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I. INTRODUCTION

The problem discussed in this paper has grown out of an attempt to con-
struct a theoretical framework which is suitable for the treatment of some
of the problems arising in the design of control systems. The fundamental
‘problem is to find a suitable control law, ie., a relationship between the
observed output and the control signal. In the earlier stages of the develop-
ment of control theory it was customary to postulate a certain structure for
the control law which had a few unknown parameters to be determined,

In more recent developments, the trend is to replace this postulate by the
~ postulate that the purpaose of the control system is to minimize a cost function
[, 2].

The design problem is then reduced to a variational problem, whose solu-
tien will yield the control law. In this approach the control law expresses
the control signal as a function of the state variables. Hence there is no
dynamic element in the feedback. It should also be noted that with an
approach of this type there is no analytical difference between a control law
and a control schedule, or in other words, between a closed foop system and an
open lfoop systewn.

The control law being 2 function of the state variables implics that all
state variables must be measured. If only measurements of a few state varia-
bles are available and if the system is observable, the other state variables can
easily be reconstructed by differentiation. Hence there is no natural way to
introduce, as a limitation, the fact that only a few state variables can be
measured. Thus, the treatment of the control problem as a deterministic
variational problem is not a completely satisfactory approach,

It is clear that this inadequacy arises when disturbances are neglected,
One way to remedy this definiency is te introduce disturbances as random
functions. If the control problem is still formulated so as to minimize
functionals of the trajectorics of the system, we are led to a stochastic varia-

174




Gann
-3
(¥

OPTIAIAL CONTROL OF MARKOV PROCESSES

tiorial problern. Such a problem is, in general, very difficult to solve. There
is, howcover, one special case which can be solved: lincar systems with quad-
ratic’ criteria, Sce [3-6]. This solution is the foundation of lincar control
theory which is comnplete in the sense that many essential problems, such 2s
stability, sampling rate, cte., can be solved. See [7]. The solution of the linear
problem has an interesting structure. The feedback law obtained can be
constdered as consisting of two parts:—the estimation of the state of the
systein {rom the cbserved measurements, and the calculation of the
control variable from the estimated state. The first part is reduced to the
solution of a differential cquation. 'T'he sccond part is simply the evaluation
of a inear function. This function can be obtained as the solution of a deter-
ministic control problem. Both the differential ('q\'ation and the linear
function contain parameters which can be precomputed from the a priort
data of the problem and stored in tables, By doing this, the amonnt of real
time computations required in the implementation of the optimal system is
significantly reduced. Tt should also be noted that the lincar stochastic control
theory provides an interesting approach to a class of adaptive systems: a
typical situation is the case where the disturbances have constant but unknown
averages, It is easily seen that this case is transformed to the standard linear
problem by introducing the unknown averages as new state variables. See {7].

It would indeed be interesting to pursue the same idea for stationary
systems with unknown parameters, It is casily secn that this problem can
be transformed to a nonlinear stochastic variatiomal problem where the
unknown paramcters are considercd as state variables. Hence, a generaliza-
tion of the linear stochastic control problem will lead directiy to a stochastic
variational problem. The solution of such a problem will provide an approach
to a theory of adaptive control systems.

In developing a theory for a stochastic variational problem it is natural to
rely on Markovian theory by making assumptions which will guarantee that
the solutions of the differential equations with randem disturbances which
describe the system are Markov processes. The main reasen for this approach
is that the transition probabilities of Markov processes are governed by linear
cquations even if the original stochastjc differential equations are highly
nonlinear.

The control problem can be stated as fuho\\b The system is described by
a stochastic differential cquation containing certain parameters, called control

variables. ‘The trajectaries of the system can be influenced by the choice
of these control variables, There is incomplete state information, i.e., only
a few coordinates can he observed and the measurcments of these coordinates
are affected by disturbances. T'he performance of the system is characterized
by a functional of the trajectories. The problem is to find values of the control
variahles such that the mathematical expectation of the functional is as
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small as possible, whan the vidue of the control ~amuhle 2: time ¢ niny depend
on all measuresnents prior to £, When 1iving to solve such a problem one is

i

soon faced with great mathematical difieudties,

fowever, by quantizing
both the state and vime vaniables of the preblem formulated above, we arrive
at a problem of essentially the same structure where some of the mathenatical
difficultics are climinated. Such a problem is studied in this paper. When g
solution to the quantized problem is obtained we may return o the original
continuous problem by various limit processes. The quantized problem has,
however, a valoe of its own in the sense that it represents a situation which
arises when a digital computer is used to implement the optimal solution.
In such a case the quantization in time enters naturally into the problem
as sumpling, and the quantization of the state variables is obtained from the
analog to digital conversion.

A precise statement of the quantized problem is given in Section If, Th
solution of the problem is presented in Section 111, The solution is obtained
using Dynamic Programming, and the result is given in terms of a {unetional
cquation, To obtain the sclution, some clementary results of the theory of
wonditional Markov processes are required, The functional equation ebtained
15 an analog of the Hamilton-Jacobi equation in classical calculus of varia-
tions. In Section 111 we also present an inverse result which shows that if
the hasic functional cquation has a solution, then the mavimum exists.,
This is the analog of o thearem of Caratheodory in the classical caleulus of
variations {8, p. 200}, In Section IV we give some interpretations of the
results abtained. Tt is shown that the optimal control law can be expressed
as # == ulw, 1) where w is a function of the observed outputs. The function
e = (e, 1) can be caleulated a priori, without any knowledge of the actual
autputs of the systemn, as the solution of an associated problem with complete
state information. The function 7 which is a function of the observations
must shviously be calculated in real time as the outputs are observed, Dynamic
fecdback is obtained through this computation. We can thus divide the prob-
lem fn the same way as is done in the linear quadratic case, This division is
of great importance for the practical implementation of the solution, since
computation of the function u = w(z, t) is complicated and time CONSuming,
Precomputing and storing this function greatly reduces requirements for
real time computations and is a considerable simplification in the realization
of the optimal system,

In Section Vowe compare the solution of cur problem with two associated
probiems, namely, those of complete state information and of no state
information at ali. The lutter problems are casier to solve and the solutions
will provide bounds for the solution of our problem. "The comparizon will
also make it possible to assobiate cost with state information. This provides
af interesting connection between information theary and the theorv of
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stochastic optimal control, which has not been explored. Finally, in Section VI
we present two examples,

Although the problem has arisen from study of control systems, its solu-
tion may have applications in other ficlds. In queuing theory, i~ mention one
example, it will thus be possible to treat queues so that service is made to
depend on the past status of the queue.

