
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

A Safe Regression Test Selection Technique for Modelica

Fors, Niklas; Sten, Jon; Olsson, Markus; Stenström, Filip

Published in:
Proceedings of the American Modelica Conference

2018

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Fors, N., Sten, J., Olsson, M., & Stenström, F. (2018). A Safe Regression Test Selection Technique for
Modelica. In Proceedings of the American Modelica Conference

Total number of authors:
4

Creative Commons License:
Unspecified

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/bbd9fe8a-0f9d-4623-88c3-cf5f4552642c

A Safe Regression Test Selection Technique for Modelica

Niklas Fors1 Jon Sten2 Markus Olsson2 Filip Stenström2

1Department of Computer Science, Lund University, Sweden, niklas.fors@cs.lth.se
2Modelon AB, Sweden, jon.sten@gmail.com, {filip.stenstrom|markus.olsson}@modelon.com

Abstract
Running regression tests for Modelica models usually
takes a long time. This paper presents a safe regression
test selection technique for Modelica based on static anal-
ysis. The technique tracks dependencies between classes
to compute which tests that need to be run given a change.
The dependency rules have been verified using mutation
testing. The technique has been evaluated on the Model-
ica Standard Library and another library with promising
results.
Keywords: regression test selection, mutation testing

1 Introduction
Regression testing is an important activity when devel-
oping software today, preventing software changes from
introducing bugs that break previous functionality. Re-
gression tests allow the developer to run tests while de-
veloping for spotting errors early on. However, running
all tests may take a long time, which makes the developer
less likely to run the tests very often. Regression test selec-
tion tries to solve this problem by running a subset of all
tests. There are different test selection techniques (Rother-
mel and Harrold, 1996; Yoo and Harman, 2012), some of
them are safe, meaning that all tests that may be affected
by the change are selected. Safe techniques are usually
approximate and include tests that are not affected by the
change. These techniques may also have a higher runtime
for computing the selection, which should be lower than
the time saved using the selection compared to running all
tests.

This paper presents a safe regression test selection
technique for the modeling language Modelica (2018),
which is based on extraction-based test selection intro-
duced by Öqvist et al. (2016) for Java. Tests in Model-
ica usually require relatively long compilation and simu-
lation time, which makes test selection especially suitable
for Modelica. For example, we have evaluated the tech-
nique on the Modelica Standard Library (MSL), where
running all tests takes about 2-3 hours. If a random class
is changed in MSL, then on average 95.5% time can be
saved by running the selected tests compared to running
all tests. The runtime for the test selection algorithm is
only 0.14% of running all tests.

Our technique analyzes the source code and finds de-
pendencies between classes, which form a dependency
graph. The test selection algorithm takes a set of changed

classes and gives back the tests that depend on the changed
classes, according to the dependency graph.

The contributions of this paper are the following:

• Dependency rules that describe when a class de-
pends on another class (Section 3). These rules in-
clude name bindings, nested classes, redeclare
clauses, and implicitly called functions such as
equalityConstraint.

• Empirical verification of the dependency rules using
mutation testing (Section 4). The mutation testing
was performed on MSL, where each class was mu-
tated to detect which tests that actually depend on the
mutated class. The actual dependencies were then
compared with the output of the test selection algo-
rithm.

• Evaluation of how much time is saved using test se-
lection on two libraries, the Modelica Standard Li-
brary and the Heat Exchanger Library (Section 5).

• An open source test suite for dependency analysis al-
gorithms for Modelica1.

The work in this paper has been carried out as a master’s
thesis project by Olsson and Stenström (2018) at Mode-
lon, and is a continuation of the master’s thesis project
by Hedblom and Rundquist (2017)2 with higher preci-
sion.

2 Safe Test Selection
The test selection algorithm takes a set of changed classes
and returns a set of test cases that need to be run. Consider
the set of all classes C in a system, and the test cases T
that is a subset of C, and which are considered as entry
points. For a change in a subset of C, the test selection
algorithm gives back a subset Tts ⊆ T that need to be run
due to the test results may have changed. The algorithm is
safe, meaning that the test cases Tf that actually fail due
to the changes is a subset of Tts (hence, Tf ⊆ Tts ⊆ T ⊆C).

