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博学之，审问之，慎思之，明辨之，笃行之。
To this attainment there are requisite the extensive study of what is good,
accurate inquiry about it, careful reflection on it, the clear discrimination of
it, and the earnest practice of it.

《礼记·中庸》
The Doctrine of the Mean





Abstract

The propagation channel determines the fundamental basis of wireless commu-
nications, as well as the actual performance of practical systems. Therefore,
having good channel models is a prerequisite for developing the next gener-
ation wireless systems. This thesis first investigates one of the main channel
model building blocks, namely clusters. To understand the concept of clusters
and channel characterization precisely, a measurement based ray launching tool
has been implemented (Paper I). Clusters and their physical interpretation are
studied by using the implemented ray launching tool (Paper II). Also, this the-
sis studies the COST 2100 channel model, which is a geometry-based channel
model using the concept of clusters. A complete parameter set for the out-
door sub-urban scenario is extracted and validated for the COST 2100 channel
model (Paper III). This thesis offers valuable insights on multi-link channel
modeling, where it will be widely used in the next generation wireless systems
(Paper IV and Paper V). In addition, positioning and localization by using the
phase information of multi-path components, which are estimated and tracked
from the radio channels, are investigated in this thesis (Paper VI).

Clusters are extensively used in geometry-based stochastic channel models,
such as the COST 2100 and WINNER II channel models. In order to gain
a better understanding of the properties of clusters, thus the characteristics
of wireless channels, a measurement based ray launching tool has been im-
plemented for outdoor scenarios in Paper I. With this ray launching tool, we
visualize the most likely propagation paths together with the measured channel
and a detail floor plan of the measured environment. The measurement based
ray launching tool offers valuable insights of the interacting physical scatterers
of the propagation paths and provides a good interpretation of propagation
paths. It shows significant advantages for further channel analysis and model-
ing, e.g., multi-link channel modeling.

The properties of clusters depend on how clusters are identified. Gener-
ally speaking, there are two kinds of clusters: parameter based clusters are
characterized with the parameters of the associated multi-path components;
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physical clusters are determined based on the interacting physical scatterers
of the multi-path components. It is still an open issue on how the physical
clusters behave compared to the parameter based clusters and therefore we
analyze this in more detail in Paper II. In addition, based on the concept of
physical clusters, we extract modeling parameters for the COST 2100 channel
model with sub-urban and urban micro-cell measurements. Further, we vali-
date these parameters with the current COST 2100 channel model MATLAB
implementation.

The COST 2100 channel model is one of the best candidates for the next
generation wireless systems. Researchers have made efforts to extract the pa-
rameters in an indoor scenario, but the parameterization of outdoor scenarios
is missing. Paper III fills this blank, where, first, cluster parameters and clus-
ter time-variant properties are obtained from the 300 MHz measurements by
using a joint clustering and tracking algorithm. Parameterization of the COST
2100 channel model for single-link outdoor MIMO communication at 300 MHz
is conducted in Paper III. In addition, validation of the channel model is per-
formed for the considered scenario by comparing simulated and measured delay
spreads, spatial correlations, singular value distributions and antenna correla-
tions.

Channel modeling for multi-link MIMO systems plays an important role for
the developing of the next generation wireless systems. In general, it is essen-
tial to capture the correlations between multi-link as well as their correlation
statistics. In Paper IV, correlation between large-scale parameters for a macro
cell scenario at 2.6 GHz has been analyzed. It has been found that the param-
eters of different links can be correlated even if the base stations are far away
from each other. When both base stations were in the same direction compared
to the movement, the large-scale parameters of the different links had a ten-
dency to be positively correlated, but slightly negatively correlated when the
base stations were located in different directions compared to the movement of
the mobile terminal. Paper IV focuses more on multi-site investigations, and
paper V gives valuable insights for multi-user scenarios. In the COST 2100
channel model, common clusters are proposed for multi-link channel modeling.
Therefore, shared scatterers among the different links are investigated in paper
V, which reflects the physical existence of common clusters. We observe that,
as the MS separation distance is increasing, the number of common clusters
is decreasing and the cross-correlation between multiple links is decreasing as
well. Multi-link MIMO simulations are also performed using the COST 2100
channel model and the parameters of the extracted common clusters are de-
tailed in paper V. It has been demonstrated that the common clusters can
represent multi-link properties well with respect to inter-link correlation and
sum rate capacity.
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Positioning has attracted a lot of attention both in the industry and
academia during the past decades. In Paper VI, positioning with accuracy
down to centimeters has been demonstrated, where the phase information of
multi-path components from the measured channels is used. First of all, an
extended Kalman filter is implemented to process the channel data, and the
phases of a number of MPCs are tracked. The tracked phases are converted
into relative distance measures. Position estimates are obtained with a method
based on so called structure-of-motion. In Paper VI, circular movements have
been successfully tracked with a root-mean-square error around 4 cm when
using a bandwidth of 40 MHz. It has been demonstrated that phase based
positioning is a promising technique for positioning with accuracy down to
centimeters when using a standard cellular bandwidth.

In summary, this thesis has made efforts for the implementation of the
COST 2100 channel model, including providing model parameters and validat-
ing such parameters, investigating multi-link channel properties, and suggesting
implementations of the channel model. The thesis also has made contributions
to the tools and algorithms that can be used for general channel characteri-
zations, i.e., clustering algorithm, ray launching tool, EKF algorithm. In ad-
dition, this thesis work is the first to propose a practical positioning method
by utilizing the distance estimated from the phases of the tracked multi-path
components and showed a preliminary and promising result.
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Chapter 1

Introduction

The evolution of wireless communication in the last decades has been accelerat-
ing at an extraordinary pace to fulfill the modern lifestyle requirements, such as
smart-phones, tablets, sensor networks, smart grid schemes, etc. To keep pace
with this ever-increasing demand, new wireless communication standards such
as long-term evolution (LTE), and LTE-advanced [1], target a downlink peak
data rate of 1 Gbit/s. Multi-input multi-output (MIMO), distributed MIMO,
massive MIMO and millimeter wave systems are among the main core tech-
nologies that are adopted or probably will be adopted in order to increase the
data rate and maximize the utilization of the limited spectrum by exploiting the
spatial domain. The performance of these technologies is highly affected by the
wireless channels between the different communication terminals. Therefore,
understanding the behavior of wireless channels in time and space is crucial in
order to fully exploit the benefits of these core technologies.

Several approaches have been used in order to characterize different as-
pects of wireless channels, for example, channel measurements and ray tracing
simulations. Channel measurements are usually used to capture the temporal
and spatial behavior of wireless channels. However, performing channel mea-
surements is a complicated process that requires huge data storage, significant
financial resources, and manpower efforts. On the other hand, ray tracing pro-
vides an alternative option in modeling wireless channels. However, among
other factors, the accuracy of ray tracing depends on the accurate and detailed
description of the physical properties of the propagation environment. Such
detailed information is not available in most of the environments of interest,
and even if they are available, they result in huge computational complex-
ity. Stochastic channel models provide a balance between cost (computational
as well as financial) and accuracy in modeling the different channel parame-
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ters. Stochastic channel models utilize both propagation measurements and
ray tracing simulations in order to understand the behavior of wireless chan-
nels and capture their characteristics. Consequently, the extracted parameters
are utilized to model wireless channels in ways that statistically reflect realistic
propagation conditions. However, more research is needed in order to develop
sophisticated models that are able to accurately model wireless channels in
complicated environments, and different scenarios, e.g., with large number of
users, large number of base stations (BSs), various mobility models, wide pos-
sible arrangements of transmit and received antennas, and so on. There have
been well-established stochastic channel models, e.g., the Kronecker model [2],
COST 207 [3], WINNER II [4], and COST 2100 [5]. Studying and understand-
ing these models is an essential step toward improving current channel models,
or introducing new channel models that are in a position to fulfill the design
and planning requirements for next generation wireless systems.

In this chapter, first, a short introduction of MIMO technology is given.
Secondly, an example of MIMO channel measurements is given. Then, ray
tracing is discussed. Later, stochastic MIMO channel models together with
their advantages and limitations are discussed. Lastly, an overview of the
thesis wraps up this chapter.

1.1 MIMO Communications

MIMO systems have been an increasingly popular research area in the wire-
less communications community during the last 15 to 20 years. It exploits the
space dimension in order to improve capacity, range and reliability of wireless
communication systems. These improvements are achieved by using multi-
ple antenna elements at the transmitter (Tx) and/or the receiver (Rx) sides.
MIMO technology is becoming mature, and is already incorporated into emerg-
ing wireless broadband standards. For example, LTE-advanced [1] allows up to
eight antennas for the downlink and up to four antennas for the uplink. To fully
exploit the space dimension of wireless channels, technologies like distributed
MIMO and massive MIMO have been investigated. Recently, very-large MIMO
systems, also known as massive MIMO or large-scale antenna systems, have be-
come a new research field in the wireless area [6]. It has been shown in theory
that, with simple signal processing schemes, massive MIMO has the potential
to remarkably improve performance in terms of link reliability and data rate
[6, 7].

MIMO radio channels represent a major part of MIMO systems that should
be considered when evaluating system performance. They are typically de-
scribed by multi-path components (MPCs) that originate from different obsta-
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cles due to the reflection, diffraction or scattering mechanisms. These MPCs
reach the receive antennas with different delays and compose the MIMO im-
pulse response. Usually, we use hi,j(t, τ) to represent the impulse response
between the jth transmit antenna and the ith receive antenna at delay τ .
Thus, a MIMO channel with NRx receive antennas and NTx transmit antennas
can be described by the matrix:

H(t, τ) =


h1,1(t, τ) h1,2(t, τ) · · · h1,NTx

(t, τ)

h2,1(t, τ) h2,2(t, τ) · · · h2,NTx
(t, τ)

...
...

. . .
...

hNRx,1
(t, τ) hNRx,2

(t, τ) · · · hNRx,NTx
(t, τ)

 . (1.1)

Then the relation between the input and output for a MIMO channel can be
expressed as:

y = H ∗ s + n, (1.2)

where s is the signal vector, ∗ is the convolution operator and n is the noise
vector.

It can be noted that the MIMO channel determines the received signal,
thus the link and the system level performance. Therefore, it is essential to
have a good understanding of the behavior of MIMO channels, and take their
influence into account when planning and evaluating MIMO systems.

