C code is generated, the inheritance is re-
moved by the source-to-source transformation inheri-
tance flattening. This means that the inheritance is re-
moved by copying all declarations in the supertype to the
subtype. This transformation is possible since all block
types are known statically.

For example, consider the two diagrams in Figure 4.
Here, diagram B extends diagram A and intercepts the
connection, from the input parameter (in) to the output
parameter (out), and adds an extra block x in-between.
The flattening transformation will remove the inheritance
and transform the diagram B to a diagram without inher-
itance, as shown in Figure 5. We can see that the flat-
tened diagram has the parameters declared in diagram
A, the block x and the corresponding connections. The
code generation will use this flat diagram when generat-
ing code.

4.2 Features

The feature mechanisms are based on inheritance and
anonymous diagrams. The latter allows the block type
to be an anonymous subtype of a diagram, which is illus-
trated in the following block declaration:

b: Block { ... };

The type of block b is an anonymous subtype of diagram
Block and may have the same content as a normal sub-

type. Before code generation, these anonymous subtypes
are given a unique name and moved to the same scope
level as all other diagrams.

4.3 Simple Integration

The C code generated by the Bloqqi compiler is sim-
ple to integrate into an existing system. The generated
code does not depend on any external library, only tim-
ing functionality from the C POSIX library when the
driver function is generated. The Bloqqi compiler can
also generate code without a driver function with mini-
mal dependencies. In that case, the only dependency is to
the header file stdbool.h in the standard library. This
allows the code to run on any ordinary operating system.
The generated C code is compatible with the C99 stan-
dard.

4.4 Embedded Systems

We have successfully run Bloqqi programs on an Ar-
duino Uno, which is a single-board with a microcon-
troller, and on a Raspberry PI, which is a single-board
computer running Linux. The generated driver function
was used on the Raspberry PI and an adapted driver func-
tion was written specifically for Arduino, since Arduino
does not have any operating system and thus not support
the C POSIX Library. The adapted driver function called
the generated main function of the Bloqqi program and
added a delay between the periods using the Arduino li-
brary.

4.5 Implementation

There are two tools for the Bloqqi language: a graphical
editor and a compiler. Both these tools use the textual
syntax as the serialization format. The editor visualizes
the program and allows the user to change it, and the
compiler generates C code for the program.

The semantical analysis for both the editor and com-
piler is specified using the metacompiler JastAdd (Ek-
man and Hedin, 2007), which supports the semantic
formalism reference attribute grammar (Hedin, 2000)
(RAGs). RAGs make it easy to reuse the semantic spec-
ification between the tools. The analysis includes inheri-
tance flattening, which is briefly described in Section 4.1,
that is used both in the editor and the compiler. When a
diagram is opened in the editor, the editor shows the flat-
tened diagram, which includes blocks, connections, etc.,
defined in the supertype (as seen in Figure 4). Thus, the
shown diagram is computed based on the semantics of
the language.
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Figure 6. Simulation of a Bloqqi FMU with sampling period
of 1 second and execution time of 0.5 seconds. The Bloqqi
program starts executing at BS and completes at BC. The inputs
are read at BS and the outputs are set at BC. The time on the
axis is the simulated time.

5 FMU Generation

A Bloqqi program can be exported as a Co-Simulation
FMU, which makes it easy to use Bloqqi programs to-
gether with models specified with other tools that sup-
port the FMI standard. The input and output values of
the Bloqqi program are mapped to corresponding in-
puts and outputs of the FMU. The FMU executes pe-
riodically and the period can be set by the parameter
sampling-period. It is also possible to simulate an
estimated execution time of the Bloqqi program, which
is set using the parameter execution-time and it will
delay the output values with execution-time seconds.
This is illustrated in Figure 6. The FMU can be gener-
ated as a source FMU, which includes the generated C
code in the FMU.

The FMU generation for Bloqqi1 is implemented us-
ing a port by Christopher Brooks2 of FMU SDK3 by
QTronic which runs under Linux and MacOS. The Blo-
qqi compiler generates C code, as described in Section 4,
and adds wrapper code for the FMU SDK and our own
DoStep function. The Bloqqi compiler also generates an
XML file describing the structure of the FMU.

