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Abstract

Introduction: Solid tumors are less oxygenated than their tissue of origin. Low intra-tumor oxygen levels are associated with
worse outcome, increased metastatic potential and immature phenotype in breast cancer. We have reported that tumor
hypoxia correlates to low differentiation status in breast cancer. Less is known about effects of hypoxia on non-malignant
cells. Here we address whether hypoxia influences the differentiation stage of non-malignant breast epithelial cells and
potentially have bearing on early stages of tumorigenesis.

Methods: Normal human primary breast epithelial cells and immortalized non-malignant mammary epithelial MCF-10A cells
were grown in a three-dimensional overlay culture on laminin-rich extracellular matrix for up to 21 days at normoxic or
hypoxic conditions. Acinar morphogenesis and expression of markers of epithelial differentiation and cell polarization were
analyzed by immunofluorescence, immunohistochemistry, qPCR and immunoblot.

Results: In large ductal carcinoma in situ patient-specimens, we find that epithelial cells with high HIF-1a levels and multiple
cell layers away from the vasculature are immature compared to well-oxygenated cells. We show that hypoxic conditions
impaired acinar morphogenesis of primary and immortalized breast epithelial cells grown ex vivo on laminin-rich matrix.
Normoxic cultures formed polarized acini-like spheres with the anticipated distribution of marker proteins associated with
mammary epithelial polarization e.g. a6-integrin, laminin 5 and Human Milk Fat Globule/MUC1. At hypoxia, cells were not
polarized and the sub-cellular distribution pattern of the marker proteins rather resembled that reported in vivo in breast
cancer. The hypoxic cells remained in a mitotic state, whereas proliferation ceased with acinar morphogenesis at normoxia.
We found induced expression of the differentiation repressor ID1 in the undifferentiated hypoxic MCF-10A cell structures.
Acinar morphogenesis was associated with global histone deacetylation whereas the hypoxic breast epithelial cells showed
sustained global histone acetylation, which is generally associated with active transcription and an undifferentiated
proliferative state.
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Introduction

The tissue-oxygen levels vary considerably between and within

different organs. Low oxygenation, hypoxia, can occur locally for

numerous reasons such as increased cell proliferation, inflamma-

tion, fibrosis, and injury. In the breast, benign sclerotic lesions are

linked to increased risk of invasive breast cancer and this risk

increases with time and lesion size [1,2]. These sclerotic lesions are

poorly oxygenated, a state that most likely increases with duration

and size of the lesion. We hypothesize that persistent hypoxia may

play a role in malignant transformation in hypoxic tissue-regions.

However, the effect of low oxygenation on non-malignant

epithelial cells is not well explored.

The influence of hypoxia in solid tumors and on tumor cells

has been more thoroughly studied. With increasing tumor-size

the ongoing growth of the cell mass gives rise to elevated intra-

tumor pressure and insufficient perfusion leading to hypoxia

(reviewed in [3]). Hence, tumors in various organs, including

the breast, are poorly oxygenated compared to the correspond-

ing normal tissues. Extensive tumor hypoxia correlates with

worse patient outcome and treatment failure [4]. Hypoxia

induces a large number of biological responses, such as

neovascularization and adapted metabolism. The cellular
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adaptation to oxygen deprivation is mainly guided by the

hypoxia inducible transcription factors, HIF-1 and HIF-2. These

dimeric factors contain a unique a-subunit (HIF-1a or HIF-2a)

and share the b-subunit (ARNT). HIF-1a and HIF-2a are

regulated in a similar manner, primarily by a vast increase in

protein stability at low oxygen conditions [5]. Direct HIF

transcriptional targets include vascular endothelial growth factor

(VEGF), BNIP3 that is involved in cell survival, and the OCT4

and BHLHE40 transcription factors, which are associated with

differentiation status and tumor progression [6,7,8].

Hypoxic cancer cells, including breast cancer cells, acquire a less

differentiated phenotype with expression of stem cell markers

[8,9,10,11]. In ductal carcinoma in situ of the breast (DCIS),

hypoxic cells surrounding the necrotic zones are morphologically

dedifferentiated by standard clinical histopathological criteria and

the hypoxic cells show no tendency to organize in semi-polarized,

ductal-like structures [9]. These unorganized cells show high

expression of HIF-1a protein and the mammary epithelial stem

cell marker cytokeratin 19 (CK19) [12,13]. In estrogen receptor

(ER) positive tumors the ER expression was down regulated in the

hypoxic cells [9], most likely as a part of a hypoxia-induced

dedifferentiation process [14]. We hypothesize that hypoxia-driven

tumor cell dedifferentiation is one mechanism by which DCIS

lesions and pre-malignant cells shift to a malignant and invasive

tumor phenotype since a low stage of differentiation correlates to

poor outcome in breast cancer and other solid tumors. The HIFs

might have direct roles in this process and we have shown that

high levels of HIF-2a correlate to poor survival and distant

metastasis in breast cancer [12] and neuroblastoma [15]. Whether

hypoxia and activation of HIFs play an early role during the

tumorigenic process is not known.

To investigate the effect of hypoxia on epithelial polarization

and cellular differentiation in non-malignant cells at three

dimensional (3D) conditions, we chose two models of extra

cellular matrix (ECM)-induced acinar morphogenesis; human

breast epithelial cells isolated from normal tissue and the well-

characterized immortalized epithelial cells, MCF-10A. In

normoxic 3D culture these cells form growth-arrested acinar

structures of palisade cells with polarized protein and organelle

localization lining an evacuated lumen [13,16]. Here we show

that under hypoxic conditions the cells grow as disorganized cell

lumps without the outer polarized cell layer or lumen, and the

polarized distribution of marker proteins is disrupted. The

hypoxic cells retain their proliferative capacity. In agreement

with an impaired differentiation, hypoxic MCF-10A cells had an

increased ID1 (inhibitor of differentiation) expression and a sustained

global histone acetylation. Cellular adaptation to hypoxia has

largely been viewed as a change in hypoxia-driven transcription,

but here we demonstrate that protein localization, and not

merely protein expression levels, is an additional and potentially

clinically important level of cellular adaptation to hypoxia.