II. STATEMENT OF THE PROBLEM

Let {x,, ¢ =0, 1, ...} be a Markov process with finite state space and dis-
crete time. The states are labeled by the positive integers 1, 2, ..., n. The
initial probability distribution is

po = Plxo =)

The row vector formed by (8% po ... pa”) is denoted by p% Let Plu, f)
be the matrix of the transition probabilities of the process. The ij component
of P, pi,(x, 1) is defined by

Pl‘i("i 1) = P{x, ::jlxl-l = i} (21)

where

P 20 Sp ) =1
}

The transition probabilities may depend on time /, and on a sct of parameters
iy , ..., 1 which are combined to form a column vector u, and called contrel
variables or decision variables, thereby reflecting the fact that the process x;
can be influenced by the choice of these parameters. It is assumed that u(f)
for each ¢ belongs to a closed compact set U, which is called the set of admissible
conirols at fixed limes, and that_the transition probabilities are continuous
functions of u. Further, let {y,, £ =1, 2, ...} be a discrete tme random
process which is related to the x process in the following way

¥ = f(x, )

where {e;, # =1, 2, ..} is a scquence of independent random variables,
and the range of f is the integers 1, ...,-m.

The realizations of the process {y,, £ =1, 2, ...} represents the results
of the physical measurements of the process {x,, ¢ =0,1, ..} and the process
{3y, 1 =1, 2, ...} is therefore referred to as the output of the system or the
observable.

The function f(x, €), which represents the characteristics of the measuring
instruments, and the random variables {e,, t == 1, 2, ...} are specified by

gi; = P{y, =j { X =6} (2.2)
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where

'Yx'! = 0

2:4 go =1
j

A particular realization of the process y, or equivalently a particular outcome
of the measurements is denoted by 7, , ..., 7, and these numbers are grouped
together to form the vector.

7(f) = col (ny, .., i) (2.3)

The matrix Q formed by the ¢, : s and defined by Eq. (2.2) will thus reflect
measuremnent errors. Notice that Q is not necessarily a square matrix, the
number of possible output states may differ from the number of states of
the x process. When Q equals the unit matrix, we have complete staze informa-
tion, i.e., cach measurement gives the exact state with probability one,

When controlling the process {x,, £ == 0, 1, ...} we want to determine u{r)
both as a function of the outputs observed up to time ¢ and as a function of
the previous control variables u(1), ..., u(t — 1). This is to be done in such
a way that the behavior of the controlled process is optimal in some sense.

Let the observed outputs up to time ¢ be y; = ny, ..., 3, = 5,. The
relation between the control variable u(¢), the observed outputs , ..., 7, ,
and the previous control variables u(1), ..., #(t — 1) is expressed as

u(t) = '(my, oy, 1), o, u(t), 1) t=1.,N

By successive substitutions we can immediately eliminate u(1), ..., #(t — 1)
from the right-hand member and we get

u(t) = (g oy, 1), t==1,.,N {2.4)

The set of functions C = {¢(ny, w0, ¢, 1), t =1, ..., N} is referred to as
strategy or a control law. A control law C is admissible if ¢(5; , ..., 9,, t) € U
for all # and all possible 5, . As the control law C gives a relation between the
measured outputs and the control signals it will also define feedback.

The object of controlling the process is specified in the following way,

Letg(w, x, t) be a scalar function of 4, x and . Tt is assumed that the depend-
¢nce on # is continuous. The function g is called the instantaneous cost
function and it gives the cost associated with the outcome %, = » and the
control ., Further, the fotal cost of the process is defined as

N
I = Zg(u(l). X, 1) {2.5)
=1
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The smathematical expectation of L is denoted

Kl o= E Zg(u{i), X, 1) =K Lg(c(m S M D)y X ) (2.6)
(=1 1

- Tt -
where £ denotes expectation with respect to the distributions of v and yq.
We will now fonnulate the following problem.
£.1 find an admissible control signal whose value at time t is 2 function

i sserved up to that time and are such that the expected value
of the total cost is minirmal,

An alternative formulation is:

P.1' find an admissible control faw such that the expected value of the total
cost (L) is minimal. -

Remark.  In the statement of the problem it is postulated that u(?) is 2
fumction of ny , ...y ye. As #(t) is allowed to be a function of 4, this implies that
there are no delays in measurements, and that the time required to calculate
the control signal from the measurements is negligible. There will be no
cssential change in the arguments if we instead postulate that u(t) is a function
of my, - 7y, thereby allowing for a delay of the measurements and. the
control computations of s units of time. The delay s may alse be a function
of time. In this way we can get a hierarchy of problems.

One porticular case which deserves special attention is when ) = &
This means that u is just a function of time (and of the a priori information)
and that no measurements are used. The control function u(t) obtained in
this way is called a control schedule and the system obtained is called an
oper loop system, as there is ne fecdback from the measurements. These
variations in the formulation of the problem are both of practical and theoreti-
cal interest; they give us tools to analyze the influence of delays in measure-
ments and to form estimates of minimal loss. This is of impartance when
analyzing different schemes for implementing a system, and for discussions
of convergence, cte.

.