The test selection is implemented by tracking depen-
dencies between classes using static analysis. A class X
depends on another class Y if a change in Y may affect
the meaning of X. The dependencies form a dependency
graph, which is used by the test selection algorithm to

1See https://github.com/modelon/MCDTS
2Hedblom and Rundquist were also supervised by Niklas Fors.

model A
...

end A;

model B
A a;

end B;

model T1
A a;

end T1;

model T2
B b;

end T2;

T1

A

T2

B

Figure 1. Two test cases T1 and T2 that use the models A and B,
respectively. The right part of the figure shows the dependencies
between the models.

find dependent test cases given a set of changes. We use
the term class in accordance with the Modelica specifica-
tion, which includes specialized classes such as model,
record, type, function, etc.

For example, consider the Modelica source code in Fig-
ure 1. In this example, we have two test cases T1 and
T2 that use the models A and B, respectively. The figure
also shows the dependency graph between the classes. If
a change is made in model A, then the dependency graph
tells us that test case T1 and T2 need to be rerun. How-
ever, if a change is made in model B instead, then only
T2 needs to be rerun. As illustrated by the example, the
dependencies are transitive, for instance, test case T2 de-
pends transitively on A.

2.1 Detecting Changes
Detecting changes can be done in different ways. One
approach is to detect file changes, for instance, using ver-
sion control systems, and then map files to classes. For
example, if a file has changed, then all classes in that
file can be considered as changed. This is the approach
we currently use and which was implemented during the
previous master’s thesis. It was chosen because it was
the easiest approach to implement. The effect of the ap-
proach depends on how the Modelica code is organized.
For example, MSL usually has quite many classes per file
(on average 30 per file) and there are other libraries that
have fewer classes per file. A more fine-grained approach
would analyze what part of the file that has changed and
which classes that corresponds to.

2.2 External Code
Modelica supports interfacing with other languages, such
as C and FORTRAN. This can be challenging as it is
very hard to calculate the dependencies within the external
code. It is also common that the external code, based on
input from the Modelica code, will read and access other
resources, e.g. files or network resources.

In the current implementation, changes to non-
Modelica files will mark all Modelica classes with exter-
nal dependencies as changed. This, in turn, will force a
rerun of all test cases which directly or indirectly depend
on external code. This is not ideal as, to the user, seem-
ingly harmless changes may mark some test cases for re-
run. Possible improvement is to allow the user to provide
a list of files to monitor or not to monitor for changes. For
example, by allowing the user to list a set of files which
won’t cause rerun of tests, or provide a list of files which
will force a rerun of tests.

3 Dependency Rules
The following dependency rules are used for building the
dependency graph between classes:

Rule 1. A class has a dependency on an accessed class,
including all parts of the qualified name. This in-
cludes component declarations, extending clauses,
function calls, import statements, functions in an-
notations (derivative, inverse) and overloaded oper-
ators.

Rule 2. A class has a dependency on its enclosing class.

Rule 3. A class that contains a redeclaration depends on
all super classes and enclosed classes of the replacing
class (and all their enclosed classes and super classes
recursively).

Rule 4. A class has a dependency on implicitly called
classes. This includes a record or type enclosing
a function named equalityConstraint, and a
class extending the class ExternalObject has
dependency on enclosed function destructor.

3.1 Motivation
The rules will now be motivated with examples.

Rule 1 was illustrated in Section 2, namely that a class
depends on classes it references. Additionally, the rule
also handles qualified accesses. For example, for the ac-
cess A.B.C, the rule creates dependencies to A, A.B and
A.B.C. This is needed because changes in A or A.B may
change what C refers to. For instance, class C may be de-
clared in a supertype of A.B, and changing the supertype
of A.B may then change what C refers to.

Rule 2 is illustrated in Figure 2. If model B is changed
to extend A2 instead of A1, then the type of m in B.C
is changed from A1.M to A2.M. Thus, Rule 2 is needed
to create a dependency from B.C to B to handle when B
changes.

Rule 3 is illustrated in Figure 3. The dependency anal-
ysis needs to be careful with redeclare clauses. In the fig-
ure, the class C needs a dependency to all nested classes in
A2 due to the redeclare modifier in component declaration
for b. This because the replaceable package P in package
B is redeclared to A2 in the context of component b in

package A1
model M
end M;

end A1;

package A2
model M
end M;

end A2;

package B
extends A1;

model C
M m;

end C;
end P;

B.C

A1.M B

A1

A2.M

A2

Figure 2. Example for Rule 2. Dependencies stipulated by Rule
2 are illustrated with thicker edges. The rule is needed to han-
dle if B changes its extends clause to A2, which changes the
reference in class B.C.

model C. This broad addition of dependencies is needed
in order to capture the actual use of A2.f in package B
when in context of model C. Alternatively, a complex and
time consuming analysis of the usages of the package P
in context of model C could be done. Note that the rule
is recursive, meaning that if A2 would have a nested class
NC1 which in turn would have another nested class NC2,
then C would depend on both NC1 and NC2.