Materials and Methods

Ethics Statement
Normal breast tissue was obtained from Søllerød Privathospital

and Københavns Privathospital with the written consent of

individuals, approved by the Regional Scientific Ethical Commit-

tees for Copenhagen and Frederiksberg (Den Nationale Videns-

kabsetiske Komite) (KF) (11) 263995. The data were analyzed

anonymously and all clinical investigation was conducted accord-

ing to the principles expressed in the Declaration of Helsinki.

3D-cell Culture
All cell culture was performed at 5% CO2, 37uC in humidified

cell incubators. Primary breast organoids from healthy donors

were dissected from tissue and processed to a single cell

suspension. Luminal epithelial cells were sorted in a FACSAria

(BD Biosciences) using anti-MUC1 monoclonal antibody (Biogen-

esis clone 115D8) as described [13]. The cells were grown in

overlay cultures on a solidified layer of growth factor reduced

ECM-derived substrate (Matrigel, BD, NJ) in DMEM/F12

(Invitrogen) containing 250 ng/ml insulin, 10 mg/ml transferrin,

2.6 ng/ml sodium selenite, 0.1 nM estradiol, 1.4 mM hydrocorti-

sone, 5 mg/ml prolactin, 10 ng/ml EGF and 5% growth factor

reduced ECM-derived substrate. Breast epithelial cells from four

individuals were separately cultured and analyzed, one sample did

not grow in culture. The non-malignant mammary epithelial cells,

MCF-10A (a kind gift from Professor J.S. Brugge, Harvard

Medical School, Boston, [16,17]), were kept in culture for no more

than seven passages to ensure cell authenticity and maintenance of

cell morphology. The MCF-10A 3D-cultures were grown accord-

ing to the overlay method as previously described [16]. Briefly, the

cells were seeded onto a solidified layer of growth factor reduced

ECM-derived substrate and grown in DMEM/F12 (Invitrogen)

containing 2% horse serum, 0.5 mg/ml hydrocortisone, 100 ng/

ml cholera toxin, 10 mg/ml insulin, 5 ng/ml EGF, and 2% growth

factor reduced ECM-derived substrate. All cells were cultured in

parallel at normoxia (21% O2) and hypoxia (1% O2, Hypoxysta-

tion, Don Whitney, UK) for up to 21 days.

Immunofluorescence, Immunohistochemistry and
Confocal Microscopy

The cultures were fixed, permeabilised, and immunofluores-

cence stained [16]. The primary antibodies used were: anti-a6-

integrin, anti-acetylated-histone H4, anti-laminin-5 (Millipore,

MA), anti-Human Milk Fat Globule (HMFG)/MUC1 (Millipore,

MA (MCF-10A), Abcam (primary cells)), anti-E-cadherin (Alexis),

and anti-Ki-67 (Dako, Denmark). Alexa Fluor-488- or FITC-

coupled secondary antibody (Molecular Probes, Invitrogen) was

used. Actin was stained with Alexa Fluor-546- or 488-coupled

phalloidin (Molecular Probes, Invitrogen), and cell nuclei with 4,6-

diamino-2-phenylindole (DAPI, Vector lab). In situ cell death was

detected with TMR red (Roche, Germany). Confocal images were

captured with a Zeiss LSM 710 or Bio-Rad Radiance 2000

confocal system using a 40x oil objective. All confocal images were

captured at the z-level with the widest circumference of the acini-

like structures. For Ki-67 and cell death calculation at least 200

MCF-10A organoid-cells per experiment and oxygen concentra-

tion in three independent experiments were analyzed. For

calculation of ID1 positivity 25-165 MCF-10A organoid-cells per

experiment and oxygen condition were evaluated in three

independent experiments. Cytosolic versus basal protein expres-

sion was analyzed by calculating the fraction of mean intracellular

(not including membrane structures or the nucleus) to mean basal

immunofluorescence signal intensity within the same cell (Fig. S1).

Ten cells of different organoids per sample and experiment were

analyzed. Statistical analysis was performed with Student’s t-test.

Anti-HIF-1a (Millipore, MA), anti-HIF-2a (Novus Biologicals,

CO), and anti-ID1 (Millipore, Clone 7D4.2) IHC were performed

on PFA-fixed and paraffin-embedded cultures.

Quantification of 3D-cultures
MCF-10A cells were cultured on ECM-derived substrate in

35 mm plates for 21 days in 21% and 1% O2 as described above.

Consecutive organoids along the diameter of the plate in 21-day

Hypoxia-Impaired Acinar Morphogenesis
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3D-cultures stained with phalloidin and DAPI were examined

(Nikon 10x objective). Polarization was defined as $50% of the

outer cells being organized in a palisade formation. Size of each

cell aggregate was calculated as the average of 4 diameters,

measured using Volocity 4 software.

Quantitative Real-time PCR Analyzes and
Immunoblotting

Cells were retrieved from the ECM-derived substrate cultures

by use of Dispase (BD, NJ), 180 min at 37uC. Hypoxic cultures

were dissolved under hypoxic conditions. RNA isolation (RNeasy,

Qiagen), cDNA generation (Reverse transcriptase kit, Applied

Biosystems) and quantitative real-time PCR (qPCR) (SYBR green

PCR master mix, Applied Biosystems) were performed as

previously described [18] and relative expression levels, compared

to three previously evaluated reference genes, UBC, YWHAZ, and

SDHA [11], were calculated employing geometric averaging [19].