{11. SoLUTION OF THE PROBLEM

A. Dynamic Programming

Leaving guestions concerning existence and uniquencss of the solution
aside for a moment, we will now postulate that the problem has a solution,
and we will characierize this solution by a functional equation. We will
then go back to find conditions which ensure existence and uniqueness. The
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function to be minimized is the mathematival expectation of the iotal cost.
We will thus have to find ‘

mm mm E Z glu(f), x, 1) (3.1)

where expectation is taken with respect to the distributions of {x, , ¢ = 0, 1, ...}
and {y;, =1, 2, ..} and where u(f) has to be a function of the ouiputs
obscrved up to time ¢, Le, of 9, = yy, .., 7, = y;. The technique of Dynam-
ic Programming will be used to solve the problem,

Let us first consider the situation at the last step, i.c., t = N. The outputs
M = My, en Py = 70y have been observed and the problem is to determine
#(N} as a function of these. We notice that the only term of the sum in ex-
pression {3.1) for the total cost that depends on u(N) is the last one, i.e.,
g@(N), vy, N). The control signal w{N) must therefore be chosen so as to
minimize the quantity.

Eg(u(N), xy , N) (3.2}

Again £ denotes expectation with respect to the distributions of the pro-
cesses {v,, t =0, 1, ..} and {y, == 1, 2, ...}. The quantity (3.2) has to be
minimized with respect to all #(A) which are functions of 7, , ..., n, . To
perform the minimization we will first rewrite (3.2) so that the dependence
of 7y, .., yy is explicit, Using the definition of conditional expectation,
we get

Eg(u, vy ,NYy = E [ E g(u, 5y, N)} (3.3

HN) | (V)

where £, denotes mathematical expectation with respect to the condi-
tional distribution of xy, given 9(N) and E,y, dcnotes the mathematical
expectation with respect to the distribution of 7{N). The expression of the
right member of (3.3) which is within brackets, is a function only of u, 7, ...,
7y and we can thus perform the minimization. The minimal cost of the last
step is thus

j%m inl 8 g, xy . N) (3.4)
Let ¥, be defined by
Iy = m“iniu‘%) glu, xy , N) (3.5)

We notice that I is a function of 9, , ..., ny and N, but that the dependence
of Vy on 7;, ..., gy only enters through the conditional distribution of x)
given n{N). To emphasize this we introduce

wN) = Plxy, = "l}’x,= T oo IN = 5} (3.6)
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and
w(N) == (20(N}), w,_,(N) o) 3.7
and we write

= V) (3.8)

Summarizing our findings so far, we find that the minimal cost duxmg the
final step is

B V() (3.9)

We now proceed recursively to show that the minimal cost of the N — &
last steps can be writien as

N
min ... min E Y, gu(t), x, 1) Vialwk + 1)) (3.10)

- v;(k+1)

w1
t=k-+)
where we have introduced
P N
Vi) = min | E ... min "’1(:7\,)‘2: 2(u(t), %, 1)
N-\
= }vﬁ)%g(((q(!)’ t), x¢, 1) (3.11)

in analogy ta (3.5). To obtain this result and a recursive equation for Vy
we will use Dynamie ngmmmmg and proceed by induction,

We assume that the statement is true for the N — k last steps and we will
show that it is also true for the last N — & -+ 1 steps. Consider the situation
at time { == k&, The situation is this: the output signals 3, = 73, ooy Y& = W
have been ohserved, and the control signal u(k) is to be determined, We notice
that only the last N — & terms of the cost function are affected by the choice
of u(k). The control signal #(k) must therefore be chosen so as to minimize
the sum

E i gu(t), %, 1) (3.12)

t=X

Due to assumption (3.10) we have

N
min ... min E §g(u(f), X, 1)

am mlkx,\ Efg(u k), x(, k) 4 E f"k“(w(k +11 @1

u(
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By using hypothesis (3.10), we are thus left with only one minimization,
The control variable (k) thus has to be chosen as a function of s ver M
80 as to minimize (3.13). To perform this minimization we rewrite {3.13)
in such a way that the dependence of u(k) on 7, , ..., 7; is explicit. We get
from the definition of conditional expectation:

Elgu(k), 5, F) + B Vys(uuth + 1))
(k+1)
= B LE S0, 5 B) 4 B Ve -+ 1) (3.14)

= E s, e by are ) + [ Vet 4 1) dF G, | (k)]

7k}

where F(&, | 7(k)) and F(z,.,, | 5(k)) are the conditional distribution functions
of x(k) and 3(k + 1), given g(k). Ta cvaluate the last integral of (3.14), it
is necessary to exhibit explicitly the dependence of w(k -+ 1) on 7;,,. Te
do this we make 2 digression.

B. A Recursive Eguation for ithe Conditional Distributions

In order to obtain the relation between w(t) and n, we will express u(t) as
a function of 7, , ..., 5, in terms of a recursive equation. To do this we consider
the probability

PEcimy ) = Plxg = &, = Trs em Ve = ) (3.15)
If

2wy e 0

it follows from the multiplication rule for conditional expectations that

. _ Pl gt = 1)) RT3
e = et =1y 10
But
Pt — D) = 2, p(& w0 £y it — 1))
[
= 2o PE L fa ol — D ot — 1) (347
€y

We have further

PES ] Syt — 1) = pl&1 £y, nlt — Dplny | &4, gyt — 1))
= pl& 1 E)p(nt ) (3.18)
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where the last equality follows from (2.2) and the fact that x(1, w) is a Markov
process, We now get from (3.16), (3.17), and (3.18)

Zple § EOp(Ee ) € 3)p(Ery | 7t — 1))

£,
(] lt) = —5 3.3
PlE 62 ):: POt EOP(E) E)p(éiy [ = 1)) . ( )

Now introducing p, ¢ and w(f) from the equations (2.1), (2.2), and (3.6)

we get the following recursive equation for w,(t).