Rule 3 also handles classes prefixed with redeclare,
which is illustrated in Figure 4. In this example, we want
a dependency from B to B.f, since B redeclares the func-
tion f that is declared in A.

Rule 4 is needed due to specific dependencies that the
language specification dictates based on class context. See
the test suite for examples of Rule 4.

3.2 Implementation
We implemented the dependency analysis based on the
rules in this section in the OPTIMICA Compiler Toolkit3,
which is based on the JModelica.org compiler (Åkesson
et al., 2010a).

4 Verification
We want the test selection algorithm to be safe, but it is
hard to know if the dependency rules (Section 3) cover all
cases since Modelica is a complicated language. We have
verified the dependency rules empirically by using tests
from the previous master’s thesis project (Hedblom and
Rundquist, 2017), coming up with new tests manually and
performed verification based on mutation testing.

Mutation testing is a technique for evaluating how ef-
ficient a test suite is (DeMillo et al., 1978). This is done
by automatically introducing small faults in the program

3http://www.modelon.com/products/modelon-creator-
suite/optimica-compiler-toolkit/

package A1
function f
end f;

end A1;

package A2
function f
end f;

end A2;

package B
replaceable

package P = A1;
Real x = P.f();

end B;

model C
B b(redeclare

package P = A2);
end P;

C

B A2.f

A2

A1

A1.f

Figure 3. Example for Rule 3, which creates a dependency from
C to A2.f. This dependency is needed to handle changes in
A2.f.

model A
replaceable

function f
end f;
Real x = f();

end A;

model B
extends A;

redeclare
function f

end f;
end B;

model C
B b;

end C;

C

B

A B.f

A.f

Figure 4. Another example for Rule 3 that illustrates classes
with the redeclare prefix, which creates a dependency from B to
B.f.

model A;
Real x;

equation
x = 7;

end A;

model B
A a;
Real y;

equation
y = a.x + 3;

end B;

model T
B b;

end T;

(a) Source system

fclass T;
Real b.a.x;
Real b.y;

equation
b.a.x = 7;
b.y = b.a.x + 3;

end T;

(b) Flat class

Figure 5. Model T is selected and the compiler instantiates it to
a flat class.

and then checking if these faults are detected by any test
case. If a fault is not detected, then a new test case can be
added that covers the fault. A change may be, for exam-
ple, switching the branches in an if statement or replacing
arithmetic operators, for instance, replacing a minus (-)
with a plus (+). However, we use this technique in a little
different way since we are interested in verifying the test
selection algorithm, and thus are interested in finding out
the actual dependencies between classes. We do this by
introducing changes in a class and then computing which
tests that are actually affected by the changed class. For
the affected tests, there is an actual dependency from the
test to the changed class, and we want this dependency to
be in the dependency graph. If this is not the case, then the
algorithm contains a bug or a dependency rule is missing.

We only change one class at a time and then check
which tests are actually affected by the change. We de-
tect that a test is affected by the change by computing
and comparing the string representation of the flat (unop-
timized) class for the test. This flat class contains all the
variables, equations, function and other parts of the model
which is needed in order to solve the equation system. If
the flat class has changed in any way, we consider that the
test is affected by the change. Note that running the test
may actually give the same results as before since a test
involves comparing simulation results. However, we are
only interested in the dependencies to the changed class
from the test class, and if the flat test class changes in any
way, then there is a dependency (direct or indirect).

When a test is selected to run, the compiler creates a
flat class representing the equation system for the test,
which is then optimized and later solved using a numer-
ical solver. The flat class is illustrated in Figure 5, where
the test T has been selected and instantiated by the com-
piler. As can be seen, the object-oriented and hierarchical
structure are removed in the flat class (but not optimized

Table 1. Mutation testing on MSL. The unique column is how
many classes the mutation was unique for. Mutations is the total
number of mutations carried out. The total number of classes in
MSL is 5946.