Primers used are listed in Table S1. Cell lysis and immunoblotting

were performed as described [10]. Antibodies against AcH4

(Millipore, MA), E-cadherin (Becton Dickinson), HIF-1a (Milli-

pore, MA), and HIF-2a (Novus Biologicals, CO) were diluted

1:500–1000. Immunodetection of SDHA (Abcam, UK) or actin

(Abcam, UK) was used as loading controls.

Results

Loss of Polarization was Seen in Hypoxic Cells in the DCIS
Lesions

In DCIS lesions of the comedo form, i.e. a lesion with several cell

layers and a central necrotic zone, the inner cell layers adjacent to

the necrosis are hypoxic as demonstrated by HIF-1a staining

(Fig. 1A). Closer to the basal membrane intra-lesional ductal-like

structures with polarized cells could frequently be found (Fig. 1A).

These structures were rarely seen in the cells of the hypoxic zone

and we therefore asked whether the lack of these structures is an

effect of the hypoxic conditions. To address this question we

cultured normal human breast epithelial cells in 3D-cultures at

normoxia and hypoxia.

Hypoxic Human Breast Epithelial Cells form Small and
Unorganized 3D-cell Structures

Human breast epithelial cells isolated and enriched from breast

tissues [13] from four healthy women were in independent

experiments seeded sparsely on top of ECM-derived substrate and

cultured at normoxic (21% O2) or hypoxic (1% O2) conditions for

up to 21 days. At normoxia the human primary breast epithelial

cells from three of the four women formed acini-like structures of

polarized cells with a palisade structure surrounding an evacuated

lumen (Fig. 1B). Cells from the fourth woman did not grow in

culture. The primary cells of the three breast samples grown in

parallel cultures at hypoxia formed non-organized and non-

polarized organoids without lumen, lacking resemblance to

differentiated mammary acini (Fig. 1B). The immortalized non-

tumorigenic MCF-10A cells also form acini-like structures in 3D-

cultures on ECM-derived substrate at normoxia (Fig. 1B) [16],

while parallel hypoxic cultures formed unorganized structures

without polarization (Fig. 1B, D). When measured 21 days post-

seeding, the hypoxic structures were significantly (p,0.001)

smaller than their normoxic counterparts (Fig. 1B, C). Comparing

normoxic and hypoxic structures of the same size (40–60 mm in

diameter), revealed a substantial difference in number of organized

polarized structures, i.e. this feature was not directly associated

with the size of the acini-like structures (Fig. 1D). Presence of a

polarized palisade cell layer could not be determined in organoids

with less than 8 cells in the mid confocal z-plane, therefore these

cell clusters were excluded when calculating the fraction of

polarized acini (Fig. 1D). The number of such small organoids was

higher in hypoxic cultures (Fig. 1C).

Hypoxic Mammary Epithelial Cells Remained Proliferative
Whereas the Normoxic Cells Ceased to Proliferate in
Conjunction with Acinar Morphogenesis

Addressing the question why the hypoxic structures were

smaller, we analyzed proliferation by means of Ki-67 expression.

At early time points after seeding, the percentage of Ki-67 positive

cells was high in both normoxic and hypoxic organoids, as shown

in MCF-10A cell 3D-cultures three days post-seeding (Fig. 2B and

C). At normoxia, the percentage of Ki-67-expressing MCF-10A

cells decreased as acinar morphogenesis took place (Fig. 2B, and

C). Also in the forming primary breast epithelial acini the

proliferation was low and at day 21 Ki-67 positive cells were

virtually absent from the normoxic acini (Fig. 2A). The internal

positive control cells growing as monolayer on occasional ECM-

derived substrate-free patches were still Ki-67 positive in both

normoxic and hypoxic cultures at late time points (Fig. S2). In

contrast, the breast epithelial cell organoids formed under hypoxia

contained a fraction of Ki-67 positive cells throughout the culture

period, albeit the proportion of Ki-67 positive cells decreased with

time (Fig. 2A, B, and C). Cell nuclei with mitotic bodies were seen

in the hypoxic cells at all studied time points (data not shown). The

sustained proliferation in the hypoxic organoids suggests that these

cells do not enter the post-mitotic state required for differentiation.

Higher Incidence of Cell Death was Detected Under
Hypoxic Conditions

Since the smaller size of the hypoxic structures could not be

attributed to less proliferation we investigated the frequency of cell

death. In normoxic MCF-10A cell organoids very few or no dead

cells were detected at the investigated time points, 9, 12 and 21

days post seeding (Fig. 2D, E and data not shown). In contrast, we

found a higher frequency of cells positive for in situ cell death

detection in the hypoxic MCF-10A cell structures at all

investigated time points (Fig. 2D, E and data not shown),

explaining the smaller cell structures formed at hypoxia despite

ongoing proliferation.

Hypoxia Impaired Epithelial Organization of Mammary
Epithelial Acini

To further characterize the evident differences in polarization

based on morphology in the normoxic and hypoxic cell organoids,

we investigated the distribution patterns of three marker proteins

associated with mammary epithelial polarization, Alpha6-integrin,

laminin 5 and the Human Milk Fat Globule (HMFG/MUC1).

Alpha6-integrin is essential for the polarization state in breast

epithelium [20]. The integral basal membrane protein laminin 5 is

pivotal for the maintenance of epithelial polarization via its contact

with the cell-adhesion apparatus [21]. The membrane-bound

glycoprotein HMFG/MUC1 is a principal marker of mammary

epithelial cell differentiation and polarization [22,23] that in vivo

normally accumulates at the apical surface of breast luminal

epithelial cells. In breast cancer cells it is expressed in an

aberrantly glycosylated form [24], and an increased cytoplasmic

fraction have been associated with higher tumor grade in DCIS

[25,26].