X, qipailuke,(2)
A+ 1) = gl s 3.20
ol ) X, Ez‘ gup sty () ( )
where .
ey "':j (321)
Introduce the notation
23 (u, (1) = 2, gl (t) (3.22)

Notice that z;; are all nonnegative and that a second index of zy refers io
the outcome of the measurement. Introduce the vector

i == col [3y, vuy 2] (3:23)
and define the norm
Batll =2, 1 a1 (3.24)
The Equation (3.20) then becomes
i 3t w(t)) ,
w(t + 1) = H“(Fi;(l—)ﬁ {3.25)

Notice that the norm || 2¢ | has a physical interpretation as the conditional
| phy P

probability
Ul =Pt + 1) =1y =m0 =n]

L. Resufts

Having obtained the desired recursive equation for w(t), we will now return

to Eq. (3.14). We get from (3.14) and (3.25)

ElgCulk), x(8), B) | B Viteelh = 1) (3:26)
/(u, w(8))

q(“ )2{8’ u(k), £, k) (k) + 2 ky1 (‘—‘;}‘;‘{;‘E{)‘)ﬁ-) Ve, w()l
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Hence

Bl £ 20800 = (1) (3.27)
where .

.g Lo , . 2w, w(kY) ; ] }
Vi(so(Ry) == Tain zzgw; thR)w (k) + Z Ven (”:Tg,\(ﬂh;:(g)’m‘} s, ﬂ(k))“(

(3.28Y

The minimal cost of the N —- & -f- | last steps is thus of the form (3.10)
Hence, from the assumption that the minimal cost of the last N — k steps
is of the forn (3.10), it follows that the minimal cost of the last N — & 1 |
steps is also of the same form. Further, it was shown in Section TI1, A that
the minimal cost of the last step has the form (3.4). \Ve have thus completed
the induction and have achieved the desired result.

Sumrmarizing, we get :

THEOREM 1. Let the control law €0 — 10ze(t), 1), 1 =1, ..., N} minivize
the functional (2.6) and let

N

Viee(k)) = min £ - min ”é'.;)zg(u(t), X, 1)
4

ulk) lyok) g
=k

=K é gt} 1),y 1) ' (3.1

where
[2(O))i = Pla(t) = i | 9(2)] (3.6)

Then

, L . e 8w, w(k) - .
Iy(ae{h)) = min ;2'4 glu, 7, Ry (k) + % ey (—I?'—»“T((-!Zlif((;))\T) i 59, u(fe))ius

- Eg(c"(w(k), k), 1, kyw,(k)

+ 2 V),-+l ( z»’(cﬂ(u‘(}?), k), ﬂ'(k)) ) Al Zi(fo(fl.'(k), k), w(k)l!

5 I 21(cae(k), k), w(k))
N )
= 2 2 8elt), 1), i, 1w (1) (3.28)
where
[0 (D], = 2 qupalue (1) (3.22)
and

NN :E%x,»!

i
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We have thus obtained a necessary condition. We will also give a suflicient
condition. ‘

THEOREM 2. Let the functional equation (3.28) have. a solution 1 {ee(D)),
then the problem P.1 has @ solution, the control laze C° minimizes the functional
(2.6), and the minimal value of (2.6 1

EVy(ae(1) (3.29)

Proor:  Let € = {c(y(t), ), t =1, .., N} be an admissible control law.
Introduce ’ .

3

7

|

W(ee(R), 9(R)) = 2y oy £leCut), 1), 1 tew(t) (3.30)

"
{=k &

The quantity W (ze(k), n(k)) s the expected loss over the time interval
[, N] given that the control law C is used and given that at time k n{k)
is ohserved., If the control law C is used the expected cost of the Jast N -~ k

steps is thus

IV Gll), () (3.31)
and the value of the functional (2.6) is

EIW(se(1), m1)
T

Notice that (k) is 2 function of n(k); it is, however, advantageous to scparate
the dependence of 1V, on w(k) and n(k) as is done in (3.30).
The function W, (a(k), (k) satisfies the equation

sl k) = 2 (enth), B £ Ryeei(k)

(3.32)
s ([ FelR), R), wk) C Y st y
# B W (i oo 1)) 1 iR, B, sl
where
Ty 3]
We will now show that
TF (ae(6), n()) = Tz(t)) for all ¢ (3.33)

The statement is obviously truc for t = N. We will now show by induction
that it holds for all ¢,
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Assuming that (3.33) is true for ¢ = k& 4 1, we get from (3.28) and (3.33)

Wi(w(R)) == 2, glc(n(k), &), i, kyw (k)

, F(e(p(k), k). =(k)) 7 W il ol ‘
+ ; Wi (!‘? SRy, B), k)] nlk + l)) 1 59 e(n(R), k), w(k)) ||

2 2, g(clak), k), 1, kyew, ()

2 (R ) stctaih, B, i

2 Vi(w(k)) (3:34)

where the first inequality follows from the assumption (3.33) with 2 = k + 1,
and the second inequality follows from (3.28). We have thus shown that
(3.33) with + =k + 1 implies (3.34), thereby completing the induction.
Now we put & = | in (3.33) and take mathematical expectation with respect
te the distribution of %, , hence
EW (1), m) = EF(se(1)) (3.35)
™ n
Further, the cantinuity of g(u, v, 1) and p, (1) implies that if (3.28) has a
solution I, then this solution is cantinuous in 7, which implics that C = C?

gives cquality in (3.35). Q.E.D.