1.2 MIMO Channel Measurements

The most straightforward way to capture and, consequently, characterize
MIMO channel properties is to perform channel measurements, which is also
called channel sounding [8]. The basic idea of channel sounding is that a
transmitter sends out a known signal, while the receiver observes and stores
the received version of the transmitted signal. Consequently, the channel im-
pulse responses are derived by comparing the known transmitted signal and
its corresponding received version for each Tx-Rx antenna pair. For MIMO
measurements, it is sometimes difficult to process and/or record the data that
are received at all Rx antennas at the same time. Thus, each Tx-Rx antenna
pair is measured separately [9, 10]. A fast switch between Tx and Rx antenna
elements is used where each Tx-Rx antenna pair is visited. The MIMO chan-
nel has to be static during the time required to visit all the Tx-Rx antenna
pair combinations. Fig. 1.1 shows an example of a measured channel impulse
response at the center frequency of 5.3 GHz using dual antennas at the Tx and
Rx sides. It can be noted that describing a single channel sample needs a large
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Figure 1.1: Measured channel impulse responses for a 2-by-2 MIMO wireless
channel.

amount of information. Therefore, to measure a complete set of channels over
a certain time and space is extremely costly.

1.3 Ray Tracing

As mentioned earlier, performing MIMO channel measurements is a complex
process that requires significant effort and financial resources. As an alter-
native, channel models are widely used in order to generate MIMO channel
realizations that can be used for different purposes such as system evaluation.
Physical models aim at explicitly characterizing the effect of the physical en-
vironment on the wireless channels. One of the most widely used physical
modeling methods is ray tracing [11]. Ray tracing aims to visualize propaga-
tion paths in the simulated environment and it provides channel realizations
with high accuracy, especially when the transmitting antenna is positioned in
moderately low heights, e.g., small micro-cells, and pico-cells [12, 13]. There
are different approaches for the implementation of ray tracing techniques, but
the rudimentary idea is to predict the most likely propagating paths based on
the detailed description of the concerned environment. First, rays are launched
from one communication terminal. When a ray interacts with an obstacle, it
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Figure 1.2: Rays propagation example.

gets reflected, diffracted or scattered in different directions, depending on the
properties of the obstacle, see Fig. 1.2. The obstacles may be buildings, trees,
windows, etc. In general, obstacles are described by simple models that char-
acterize the interacting behavior of rays, e.g., be reflected from a wall with a
specific power loss due to the wall material. After interacting with an obstacle,
a ray may split into numerous rays, e.g., during scattering at a rough wall.
The ray splitting process continues until the other terminal is reached, or until
the ray power falls under a certain threshold. As long as a ray interacts with
the different obstacles, the total number of rays increases exponentially, which
requires large calculation time and memory. Even though the ray tracing is
a highly computationally complex method, it is able to provide deterministic
channel models that are very similar to the real physical channels.

1.4 Stochastic Channel Models

As the channel measurements and ray tracing techniques are of high complexity,
stochastic channel models are widely used. The stochastic channel models are
characterized by the statistics of their parameters, such as their correlation
properties, path-loss, the ratio between the strongest MPC and the others, etc.
Stochastic channel models have the advantage of describing wireless channels
using simpler approaches compared to channel measurements and ray tracing
techniques. However, they might compromise accuracy, as they do not aim
for a complete description of the propagation processes. E.g., the correlative
models [14] only characterize the correlation experienced at the Tx and Rx
sides. As a consequence, channel models that have a balanced performance
between the complexity and accuracy have attracted attention in the research
field, e.g., WINNER II [4] and COST2100 channel models [5]. A brief overview
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with respect to these channel models is given in the following.

1.4.1 Correlative Models

Correlative models try to simplify the wireless MIMO channel modeling effort
by modeling only the correlation properties of the channel. In correlative mod-
els, wireless channels are represented as a white Gaussian channel with specific
correlation properties at the two communication terminals, namely transmit-
ter and receiver. These models are used extensively due to their simplicity,
especially the Kronecker model [2] and the somewhat more advanced Weich-
selberger model [15].

Kronecker Model

The Kronecker model is one of the most popular, but simple MIMO channel
models. It has been extensively used for the wireless system level verifications.
The narrowband Kronecker channel model is simply described by a correlation
matrix at the Tx and Rx sides and a Gaussian channel between them. It is
assumed that there is no coupling between the scatterers located at the Tx and
the Rx sides. Mathematically, the Kronecker model represents a simple form
describing the channel matrix as:

HKron = R
1/2

RxHwR
1/2

Tx , (1.3)

where Hw represents the Gaussian channel with E{HwH
H
w} = I.

For the use of this model, only the correlation matrices at the Tx and
Rx sides are needed. Usually the correlation matrices are estimated from the
channel matrix with RRx = E{HHH} and RTx = E{HHH}T , where H is the
Hermitian conjugate and T is the transpose. So the parameterization of the
Kronecker model is simple and straightforward.

The Kronecker model can also be applied to wideband MIMO channels,
where the wideband channel is treated as a collection of uncorrelated narrow-
band channels. Often the wideband Kronecker model is described as:

HKron[n] = R
1/2

Rx [n]Hw[n]R
1/2

Tx [n], (1.4)

where n indicates each independent narrowband channel. Therefore, param-
eterization for each independent narrowband channel is needed for the use of
the wideband model.

The Kronecker model is widely used due to its simplicity. However, mea-
surements have suggested that the Kronecker model is not accurate enough
and sometimes it fails to represent the real physical channel [16]. This lack
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of accurately representing physical channels has raised the question: to which
level, the Kronecker model can be trusted? With respect to the uncorrelated
assumption in the Kronecker model, the model usually has a good performance
when the number of antennas is small. As the number of antennas increases,
e.g., as in massive MIMO, the space resolution of the system increases and the
performance of the Kronecker model is highly degraded.

Weichselberger Model

In order to include the coupling between the scatterers at the Tx side and the
ones at the Rx side, Weichselberger has developed a correlative model that
has a more accurate description of the properties in the spatial domain [15].
Besides requiring the link end correlation matrices, as in the Kronecker case,
the Weichselberger model also requires the additional knowledge of a coupling
matrix between the Tx and Rx. The model is defined as

HWeichsel = URx(Ω̃Weichsel �Hw)UTx, (1.5)

where URx and UTx are the eigen bases resulting from the eigenvalue decom-
position of the link end correlation matrices RRx and RTx, respectively. The
Ω̃Weichsel is the element-wise square root of the coupling matrix Ω. The �
represents the element-wise multiplication, and the ∼ operator indicates an
element-wise square-root. The parameters for this model are the eigenbasis
of the receive and the transmit correlation matrices and a coupling matrix.
Same as the Kronecker model, the correlation matrices are estimated from the
channel matrix while the coupling matrix is given by

Ω = E{(UH
RxHU∗Tx)� (UT

RxHUTx)}. (1.6)

Parameterization for Weichselberger model is still with reasonable complexity,
where only the coupling matrix is added compared to the Kronecker model.
The Weichselberger channel model has been validated by measurement data in
[17]. It has been demonstrated that the model gives a reasonable approxima-
tion of the system performance, especially for the channel capacity and spatial
properties. Still with complexity, it has been widely used especially for the
narrowband channel applications.

Structured Model

The Weichselberger model focuses primarily on narrowband channels, where
the correlations over different bands are not considered. The structured model
is an extension of the Weichselberger model to the wideband MIMO channel,
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Figure 1.3: Modeled versus measured capacity for a wideband 4-by-4 MIMO
measurement.

that includes the wideband correlation over receiver-transmitter-delay space
and is defined as [18]:

Hstruct = Γ×1 URx ×2 UTx ×3 Udel. (1.7)

URx, UTx and Udel are the orthogonal eigen bases for the correlation matrix
over receiver, transmitter and delay space, respectively. Γ is the wideband chan-
nel matrix with weighted complex-Gaussian random variables. The weighted
factors, depending on the wideband coupling coefficients, are defined as

ωijk = (udel,k ⊗ uTx,j ⊗ uRx,i)
HRWB,H(udel,k ⊗ uTx,j ⊗ uRx,i), (1.8)

where uRx,i,uTx,j , and udel,k are the one-sided eigenvectors, and RWB,H is the
wideband correlation matrix. The ⊗ represent the Kronecker product.

For the parameterization of the structured model, the full wideband matrix
and the correlation matrix over each dimension have to be estimated. Com-
pared to the wideband Kronecker model, the performance is improved due
to the inclusion of the full correlation over different bands. Fig. 1.3 shows
the capacities from the Kronecker and the structured model based on a wide-
band 4-by-4 MIMO measurement at a signal-to-noise ratio (SNR) of 10 dB.
As expected, the Kronecker model underestimates the channel capacity while
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Figure 1.4: The Saleh-Valenzuela model, schematic description of the PDP.

the structured model gives more accurate capacity estimates for a wideband
MIMO channel.

1.4.2 Cluster-based Channel Models

Cluster based models bridge the gap between correlative channel models and
ray tracing models, and provide a balanced performance between modeling
accuracy and complexity. The first well-known cluster based model is the
Saleh-Valenzuela (SV) model [19], which describes channels with time invari-
ant properties. It focuses on modeling the channel with respect to both power
and delay [19]. SV model is one of the first channel models that include the
clustering of MPCs. It divides the channel impulse response into several clus-
ters, each of which is consisting of a number of MPCs. The power delay profile
(PDP) of each cluster is modeled with an exponentially decaying profile, with
its own arrival time and decay factor, see Fig. 1.4. The overall PDP is also mod-
eled with exponential decay; however, with slower decay factor. The modeled
channel impulse response is given as

h(τ) =

∞∑
c=0

∞∑
l=0

ac,le
jφc,lδ(τ − τc − τc,l) (1.9)

where τc is the cluster arrival time, and τc,l is the arrival time of the lth MPC
inside cluster c. The parameters ac,l and φc,l are the gain and phase of the lth
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Figure 1.5: Cluster concept in WINNER II channel model.

MPC in cluster c. It can be noted that the parameters of the SV model are
limited. Thus, the model can be implemented with low complexity. However,
usually the SV model works well only for the indoor scenario and lacks the time
invariant description of the real channel. The SV model is simple and easy to
use, but more sophisticated channel models are needed to give a more detailed
characterization of the wireless channel.