All of these mammary epithelial markers showed a significant

loss of polarized localization under hypoxic culture conditions

Hypoxia-Impaired Acinar Morphogenesis
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(Fig. 3, 4, and 5). In normoxic primary breast epithelial cell

cultures, a6-integrin localized to the basolateral surface of the

entire acini-structures (Fig. 3A). At hypoxia, this uniform

localization was disrupted (Fig. 3A). The ratio of cytoplasmic to

basal expression was significantly increased in the breast epithelial

cells of hypoxic organoids 21 days post-seeding (p = 0.014, Fig. 3C).

In MCF-10A, the polarized rim-cells had basolateral a6-integrin

localization (Fig. 3B), while the hypoxic MCF-10A cell organoids

displayed a reduced and non-polarized expression of a6-integrin,

with significantly increased ratio of intra-cellular to basal

expression compared to normoxic cells (p,0.0001, Fig. 3B and C).

Laminin 5 was barely detectable in MCF-10A cells 3 days post-

seeding in both normoxia and hypoxia (Fig. 4B). As the normoxic

MCF-10A cells differentiated into acini the basal accumulation of

laminin 5 increased (Fig. 4B). At hypoxia, intra-cellular localiza-

tion of laminin 5 was evident at all time-points studied (Fig. 4B),

although weak at day 3 post-seeding. The ratio of intra-cellular to

basal membrane localization was significantly increased in hypoxic

compared to normoxic MCF-10A organoids (p = 0.011, Fig. 4C).

In the primary human breast epithelial cells laminin 5 was

generally more difficult to detect (Fig 4A, B), but quantitative

analysis of the ratio of cytosolic to basal membrane localization

revealed a significant increase in cytosolic localization, i.e.

decreased polarization (p = 0.039, Fig. 4C).

Figure 1. Loss of polarization in hypoxic breast epithelial cells. A. Positive HIF-1a IHC staining of hypoxic cells (broken arrow) adjacent to the
necrotic zone (star) in ductal carcinoma in situ of the breast. Small duct-like formations (arrows) in non-hypoxic regions close to the basal membrane
in two different patient specimens of ductal carcinoma in situ. H/E; haematoxylin/eosin staining. Size bars 20 mm. B. Size and polarization of human
breast epithelial cell acini grown on ECM-derived substrate at 21% and 1% oxygen. Actin (phalloidin, red) and nuclear (DAPI, blue) staining of
normoxic (upper panel) and hypoxic (lower panel) primary human breast epithelial cells (left panels) and MCF-10A cells (right panel) at the indicated
days post-seeding. The primary breast epithelial cell micrographs are from one representative time-series out of three sets of cultured breast cell
samples from three different healthy women. All confocal micrographs were acquired at the Z-plane where the depictured acini-like structure had the
widest circumference. Size bars 20 mm. C. Number of MCF-10A cell organoids of a given diameter (left) and the average size (right) of MCF-10A cell
organoids cultured at 21% or 1% oxygen for 21 days on ECM-derived substrate. D. Number of polarized MCF-10A cell organoids of the given
diameter (left) and the percentage of polarized organoids (right) after 21 days of culture on ECM-derived substrate at 21% or 1% oxygen. Data from
one representative experiment out of three is shown. Organoids were considered polarized if 50% or more of the cells in the outer layer formed a
palisade.
doi:10.1371/journal.pone.0046543.g001
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Epithelial-to-mesenchymal-transition could not be
Detected in the Hypoxic MCF-10A cell 3D-cultures

Our data suggests that hypoxia inhibits polarization and

differentiation of non-malignant cells in the acinar morphogenesis

model. Epithelial-to-mesenchymal-transformation (EMT) was

reported to occur in hypoxic tumors [28,29]. To test whether

the hypoxia-impaired differentiation was associated with EMT E-

cadherin with decreased expression as a hallmark of EMT [30],

was analyzed. E-cadherin was present in cell membranes at cell-

cell contact surfaces of both normoxic and hypoxic MCF-10A cell

3D-structures (Fig. S3A). E-cadherin mRNA levels increased at

hypoxia compared to normoxia 21 days post-seeding and E-

cadherin protein levels increased with time in 3D-culture both in

normoxia and hypoxia (Fig. S3B and C). Also, Vimentin expression

increased in hypoxic cells at 21 days post-seeding (Fig. S3B). As

loss of E-cadherin and increase in vimentin are expected features

of EMT we conclude that a hypoxia-driven EMT of the MCF-

10A cells did not occur. However EMT is a process associated

with cancer invasion and MCF-10A cells do not grow in an

invasive manner [17].

Figure 2. Proliferation and cell death in hypoxic and normoxic 3D-cultures in ECM-derived substrate. A Ki-67 immunofluorescence
(green) and actin (red) staining of primary human breast epithelial cells in 3D-culture in ECM-derived substrate at 21% and 1% oxygen for 12, and 21
days. Representative images from one of three independent experiments with breast epithelial cells isolated from different healthy individuals are
shown. Size bars 20 mm. B. MCF-10A cells stained for Ki-67 (green) and actin (red) after 3, 6, 12, and 21 days of 3D-culture in ECM-derived substrate
under normoxic (21%) or hypoxic (1%) conditions. Representative images from one of three independent experiments are shown. Size bars 20 mm. C.
Percentage of cells with Ki-67 positive nuclei in normoxic and hypoxic MCF-10A cell organoids 3, 12, and 21 days post-seeding, in three independent
experiments. Statistical analysis was performed with Student’s paired t-test (p). In each experiment at least 200 cells were included in the calculation.
D. Cell death in MCF-10A cells grown in 3D-culture under normoxic and hypoxic conditions for 12 days, by in situ cell death detection (red), nuclear
staining with DAPI (blue). All confocal micrographs were acquired at the Z-plane where the depictured acini-like structure had the widest
circumference. Size bars 20 mm. E. Percentage of cells with nuclei positive for in situ cell death detection in normoxic (21%) and hypoxic (1%) 3D-
cultures at 9 and 12 days post-seeding. Data from four experiments are shown. In each experiment at least 200 cells were included in the calculation.
doi:10.1371/journal.pone.0046543.g002
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Hypoxia-induced Gene Expression
Addressing the mechanism(s) behind the impaired differentia-