IV, DiscusstoN oF THE RESULTS

We will now draw seme conclusions {rom the results of Section 111, The
functional cquation (3.28) can be solved a priori, knowing only the instan-
tancous cost function g(u, x, t), the trausition matrix P, and the observation
matrix (0, and without any knowledge of the actual values of the ohserved
output y. A typical clement of the control law expresses the control variable
u(t) as a function of the nutputs obscrved up {o time ¢, that is

u o= u(n(t), 1) == u(eft, (), 1)

Notice in particular that for the optimal control Taw the dependence of
on y(¢) only enters via the conditional distributions w(t). The function
u = u(w, 1) is obtained directly from the solution of Eq. (3.28). This function
can thus be caleulated off-line without any knowledge of the actual output
signal, :
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The function w —= =(y(7), 1} which exprosses the conditional distributions

of the state w(t) as fupctions of the memsured output signals 7{t), 8 given

recursively by the equation (3.25). 'This function must ohvicusly be evaluated

in real time, as the outputs are ohserved.
We now observe

Lennia V. For @ control law stch that u(i) == e(w(t), 1) the set of conditional
probabilities {a(t); t =0, 1, 2, .y 15 @ Markev process. For fived t ¢ [G, 1, ]
w(t) takes its values in the positive orthant in R". The iransition probebilities
uf the w-process are given by

Py, T u) = Pt + 1) e Dlagr) = x] = 2 Lainyy (40)

kek

where <%(w, y) is grven by Fys. (3.22), (3.23) and

Koo Ve Sl

=S N

)
il {
P isin gt )

(4.2)

-

Initially, w(@) equals p with probability one.

Proor: For the optimal control law wu(t) is a function of z(f) and the
cquation (3.25) gives

Plac(t 4+ 1) Vi), wlt — D, ey {1)) = Plac(t + 1) | ()]

which implics that w is 2 Markov process. The formula (4.1) for the transition
probability now follows from (3.25). Q.E.D.

Notice that the transition probability for the w-process has its mass concen-
trated in o points. Also, notice that as the transition probabilities (2.1)
depend en x, the w@-process can be influenced by the choice of control
variables, We will now consider a variational problem relative to the w-process.

Let g(u, £) denote the vector

' USRS col {g{u, £ 1) ooes 2, n, )] (4.3)

where gu, 1, 1) is the instantancous cost function introduced in Section IL
Introduce the functional

£ (2w, 1), 54(0)) (4.4)

where (a, b) denotes the scalars product of the vectors a and b and £ denotes
mathematical cxpectation with respect to the distribution of 2(0), ..., =(N).
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MNow consider the following problem:

£.2 find a sequence of admissible control variables wt), t =1, .., N
such that (4.4) is minimal. The value of ¥ at time ¢ may depend on «(0),
(1), ., w(t).

We have the following result:
Tugorexs 3, The problems P.1 and P.2 are equivalent in the sense that if

one of the problems has a solution then the other prablemt aiso has a solution.
Furthermore, the optimal control law is

u(t) = (se(r), t)
in both eases where ¢ is given by Theorem |.

Proor:  In problem P.2 there is complete state information and the selution
is thus well-known. See [9]. Assume that .2 has 3 solution and introduce

N
Vi = min & ):‘{::(g(u. 1), 0 (@), wlt 1), o, n-(o}i (4.5)

This implies that at each time ¢ the optimal value of the control variable is a
function of w(1), ..., «(¢). 'The minimal value of (4.4) is

ot (4.6)
But e is a Markov process, hence
R . . j
ooz T(ee()) -= min E I;Z: (g, 1), (i) w(l), (4.7

‘The AMarkovian property of « thas implies that the optimal control variable
u(t) is a function of «(f) only. Using the standard srgument of Dynamic

Programming we obtain the following functional equation for I {se(1))
(eet)y — muin (e, 1), (D)) = B[V (et 4 DY eel6)]} (4.8)

Hence

Pee(t)) - min (gl 0, w(0) < [ (0P dv !l (4.9)

where P(x, T, ) is the transition probability of the Markov poress
The cquation (4.1) new implies that Eq. (4.9) is identical to (3.28).11ence
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if P2 Tuas a solution then (3.28) holds and Theorem 2 then implics that the
prolilem .1 also has a solution. The reverse statement is proved in the same
way, using the equivalent of the 'Theorem 2 for problem P2. Q.E.D.

Theorem 3 thus implies that the problem of optimal control of a Markov
process with incomplete state information can be transformed to a problem
of optimal control of a process with complete state information. Naotice that
the stale space of the associated process with complete state information is
the space of probability distributions over the states of the original problem,
Also, notice that the transition probability distribution of the associated
problem has its mass cancentrated at most m points, where m is the number
of possible outcomes of a single measurement,

The problem of controlling a Markoy process with incomplete state infor-
mation can thus be subdivided into two parts:

1. The solution of the functional equation (3.28), which is equivalent to
solving a variational problem for an associated Markov process w with
complete state information. This will give u == a(w, 1),

3. The calculation of the conditional probability distributions 2(t) of the
states of the associated Markov precess from the measured output signals 7(f).

This subdivision is a gencralization of a well-known theorem for lincar
systems with a quadratic loss function [3, 4, 6, 9}. ’

In the theory of linear systeins with quadratic criteria the states of the
associated problem are simply the conditional means of the original states,
while in the problem studied in this paper the states are prohability distri-
butions on the state space of the original Markov process (x4 =0,1, ..}

The possibility of separating the problem in this way is of great importance
for the realization of optimal systems. The fact that the first part of the
problem can be solved off-line means a great reduction of the requirements
for real time computations, '

. V. Bounps ForR OPTiaAL RETURNS

In this section we will give some bounds on the solution of the functional
equation (3.28). We will ubtain these hounds by modifying the amount of
data which is available for the choice of the control variables, Two particular
cases will be considered, namely, the case of complete state information

and the case when control is based only on a priori information and wo.

measurements are used (open-loop system, control schedule). The results
will cnable us to assign a value to the information which 3s available for making
a decision. .

|
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A. Compietz State Informatien

Consider the particular case when the measurements are exact, ie., the

&
neastired ¢ v will coincide with the state & with probability one. Hen
Ieasuredg D“ltpl}&}’ will comncide with oo stale & Wil propasiiity one, Henge

Q=1 (3.5

b

Let m denote the measured output at time b and we get

7"1'(k) == 8y (5'2)

with probability one. Equations (5.1), (5.2), and (3.22) now give

iy = Si!'pml
Z: z" H = I’mi
Introducing this into (3.20) we get
Fi(eelR)) = 2, Sili)e,(k) (5.3)