1.4.3 Geometry-based Channel Models

The fundamental basis of geometry-based channel models is also clusters, to-
gether with geometrical descriptions, such as directional information. There
are well-established geometry-based channel models, e.g., COST 273 [20], WIN-
NER II [4], COST 2100 [5] etc. These models are with reasonable complexity
and high accuracy, which makes the geometry-based channel models signifi-
cantly attractive. In this section, WINNER II and the COST 2100 channel
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models are discussed in more detail.

WINNER II Channel Model

In the WINNER II channel model, multi-path clusters are used in order to
develop a realistic description of the wireless channels. Fig. 1.5 shows the mod-
eling concept for a single link MIMO channel. Each large black circle represents
a multi-path cluster that is associated with a group of MPCs (represented as
tiny solid green circles). As the mobile stations (MSs) move, different clusters
will contribute to the communication links.

The WINNER II channel model covers a wide range of propagation scenar-
ios, including an indoor office, indoor hall, urban micro-cell, outdoor to indoor
and so on [4]. For each scenario, different sets of parameters are extracted
from measurements, e.g., delay spread, angle spread, shadow fading and cross-
polarization ratio. There are two groups of parameters used in the WINNER
II channel models: large scale parameters and support parameters. The model
parameters are summarized in [4] and are all included in the open MATLAB
WINNER II implementation. To generate channel snapshots using the WIN-
NER II channel model, parameters for each snapshot are calculated from the
global parameters and parameter distributions, which means the channel pa-
rameters vary over time. However, the concept of channel segments has been
introduced to keep the channel stationary, i.e., to make sure that the large scale
parameters do not change, over such intervals.

The WINNER II channel model has significant advantages, e.g., it covers
many scenarios, and it is scalable with multi-link modeling. However, it is
affected by a major shortcoming, that is, the clusters are of the same size. This
is not true when considering the physical properties of different propagation
environments. Therefore, the model accuracy degrades, especially in indoor
scenarios, where clusters have significantly different sizes. In addition, the
model has a rigid structure such that when new large scale parameters are
introduced, the entire initialization of the propagation environment must be
redefined, which hinders the development or extension of the model itself [21].

The COST 2100 Channel Model

The COST 2100 channel model is an extension of, and have inherited several
concepts from, the previous COST 273 MIMO channel model [5]. The COST
2100 channel model describes the physical radio propagation in various sce-
narios including the macro-, micro- and pico-cells with a generic and flexible
structure that shows good compatibility with other scenarios. It also supports
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Figure 1.6: The COST 2100 channel model, an example of clusters, visibility
regions and transition regions.

both single- and multiple-link MIMO channel access.
The basic modeling methodology of the COST 2100 channel model is based

on multi-path clusters and their corresponding visibility regions. Basically,
clusters are assumed to be uniformly distributed in the communication area,
and each cluster is associated with a visibility region. When a user is inside a
visibility region, the corresponding cluster is active, thus having contributions
to the channel. Generally, a cluster can have more than one visibility region,
but each visibility region can only be assigned to one cluster. Users can exist
within several visibility regions at the same time, e.g., in the overlapping area
of several visibility regions. As a user is moving, the clusters that can be seen
by the user are changing. Even along the duration in which the cluster is being
active, its power contribution changes as the position of the MS changes. This
change takes place within what is called a transition region. The transition
regions are defined within the visibility regions and their role is to smoothly
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allow the user to enter or leave the visibility region of interest. Fig. 1.6 shows
an example of the relations between clusters, visibility regions and transition
regions.

To simulate channels using the COST 2100 model, parameters for the con-
sidered scenarios have to be provided. Typically, the COST 2100 channel model
includes indoor and outdoor scenarios, where some of the scenarios have the
complete set of parameters, but a subset of the modeling parameters of some
scenarios is missing.

The COST 2100 channel model has significant importance for the develop-
ment of the next generation wireless system. Its cluster-level structure provides
an efficient and a realistic solution for incorporating diverse channel properties
into the channel description. Hence, it promises a solution to model differ-
ent aspects in multi-link and cooperative communication systems. The COST
2100 model covers different communication scenarios, includes new channel
characteristics, e.g., diffuse multi-path components (DMCs), and is suitable
for system level simulations. A more thorough discussion of the COST 2100
channel models is given in Chapter 3.

1.5 Overview of the Thesis

MIMO channel models are important for the development of wireless systems.
There is a wide amount of literature on channel modeling. However, sophisti-
cated channel models need more efforts targeting different environments, pa-
rameterization, implementation and validation, which are the primary objec-
tives of the thesis.

First, to be able to understand the basis of geometry-based channel models,
clusters are studied in Chapter 2, including their spatial and physical prop-
erties. Then, one of the geometry-based channel models using the concept of
clusters, the COST 2100 channel model, is studied, analyzed, and implemented
in Chapter 3, including the discussions on multi-link extension of channel mod-
els. Recently, high accuracy indoor positioning attracted high attention both
in industry and academia. In Chapter 4, the possibility for positioning using
phase information of MPCs from the radio channels is investigated. The con-
tributions and conclusions of the thesis are presented in Chapter 5, together
with discussions of future work.
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Chapter 2

What is a Cluster?

As a general term, a cluster is defined as a collection of objects that are similar
to each other in some agreed-upon sense [22]. In radio channels analysis, a
multi-path cluster is defined as a group of MPCs that have similar delay and
angular parameters. Identifying clusters in radio channels has attracted a lot of
research attention due to the fact that clusters represent the basis for popular
channel models [19, 23–37]. In 1987, Saleh and Valenzuela were the first to
propose using the concept of clusters for channel modeling [19]. They focused
on defining clusters in the delay domain. Later on, other domains, including
azimuth angle of departure and arrival as well as delay, were suggested to be
considered when identifying clusters, such as the COST 259 model [23, 24].
Significant research effort has been made in order to study clusters and obtain
a better understanding of their behavior based on measurement data [25–37].

The procedure of identifying clusters is called clustering, and there are two
widely used methods for clustering. The first one is the parameter based clus-
tering method, where clustering is performed based on the parameter space of
the MPCs. The corresponding extracted clusters are therefore called parame-
ter based clusters [25–35]. The second is the physical clustering method where
ray tracing or ray launching techniques are used to identify the different groups
of scattering objects and their associated MPCs [36,37]. Usually, compared to
the parameter based clusters, physical clusters can easily be interpreted and
linked to the different physical scatterers in the environment. However, physical
clusters are often linked to a more complicated extraction methodology.

In this chapter, we start by reviewing the parameter based clusters, in-
cluding their extraction using the joint clustering and tracking algorithm, and
some of their properties such as cluster positions, spreads, and movements.
Then we discuss the physical clusters, with respect to their extraction using a

17
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measurement based ray launching extraction method, and some of their prop-
erties such as cluster’s lifetimes and spreads. At the end of this chapter, the
physical interpretation of the parameter based clusters is discussed.

2.1 Parameter Based Clusters

Clustering algorithms focusing on the parameter space of MPCs, such as KPow-
erMeans, Hierarchical, and Gaussian mixture, have been discussed and widely
used in cluster related channel analysis [26,28–31]. The extracted clusters from
such clustering algorithms are called parameter based clusters. A parameter
based cluster is usually characterized by its lifetime, angular spreads, delay
spread, shadowing factor and so on, see e.g., [28, 31]. Usually, clustering algo-
rithms concentrate on determining clusters in each snapshot and do not take
into account characterizing the evolution of clusters’ properties among consec-
utive snapshots. However, from a modeling perspective, cluster time variant
properties have to be considered to give a better description of the channels.
Therefore, cluster tracking algorithms that are able to obtain the different time
variant properties of clusters [38, 39] have been developed. At an early stage,
algorithms were introduced such that they first extract clusters, and then track
them, e.g., see [38]. Later, a so called joint clustering and tracking algorithm,
which extracts and tracks clusters at the same time, has attracted researchers’
interests [39]. In this section, the joint clustering and tracking algorithm is
reviewed as well as the properties of the extracted clusters.

2.1.1 Joint Clustering and Tracking Algorithm

The idea of joint clustering and tracking allows identifying clusters and tracking
their time variant properties concurrently. To achieve this goal, the following
steps are performed. First, a Kalman filter is used to predict the position
parameters of the clusters for the next snapshot and, then, a KPowerMean
clustering algorithm is used to identify different clusters from the measure-
ment data based on these predictions. The tracking algorithm determines how
clusters of different snapshots are related to each other. Depending on their
properties, clusters from a new snapshot can be associated with the clusters
from the previous snapshot or treated as newborn clusters. Similarly, clusters in
the previous snapshot are seen as dead if they cannot be related to any cluster
in the next snapshot. This algorithm has been tested in several measurement
environments, both for indoor and outdoor scenarios, and demonstrated sig-
nificant improvement in tracking clusters [39]. The main parts of the joint
clustering and tracking algorithm, i.e., KPowerMean and Kalman filtering, are
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discussed in the following.

KPowerMean Clustering

The KPowerMean clustering algorithm is based on the power weighted K -
means algorithm [29,30]. First, K initial cluster centroid positions are chosen,
and then the MPCs, characterized by delay, angle-of-arrival (AOA), angle-of-
departure (AOD) and power, are associated to the cluster centroids µc accord-
ing to the distance function, which is defined as:

D(i) =

L∑
l=1

PlMCD(xl,µc) (2.1)

Each MPC xl is associated with the cluster centroid which has the minimum
distance D(i). After assigning all the MPCs to their corresponding centroids,
the centroids of the different clusters are re-calculated based on their associated
MPCs as

µc =


1∑l∈µc Pl

∑l∈µc Plτl

angle(
∑l∈µc Plexp(jφRx,l))

angle(
∑l∈µc Plexp(jφTx,l))

 (2.2)

where Pl, τl, φRx,l and φTx,l are the power, delay, AOA and AOD of the lth
MPC, respectively. A comparison between the newly observed cluster centroids
and the previous centroids is performed. Only when all the cluster centroids
are not changed, the algorithm will stop assigning MPCs to clusters. Otherwise
the MPCs will continue to be assigned to the new centroids. In order to make
a more efficient algorithm, usually a maximum iteration number is needed [26].
When the KPowerMean clustering algorithm is performed based on the three
considered domains, i.e., AOA, AOD, and delay, any of these three properties
might dominate the clustering performance. For example, clusters with sig-
nificantly different delays but with similar properties in other domains can be
grouped into one cluster. Therefore, in [39], a weighting factor of the delay
component was introduced to give a trade-off between the delay and angular
domain.