tion of human breast epithelial cells in hypoxic 3D-cultures, we

analyzed the activity and accumulation of the two primary

transcriptional regulators of cellular adaptation to oxygen depri-

vation, HIF-1a and HIF-2a. HIF protein levels in response to

prolonged hypoxia are not well studied in any cellular system, but

our previous data suggest that the relative importance of HIF-2a
may increase with time [12,15]. Some degree of increased

accumulation in HIF-1a and HIF-2a protein could be detected

in paraffin-embedded hypoxic MCF-10A organoids 21 days post-

seeding (Fig. 6A). Hypoxic accumulation of both proteins was

detected in cell extracts of MCF-10A cells grown as monolayer for

up to six days (Fig. 6B). The relative mRNA levels of both HIF-1a
and HIF-2a were similar in normoxic and hypoxic 3D-cultures

after 21 days (Fig. 6C) in agreement with the primary regulation of

these proteins being at the level of protein stabilization. Under

normoxic conditions HIF-1a and HIF-2a become ubiquitinated

and degraded, a process specifically inhibited at hypoxia leading to

protein accumulation. Upon reoxygenation the HIFs are again

targeted for degradation and have a half-life of a few minutes [5].

Therefore, the time-consuming process of protein recovery from

the ECM-derived substrate cultures has not allowed us to detect

HIF-1a and HIF-2a protein levels in the 3D-cultures. Instead, we

tested if HIF-induced transcription occurred after 21 days of

hypoxia by analyzing the mRNA levels of a panel of established

HIF-target genes. We found increased expression of BNIP3,

BHLHE40, OCT4, and VEGFA (Fig. 6C) in the hypoxic structures

21 days post-seeding, suggesting that one or both of the HIFs are

transcriptionally active in the MCF-10A cell 3D-cultures at 21

days of hypoxia.

Hypoxia Induced Expression of the Negative Regulator of
Mammary Epithelial Differentiation ID1

ID transcription modulating factors are regulated by hypoxia

[10,18,31]. The ID proteins negatively regulate the activity of a

Figure 3. Functional and structural polarization of the human breast epithelial acini-like structures cultured at 21% and 1% oxygen
on ECM-derived substrate illustrated by the marker of breast epithelial polarization, a6-integrin. A. Immunofluorescence staining of
the polarization marker a6-integrin (green) after 12 and 21 days of culture of primary human breast epithelial cells on ECM-derived substrate under
normoxic (21%) or hypoxic (1%) conditions. Images from one representative of three independent experiments with cells from different women are
shown. Size bars 20 mm. B. a6-integrin (green) staining of normoxic (21%) and hypoxic (1%) MCF-10A cells in 3D-culture at 3, 6, 12, and 21 days post-
seeding on ECM-derived substrate. All confocal micrographs were acquired at the Z-plane where the depictured acini-like structure had the widest
circumference. Size bars 20 mm. C. The ratio of intra cellular to basal cell membrane mean fluorophore intensity in normoxic (open) and hypoxic
(black) MCF-10A cell- (left panel) and primary human breast epithelial cell organoids (right panel) at 21 days post-seeding, measured in one
representative cell in ten different acini-like structures. Statistical analysis was performed with Student’s t-test (p).
doi:10.1371/journal.pone.0046543.g003
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number of tissue-specific basic helix-loop-helix transcription

factors instrumental during development and differentiation of

numerous organs. In mammary gland differentiation, forced

expression of ID1 impairs differentiation and abolishes milk

production. ID2 is necessary for full mammary gland differenti-

ation and lactation (reviewed in [32]). After 21 days of 3D-culture,

the hypoxic MCF-10A cell organoids had increased ID1 and

unchanged ID2 mRNA expression compared to their normoxic

counterparts (Fig. 7A). Immunohistochemical detection of ID1 in

paraffin-embedded MCF-10A cell organoids 21 days post-seeding

showed distinct nuclear staining in the hypoxic cells, whereas the

cells of the normoxic organoids had very little ID1 (Fig. 7A). A

statistically significant increase in the percentage of ID1-positive

nuclei was seen in hypoxic MCF-10A organoid cells at 21 days

post-seeding compared to their normoxic counterparts

(p = 0.0022, Fig. 7A right panel), consistent with the observed

impaired differentiation at hypoxia.

Sustained Global Histone Acetylation in Hypoxic Human
Breast Epithelial Cells in 3D-culture