I
where

Si(m) = min [g(u‘ m k) b2, Skﬂ(i)pm(u)] (5.4)

In case of perfect state information () is thus a hnear function of u().
We alse notice that the functional equation (5.4) is the equivalent of the
Hamilton- Jacobi equation for the following variational problem. Let a(f)
be a Markov process with the transition probability P(u). Find a control
w(t) which is a function of x(f) such that the functional

N
E, gu(t), x,, 1)

. 1ol .
is minimal.
This is casily verified by appiying Dynamic Programming to the problem,

B. Open-Loop System

In this section we will consider the other extreme case, namely, the case
when no a posteriori state information is obtainable. We assume

gis = C == constant for all f and (5.5)
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1
il
il

C - 2 palmywd?)
Sy C (5.6)

>, palwyedt)

o
—
-

4
=
1

"The conditional probabilities are thus independent of the outcome of the
mcasuremenis, which means that the measurements do not contain any
information of use for the caleulation of 2z, Using (5.6), the cquation (3.28)
reduces o

. . )
Vi) = min |3, gl i, Biel) + Vea@P@)| 6D
[

Natice that Eq. (5.7) is the cquivalent of the Hamilton- Jacobi equation
for the following variational problem.
Consider the difference equation

w(t - 1) == w({t)P(¥) (5.8)

Find an admissible control # which minimizes the functional

Mz

o 1e), i, ke | (5.9)
{

fe

-

Also, notice that as the conditional distributions of the state are indepondent
of the actual observations, the solution of (5.8) will give the cost associated
with the best control schedule. Compare Section I1. -

‘The functional equations (5.4) and (5.7) are considerably simpler than the
cquation (3.28). We will now show that the solution of (3.28) is bounded
from below by the solution of (5.4) and from above by the solution of (5.7).

Tueowsy 4. Let the solution of (3.28) by V(@) and that of (5.3), (5.4) be
7,/ (ee) then

Vi'(w) < Vi(w) (5.10)

Proor:  We will obtain the results by going through the steps of the proof
of Theorem 1 and vsing the following incquality at each step.

min i flx,y)dy = { min f(x, y) dy



Consider Fqs, (3.4) and {3.5), We get .

Voloe(N) = min & gle, vl N) 20 B omin gl xy N)
e uo NG o iNY u ’ 4

= N Selie (Y s BN
H

We will now show by induction that
I Ge(t)) < Va2 )) for all ¢

Assuming that the inequality holds for ¢ = & + | we get

I
i

Vya{ee(t)) == min{ F g(u POBS I

1 £
wooxgait u‘lf“l)fr/(i’}

Vilelt -+ 1))

cmind u, xp, 1) &
u I hi 3( vty B}

aleelt 5 1)

wit - )\!'(H

W/
v

. . S o g }
E min gl w0, 0) = 2y Sealpedu)

@ynit)  u

O h i 2

= 2, S k) = Vi e(R)

and the theorem now follows by complete induction,
We also have

TueoreM 5. Let the solution of the functional equation (3.28) be V (w(k))
and let that of (5.7) be V', (w), then

v (e(k)) < V() (511)

Proor:  Equation (3.11}) gives

“da(k)) = min E .. min I; Zg(u(f), (1), t)

wik} n(l) uiNy ¢}

N
< min ... min £ 3 o(ae(2), x(2), 1)

wik) | uiNy i) "-i

N
. ) . i
= min.omin 'Zﬂ (2;}(1:(!), i\ D (RYPCE0Y,)

)
0.E.D.
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The Theorews 4 wne 8 thus mply that the minimal value of the loss
function is bounded by

FIVG) < BV Ge(D) < BVIw())  (5.12)
1 K3

n -
whare the left-hand member represents the minimal cost in the case of
perfect measurcments and the right-hand member represents the minimal
cost in the case of no measurements at all. The difference

;)[';’[Kf’;’(ru(l)) — (1)) (5.13)
is thus the value of perfect state information, and the difference
B[ (w(1) = Py/((D) (5.14)
is the value of incompiete state information.
VI, ExanipLes
I'n this section we will consider some examples.
Example 1. Let the transition matrix be
P = (1 —u u } (6.1)
u 1 — 1 .

The set of adnissible controls is U == [0, 1]. Fusther, let the observation
matrix be

o= 1, 1;9) ©2)

‘This means that the probability of getiing a correct measurement is g.
“Further, let the cost functions be

.

(1 a@d) =2, t=0

it You, f) = |
glu(t), v, 1) {0 all other cases

(6.3)

This implics that the total cost equals the probability of being in state { = 2
at the final step of the four step process.
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We get from (3.27)

-
By = Zq“p_\l-w, | [§ BRI T) VN S 1IN
a

=t N X
Fyg = 24 Bepar, = (U= Ut - ey 4 wewy]
§

~ (6.4)
i = anxf’sz”s w2 (1 = lurey + (1 - wey]
Dy == 2‘12:/”,»2“".\ = qluaey (1 - )]
Consider the functional equation (3.28). We get
V() == 1w, (6.5}
g ’ in (212 ey 0 B o) i (e s
Pa(w) = min (“;ﬂ LR 5 fi 2* H) == min (345 b 24)
6.6)

= in [re, + sy — wy)] 5= min (2w, w,)
u

The minimum occurs for the sirategy

wy, << 0.5

1
v ;0 w, > 0.5

Now consider the next step. We get from (3.28)

. P PSRN -1} BT Diain (12 %
I"3(10) = min i ' min (.irﬂ , lrz—lﬁ) 4l 221 min (r~,~~ -—»'“’37)

== muin [min (2, , 25) + min (5,5, 2.,))

We have four cases

Loz Soa, 3y > o2y
., 7y > 2y Zyp < e
UL oz, <25y, Ty = Zyy

M -
Vo 3y <oy Syz < Zpe
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We find that the costs and the optimal strategics of the various cases are
H :