Kalman Filter Tracking

Kalman filtering, which is also known as linear quadratic estimation [40], is an
algorithm that uses a series of measurements observed over time, containing
noise (random variations) and other inaccuracies. Also it allows tracking, and
produces estimates of unknown variables that tend to be more precise than
those based on a single measurement alone. Basically it contains two parts for
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the channel parameter tracking, Kalman prediction and Kalman update. Both
are focusing on cluster centroids. Based on the assumption of having linear
movements of clusters in delay and angle domains, the state-space model is
defined by using the cluster tracking parameters θ, which consists of cluster
centroid position and centroid speed [30],

θn = Φθn−1 + wn (2.3)

where wn is the state noise at the nth stage and Φ is the state-transition matrix
and is given by

Φ = I3 ⊗
[

1 1
0 1

]
, (2.4)

where I3 is the identity matrix and ⊗ denotes the Kronecker product.
The derived Kalman filter tracking equations include prediction and update

steps: [30]
Prediction

θn|n−1 = Φθn−1|n−1 (2.5)

Mn|n−1 = ΦMn−1|n−1ΦT + Q (2.6)

Update

Kn|n = Mn|n−1OT (OMn|n−1OT + R)−1 (2.7)

θn|n = θn|n−1 +Kn|n(µc −Oθn|n−1) (2.8)

Mn|n = (I−Kn|nO)Mn|n−1 (2.9)

where O is the transition matrix for the cluster centroid position. The param-
eters Q, M and R are initialized as identity matrices.

The Kalman filter both tracks the clusters’ centroids over time and predicts
their centroids for the next snapshot. By using the Kalman filter, the time
variant properties of clusters can be obtained. Also, the prediction of the
centroids of the new clusters helps the clustering algorithm to converge quickly.
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(b) Snapshot 2
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(c) Snapshot 3
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(d) Snapshot 4

Figure 2.1: Examples of tracked clusters over time.

2.1.2 Cluster Properties

By using the joint clustering and tracking algorithm, a cluster is characterized
not only by its position and spreads, but also by its lifetime, and movements
with respect to its position and spreads, power etc. In [30,39], cluster properties
have been investigated for both indoor and outdoor scenarios, where it has
been found that clusters have significant movements in the different parameter
domains, which can be attributed to the changing of propagation conditions. To
have a deep understanding of the cluster properties, cluster position, spreads,
movements and lifetime are discussed more in detail in the following.
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(a) Cluster delay movements

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Distance [wavelength]

C
lu

st
er

 p
os

iti
on

 in
 a

ng
ul

ar
 d

om
ai

n 
[r

ad
]

AOD
AOA

(b) Cluster angular movements

Figure 2.2: Examples of movements of parameter based clusters in the delay
and angular domains: a) cluster delay movements, b) cluster angular move-
ments.

Cluster Position and Cluster Spreads

A cluster position is determined by the cluster’s centroid, including delay, AOD
and AOA, while the cluster’s spreads determine the size of the cluster. The
determined clusters have an ellipsoidal shape. Fig. 2.1 shows examples of the
position and the size of a cluster in a sub-urban scenario, where the propagation
environment is changing slowly. It can be noted that clusters are separated well
in delay, AOA and AOD. Inside each cluster, the cluster spreads are within a
reasonable range thus the cluster sizes are limited with small values. The used
algorithm is able to separate clusters and identify their associated MPCs.

Cluster Movements

Movements of the clusters include the movements of their positions and the
changes of their sizes. The tracking algorithm provides the possibility to cap-
ture the variations of the cluster properties over time. Usually the movement
of clusters highly depends on the propagation scenarios [30]. For the cluster
delay, it shows a steady variation in indoor scenarios while it changes fast in
outdoor scenarios [34], such as sub-urban. Usually the BS is static thus the
change of parameters in the cluster AOD (assuming the BS as the transmitter)
domain keeps a similar pattern for all scenarios. However, the movement at the
receiver side highly relies on the scatterers around the Rx. A local scatterer
usually leads to large variations in the angular properties of the clusters [35].
In general, the movements of clusters describe the changes of the propagation
conditions. An example of movements in the delay and angular domains is
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Figure 2.3: Statistics of the lifetime of a parameter based cluster.

shown in Fig. 2.2. In this particular sub-urban scenario, the cluster has slow
variations in both delay and angular domains, because the dominant scatterers
keep contributing to the channel over a long time.

Cluster Lifetime

The lifetime of a cluster shows its active time span and hence relates to its vis-
ibility region, which is an important property for cluster based models. When
a cluster is active, it contributes to the channel response. Over the active time
span of a cluster, the contributions from this cluster to the channel response
have slow variations over the time. However, clusters can also vanish fast, e.g.,
due to a shadowing object between the Tx and Rx. Therefore, clusters may
be blocked and die [34]. Fig. 2.3 shows an example of a lifetime of a cluster
in a sub-urban scenario. Most of the clusters have lifetimes less than 10 wave-
lengths. There are, however, a number of clusters with longer lifetimes that
reflect the dominant scatterers in the environment.

2.2 Physical Clusters

Physical clusters, as the name indicates, are identified based on the physical
interpretation of propagation paths. Therefore, the measurement ray launching
tool is discussed in this section due to its capability to link MPCs with physical
environment, and thus can be used for the purpose of physical clustering. Then
the physical cluster extraction and properties are given as well.
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Figure 2.4: GUI of the measurement based ray launching tool for outdoor
scenarios. From [43].

2.2.1 Measurement Based Ray Launching Tool

Ray tracing and ray launching are promising candidates to help understand-
ing the channel behavior and link it to the physical propagation environment.
These techniques have high computational complexity and have no direct con-
nection to measurements; therefore, a measurement based ray launching tech-
nique is introduced where the information from measurements is used in order
to link the channel measurements to the physical environment. Besides pro-
viding a connection between measurements and the physical environment, it
has the advantage of requiring lower complexity compared to conventional ray
launching approaches as rays are launched only in the directions of the esti-
mated MPCs.

The first use of the measurement based ray launching technique was for a
low complexity indoor propagation scenario where there were two inputs for
the developed indoor measurement based ray-tracer: (i) high resolution channel
parameter estimates and (ii) physical structure of the propagation environment
[41]. With the tool, it was possible to identify the dominant propagation phe-
nomena and relate them with the scatterers of the physical environment. The
developed indoor measurement based ray-tracer did not have the capability to
simulate outdoor scenario due to the complicated outdoor propagation phe-
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Figure 2.5: Examples of ray launching performance. From [43].

nomena. Therefore, in [42, 43], efforts have been made to develop a measure-
ment based ray launching tool for outdoor scenarios. First, a simple outdoor
measurement based ray launching structure was built based on the C++ ap-
plication by E. Olsson [42] and A. Stranne, where only specular ray reflections
from scatterers are considered. Later on, the application was made more so-
phisticated and capable to simulate diffraction and scattering as well [43], see
Fig. 2.4. Similar to the indoor measurement based ray-tracer, a detailed floor
plan of the measured area has to be provided, including the different interacting
scatterers such as buildings, trees etc. If 3D ray tracing is aimed for, eleva-
tion information has to be included as well. Secondly, the measured channel is
estimated with a high resolution algorithm, e.g., SAGE [44], or EKF [45, 46],
to extract the MPC parameters. Consequently, the developed tool uses the
delay, AOA, AOD and power of the extracted MPCs in order to visualize the
most likely propagation paths on top of the environment map. Propagation
processes of each MPC can be easily linked to the different physical scatterers.
Fig. 2.5 shows examples of the visualized propagation paths together with their
interacting scatterers.

Measurement based ray launching is an efficient way to understand the
propagation mechanisms, especially to have a physical interpretation of the
propagation channel. It offers valuable insights for channel modeling. However,
there are some challenges for improving the efficiency and accuracy of this
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tool. For instance, it is difficult to obtain detailed 3D floor plans for every
environment of interest, and propagation models for different scatterers in the
environment need to be improved as well.

2.2.2 Physical Clustering

Physical clustering has been evaluated in indoor scenarios by Poutanen et al.
[36,41], which relies on the assumption that there exists a unique physical scat-
tering object (or a group of scatterers in the case of multiple bounce clusters)
that can be identified in the measurement environment for each extracted clus-
ter. In order to determine the interacting scatterers in the environment, an
extended Kalman filter has been used to extract MPCs with AOA, AOD and
delay [45, 46]. An indoor measurement based ray tracer has been used to plot
rays on top of a floor plan of the measurement environment according to the
measured parameter estimates [41]. It thus shows the physical propagation
paths, enabling the clusters to be explicitly mapped to physical scatterers in
the environment. Using this approach, a cluster is defined as a group of MPCs
originating via similar scattering processes, e.g. via a reflection from the same
wall. Therefore, the extracted clusters are called physical clusters.

Physical clustering in an outdoor scenario has been carried out in [37]. For
outdoor scenarios, it is often possible to identify dominant scatterers from a
map. These dominant scatterers contribute to the channel impulse response
over a long time and determine the main properties of the channel, i.e., over
many separate channel snapshots. The scatterer based physical clusters can be
related to a single scatterer or a group of scatterers. Furthermore, a scatterer
can contribute to more than one physical cluster. In [37], physical clustering
based on the distance between scatterers was suggested, where the distance
between scatterers should be sufficiently close, so that the Tx/Rx cannot dis-
tinguish them. The term “close” is defined as when the distance between
scatterers is much smaller than the distance to the Tx/Rx, more specifically
one third of the distance between the Tx and Rx.

2.2.3 Properties of Physical Clusters

Physical clusters have been studied in [36] for the indoor environment. There,
the number of clusters, cluster lifetime, and cluster visibility region have been
investigated. It was shown that, the number of active clusters was 2.2 in non
line-of-sight (NLOS) and 3.7 in line-of-sight (LOS) on the average. Also the
cluster visibility region is suggested as 1 m in NLOS and 3.8 m in LOS in [36].
Recently, the study of physical clusters for outdoor scenarios has been carried
out in [37], where both the sub-urban and urban scenarios are considered. The
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Figure 2.6: Statistics of the lifetime of one physical cluster.

discussions of properties of physical clusters are limited due to the lack of a
refined physical clustering method. The properties of physical clusters with
respect to cluster lifetime and cluster spreads are discussed more in detail in
the following.