Mutation Mutated classes Unique Mutations
LocalVar 1772 (29.5%) 485 1772

Arit 2026 (33.8%) 16 9647
Lit 3306 (52.3%) 805 25563

Bool 913 (15.2%) 17 3028
Redecl 68 (1.1%) 17 68

Comment 1650 (27.3%) 205 10142

in the figure). For this class, we could change the value of
x in model A to 5, and the flat class would change, and we
can then infer that there is an indirect dependency from T
to A. To verify that the test selection algorithm works, we
check that this dependency is in the dependency graph. If
we instead would change the value of x to 4+3, then the
flat class would still change, even if the meaning would
remain (since 4+ 3 = 7). This is as earlier described not
an issue, since we are interested in computing actual de-
pendencies between classes.

4.1 Mutation Testing on MSL
We performed mutation testing on MSL with the follow-
ing types of mutations.

LocalVar. Add local variable to function.

Arit. Switching arithmetic operands, e.g., 1-2⇒ 2-1.

Lit. Changing literals, e.g., 2⇒ 3.

Bool. Changing boolean operators, e.g., a<b⇒ a>b.

Redecl. Redeclaring a replaceable function.

Comment. Changing string comments.

Changing string comments will not change the meaning
of the program, but they are carried over to the flat class,
which is what we are interested in.

The mutation testing was performed for one class in
MSL at the time and one mutation type at the time. How-
ever, several mutations of the same type could be applied
for one class, for example, by changing several literals.
The results are shown in Table 1. As can be seen in the
table, changing literals was the most applicable mutation
type and could be applied for more than half of the classes
in MSL. Performing one mutation test took around 18
minutes, since it requires all tests to be individually in-
stantiated to a flat class. We performed the mutation tests
on a cluster of Jenkins machines, and it would take 280
days if they were carried out in a sequence (non-parallel).

From the result of mutation testing, we needed to gen-
eralize Rule 3, discovered Rule 4, found derivative/inverse
in annotations, and found six bugs in the implementation.
A test case was added to the test suite for dependency anal-
ysis algorithms for each fault found.

4.2 Threat to Validity

Note that we have only verified the test selection algo-
rithm empirically and not formally. Thus, we cannot know
with certainty that the rules and implementation are safe.
A complete formal verification would require a formal
model of Modelica, a language that is very complicated.
It would also be possible to use a simplified formal model
that does not cover the complete language, but some as-
pects of it. However, using a simplified formal model
would probably miss, for example, equality constraints
(Rule 4) because they are not a central part of the lan-
guage, which the mutation testing did find. Also, the mu-
tation testing was performed on MSL, which might not
use all language features. Thus, it would be desirable with
more mutation testing on other libraries to make the veri-
fication more complete.

4.3 Partial Dependency Graph

We also used mutation testing to compute a partial depen-
dency graph between classes in MSL. For each mutated
class, we get actual dependencies to the mutated class
from all test classes that changed because of the muta-
tion. Combining all actual dependencies from all muta-
tions yield a partial dependency graph from test classes
to classes. This partial dependency graph can be used to
partly verify test selection algorithms. Thus, in addition
to the manually created test cases for dependency analy-
sis algorithms, the open test suite also contains the partial
dependency graph from the mutation testing as an XML
file.

4.4 Instrumenting the Compiler

We have used mutation testing to compute actual depen-
dencies between test classes and classes. Another way
would be to instrument the compiler to compute all ac-
tual dependencies when instantiating a test class, which
would require less resources. The reason why we chose
mutation testing is because we believe that instrumenting
the compiler might contain the same bugs as the test selec-
tion implementation. Mutation testing is more like black-
box testing in this context. However, it would be useful
to complement the mutation testing with compiler instru-
mentation to improve the verification, which is something
we would like to do.

4.5 Previous Technique Unsafe

During the mutation testing we found that the implementa-
tion by Hedblom and Rundquist (H&R) was not safe since
it ignored classes with the redeclare prefixes. We also
found another bug in their implementation that included
too many dependencies. We fixed these two issues in the
evaluation (Section 5) for H&R’s technique when compar-
ing it to our technique.

H&R
Our

Figure 6. Tests runtime for each class changed in MSL. The
number of classes is 5946, of which 366 are tests.

H&R
Our

Figure 7. Tests runtime for each class changed in HXL. The
number of classes is 871, of which 227 are tests.

5 Evaluation
We have evaluated the time saved using test selection com-
pared to running all tests on two libraries, the Model-
ica Standard Library (MSL) and the Heat Exchanger Li-
brary (HXL) by Modelon4. The time saved is compared
to the test selection defined by Hedblom and Rundquist
(2017), which will be denoted H&R. Their technique is
more coarse-grained than ours and operates in an earlier
step in the compilation process, leading to more tests se-
lected, but with a lower analysis running time (see Sec-
tion 6 for comparison).