Acinar morphogenesis is associated with global histone

deacetylation and chemical inhibition of histone deacetylation

blocks differentiation and formation of organized acinar structures

in response to ECM [33]. We therefore hypothesized that the lack

of differentiation and organization of mammary epithelial cells in

hypoxia might be mediated by loss of histone deacetylation, i.e. the

Figure 4. Functional and structural polarization of human breast epithelial cell organoids grown at 21% and 1% oxygen illustrated
by the marker of breast epithelial differentiation and polarization laminin 5. A. Laminin 5 (green) immunofluorescence staining of human
primary breast epithelial cells after 12 and 21 days of 3D-culture on ECM-derived substrate under normoxic (21%) or hypoxic (1%) conditions. Images
from one representative of three independent experiments with cells from different individuals are shown. Size bars 20 mm. B. Immunofluorescence
of laminin 5 (green) performed after 3, 6, 12, and 21 days of culture of MCF-10 cells in 3D-culture on ECM-derived substrate under normoxic (21%) or
hypoxic (1%) conditions. All confocal micrographs were acquired at the Z-plane where the depictured acini-like structure had the widest
circumference. Size bars 20 mm. C. The ratio of intra cellular to basal cell membrane mean fluorophore intensity in normoxic (open) and hypoxic
(black) MCF-10A cells (left panel) and primary human breast epithelial cells (right panel) 21 days post-seeding, measured in one representative cell in
ten different organoids. Statistical analysis was performed with Student’s t-test (p).In agreement with the non-malignant status of both the primary
breast epithelial and the MCF-10A cells we found HMFG/MUC1 to have a polarized localization in normoxic acinar cells 21 days post-seeding (Fig. 5A,
B). The basal, as opposed to apical, localization of this protein is in agreement with MCF-10A cells showing little apical polarization as previously
reported [27]. HMFG/MUC1 displayed a decrease in polarized localization in both primary breast epithelial and MCF-10A cells at hypoxia (Fig. 5A, B). In
the MCF-10A cells there was a significant difference in the ratio of intra-cellular to basal localization at hypoxia compared to normoxia (p,0.0001, Fig.
5C). The ratio of cytosolic to basal membrane localization could not be reliably determined in the primary breast epithelial cells. The MUC1 mRNA
expression was significantly decreased in the hypoxic MCF-10A cells after 21 days of 3D-culture (p = 0.013, Fig. 5D).
doi:10.1371/journal.pone.0046543.g004

Hypoxia-Impaired Acinar Morphogenesis

PLOS ONE | www.plosone.org 7 September 2012 | Volume 7 | Issue 9 | e46543



chromatin structure remains open favoring proliferation and low

stage of differentiation. The nuclei of cells in hypoxic 3D-cultures

of both primary breast epithelial cells and MCF-10A cells stained

strongly positive for acetylated histone H4 (AcH4) at all time

points studied, whereas the normoxic cells lost global histone 4

acetylation with acini formation (21d resp. 12d) (Fig. 7B). The

proportion of cells strongly positive for AcH4 was significantly

higher in hypoxic compared to normoxic MCF-10A organoid

cells, exemplified at 12 days post-seeding (p = 0.029, Fig. 7C).

Moreover, immunoblotting showed increased levels of AcH4 in

extracts of cells from hypoxic MCF-10A cell 3D-cultures 10 days

post-seeding (Fig. 7D). Histone deacetylation in 3D-cultures is

associated with chromatin compaction and decreased nuclear

diameter [33]. We found that hypoxic MCF-10A cells had

significantly larger nuclear diameter (p,0.05, n = 24 (21%) and

n = 30 (1%), in average 14% larger).

To test if the histone acetylation status merely reflects cycling

cells we compared parallel cultures stained for Ki-67 and AcH4.

While virtually all the hypoxic cells were AcH4 positive (Fig. 7C),

only approximately 20% of the cells were Ki-67 positive (Fig. 2C).

These data were corroborated by double staining experiments

(data not shown). We conclude that although acetylation of H4

may be necessary for cell proliferation it appears not to impose cell

cycle progression on it own under the studied conditions.

Discussion

The epithelium serves as a selective permeability barrier, a

function made possible by epithelial cell polarity. Cellular

polarization is a feature of differentiation guided by positional

cues from components of the ECM, as well as adjacent cells

[21,34]. Loss of epithelial polarity is a sign of low differentiation

and a hallmark of malignancy [20]. The 3D-culture assays in

ECM-derived substrate enable studies of the processes of breast

epithelial polarization and differentiation at in vivo-like conditions

[16].

Hypoxia has profound effects on tumor cell behavior in vitro as

well as on cancer prognosis. We have reported that hypoxia leads

to a less differentiated cell phenotype in breast cancer and that

high HIF-2a expression associates with unfavorable outcome and

metastasis [9,12]. Here we use breast epithelial cell cultures on

laminin-rich ECM-derived substrate to study the potential impact

of hypoxia on acinar morphogenesis and normal breast epithelial

development. Acinar morphogenesis is the result of numerous

processes affecting cell shape, cytoskeletal and nuclear matrix

organization, chromatin state, and gene expression [35,36]. We

found that hypoxia impairs ECM-induced acinar morphogenesis

by affecting several of these processes. Notably, hypoxia led to

sustained cell proliferation and as the transition into a post-mitotic

state is an explicit hallmark of terminal differentiation, we

conclude that hypoxia impairs cellular differentiation of non-

malignant human mammary epithelial cells.

Morphology and the sustained proliferative capacity suggested

that hypoxia impairs polarization and organization of mammary

epithelial cells, a conclusion supported by the aberrant localization

and expression of the mammary epithelial differentiation/polar-

ization markers, HMFG/MUC1, laminin 5, and a6-integrin.

These marker proteins and their localization also harbor

prognostic information in breast cancer. Laminin 5 is normally

deposited at the basal surface of acinar cells but in the hypoxic

organoid cells shown here, laminin 5 is also present in the

cytoplasm, similar to the localization in invasive breast cancer

[37]. The monoclonal antibody used here recognizes the c2-chain,

which is unique for laminin 5. High expression and intra-cellular

localization of the c2-chain were reported in dedifferentiated

budding tumor cells of colorectal cancer and found to correlate

with poor outcome and incidence of distant metastasis [38,39]. In

breast cancer, decreased expression of HMFG/MUC1 is associ-

ated with low overall patient survival, low stage of tumor cell

differentiation, and increased incidence of distant metastasis

[26,40]. Our findings that the hypoxic organoids have reduced

expression and deviant localization of HMFG/MUC1, further

strengthens the conclusion that the hypoxic mammary epithelial

cells adopt an immature and cancer-like phenotype.