Cluster Lifetime

The time during which a physical cluster can be seen is called as the cluster
lifetime, which is a fundamental basis for cluster visibility regions. When the
terminal is moving, a physical cluster can be visible for a while, but also be
blocked or shadowed by scatterers. Therefore, Fig. 2.6 shows an example of the
cluster lifetime in units of wavelengths in the same sub-urban scenario as for
the parameter based clusters. It can be noted that the extracted cluster lifetime
in average is much longer than the ones for the parameter based clusters; more
than 50% of the clusters have a lifetime larger than 100 wavelengths. This fact
is well reflected in outdoor sub-urban environments where a physical object
usually can give contributions to the channel over a longer time duration.
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Cluster Spreads

The cluster spreads for physical clusters have been investigated in [37], includ-
ing delay spread and angular spread. It has been seen that the delay spread
and angular spreads have in general small values in the sub-urban and urban
scenarios, e.g., 10 degree in AOA spread and 0.05 µs delay spread, which in
turn reflects that the physical clustering results in a limited delay spread and
angular spread of the associated MPCs. Therefore, the size of clusters is limited
in a reasonable range.

2.3 Physical Interpretation of Parameter Based
Clusters

Clusters that are extracted using the parameter based method capture the
channel variations in position, size, and lifetime. However, finding a physi-
cal interpretation for these clusters is still an open topic which needs more
investigations. In order to understand and determine the physical interpreta-
tion of clusters, the MPCs of each cluster need to be related to the physical
environment.

With the developed measurement based ray launching tool, it is possible to
investigate the behavior of the parameter based clusters and their interactions
with the different physical scatterers in the environment. This investigation
was performed for the first time in [37], where the clusters and their asso-
ciated MPCs are analyzed so that they can be visualized together with the
measured environment map. It was found that if the parameter based cluster
is characterized as single-bounce then it has tight connections with the physical
environment. Otherwise, it is difficult to relate the clusters with the physical
environment. In general, the associated MPCs of a cluster have tight connec-
tions with the physical environment in the angular domain but not the case
in the delay domain. Typically, a parameter based cluster is not interacting
with a single physical scatterer but rather with several scatterers. Generally
speaking, the investigation in [37] has shown that it is not straightforward to in-
terpret the connections between the parameter based clusters and the physical
environment.
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The COST 2100 Channel
Model: Parameterization,
Implementation, and
Validation

The COST 2100 channel model is a well-established wireless channel model
that can be integrated to evaluate current and next generation wireless sys-
tems. It provides statistical descriptions of wireless channels both for indoor
and outdoor scenarios. However, the COST 2100 channel model implementa-
tion is still under development and needs more efforts, such as parameterization
for some typical scenarios, especially when two or more wireless terminals are
introduced. Also, there is a lack of studies validating the COST 2100 chan-
nel model due to the absence of a general methodology to validate channel
models. Moreover, the validation processes are also dependent on available
measurement data and the nature and use of the particular channel model.
One of the most important characters of the COST 2100 channel model is the
multi-link extension, where simulations with multiple BSs and MSs are sup-
ported. Analyses of the multi-link extension are rare due to a lack of multi-link
measurements.

In this chapter, parametrization and validation of the COST 2100 channel
model are discussed in detail. And then, the multi-link channel properties and
its extension in the COST 2100 channel model are discussed.

29
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3.1 Parametrization for the COST 2100 Chan-
nel Model

Parametrization is an essential step for the implementation of channel mod-
els. The first effort for the COST 2100 channel model parametrization was
carried out by Poutanen et al. in [47], where only a single indoor link was
considered. There, inter-cluster parameters, such as number of clusters, radius
of the visibility regions, cluster decay factors, as well as the intra-cluster pa-
rameters (e.g., number of MPCs in a cluster, angular spreads, polarizations),
were given, including both LOS and NLOS scenarios. More recently, in [31],
parametrization for sub-urban scenarios has been carried out, where a complete
set of parameters for outdoor scenarios is provided. In this section, details of
the parametrization methodology and the corresponding results are reviewed.

3.1.1 Visibility Region

The visibility region is one of the most important concepts, because the size and
number of visibility regions, etc, are parameters for the COST 2100 channel
model. It was first introduced in the COST 259 channel model, where the
visibility region is defined as the duration of the cluster in which it can be
seen by the MSs [23]. In [47], the visibility region has been discussed and
extracted similarly as in [23] for indoor scenarios. More recently, in [31], the
visibility region has been derived from a modified extraction method. The
main motivation for the modified method is that the MS does not always go
through the center of the cluster visibility region and the visibility region of
each cluster cannot simply be equal to the so called cluster lifetime distance,
which is the multiplication of cluster lifetime and moving speed. Therefore, in
[31], a relation between the visibility region and cluster lifetime is proposed.
There, it has been assumed that the cluster visibility region is a circle, and the
radius of the circular visibility region r is deterministic. It is further assumed
that the measured route traverses the circular visibility regions at a random
(uniformly distributed) distance d from the respective centers of the cluster
visibility regions. Given this geometry, the length of an intersection between a
measured route and a cluster visibility region is

L =

{
2
√
r2 − d2 0 ≤ d ≤ r,

0 otherwise.
(3.1)

Now, the average cluster lifetime distance is

Λ , E [L] =

∫ r

0

2
√
r2 − x2 fd(x) dx, (3.2)
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where E[·] denotes statistical expectation and fd(x) is the probability density
function for d. By solving the integral in (3.2) for a uniformly distributed r,
0 ≤ d < r, it can be obtained as

Λ =
π

2
r, (3.3)

where the factor π
2 is defined as a compensation factor between the cluster

visibility region radius r and the average cluster life distance Λ. In the COST
2100 channel model, the visibility region for indoor scenarios is suggested as 2.8
m and 3.8 m for LOS and NLOS respectively [5]. For outdoor scenarios, 32.8 m
and 24.5 m are recommended for LOS and NLOS, respectively [31], based on
the related channel measurement analysis. In indoor scenarios, scatterers are
usually within a small scale and also the properties of each scatterer vary from
one to another so that clusters vanish more frequently, thus the corresponding
visibility region is in a scale of meters. However, in outdoor scenarios, objects
can be larger, e.g., high buildings, and large walls, so clusters are visible for a
longer time and cluster visibility regions are thus larger.

3.1.2 Cluster Power Decay Factor

The power carried by each cluster is modeled as a function of the cluster delay;
basically, the longer the cluster delay, the weaker the cluster power is. In
the COST 2100 channel model, cluster power is characterized with cluster
decay factor, which describes how rapidly the power of the clusters decays as a
function of the increasing delay. The factor gives control of the channel power
in total and is thus crucial to the channel model as well. In general, a linear
regression in dB domain between the power and delay can be done to extract
the decay factor [31]. An example of extracting the decay factor is given in
Fig. 3.1, where all the extracted clusters over the time and space are used. In
this extraction process, it is crucial to consider the selection of noise level and
maximum excess delay, which can give significantly different estimates of the
decay factor [48]. In [47], a cluster power decay factor was estimated for each
cluster and then an average process over all the cluster power decay factors has
been applied to give a single cluster power decay factor. It has been seen that
the cluster power decay factor for each cluster fluctuates in the indoor scenario,
ranging from 30 dB/µs to 80 dB/µs, and a mean value 54 dB/µs is suggested
[47]. The crucial problem with this method is that the estimated power decay
factor for each cluster lacks sufficient statistics because some of the data may
be missing [48] while the clusters vanish frequently.
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Figure 3.1: Cluster power decay factor. The scatter plot shows the cluster
power vs. the cluster delay.

3.1.3 Single- and Multiple-bounce Clusters

Clusters are characterized as single- and multiple-bounce clusters depending on
the number of interactions along the propagation path and are implemented
with different geometry models. The ratio between them, the so called clus-
ter selection factor, is another critical parameter for the COST 2100 channel
model. To be able to differentiate between single- and multiple-bounce clus-
ters, usually a physical interpretation of the propagation properties is needed,
where the interaction properties of each path have to be observed. In [47], the
cluster selection factor has been extracted for the physical clusters together
with a measurement based ray launching tool. It has been suggested that the
cluster selection factor could be set to zero in indoor NLOS scenarios. While
for the indoor LOS scenarios, around 70% of the clusters are multiple-bounce
clusters. It can be argued that in indoor scenarios, the BS and MS are usually
surrounded with more scatterers, which leads to more multiple-bounce clusters.
The number of interactions with physical objects for parameter based clusters
in an outdoor scenario is studied in [31], where the geometry properties of the
centroid of each cluster are used. It is initially checked whether a ray from the
BS in the AOD direction of each cluster and a ray from the MS in the AOA
direction of the same cluster can meet each other or not. If there is no valid
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intersecting point between the two rays, a multiple-bounce cluster is assumed.
With a valid intersecting point, the total travel time is employed as an addi-
tional check. When the travel time corresponds to the geometrical distance for
a single interaction, a single-bounce cluster is determined. Around 90% and
80% multiple-bounce clusters has been observed for the LOS and NLOS sce-
narios, respectively. Later on, in [37], the single- and multiple-bounce clusters
are determined for the extracted physical clusters together with a measurement
ray launching tool, which is similar as the method in [47]. There it has been
found that physical scatterers can be single- and multiple-bounce clusters at
the same time [37], and 33% and 20% single-bounce clusters has been founded
for the considered sub-urban and urban scenarios, respectively.