We computed the test selection for each class in the li-
brary and then the runtime for the selected tests, which
includes compilation and simulation time. The runtime
for the selected tests was computed as a percentage of the
runtime for all tests. The results are shown in Figures 6-
7, where classes are sorted by tests runtime in ascending
order. For both techniques, the average savings is above
90% for MSL and above 70% for HXL. The average sav-
ings, the average test runtime, the median test runtime and
the analysis time are shown in Tables 2-3 under Class.
The complement of the average savings in the tables cor-
respond to the blue areas in the graphs.

We also computed the test selection for each file in
MSL and HXL, where all classes in a file were consid-

4https://www.modelon.com/library/heat-exchanger-library/

Table 2. Performance results for MSL. All values are in per-
centage of the time it takes to run all tests.

Class File
Our H&R Our H&R

Average savings 95.5% 93.1% 88.9% 87.9%
Average test time 4.3% 6.9% 11.0% 12.1%
Median test time 0.22% 0.33% 1.19% 1.7%
Analysis time 0.14% 0.04% 0.14% 0.04%

Table 3. Performance results for HXL. All values are in per-
centage of the time it takes to run all tests.

Class File
Our H&R Our H&R

Average savings 78.9% 72.0% 80.5% 74.8%
Average test time 20.9% 27.9% 19.4% 25.1%
Median test time 3.61% 15.7% 3.77% 15.7%
Analysis time 0.12% 0.10% 0.12% 0.10%

ered changed. The results can be seen in the tables under
File. As expected, the time saved for files is less than for
classes.

As we can see, the new test selection technique has
higher precision than H&R’s technique leading to im-
proved savings. However, our dependency analysis is a bit
more advanced and the implementation is 201 source lines
of code5 (SLOC) specified in JastAdd (Hedin and Mag-
nusson, 2003), whereas H&R’s implementation is 134
SLOC.

5.1 MSL Commit History
We have also used the MSL commit history to get more
realistic sets of changed files. Thus, we use each commit
as a set of changed files and compute the time saved for
that set. The results are shown in Figure 8, where commits
are sorted by tests runtime in ascending order. The average
saving is 68.9% for our technique and 57.0% for the old
technique.

6 Related Work
As described earlier, the dependency rules presented in
this paper is a continuation of the master’s thesis by Hed-
blom and Rundquist (2017), but with higher precision.
H&R implemented their test selection algorithm in an ear-
lier step in the compilation process6 with less static in-
formation available about name bindings etc., leading to
more coarse-grained rules. One major difference is that
the previous implementation could not resolve all parts
of a qualified access like a.b.c. This lead to a depen-
dency rule for class accesses where an access to a class A
created dependencies to all nested classes enclosed by A

5Measured with cloc, see https://github.com/AlDanial/cloc
6H&R implemented their algorithm in the source tree, whereas our

algorithm is implemented in instance tree, according to the different
compilation steps defined by Åkesson et al. (2010b).

H&R

Our

Figure 8. Test runtime for MSL commit history.

(recursively). Another difference is that H&R’s rules are
implementation-specific, where the rules use the term re-
solvable to mean names that are resolved in that compila-
tion step in the OPTIMICA compiler. In contrast, our rules
are defined in terms of the language and are not dependent
on the implementation. However, it would be possible to
generalize the H&R’s rules to be implementation-neutral.

There is previous work on safe test selection for other
languages (Chen et al., 1994; Rothermel and Harrold,
1997), such as Java (Öqvist et al., 2016; Gligoric et al.,
2015), where both dynamic- and static analyses have been
investigated. Our technique is based on extraction-based
test selection by Öqvist et al. (2016), who applied it for
Java. This kind of technique uses only static analysis
and is more coarse-grained (for instance, dependencies be-
tween files or classes) than other techniques. Modelica
is quite different from Java, leading to other dependency
rules, for example, covering the redeclaremechanism.
One interesting property from a safe test selection per-
spective is that compilation and simulation usually takes
rather long time for Modelica models, especially when
comparing to compilation and test time for Java. This
makes test selection especially useful for Modelica. Also,
since Modelica compilers generate flat equation systems
for test classes, you cannot use dynamic analysis, but only
static analysis.