)] wy < By

P = omin {wy , mog). .
L N l) {O 'ZU‘ ~. @,
I, ¢Ve=1-9 u arbitrary
1. =g #  asbitrary
. , . (0 oy < w
IV, 17 - min (e, w,) 0 o= : b

oy >y

Ve find that case 1 is not possible when ¢ <. 0.3 and that case I11 is not pos-
sible when g 2 0.5, The winimal cost is thus

V() = min{soy , %0y, go) (6.7)

where
go = min{g, I — q) {6.8)

Notice that the strategy yielding the minimal cost is not unique. It is easily
verified that either strategy T or 1T will give the minimal cost, There are also
other strategics for which this occurs. For example

I 0wy < g

g cty < 1 —qq, 0Laxl
0 1—g<m<l

ﬁ == n

A

We thus have the equivalents of conjugate points in the classical caleulus
of variations, Now consider step 1. We get from Egs. (3.28) and (6.7)

Vy = m‘;En {min (zyy , Zo1 » Goll 20 4 min (235, 202, gl 22 1)}
We have now 9 cases

min(z,y , 2o, Joll 2 1) min(zy, 222, qoll 2° 1)

L oz iz
}E; Fny ’ Zye
L gql = s
. =, -
V. =y Zag
VL gl 2! || EL)
VI =z, goll 2
VIHL 2y golt 71

IX. g0l 2| goll <* |l



The minimal costs and the aptimal strgege:

poard
=
=2
=
I
i
-
=
—
Il
=
a
s
=3
—

o V) =1 —g

UL V) = |20 fra W i

Wy I i,

wher

B =gy - 990
W, Vi) =g

V. Vi) = min (wy, )

; , awy - ey w, LW
VL Pyw) = |2 TP e Sy
atr, + By wy > W,
. aw, -+ Bw w, < .
VIL Py = |°5 0% St
Lo, + Puy Wy T iy
where
@ =g 1 gy~ 940
) B = 990
1 , anwy - P, 10y < 10,
YHIL Vi(w) =
o, 4 Beyy W > w
where

«=1-—q-tqg
B = g6 — 4%
B, Vi) = ¢qq

i

196

P

U VaTIols Qused are

We find that if ¢ > 0.5 cases 1V, VI, and VII are not possible, and similarly
if ¢ <2 0.5, cases I1, I1], and V1II are not possible, We find that

Vi(w) = min(wy , wy, xpwy + Boteg, ageey + Borry) (6.9

where
@ = 20y — 4o’
B = ¢’

(6.10)

In Fig. 1 the functions V,(w0). Vy{tw), and Fyfse) are graphed for g = 0.8
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d optimal control strategics, i.c., the optimal values

We have thus obtaine
of the conditional

of the decision variables have been espressed as functions
Srobabilities of state, w,(f). To complete the solution it s now necessary (o

e e

1o g

<V,

0.5 4

Fia. 1. Qptimal retumms for the four-stage process of Example 1. g = 0.8,

relate the conditional probabilities of the state to the measured outpuis

of the systemn, We get from Eg. (3.20)

iiiiiii ul(_ta)*[g‘:;jt_(’rﬁ)q] 4o ,.(t) g u(t)
3] + U ¢ - u(f)(2g — 1]

(g + (1 -
ifyp(t + 1) =
wy(t - 1) =
(Nt - —9_:1@(4 - *>LL~¢&,L~£12(1 |
Ol - () + u(H(2g = DY+ wDlg 4 w3 - 29
if w(t 4 1) =2

wy()fl - ¢ +__11(D_(q;_1)] + wyft) - w(t)(} — q)
T ig + WO = 29 e[~ ¢ - u(h)(2g - 1
\

if y(t - 1) =

et 1) =
wft 1) ay(t) - u(t) g + oty *qll(f)l_M e

T (D[ - u{t) - u(:)’(ﬁ{'—’l 1 ]'C‘}Z';(?SII; Tty 23
if )(f -+ 1) == 2

which completes the solution of the problem.
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It is of interest to compare these results with those obtained in cases of
very accurite and very inaccutate measurements. In the case of complete
state information we get from Eg. (5.3) and (5.4)

' \ _— .
Vi) = wy

Fy'(w) == V' (w) = Fy{w) =0 (6.11)

If the measurements are not used at all, that is, a control schedule is used,
we get from Eq. (5.7)
() = w
o (W) = w, (6.12)

i) = Vi) = Vy(w) = min (z, , w,)

From Theorems 4 and 5 it now follows that

0 < V(w) < min(eey, | —wy) f=1273 (6.13)
An examination of Eqgs. (6.5), (6.6), (6.7), (6.9}, (6.11}, and (6.12) will also
give the cost associated with the state information. See also Fig. |,

Example 2. As a second example we will consider a case where the set of
admissible controls is a finite discrete set, Theorems 1 and 2 still hold in this
case,

'The transition matrix of the problem is given by

u My Pis bn P2y
i 0.5 0.5 0.4 0.4
2 0.5 0.5 0.7 0.3 {6.14)
3 0.8 0.2 0.4 0.6
4 0.8 0.2 Q.7 03

The instantancous cost function g(u, x, 1) is independent of ¢ and is given by

1 20 17 10 7 (6.13)
2 —~5 —8 ~15 --18
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The ohservation matrix { is given try

¢~ (o3 o3 ©19
“Fhe transition matrix of this example is taken from the toymakers example
of Howard [10, p. 28], Howard usca the two-state Markov process as an
idealized model for a manufactusing process. State x == 1 is associated
with the production of a successful toy and state x = 2 is associated with
the production of an unsuceessful toy. The four possible decisions represent
the following actions:

4 = | no advertising and no research
4 = 2 no advertising, but research
u = 3 advertising, but no research

i = 4 advertising and research

The payoff matrix is different from Howards example.