3.1.4 Cluster Spreads

Cluster spreads, including delay spread, AOA spread, and AOD spread, deter-
mine the size of the cluster, and thus have significant effects on the channel
properties. The spreads are usually defined as [5]:

DSc =

√√√√∑Nc

i Pi(τi − τ̄)2∑Nc
i Pi

, (3.4)

ASc =

√√√√∑Nc

i Pi(angle(exp(j(ϕi − ϕ̄))))2∑Nc
i Pi

(3.5)

where DSc is cluster delay spread, ASc is cluster angular spread, Nc is number
of MPCs associated each cluster and j is the imaginary unit. Furthermore, Pi
is the power for the ith MPC, ϕ̄ and τ̄ are power weighted means calculated as

τ̄ =
1∑Nc

i Pi

Nc∑
i

Piτi (3.6)

ϕ̄ = angle(

Nc∑
i

Pi exp(jϕi)), (3.7)

where τi is the delay and ϕi is the AOD/AOA of the ith MPC. The cluster
spreads are studied in [31, 37, 47]. A delay spread of 2 ns is suggested in [47],
and angular spreads are relatively small, specifically, less than 5 degrees in the
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indoor scenario. It has been pointed out that the angular spread at the MS
side is larger than the one at BS side and angular spreads in elevation do not
have significant differences compared to the ones in azimuth. In [31], the delay
spread is in the scale of µs, where a large measurement area is included in
the considered outdoor scenario. There, only the azimuth angles are analyzed
due to the limitation of the measurement setup. The angular spreads show
reasonably small values as well and thus can limit the size of the clusters.
Also in [37], investigations of the cluster spread properties are carried out
for both sub-urban and urban scenarios, where smaller cluster spreads were
observed compared to the values in [31]. This observation is mainly due to the
consideration of physical clusters, which have tight connections to the physical
environment.

3.1.5 Cluster Cross-polarization Discrimination

The cluster cross-polarization discrimination (XPD) characterizes the power
ratio between one polarization to another. To be able to characterize the XPD
for a cluster, XPD ratios of each MPC belonging to the cluster are determined
as [5]:

XPDV =
PVV

PVH
(3.8)

and

XPDH =
PHH

PHV
. (3.9)

The MPC XPD ratios are modeled as log-normally distributed over different
clusters, with a mean µXPD and standard deviation σXPD for a cluster. Thus the
cluster cross-polarizations are also log-normally distributed, with parameters
(mµXPD , SµXPD) and (mσXPD , SσXPD). In [37, 47], XPD parameters for indoor
and outdoor scenarios have been discussed. In the indoor scenario, XPDV and
XPDH are very close to each other and the mean and standard deviation being
approximately 15 dB and 10 dB. In the outdoor scenario, mean values around
4 dB and 6 dB are observed for XPDV and XPDH, together with standard
deviation of approximately 4 dB and 3 dB. Note that, there is a lack of studies
of the XPD parameters in some common scenarios, which is mainly due to the
fact that the full polarization measurements for such scenarios are not available.

3.1.6 Other Parameters

Usually, clusters are classified as local clusters and far clusters. Local clusters
are located around MS or BS, and far clusters are located away from both the
BS and MS sides. The number of local clusters and far clusters is extracted
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separately. Usually, a local cluster is observed at the MS side in an outdoor
scenario [31].

The number of far clusters, in general, is between 2 to 6 [31,37,47]. Regard-
ing the number of MPCs in each cluster, in [47] the DMCs have been removed
and less than 5 MPCs in each cluster is observed. The number of MPCs in
each cluster in [31] is around 25 that is mainly due to the fact that the DMCs
are taken into account and are treated as specular MPCs.

There is also a group of additional parameters when the LOS condition is
fulfilled, which are so called LOS parameters. In [31, 47], LOS parameters, in-
cluding LOS power, visibility region of LOS, LOS cutoff distance, are extracted
for the considered scenarios.

There are also some other important parameters in the COST 2100 channel
model, e.g., transition region, cross-correlation between large scale parameters.
Further detailed values are summarized in [31,37,47] for different scenarios.

3.2 Validation of the COST 2100 Channel Model

Validation is one of the most important steps for channel model development,
where the extracted parameters from measurements are applied for channel
simulations. Then the validation is performed by comparing the stochastic
properties of the simulated channel and the measured channel that the param-
eters are drawn from.

The first attempt at validating the COST 2100 channel model has been car-
ried out by Haneda et al. in [49] for an indoor scenario, where the angular and
delay spreads were chosen due to their influences on the system metric, e.g.,
eigenvalue and capacity distribution. It was found that an acceptable level of
agreement in terms of the angular and delay spreads is observed between prac-
tical channel simulations and measurements. Also the work has stated that the
COST 2100 channel model is a reliable tool for realistic and dynamic MIMO
channel simulations. Recently, in [31], the validation of the COST 2100 channel
model has been performed with respect to delay spreads, spatial correlations,
singular value distributions and antenna correlations in a sub-urban scenario,
where it was concluded that the model has potential for modeling 300 MHz
channels in outdoor environments. Although some modifications are needed
for the distribution of cluster delay spreads and the size of the cluster visibility
regions. Later, the validation of the delay spread and singular value distribu-
tion for an urban scenario was carried out in [37] together with the extracted
parameters based on the concept of physical clusters. It was concluded that
the physical clusters give better control of the delay spread; also, the COST
2100 channel model can well represent the channel characteristics with respect
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to system capacity.

3.3 Multi-link Extension of the COST 2100
Channel Model

Multi-link channel modeling is one of the major challenges for the next gen-
eration wireless channel models, where multiple BSs and MSs are introduced.
In general, the key idea of multi-link channel modeling is to capture the cross-
correlation properties between the considered links. Often, it is assumed that
there is no correlation between two links if the two links are far away from each
other [50]. However, it has been shown that cross-correlation of large scale
parameters between multi-links indeed exists and also has significant effects
on the channel properties [51–53] and the system level performance [54, 55].
Thus, modeling of large scale parameters between multi-links can give valuable
improvements for multi-link system models. From a geometry-based modeling
point of view, the cross-correlation between multi-links is due to the shared in-
teracting scatterers along the propagation paths. Therefore, common clusters
which describe the commonality between multi-links are introduced in [56], and
are used in the COST 2100 multi-link channel model [57].

To have a thorough understanding of the multi-link channel modeling, cross-
correlation of large scale parameters between links is discussed in the following.
Later, common clusters, which describe the cross-correlation properties in the
COST 2100 channel model, are discussed in detail as well.

3.3.1 Cross-correlation of large scale Parameters between
Links

The large scale parameters, i.e., shadow fading, delay spread, AOA spread and
AOD spread, are usually modeled as a function related to the distance in each
link, such as an exponential decay with increasing distances [58]. When it comes
to multi-link configurations, the distance and angle separations between multi-
ple links become significantly important. The discussions on cross-correlation
properties of large scale parameters are given in the following.

Shadow Fading

Shadow fading describes the long-term variations in the received power, which
is usually assumed to be the results of shadowing by objects in the propagation
paths [59, 60]. The averaged received power level in dB domain is usually
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modeled as

P (d) = P0 − n log10(
d

d0
) + SF (d), (3.10)

where d is the distance, n is the path-loss exponent and P0 is a reference value
at the distance d0. To extract the shadow fading component, a linear regression
in dB domain of the received power versus distance is required.

Gudmundson has proposed that the auto-correlation of shadow fading in
a single link follows an exponential decay as the distance is increasing [58],
and many measurements have been carried out to validate this model [60–63].
When it comes to multiple links, cross-correlation of the shadow fading has
also shown a significant importance for the system level performance. The
early studies focused on the effects of the angle of arrival difference (AAD) at
the mobile sites. A correlation coefficient of around 0.7 was obtained from the
measurements when the AAD is small [64]. In addition, a table look up model
of correlation coefficients versus AAD was proposed in [64]. Later on, Mawria
proposed a simple formula for the approximation of the link correlation versus
the angle θ in degree seen from the MS to the two considered BSs [62]:

ρ(θ) = 0.9− |θ|
200

(3.11)

This simple approximation has not taken the positions of the BSs and MSs into
account. In [65], a position dependent correlation function is introduced and a
new simple model was proposed including position dependence.

After that, Perahia et al. in [66] has shown that the cross-correlation of
shadow fading between BSs ranged from -0.34 to +0.43 for different environ-
ments and angular separations. Jaldén et al. in [51] has studied the influence of
the distance between two BSs. It has been emphasized that the shadow fading
has a high correlation when the two BSs are close. Recently, in [52], another
measurement has been analyzed, where it was found that the cross-correlation
between links can have a large value even when the two links are far away from
each other. The shadow fading has shown negative cross-correlation between
different links when the MS is moving towards one BS but away from the other
BS. On the other hand, when MS is moving towards both BSs, the shadow
fading is positively correlated.

Note that most of the work mentioned above is for outdoor-to-outdoor sce-
narios. Therefore, Jaldén et al. in [67] have put lots of efforts into investigating
the indoor multi-link cross-correlation properties. There, a correlation coeffi-
cient of 0.5 was found for shadow fading in some measurement areas. Also, the
correlation coefficient versus distance was studied in [67], where, generally, the
cross-correlation increase with the decreasing distance. It has to be noted that,
besides some specific measurement areas, the shadow fading cross-correlation is
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generally low in most of the indoor scenarios, and can thus be treated as inde-
pendent of each other. More recently, indoor multi-link correlation with respect
to shadow fading has been investigated in [53], where a strong correlation was
found even when the terminals are highly separated.

Delay Spread

Delay spread is the normalized second-order central moment of the power delay
profile, and it shows the frequency selectivity of the channel. In [61], it has been
suggested that the delay spread can be modeled as a log-normal distribution
and the auto-correlation in each link can be modeled as an exponential decay
with increasing distance. Nonetheless, due to the lack of multi-link measure-
ments, the cross-correlation of the delay spread has rarely been studied. In [63],
it was found that higher BS antenna arrays resulted in higher cross-correlation
with respect to delay spread. Recently, in [52], a study of the cross-correlation
of delay spread between multiple BSs in an outdoor scenario was carried out. It
was seen that when the MS is moving towards one BS but away from the other
BS, the delay spread had negative cross-correlation. On the other hand, when
MS was moving towards both BSs, the delay spread was positively correlated,
which is a similar trend as for the cross-correlation of shadow fading between
links.

Angular Spread

The angular spread reflects the geometry of the local scatterers, so it is gen-
erally different at the transmitter and receiver sides. The cross-correlation of
angular spread is related to the probability of the shared local scatterers be-
tween links. However, the study for angular spread concentrates on single link
auto-correlation, e.g., in [61]. It has been seen that the angular spread has
an exponential decay, negatively correlated with the shadow fading in each
link. Recently, the cross-correlation of angular spread between multiple links
has been analyzed in [51], where the BS and MS angular spread is introduced.
However, both the two angular spreads show low cross-correlation, so that the
authors suggest giving a lower priority to include cross-correlation of angular
spreads into future wireless channel models.