5.1 Master Algorithm

When simulating a system of Co-Simulation FMUs, a
master algorithm is responsible for exchanging data (in-
puts and outputs) between the FMUs at discrete com-
munication points. The FMUs are then solved inde-
pendently from each other between the communication
points with their respective solver. The master algorithm
uses functions, defined in the standard, for getting and
setting inputs and outputs of the FMUs. Each FMU
also defines the function DoStep that simulates one com-
munication step with a given communication step size
(which might vary between the calls). This function is
called by the master algorithm. The following code illus-
trates one simple master algorithm with a fixed commu-

1https://bitbucket.org/bloqqi/bloqqi-fmi
2https://github.com/cxbrooks/fmusdk2
3https://qtronic.de/en/fmusdk.html

nication step size (hc) that simulates between the times
tStart and tEnd:

curTc = tStart
while (curTc < tEnd) {
read outputs from all FMU:s
set inputs to all FMU:s
call DoStep(curTc, hc) on all FMU:s
curTc += hc

}

When using this algorithm together with a Bloqqi FMU,
it is important that the communication points reflect the
discrete times at when the Bloqqi program starts and
completes execution. The master algorithm should ex-
change data every time the Bloqqi program starts an ex-
ecution and when it completes an execution. Otherwise,
the Bloqqi FMU will use old input values and delay its
output values.

For the example shown in Figure 6, where the sam-
pling period is 1 second and the execution time is 0.5 sec-
onds, a master algorithm with the communication step
size of 0.5 seconds will work fine without introducing
any delays.

5.2 Implementation of DoStep Function
As described earlier, we have used FMU SDK but imple-
mented our own DoStep function, with the goal of not
introducing any unnecessary input/output delays. Our
implementation internally keeps track of the next time
the Bloqqi FMU should execute (according to the pa-
rameter sampling-period). If the Bloqqi FMU has
started to execute, but has not yet completed, the func-
tion also keeps track of when it will complete. The func-
tion uses two variables to represent these times (starts
and completes).

The function DoStep is called with the current com-
munication point (curTc) and a communication step size
(hc) by the master algorithm, and it will check if any of
the time variables are before curTc+hc. An implemen-
tation sketch of DoStep is shown in Figure 7. As can
be seen, if the Bloqqi program should start executing,
the function will get the FMU inputs and set them to the
inputs of the Bloqqi program, and then run the Bloqqi
program one period. After that, the times for when the
execution completes and when the next execution starts
are calculated. It might happen that the execution com-
pletes during the same invocation of DoStep, and this is
handled afterwards with the call to set_outputs, which
sets the outputs of the FMU as the outputs of the Bloqqi
program.

The DoStep function will only start executing if the
simulated time has passed the value of starts. This
is illustrated in Figure 8. Here, the second invocation of
DoStep is between the times t1 and t2, and the invocation
will not start the Bloqqi execution since the simulated
time has not passed t2. However, the third invocation
will start the Bloqqi execution since it passes the time t2.

https://bitbucket.org/bloqqi/bloqqi-fmi
https://github.com/cxbrooks/fmusdk2
https://qtronic.de/en/fmusdk.html


// Internal state for Bloqqi program
Main_VARS v;

// When the next execution starts
starts = 0.0

// When a started execution completes.
// The value ∞ is used when there is
// no active execution.
completes = ∞

void DoStep(
curTc, // current communication point
hc // communication step size
) {

// ... error checking ...

nextTc = curTc + hc

// If an execution started in a previous
// call to DoStep and completes during
// this call.
if (completes <= nextTc) {
set_outputs(v.output)
completes = ∞

}

if (starts < nextTc) {
// Start a new execution
v.input = get_inputs()
bloqqi(&v)
completes = starts + EXECUTION_TIME
starts = starts + SAMPLING_PERIOD

// If the execution completes during
// the same call to DoStep as when
// it was started.
if (completes <= nextTc) {
set_outputs(v.output)
completes = ∞

}
}

}

Figure 7. Implementation sketch for DoStep

time
BS BSBC BC

t0 t1 t2 t3
DoStep1 DoStep2 DoStep3

Figure 8. The execution starts when the simulated time has
passed the value of the variable starts. This means that the
first and third invocation of DoStep will start an execution, but
not the second invocation. The second invocation is between
the times t1 and t2, but it has not passed t2, which is required
for it to start executing.

time
BS BSBC BC

t0 t1 t2
DoStep1 DoStep2

Figure 9. When the master algorithm makes the second call
to DoStep in this example, the Bloqqi FMU should first write
outputs from the previous execution before starting a new ex-
ecution. This is handled by checking the variable completes
before starting a new execution in DoStep.