In an attempt to address the importance of the HIFs in the

observed impairment of mammary epithelial polarization/differ-

Figure 5. Localization of Human Milk Fat Globule (HMFG) in
human breast epithelial cells at normoxia and hypoxia. A.
Cellular localization of HMFG (green) in primary human breast epithelial
cells after 21 days of 3D-culture on ECM-derived substrate at normoxic
(21%) or hypoxic (1%) conditions. Images from one representative of
three independent experiments with cells from different individuals are
shown. Size bars 20 mm. B. Staining of HMFG (green) on 3D-cultures of
MCF-10A cells after 21 days of culture on ECM-derived substrate at
normoxic (21%) or hypoxic (1%) conditions. All confocal micrographs
were acquired at the Z-plane where the depictured acini-like structure
had the widest circumference. Size bars 20 mm. C. The ratio of intra
cellular to basal cell membrane mean fluorophore intensity in normoxic
(open) and hypoxic (black) MCF-10A cell organoids at 21 days post-
seeding, measured in one representative cell in ten different acini-like
structures. Statistical analysis was performed with Student’s t-test (p).
D. Relative mRNA levels of MUC1 in normoxic (21%) and hypoxic (1%)
3D-cultures of MCF-10A cells 21 days post-seeding, showing data from
three independent experiments. Statistical analysis was performed with
Student’s paired t-test (p).
doi:10.1371/journal.pone.0046543.g005
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entiation, we silenced both HIF-1a and HIF-2a separately and in

combination, in MCF-10A cells by use of viral transduction with

shRNA constructs. The procedure led to loss of the ability to form

polarized acini also at normoxia (data not shown). This result was

also seen with the control viral shRNA-constructs, hence the

results were not due to HIF specific effects.

The breast epithelial cells cultured at hypoxia maintained a high

degree of global histone acetylation through out the 21-day

experiment, whereas the chromatin of the normoxic cells became

deacetylated with progression of acinar morphogenesis. In

developing rat brain, abrogation of deacetylation impaired

development and delayed expression of differentiation markers

[41]. Thus, the finding that hypoxic cells had sustained global

histone acetylation provides a putative mechanism for the hypoxic

inhibition of epithelial cell differentiation and acinar morphogen-

esis. ECM-induced acini formation is linked to cell shape-

dependent global histone deacetylation, whereas conventional

monolayer culture results in general histone acetylation favoring

transcriptional activity, proliferation and a low state of differen-

tiation [33]. Our data suggest that mammary epithelial cells in

hypoxic organoids phenotypically mimic cells in 2D culture

lacking contact with the differentiation-inducing ECM (Fig. 7E).

Future efforts should be directed towards investigating the effects

of hypoxia on histone acetyl transferases and deacetylases, and

their association to epithelial polarization and differentiation.

We report here that hypoxia leads to changed expression levels

of genes influential in cell differentiation, i.e. OCT4 and ID1, in

breast epithelial cells in 3D-culture. The OCT4 homeo-domain

transcription factor is associated with self-renewal and stemness,

and is a HIF-2 target gene [42]. Sustained expression of OCT4 in

embryonic stem cells prevents differentiation [42,43]. Thus, the

observed increase of OCT4 expression in hypoxic MCF-10A acini

could be a direct HIF-2 effect, promoting an undifferentiated

phenotype. The primary mode of action of the ID proteins is by

sequestering the ubiquitous partners of the tissue-specific differ-

entiation-regulating bHLH transcription factors [44], though they

can also bind directly to the tissue-specific bHLH factors

themselves [45]. Our finding that ID1 expression increased in

the undifferentiated hypoxic MCF-10A structures is in agreement

with the previous observations that overexpression of ID1

suppresses mammary epithelial differentiation [32,46]. ID1

silencing induced differentiation and quiescence in mammary

epithelial cells and ECM-induced differentiation is associated with

ID1 down regulation [47]. In addition, ectopic ID1 expression in

mammary epithelial cells induces both proliferation and apoptosis

[48] similar to what we find here in the hypoxic structures. ID1

expression also harbor prognostic information in breast cancer as

Figure 6. Expression of HIF-1a, HIF-2a, and HIF-target genes in normoxic and hypoxic breast epithelial cells. A. HIF-1a and HIF-2a
immunohistochemical staining of MCF-10A acini-like structures after 21 days of 3D-culture at normoxia (21%) or hypoxia (1%). Sh-RNA-treated T47D
breast cancer cells grown as monolayer and exposed to normoxia or hypoxia for 24h were used as controls. All cells were fixed in PFA and paraffin-
embedded. Size bars 20 mm. B. Immunoblot analysis (left panel) of HIF-1a and HIF-2a in protein extracts of MCF-10A cells cultured in monolayer at
21% and 1% oxygen for the indicated period of time. Normoxic and hypoxic SK-N-BE cell extracts were used as controls. Quantification of the HIF
signal intensity relative to the loading control (SDHA) (right panel). C. Relative mRNA expression of HIF1A, HIF2A, and the HIF-target genes BNIP3,
BHLHE40, OCT4, and VEGFA in normoxic and hypoxic MCF-10A cells retrieved from 3D-cultures 21 days post-seeding. Data are from three
independent experiments and statistical analysis was performed with Student’s paired t-test (p).
doi:10.1371/journal.pone.0046543.g006
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ID1 expression increase with tumor grade and is an independent

prognostic marker [49,50]. Furthermore, ID1 has been suggested

to induce CyclinD1 expression [32]. Taken together, ID1-driven

inhibition of differentiation is a plausible mechanism for the

impaired acinar morphogenesis accompanied by cancer-like

expression of marker genes at hypoxia. ID2, on the other hand,

is reported to be necessary for full mammary epithelial differen-

tiation and is expressed in the mammary gland late during

pregnancy [48] and ID2 expression was not induced in our

hypoxic 3D-cultures corroborating their undifferentiated status.