3.3.2 Common Clusters

There have been a few studies on the cross-correlation between links, and results
have shown that cross-correlation is an important property that should be well
described in channel models. The COST 2100 channel model is a geometry-
based stochastic channel model using the concept of clusters. To be compatible
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Figure 3.2: An example of common clusters and their link connections with 3
static BSs and 3 VRs. The lines describe different link connections from each
VR. From [5].

with the single-link COST 2100 channel model, the concept of common clusters
is introduced [5] to describe the multi-link cross-correlation.

The concept of common clusters is introduced based on the assumption that
the propagation paths between two links have a shared part and can interact
with the same physical scatterers [68, 69]. The shared common physical scat-
terers are modeled as common clusters. Same as for the conventional clusters,
visibility regions have to be assigned to common clusters, but now the visibility
region has to be extended to maintain both the single-link and multiple-link
channel model characteristics. Two concepts for the common clusters have
been adopted in the COST 2100 channel model. One is BS-common clusters
and the other is visibility region (VR) groups [5]. Fig. 3.2 gives an example
of common clusters, where BS1 and BS2 have C1 as a BS-common cluster,
VR2 and VR3 are in a VR group due to the common seen cluster C2. To give
a thorough understanding of common clusters, common cluster identification,
significance of common cluster, and validity of common cluster are discussed
in the following.

3.3.3 Common Cluster Identification

Generally, common clusters behave like conventional clusters, and at the same
time they represent the shared part of the radio channel between multiple links.
The common cluster ratio, defined as the ratio between the common clusters
and total clusters, is introduced to characterize the amount of common clusters
in the COST 2100 channel model. In order to observe the common cluster ra-
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tio, we first have to identify the physical propagation paths for multi-links and
associate them to clusters. An indoor measurement based ray launching tool
has been used by Poutanen et al. in [70]. It plots the propagation paths on
top of the map and shows the interactions between the MPCs and scatterers.
Therefore, the shared physical scatterers between multiple links were deter-
mined based on two conditions. One is the distance between scatterers and
the links. The other is the angular separation of scatterers seen from the MS
sides. The thresholds for these values differ from environment to environment.
In the indoor scenario, a distance of 5 meters and an angle of 45 degrees is sug-
gested [56]. Similarly, common clusters for an outdoor scenario are analyzed
together with an outdoor measurement based ray launching tool, where more
complicated propagation phenomena are considered, e.g., diffraction, scatter-
ing [43]. For outdoor scenarios, to be able to determine a common cluster, a
ratio between the distance of two cluster centroids and the larger distance from
the two cluster centroids to the BS is introduced in [71]. A value of 0.2 for the
ratio is recommended.

3.3.4 Significance of Common Clusters

The significance of common clusters was first introduced to characterize the
ratio between the power carried by common and all the clusters by Poutanen
et al. [56]. It was defined there as

Sicommon =
P icommon

P itot

, (3.12)

where P icommon is the power for a common cluster in link i, and Pitot is the sum
of powers of link i. It was found that the total significance varied from 40%
to 95% in indoor scenarios [56], while it varied from 10% to 40% for outdoor
scenarios [71]. For the indoor analysis, the dominant power is usually coming
from nearby walls or objects; in those cases, the common cluster becomes more
significant. However, in the outdoor scenarios, where users typically are more
separated, other scatterers can provide equivalent or even higher power and
diminish the dominance of the common clusters.

3.3.5 Validation of Common Clusters

A validation of multi-link modeling using common clusters has been carried
out for an indoor scenario with respect to sum rate capacity [56]. It has been
seen that the common cluster can well predict the capacity if their significance
is high, specifically, around 85%. For the clusters with low significance, such
as 10%, the model usually underestimates the link capacity due to the effects
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of the locations of the clusters. Later, a validation of the COST 2100 model
for multi-link modeling using common clusters in an outdoor scenario was car-
ried out in [71]. It was shown that as the distance between links increases,
the number of common clusters as well as the multi-link cross-correlation de-
creases [71]. This property is also validated with the COST 2100 channel model
multi-link simulations. Results show that the simulated cross-correlation de-
creases in a similar manner as the common cluster ratios. The simulated and
measured sum-rate capacities show a decreasing tendency as the link distance
decreases. This indicates that the common clusters can capture the multi-link
characteristics and reflect the system level performance.

3.4 Summary

The COST 2100 channel model is a well-established MIMO channel model,
which supports both single- and multi-link MIMO simulations. Parametriza-
tion and validation are essential steps in order to ensure that the channel model
can simulate the desired properties of the real channel. Researches have been
performed to provide complete sets of parameters for some scenarios, e.g., in-
door office, outdoor urban scenario. The multi-link extension of the COST
2100 channel model is implemented so that it can be used for next genera-
tion wireless system evaluations. However, analysis with respect to multi-link
properties needs more efforts, especially for multi-link outdoor scenarios, where
there is a lack of multi-link measurements.
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Chapter 4

Phase Based Positioning

Radio based positioning and tracking is a research area that has attracted a lot
of attention during the past decades. The technology is often seen as a key en-
abler for new cellular services. Global Navigation Satellite System (GNSS) such
as the Global Positioning Systems (GPS) is one of the most frequently used po-
sitioning system that provides location information around the globe through
a constellation of at least 24 satellites [72, 73]. However, the accuracy of GPS
is usually limited and it can lose its performance in shadowed areas, such as
in indoor environments, and beside tall buildings. Therefore, there are exten-
sive research efforts targeting developing new positioning techniques that can
work with high accuracy in shadowed scenarios. Recent proposals for indoor
positioning systems usually rely on distinct signaling methods and/or perform
joint processing of radio channel parameters, e.g., received signal strength in-
dication (RSSI), AOA, time of arrival (TOA) and time difference of arrival
(TDOA), which brings new opportunities to achieve a centimeter-level posi-
tioning accuracy. One of the proposals is to introduce ultra-wideband (UWB)
indoor positioning systems [74], where the TOA can be estimated more pre-
cisely using the ultra wide bandwidth. However, when considering current
cellular systems that have a bandwidth around 40 MHz, achieving the same
accuracy as the UWB systems represents a real challenge.

In this chapter, a positioning technique, called phase based positioning, us-
ing phase information of MPCs of the radio channels and aiming for positioning
accuracy down to centimeters using a standard cellular system bandwidth, is
discussed.

43
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4.1 Examples of Phase Based Positioning Sys-
tems

Phase disciplined positioning has been already used in several positioning sys-
tems. For example, there is a phase based positioning approach aiming for a
centimeter-level of accuracy using GNSS, which is called Real Time Kinematics
(RTK) [75]. The RTK technique is based on the measurements of the phase
of the signal carrier. The carrier phase measurement, which is a measure of
the range between a satellite and a GPS receiver expressed in units of cycles
of the carrier frequency, can be made with very high precision. Note that, the
whole number of cycles between the satellite and the GPS receiver is not mea-
surable, which is also a major challenge of carrier phase based positioning and
is referred to the integer ambiguity. For RTK technique, two receivers, simul-
taneously observing the same satellites, are required to measure carrier phase
differences and solve the integer ambiguity [75]. There is also another tech-
nique used for phase based Radio Frequency Identification (RFID) positioning.
At the early stage of RFID positioning, RSSI is used [76], e.g., LANDMARC
[77]. Later on, phase information from the RFID tags has attracted attention
[78], where the phase of the dominant LOS component from the RFID tags
is tracked and used for positioning or tracking purposes. It has improved lo-
cation estimation performance even in complicated propagation environment
[79]. However, it cannot be applied in cellular systems since the LOS condition
is not always fulfilled.

In this thesis, we use the scatterers, where the MPCs are stemming from, as
virtual, but coherent, transmitters located at unknown positions for positioning
and tracking purposes. By tracking the phase of MPCs, relative distances
between the user and virtual transmitters are observed. The user position can
then be estimated and tracked using a structure-of-motion approach.

4.2 Positioning Based on the Phases of MPCs

MPCs in wireless channels carry distance information in terms of delay and
phase. As long as the multi-paths propagate in the space, the delay and phase
are varying. Delay estimates, which are used in UWB systems to estimates
distances, are usually limited by the bandwidth and SNR. However, the phases
of MPCs, which also carries the distance information, are not dependent on
the bandwidth. Therefore, it becomes attractive to utilize phase information
in cellular systems for distance estimation and thus positioning.

In the following sections, positioning using phase information of MPCs from
radio channels is discussed. First, a synthetic multi-input single-output (MISO)
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Figure 4.1: Synthetic scenario.

channel with a large number of antenna elements is utilized to get an initial
idea of the phase based positioning technique. Secondly, an experimental inves-
tigation is also conducted to show the performance of phase based positioning
in a real environment.

4.2.1 Synthetic Study

As positioning using phase information of MPCs is quite a new topic, a syn-
thetic data study is first carried out to give a brief discussion of the state-of-
the-art of phase based positioning.

Synthetic Channel

First, a synthetic scenario with four geometrically separated scatterers con-
tributing to the synthetic channel responses is assumed. Further, the link from
the MS to the BS is assumed to have only a single reflection and be with NLOS
condition. Thus the four scatterers give rise to four MPCs, each of which is
initialized with a different magnitude and phase. The MS, equipped with a
single omni-directional antenna, is moving along a circle with a radius of 1 me-
ter. An antenna array with 128 ports at the BS side is utilized to reconstruct
channel responses. Together with a measured antenna array radiation pattern,
128-by-1 channel responses under an SNR of 20 dB are generated as the MS
moves. In total, 721 channel samples are collected over the circular trajectory.
The geometrical relations of the scatterers, MS and BS are shown in Fig. 4.1
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together with their coordinates. Note that, the figure is a 2D projection of the
3D environment.