We think that this behaviour makes it easier to use Blo-
qqi FMUs together with standard master algorithms, and
where the Bloqqi FMU gets fresh input values when the
execution starts. In the implementation of DoStep (Fig-
ure 7), this behaviour is captured by using the less than
operator (<). On the other hand, when the output values
are set, it is not needed to pass the time for when the ex-
ecution completes, which is captured by using the less
than or equal operator (<=). This will make the outputs
visible when the execution is completed. For example,
in Figure 8, the output values will be set by the first and
third invocation of DoStep, making the outputs available
at the times t1 and t3.

5.2.1 Handling Asynchronous Periods

It might happen that a call to DoStep starts an execution,
but does not complete it, and that the execution is com-
pleted in a subsequent call to DoStep. This situation is
handled by checking in the beginning of DoStep the vari-
able completes. This code fragment also handles the
situation when a previous call to DoStep started an exe-
cution, and the current call both completes the previous
execution and starts a new execution. This is illustrated
in Figure 9. Here, the first call to DoStep by the master
algorithm is from t0 to t1, and which starts an execution.
The second call is from t1 to t2, and which first writes
the outputs from the previous execution and then starts
a new execution of the Bloqqi program. In this exam-
ple, the output values will be delayed (to time t2 for the
first execution) and old input values will be used (from
time t1 for the second execution). This delay is undesir-
able, but cannot be avoided without changing the master
algorithm.



The error checking in the beginning of DoStep checks
that the communication step size is not larger than the
sampling period of the Bloqqi program, which in that
case raises an error (fmi2Discard). We have chosen
this behaviour as the Bloqqi program and the controller
it represents can produce faulty results, as well as large
delays, if used with a too large communication step size.
For example, suppose the derivative in the controller is
calculated by using the slope between two samples. It
is then important that input values are updated between
controller execution loops, as the difference would be
zero otherwise. This would not happen with a DoStep
that includes multiple executions of the Bloqqi program
using the same sample of inputs.

5.2.2 Zero Execution Time

The estimated execution time can be set to 0. In this
case, the master algorithm should make small commu-
nication steps from when the Bloqqi execution starts.
For instance, assume that the first time the Bloqqi FMU
should start executing is at time t0 and that the Bloqqi
sampling period is h, then the master algorithm should
first call DoStep(t0, hc0) with a small communication
step size hc0 (it needs to pass the time t0). Then, the mas-
ter algorithm should take a longer communication step
hc1 = h−hc0 to when the Bloqqi program is to start exe-
cuting again, hence, it should make the call DoStep(t1,
hc1), where t1=t0 +hc0. If it is not possible for the mas-
ter algorithm to make communication steps of variable
length, then it should instead make the communication
steps small enough to reduce the delay of the control sig-
nal to an acceptable level.

5.3 Selection of FMU Kind

As mentioned in Section2.1, there are two different kinds
of FMUs specified in the standard, Model Exchange and
Co-Simulation FMUs. There are advantages with both
variants of the standard and selecting which one to use
is not always straightforward. Due to its simple inter-
face and ease of implementation, Co-Simulation FMUs
are supported in most tools and provides a good plat-
form for sharing the control models. It also provides an
inherently sampled platform which reflects the sampled
nature of a controller executing the Bloqqi program. For
these reasons Co-Simulation FMUs were choosen as an
appropriate first target kind for the Bloqqi FMUs.

Generally when performing simulations with FMUs
an external entity will have control of the sampling time,
and for the Bloqqi FMUs it cannot be assumed that the
sampling times coincide with the discrete times of the
Bloqqi program. The extreme case, when the sampling
period of the master algorithm is larger than the sam-
pling period of the Bloqqi FMU, is handled through a
FMI2Discard of the DoStep. The mismatch of sam-
pling times will inevitably lead to unnecessary delays

Figure 10. Simulation of the liquid level in a tank. The set
point is first 1.8 meter and then changed to 0.2 meter.

in the control algorithms during simulations. The addi-
tional delays brought by the sampling might have a neg-
ative effect on the stability region of a controlled pro-
cess that would not be present in the actual physical sys-
tem, which could lead to inaccurate results of the simula-
tions. For these reasons the possibilities of using Model-
Exchange FMUs and event states to assure that the Blo-
qqi execution points are executed at the correct times
would be interesting to investigate during the continu-
ation of the project. Such an FMU could perform all its
calculation, including registering its next event, while in
event mode, and not contribute to the integration during
the continuous time mode.