‘The inclusion of uncertainty in the state information would correspond to
the case that the manufacturer docs not know whether the toy currently
being produced is going 1@ be successful or not. The problem we consider
‘s to maximize the profit over four steps.

! 4
max 2, £(xe » (1)) (6.17)

=l

‘Theorems 1 and 2 are easily modified to handle maximization instead of
ininimization. From (3.5) we get

 (aw) — max Bglu, %)) = 20w0,(4) — Swid)

We will now proceed recursively and solve Eq. (3.28). We get from (3.22)

7 T 5y -3 1y

{ 0.08w, -+ 0.32 —~0.03w, + Q.18 0.02uw, + 0.08 - 0.07w, + 0.42
2 - 016w, + 0.56 0.06:, + 0.09 —0.04u, + 0.14 0.14w, + 0.21
3 0.320, - 0.32 012w, + 0.18 0.08w, 4 0.08°  ~—0.28w, + 0.42
4 0.08uw, + 0.58 ~0.03w, + 0.09 0.02w, + 0.14 —0.0Tw, -+ 0.2%
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Hence, for { =

-~ . o -
. ;g(u. e, + 2’“‘ (uﬂ) e |
1 2755,
2 20,0, -+ 4.5
3 35.0w, — 10.0
4 © o 27.5w, ~ 4.5

and we get

{20.02; 4 4.5 0,
127.5u, By

ol

Vy(w) == max (27.5%, , 20.0w, + 4.5) =

VA

Proceeding in the same way we get for ¢ = 2

oy -
u %;,g(uy )+ }'4 I (,‘:,'l) =t
i 27.375m, + 7.650
2 202501, + 11.775
3 34.5002, — 2.350
4 27.750w, + 1.250

hence

Fofw) = max (27,3752, -+ 7.650, 20.250w, + 11.775)
420,250 +- 11.775 1w, < 0.5789
2735wy + 7.650 wy, .- (L5789

Similarly, we get for ¢ = |

2t

u Eg(u, Dw + Z |14 (1-1-:-“—’-.'"1) =

[ *

27.38%w, + 15.092
20.222w, + 19,259
34.555w, + 4.092
27.38%¢, - 2.259

A A R e
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31 . NS TN Y —
Ve purw compage the resuns for the cus
.

of incomplcte stafe information

1
i

one obtained in the case of perfeet state information and in the case

of a contral zehedule.

h

o
™

Tt us first consider

at f==d 18

case of perfect state information. The cost table

Hence

At f == 3 we get from (4.4)

e S T T SRS
e et T

//
B
—
»
ot
-



Ssrring 2
Henee
Fla'la) KN 12,600, == 214w 4+ 126

\\
- e.x
. 1 z 3 4
“
"
\\
i 44.30 4130 41.32 EHIY
2 10.96 2098 6.96 iD.9%

Hence
Iy (se) o= 4430y 1 20980, = 2332, 4+ 2098

Now consider the case of a control schedule, We get
T
Fya) == 20wy — 5wy

We get the following cost table for 1 == 3

It 2,{;(« Yy ¥ PiaeP)
i 27. 5w|

pd 200w, + 4.5

3 35.0u, - 10

4 275w, ~— 4.5

The equation (4.1} now gives
\20.0'20, + 4.5 w, < 0.6

Py/(w) = max (7.5, 20 Oy 4.5) == oy ! ok
5 L > 0.

J

Similarly, we get for ¢ -= 2 the following cost table

u glu, 1) ey + Veg(eP)

i 270 - 1.5

2 max(i9. %, + 1825, 21.00, + 10.5)
3 max{i3w, - 2.5, 36w, - 4)

4 17.75w, + 1.25

It
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Pre) o= max (19,50, + 11.25, 27.0w, + 7.5)
j19.5w + 1125wy <05
(270w, + 7.5 w, > 0.5

Finally we get for t =1

u zé’(“’, )i, + VyywP)

]

26.5tw; + 14.05

19.6m, + 18.4

max(32.8w, + 4.05, 358w, + 3.30)
277w, + 8.4

R S

Hence
T(ae) == max (26.5w, + 14.05, 19.6w; + 18.4)
196w, - 184 wy < 0.63
T 1255w, + 1405w, > 0.63

Tn Fig, 2 we have graphed the optimal value of the cost function for problem 2,
The shaded arcas in the graph represent the bounds obtained on Vi(w)

50 BNV

v

40

0

20

Fig. 2. Optimul returns for the four-stage process of Example 2. The lower
Vit indicates the maximum return for an open-loop system. The upper limit of the
«haded area indicates the optimal retern for a system with complete siate information.
Lines I, to 17, show maximum return for the system w ith incomplete state information.
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from Thearerns 4 and 3. The upper limit of the shaded regron is thus the
maximal grain in the case of compicte state infornation and the lower boundary
represents the maximal gain when no measurements are made. The hiffer-
ence In the ordinates of the curves limiting the shaded region will thus

represent the value of having compleie state nfoimation,

V1. Nores

The foundations of the stochastic variational calculus have essentially
been laid by Bellman [9, 11, 12], who first developed the basic taol, used in
this paper, Dynamic Progranuning, Bellman has strongly emphasized the
use of Markovian models for control problems; this is also done by Feldbaum
(13}, Florentin [14], Kolmogorov {15}, Krussovskii {16], and Pontrvagin
{2, chap. VI1].

The case of complete state information is extensively treated. The case
of continuous time continuous state Markov process is discussed by Fleming
[17), Florentin [14], Krassovskii {16]. The case of Markov chains with com-
plete state information is treated by Zachrisson [18-20], who considers the
game situation. Results on Markov chains are given by Bellman [9] and
Howard [10].

Apart from the lnear quadratic case [3-6, 16, 21]; the case of incomplete
state information is not well-known, The Theorems 1 to 5 of this paper are
believed to be new. The concept of conditional Markov processes, in partie-
ular the equation (3.19) of Section I, B is fram Stratenovich [22].
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