As stabilization and activation of the HIF transcription factors

are major mechanisms behind cellular adaptation to hypoxia,

changes in gene transcription have been in focus in models

explaining the adaptation process. However, the hypoxia-induced

changes in protein localization within multi-cellular structures

reported here add an additional level of regulation at which

reduced oxygen pressure can affect cell differentiation and

potentially tumor progression. Clearly, this level of regulation

may have clinical impact since the differentiation marker proteins,

and their localization within the cells, studied here carry

prognostic information in breast cancer.

Our present findings suggest that hypoxia traps normal breast

epithelial cells in an undifferentiated, proliferative state, which if

occurring in vivo would increase the risk for tumor-initiating genetic

aberrations to become manifest in a proliferating population of

cells. Although the scenario we envisage is a situation of local

hypoxia due to over-proliferation leading to high local oxygen

consumption that is not instantly compensated for by de novo

Figure 7. ID1 expression and histone acetylation in breast epithelial cells in normoxic compared to hypoxic 3D-cultures. A. Relative
mRNA expression of the transcription modulating ID factors, ID1 and ID2 in MCF-10A cells after 21 days of 3D-culture on ECM-derived substrate under
normoxic and hypoxic conditions (left). Showing data from three independent experiments. Statistical analysis was performed with Student’s paired
t-test (p). Immunohistochemical staining for ID1 on paraffin-embedded MCF-10A acini-like structures after 21 days of 3D-culture at normoxia (21%) or
hypoxia (1%) (right). Size bars 20 mm. B. Acetylated histone 4 (AcH4) visualized by immunofluorescence (green) in normoxic (21%) and hypoxic (1%)
human primary breast epithelial cell (left) and MCF-10A cell (right) acini-like structures at the indicated days post seeding. Actin was visualized by
phalloidin staining (red). Size bars 20 mm. C. Percentage of MCF-10A cells in acini-like structures with global histone acetylation, i.e. positive for AcH4,
21 days post-seeding at normoxia (open boxes) and hypoxia (black boxes), showing data from three independent experiments. At least 200 cells were
calculated in each experiment. Statistical analysis was performed by Student’s paired t-test (p). D. Immunoblot of AcH4 in MCF-10A cells in 3D-culture
at 21% (left) and 1% (right) on ECM-derived substrate for 10 days. SDHA was used as a loading control. E. Non-malignant breast epithelial cells grown
on differentiation-inducing ECM have an organized cell shape and a high degree of deacetylated histones; these cells differentiate and become post-
mitotic. Contrary, breast epithelial cells grown as monolayer without ECM do not receive/accept signals to induce differentiation, leading to sustained
global histone acetylation and opening of the chromatin for transcription, resulting in impaired differentiation and/or dedifferentiation accompanied
with cell proliferation. Hypoxia, including hypoxic induction of ID1, promotes a proliferative and undifferentiated state in breast epithelial cells
despite contact with the ECM.
doi:10.1371/journal.pone.0046543.g007
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vascularization, there are indeed indications that overall anemic

situations can be linked to higher cancer incidences. Populations

living at high altitudes in the Andes have increased frequency of

paraganglioma [51] and congenital heart disease with cyanosis in

infants is associated with increased occurrence of neuroblastoma

[52].

Tissue hypoxia is a phenomenon that usually occurs locally and

according to our view, such a situation would create a time-

window at which immature, progenitor-like cells exist and

proliferate due to the hypoxic environment and thus could be

prone to genetic hits of genes not expressed at the differentiated

stage. Especially breast tissue, with its reiterating cycles of cell

growth, differentiation and cell death over decades in each

individual would be the tissue of choice to expect that local

overgrowth could occur, possibly hormone driven. In addition, in

the clinical setting, benign sclerotic breast lesions are associated to

increased risk of invasive breast cancer and the risk increases with

time and lesion size [1,2]. As these sclerotic lesions are poorly

oxygenated, hypoxia may play a role in the malignant transfor-

mation in such lesions and possibly other zones with low

oxygenation for alternate reasons (e.g. inflammation, poor

perfusion). We suggest that these hypoxic effects on epithelial cell

differentiation can contribute to tumorigenesis in addition to

previously described mechanisms showing hypoxia-induced stro-

mal contributions to tumor initiation and progression [53].

Conclusions
We show here that hypoxia impairs ECM-induced differenti-

ation and acinar morphogenesis of non-malignant primary human

mammary epithelial cells as well as the immortalized MCF-10A

cells. Despite contact with laminin-rich ECM the hypoxic

mammary epithelial cells maintained a non-differentiated pheno-

type resembling cells cultured in absence of ECM-components i.e.

they were proliferative and could not form organized 3D-

structures (Fig. 7E). Loss of polarization and loss of differentiated

epithelial structures combined with proliferation are inherent

features of breast cancer. The impaired differentiation and

polarization in hypoxic 3D-cultured cells was associated with

increased expression of the transcriptional modulator ID1, known

to counteract mammary epithelial differentiation in vivo and in vitro.

Furthermore, the global deacetylation that takes place with

progression of acinar morphogenesis in normoxic cultures did

not occur at hypoxia. The cancer-like phenotype of the hypoxic

mammary epithelial cells and disorganized 3D-growth lead us to

suggest that hypoxia may play a role already at stages of tumor

initiation.
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10. Jögi A, Øra I, Nilsson H, Lindeheim A, Makino Y, et al. (2002) Hypoxia alters
gene expression in human neuroblastoma cells toward an immature and neural

crest-like phenotype. Proc Natl Acad Sci U S A 99: 7021–7026.
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