6 Examples

We have exported Bloqqi programs as FMUs and run
them together with plant model FMUs exported from
Modelica models.

6.1 Tank Example

One example is a simple regulator for a tank of liquid.
The regulator controls the liquid level using one input
valve and one output valve, both valves can be opened or
closed.

We have implemented the regulator in Bloqqi and
modelled the tank in Modelica, and exported both mod-
els as FMUs. These two FMUs have then been aggre-
gated (see Section 6.2) and simulated together. The sim-
ulation result can be seen in Figure 10. The figure shows
how the liquid level changes over time. In this example,
first, the set point of the liquid level is set to 1.8 m, and
after it is reached, the set point is changed to 0.2 m.

The Bloqqi diagram for the tank regulator that opens
and closes the valves is shown in Figure 11 (the dia-
gram is called Tank). The parameter setLevel is the set
point and the current liquid level is read from a sensor,
which is represented by the block levelSensor. The
blocks lowerValve and upperValve represent the ac-
tuators for the valves and take a boolean as input (true
to open the valve and false to close the valve). The di-



Figure 11. Simple tank regulator in Bloqqi. The block levelSensor reads the current liquid level. The blocks lowerValve
and upperValve are actuators to the valves. The block RGTZ means greater than zero (for reals).

agram also has a parameter tolerance that allows the
level to be within a range of the set point (setLevel
± tolerance). The output parameter withinRange
yields true if this is the case. There is also another dia-
gram Main, which is not shown in the figure, that has the
Tank diagram as a block. The Main diagram will use the
output parameter withinRange to change the set level.

The tank model in Modelica is specified as a mass bal-
ance equation (Fritzson, 2004), where the curent liquid
level is specified in terms of the input flow and output
flow of the tank. The equations for the tank are specified
in the following manner:

der(level) = (inFlow-outFlow)/AREA;
inFlow = if upperValveOpen
then IN_FLOW
else 0.0;

outFlow = if lowerValveOpen
then (OUT_VALVE_AREA)*sqrt(2*9.82*level)
else 0.0;

Thus, the time derivative of the current liquid level is
defined in terms of the difference in flow. The input flow
depends on if the input valve is open and the output flow
depends on if the output valve is open. The output flow
is also dependent on the pressure, thus, on the current
liquid level. This can be seen in the simulation results in
Figure 10, where the emptying of the tank from 1.8 m to
0.2 m is not a straight line.

6.2 Composing FMUs

We have used FMI Composer4 from Modelon for co-
simulation of the Bloqqi FMU of the controller and the
Modelica FMU of the tank. FMI Composer supports the
SSP standard and can convert a system of FMUs to a ag-
gregated FMU. The simulation of the composed FMU is
then run in another tool, for instance, the FMI Toolbox
for Simulink, also from Modelon, that we have used for
the tank simulation shown in Figure 10.

For example, the composition of the tank regulator
and the tank model is shown in Figure 12. The regu-
lator FMU has one input, the current liquid level, and
two outputs, which tells if the valves should be open or

4http://www.modelon.com/products/

Figure 12. FMU composition of the tank regulator and tank
model specified in FMI Composer.

Figure 13. Magnetic levitation system.

not. The tank FMU uses the output from the regulator to
model the current liquid level, which is the output from
the tank FMU.

6.3 Magnetic Levitation
Another example we have experimented with is a mag-
netic levitation system. The system uses an electromag-
net to control a magnet in the air. This is shown in Fig-
ure 13, which is an education system from Zeltom5.

We have run a PD-regulator defined in Bloqqi for con-
trolling a simluation of the electromagnet, where the con-
trol signal is the voltage to the electromagnet and the set

5http://zeltom.com/products/magneticlevitation

http://www.modelon.com/products/
http://zeltom.com/products/magneticlevitation


0.0 0.5 1.0 1.5

0.
02

00
0.

02
01

0.
02

02
0.

02
03

0.
02

04

Time (s)

D
is

ta
nc

e 
(m

)

Figure 14. Simulation of magnetic levitation. The set point is
0.02 m distance between the electromagnet and the magnet.

point is the distance between the electromagnet and the
magnet. The regulator has been simulated together with
a Modelica model that describes the distance between
the electromagnet and the magnet, given a voltage to the
electromagnet. The Modelica model is written by Bern-
hard Thiele. Thiele has also specified a PD-regulator in
Modelica for the system, which is the basis for our PD-
regulator in Bloqqi. A simulation of the regulator and
the model can be seen in Figure 14 (with the set point of
0.02 m and sampling period of 0.0005 s).