7 Conclusions
We have in this paper presented a regression test selec-
tion technique using static analysis for Modelica with very
promising results. In the evaluation, we found that chang-
ing a class in MSL and only running the tests selected by
the algorithm saved on average 95.5% tests runtime com-
pared to running all tests. Using MSL commit history as
basis for changed files, then the average saving is 68.9%.
Since Modelica is a complicated language, we performed
mutation testing on MSL to verify that our dependency
rules are correct and safe. However, with mutation test-
ing, we cannot prove that the rules or the implementation
of the rules are complete.

In the future, we would like to do more mutation testing
on other libraries than MSL, and also add more mutation
types. It would also be interesting to update the depen-
dency graph incrementally. The current implementation
computes the dependency from scratch for each change
that the test selection is run on. However, computing the

dependency graph is relatively fast. For example, comput-
ing it for MSL only takes 0.14% of the time it takes to run
all tests. We would also like to detect changes on a more
fine-grained level and identify which classes in a file that
are actually changed.

Acknowledgements
We thank Jesper Öqvist for comments on an earlier draft
of this paper. This research was partly supported by the
Swedish Governmental Agency for Innovation Systems
(VINNOVA), within the strategic innovation program Pro-
cess Industrial IT and Automation, under contract number
(2017-02371).

References
Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove

Bergdahl, and Hubertus Tummescheit. Modeling and opti-
mization with Optimica and JModelica.org—languages and
tools for solving large-scale dynamic optimization problem.
Computers and Chemical Engineering, 34(11):1737–1749,
November 2010a.

Johan Åkesson, Torbjörn Ekman, and Görel Hedin. Implemen-
tation of a Modelica compiler using JastAdd attribute gram-
mars. Science of Computer Programming, 75(1-2):21–38,
January 2010b.

Yih-Farn Chen, David S. Rosenblum, and Kiem-Phong Vo. Test-
tube: A system for selective regression testing. In Proceed-
ings of the 16th International Conference on Software Engi-
neering, Sorrento, Italy, May 16-21, 1994., pages 211–220,
1994.

Richard A. DeMillo, Richard J. Lipton, and Frederick G. Say-
ward. Hints on test data selection: Help for the practicing
programmer. IEEE Computer, 11(4):34–41, 1978.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practi-
cal regression test selection with dynamic file dependencies.
In Proceedings of the 2015 International Symposium on Soft-
ware Testing and Analysis, ISSTA 2015, Baltimore, MD, USA,
July 12-17, 2015, pages 211–222, 2015.

Erik Hedblom and Kasper Rundquist. Safe test selection for
modelica using static analysis. Master’s thesis, Lund Univer-
sity, 2017. LU-CS-EX 2017-26.

Görel Hedin and Eva Magnusson. JastAdd: an aspect-
oriented compiler construction system. Science of Com-
puter Programming, 47(1):37–58, 2003. ISSN 0167-6423.
doi:http://dx.doi.org/10.1016/S0167-6423(02)00109-0.

Modelica. The Modelica Association, 2018. http://www.
modelica.org.

Markus Olsson and Filip Stenström. Improved precision and
verification for test selection in Modelica. Master’s thesis,
Lund University, 2018. LU-CS-EX 2018-08.

Jesper Öqvist, Görel Hedin, and Boris Magnusson. Extraction-
based regression test selection. In Proceedings of the 13th

International Conference on Principles and Practices of Pro-
gramming on the Java Platform: Virtual Machines, Lan-
guages, and Tools, Lugano, Switzerland, August 29 - Septem-
ber 2, 2016, pages 5:1–5:10, 2016.

Gregg Rothermel and Mary Jean Harrold. Analyzing regression
test selection techniques. IEEE Trans. Software Eng., 22(8):
529–551, 1996.

Gregg Rothermel and Mary Jean Harrold. A safe, efficient re-
gression test selection technique. ACM Trans. Softw. Eng.
Methodol., 6(2):173–210, 1997.

Shin Yoo and Mark Harman. Regression testing minimization,
selection and prioritization: a survey. Softw. Test., Verif. Re-
liab., 22(2):67–120, 2012.

http://dx.doi.org/http://dx.doi.org/10.1016/S0167-6423(02)00109-0
http://www.modelica.org
http://www.modelica.org

	Introduction
	Safe Test Selection
	Detecting Changes
	External Code

	Dependency Rules
	Motivation
	Implementation

	Verification
	Mutation Testing on MSL
	Threat to Validity
	Partial Dependency Graph
	Instrumenting the Compiler
	Previous Technique Unsafe

	Evaluation
	MSL Commit History

	Related Work
	Conclusions