7 Related Work

Typically, code generation for block diagrams removes
the hierarchical structure by flattening the diagrams,
where each non-atomic block is replaced with its defini-
tion. Lublinerman et al. (2009) propose a technique for
modular code generation, where the code generation for
one diagram is independent of the context and uses min-
imal information about the internals of its blocks. Their
technique handles diagrams that look cyclic, but when
the diagrams are flattened, they are in fact acyclic. The
Bloqqi compiler will not allow these kinds of diagrams,
as described in Section 3.1.1.

The implementation of code generation for Bloqqi
has similarities with the implementation of JModel-
ica (Åkesson et al., 2010). Both implementations are
specified using reference attribute grammars (Hedin,
2000) in the metacompilation tool JastAdd (Ekman and
Hedin, 2007). In JModelica, the user selects a Model-
ica model to compile, and JModelica compiler will then
remove the object-oriented and hierarchical structure for

the selected model that results in a flat equation system.
During this process, each model instance reachable from
the selected model is substituted with the content of the
model definition. In contrast, the Bloqqi compiler will
only flatten the inheritance, by copying declarations in
the supertype to the subtype, which results in a set of
diagrams as described in Section 4.1. Thus, the Blo-
qqi compiler will retain the the hierarchy between di-
agrams. Both implementations make extensive use of
non-terminal attributes (Vogt et al., 1989), which allows
dynamically computed subtrees to be added to the ab-
stract syntax tree in the compiler.

The problems, as discussed in 5.3, with representing
discrete time systems, or any system including events,
using the Co-Simulation FMI technology with regards to
matching the master algorithm’s sampling with the inter-
nal events of the FMUs is discussed in Cremona et al.
(2017). In Cremona et al. (2017), a suggestion to add
new step function called "doStepHybrid" which allows
for an early return of the step function. This in combina-
tion with a possibility for the master to interrogate the
system using functions like getMaxStepSizeHybrid
would allow for the Bloqqi FMU to assure that each sam-
ple and execution event is properly matched. Addition-
ally the concept of clocks and hybrid Co-Simulation is
included in the alpha feature list of FMI 2.1 that was an-
nounced 2017-12-18 (fmi standard, 2017), this to sup-
port synchronization of variable changes across FMUs,
and allow for co-simulation with events. Cremona et al.
(2017) also proposes an integer representation of time in
order to increase the accuracy of the time representation
in simulation of FMUs.

Additional problems related to synchronization of
discrete-time models is presented in Franke et al. (2017).
Where a synchronus discrete-time extension to the FMI-
standard is proposed to enable synchronization between
FMUs with the environment, and other FMUs. The
proposal includes a possibility to declare clocks and
discrete-time states in the modelDescription.xml,
and enables the environment to activate clocks in order
to synchronize the environment with other FMUs.

TrueTime (Cervin et al., 2003) is a tool for simulat-
ing control systems, where it is possible to simulate task
scheduling and network transmissions. These aspects are
not covered in the Bloqqi FMUs, but it would be possi-
ble, for example, to model network delays as other FMUs
connected to the Bloqqi FMUs.

8 Conclusions

We have in this paper described how Bloqqi programs
can be exported as Co-Simulation FMUs. This is done
by translating the programs to C code, which are then
wrapped as FMUs. In this translation, each Bloqqi di-
agram is translated to a C function and each block (an
instance of diagram) is translated to a function call. Be-



fore the translation, the inheritance structure is removed
(but the hierarchical structure is retained). The paper also
describes how the function DoStep is implemented for
Bloqqi FMUs to handle that Bloqqi programs execute at
discrete time, according to the sampling period and the
estimated execution time.

Exporting Bloqqi programs as FMUs allow them to be
easily imported to a simulation environment to be tested
together with a simulation of the physical process. The
physical process can be specified with any tool that sup-
ports FMI export/import. We have successfully tested
running Bloqqi programs as FMUs together with FMUs
exported from Modelica models.

In the future, we would like to support more of the
FMI standard, for example, the possibility to make roll-
back, which is useful for simulating a larger class of
FMU compositions (Broman et al., 2013). It would also
be useful to generate Model-Exchange FMUs, and not
only Co-Simulation FMUs. This would allow the Blo-
qqi FMU to tell the master algorithm about the discrete
times at when it will start and complete its execution.
We would also like to experiment with more and larger
examples.
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