Phase Estimation and Tracking

Parameter estimation or tracking from multi-dimensional MIMO channel
sounding measurements is a well-established research topic. In traditional
approaches, parameters, e.g., delay, AOA, AOD, phase, and magnitude, de-
scribing specular propagation paths, are estimated in a per-snapshot fashion.
Since channel snapshots are assumed to be i.i.d., algorithms such as SAGE
[44], RIMAX [80], are applied for the single snapshots, and later a tracking
algorithm is applied to obtain the time variant behavior [39]. Recently, based
on a state-space model, a few methods have been developed that can perform
direct sequential estimation and tracking of propagation parameters at the
same time, e.g., extended Kalman filter (EKF) [45] and particle filter [81].
These methods bring numerous advantages to the propagation path parameter
tracking. For example, the parameters describing the individual paths are
automatically paired and tracked across measurements, the estimation error
is reduced due to the filtering, and the computational complexity is also re-
duced. Among the different state-space estimation and tracking algorithms,
the EKF algorithm is the one with low complexity but good enough parameter
estimation and tracking performance. Thus it is used in this thesis.

There are two main steps in the EKF approach. First, the EKF gives
a prediction of the parameters based on the previous state and the dynamic
model. Secondly, the filter corrects the estimation errors based on the recently
observed samples. The generalized channel samples are the input of the EKF
approach. It then estimates and tracks the parameters of the MPCs based on
the designed dynamic model and the observations.

The phases of the 4 synthetic MPCs are estimated and tracked, see Fig. 4.2a.
It can be noted that the tracked phases show a sinusoidal variation pattern,
which is perfectly corresponding to the circular trajectory. From the propa-
gation properties, we know that a 2π change in phase is corresponding to a
movement of a wavelength. Therefore, with the tracked phases, we can simply
get the relative distance changes of each MPC over the channel samples as
follows:

∆d =
∆φ

2π
λ, (4.1)

where λ is the wavelength and ∆φ is the phase differences between the current
position and a reference position.
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Figure 4.2: (a) Tracked phases of the MPCS from the synthetic channel. (b)
Tracking performance of the synthetic circular movement.

Structure-of-Motion Positioning

There are a few approaches that use the wireless channel characteristics to
estimate the position of a transmitter or a receiver [82]. Usually, for a single
source network, in order to estimate the required positions, the floor-plan of
the environments is needed [83]. The authors in [84] suggested an anchor
free positioning method for a system with a single transmitter and a single
moving receiver. There, the scatterers, where the MPCs are stemming from
and being planar surfaces or a smaller reflecting objects, give rise to virtual
transmitters at positions sj . Given measurements of distance estimates di,j ,
the positioning problem becomes determining both transmitter positions sj
and receiver positions ri such that

di,j = |ri − sj | (4.2)

is fulfilled. A factorization-based approach followed by a non-linear least
squares optimization is suggested and a good positioning performance has
been achieved using this method in [84].

As stated before, the relative distance can be estimated from phase informa-
tion, so that the 4 MPCs give rise to 4 different distance equations as in (4.2).
By solving these equations, the relative movement can be observed. Fig 4.2b
shows the positioning results of the predefined circular movement by using the
positioning method in [84]. It can be seen that the relative moving pattern can
be perfectly located. The only concern here is that the movement is in 2D,
but the plane of movement is different from the plane of virtual transmitters.
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Figure 4.3: Tracking delays of MPCs for the synthetic scenario.

Therefore the positioning algorithm gives a projection of the circle, which in
terms gives us an ellipse. The projection issues will be analyzed more in detail
in future work.

4.2.2 Discussions on Absolute Positioning

Phase based positioning shows good tracking capability of relative movements,
but not the absolute position. To observe the absolute position, a known ref-
erence position is needed. To be able to estimate a reference position, accurate
delay estimations are needed for each MPC. Fig. 4.3 shows the corresponding
delay tracking of the 4 MPCs. It can be seen that at the beginning, the delay
traces jitter frequently and later start to converge to more stable traces. If the
reference position is chosen as the first position, and is directly estimated from
the beginning of the delay traces, it will give a bias. Phase, which also contains
information about distance thus delay, can serve to give a better estimation of
the reference position. The relation between the phase and delay is defined as:

τk = τref +
1

2πfc

k∑
i=1

∆φ(i), (4.3)
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Table 4.1: Reference delay estimates from EKF and from averaging after re-
moving phase contributions.

Number of MPC True delay [ns] EKF delay [ns] Ave. delay[ns]

MPC 1 200.2 205 201.7
MPC 2 219.1 225 220.8
MPC 3 286.5 285 288.7
MPC 4 333.8 335 336.4

where τref is the reference delay, and fc is the center frequency. By removing
the phase contribution, we can estimate τref over the entire data set. By av-
eraging the τ0 over the entire 721 samples, better statistics can be obtained.
Table 4.1 shows the comparison between the true delay, EKF estimated de-
lay and the averaged delay with subtracting the phase contributions. It can
be noted that the averaging processes can help to obtain more accurate de-
lay estimates. However, if the delay estimates of the EKF algorithm are not
good enough, the averaged results cannot remove the estimation bias, e.g.,
for MPC4. With the delay estimates of the reference position and the geom-
etry of the virtual transmitters, the absolute position of the movements can
be observed. However, it has to be mentioned that bias in delay estimates of
reference position can lead to significant offsets in the estimation of reference
position, which is a part of the major challenge of the phase based positioning
technique.

4.2.3 Experimental Study

An experimental investigation for positioning using phase information of MPCs
of measured radio channels is carried out in this section to give a deep under-
standing of the phase based positioning technique in a real environment.

First, channel measurements were conducted in a large open hall, using the
LUND RUSK channel sounder, with a 40 MHz bandwidth at a center frequency
of 2.6 GHz (161 frequency points) [85]. An omni-directional antenna was used
to represent a single-antenna user. The antenna was mounted on a tripod with
wheels 1.7 m above the ground. During the measurements, the antenna was
moved manually along a circle with radius 0.6 m. To minimize the influence of
the persons moving the station, they were staying very close to the floor such
that body reflections are kept to a minimum, and ground reflections were not
blocked. The cylindrical Rx array was mounted on top of the received sounder
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Figure 4.4: (a) Tracked phases for a number of MPCs. (b) Positioning perfor-
mance.

and acted as a static BS. The center of the cylindrical array was about 2.07
m above the ground. Over the moving trajectory, 5000 channel samples were
collected and each sample is with a size of 128-by-161. The measurement is
conducted under line-of-sight (LOS) condition.

Similar to what has been done in the synthetic case, the EKF algorithm was
used for phase estimation and tracking. Phases are expected to have sinusoidal
shapes due to the circular movement. Fig. 4.4a shows clear sinusoids for the
tracked phases of a number of MPCs estimated from the measured channel.
It can be noted the four MPCs start with different phases and the maximum
phase differences is around 62 rad. This maximum phase difference corresponds
to a maximum distance change of approximately 1.2 m, which is the diameter
of the circle.

The resulting estimated user movements are shown in Fig. 4.4b [85]. It
can be noted that the offset between the planned movements and tracked po-
sitions in maximum is 5 centimeters, and more than 50% locations are within
2 centimeter offset. The standard deviation of the errors is approximately 4.0
cm. Phase based positioning shows promising results, where the estimation
and tracking of the phase information of MPCs give valuable contributions to
the positioning accuracy.
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Contributions, Conclusions
and Future Work

This thesis focuses on geometry-based channel modeling with an emphasis on
multi-link modeling. It includes an extensive analysis of clusters, and imple-
mentation of analytical algorithms and tools, e.g., joint clustering and tracking
algorithm, and ray launching tool. The thesis has made contributions to param-
eterization, validation and implementation of the COST 2100 channel model as
well as its multi-link extension. In addition, this thesis introduces a new phase
based positioning technique, which can provide positioning accuracy down to
centimeters.

Contributions of the six included papers, are summarized and presented in
detail in this chapter. A brief overview is given together with my contributions
to the research field. Also, conclusions of this thesis are presented. Finally, a
discussion of future work in the related field wraps up this chapter.

5.1 Contributions

5.1.1 Paper I: A Ray Launching Tool for Channel Anal-
ysis

Cluster is a key concept in existing MIMO channel models, such as the COST
2100 model. Parameter based clusters have been well studied and extensively
used. Nonetheless, how parameter based clusters relate to the physical envi-
ronment is not clearly understood yet. In order to understand the relation
between parameter based clusters and the physical environment, and to get a

51
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more accurate channel characterization, a measurement based ray launching
tool is implemented, where measurements can provide additional information
such as AOA, AOD, delay and power of MPCs and help identifying the most
likely propagation paths and reduce the complexity of calculations.

In this work, we have developed a measurement based ray launching tool for
outdoor scenarios, using a 3D map including buildings and trees. Ray reflection,
diffraction, and scattering are described in the tool. We analyzed outdoor 300
MHz measurement data by using the ray launching tool. Based on the delay
and angular properties of the MPCs from measurements, the ray launching
tool provides a meaningful interpretation of propagation paths and shows the
interacting physical scatterers along the propagation paths. We notice that
when the MS moves, some physical scatterers continue to contribute to the
channel response while others disappear and sometimes also later re-appear.
These physical interacting processes well interpret the properties of clusters
with respect to cluster lifetime and common clusters.

I am the main author of the paper. I implemented the channel analysis tool
as an extension of a previous master thesis work, which the other two authors
were involved in. I carried out data analysis together with the implemented tool
and summarized the results. The other authors contributed to the discussion,
gave insights to the models and contributed to the paper writing.

5.1.2 Paper II: Channel Modeling Basis: Cluster Analy-
sis

Conventionally, a cluster is defined as a group of MPCs that have similar delay,
AOA and AOD. This is commonly referred to as a parameter based cluster.
There are however two kinds of clusters: 1) parameter based clusters are char-
acterized with the parameters of MPCs; 2) physical clusters, which are deter-
mined based on the interaction properties with physical scatterers of MPCs. It
is an open issue how the physical clusters relate the parameter based clusters
and therefore we analyze this in more detail in this paper.

First, the parameter based clusters are investigated with the developed ray
launching tool for the considered sub-urban and urban scenarios. It has been
seen that single-bounce parameter based clusters can well be reflected in the
physical environment, but this is not necessarily the case for multiple-bounce
clusters, which have more complicated behavior. In this paper, a simple ge-
ographical clustering method is proposed and we observed the corresponding
physical clusters and their properties. A physical cluster can be seen for a rela-
tively long time. The frequent cluster deaths observed for the parameter based
clusters are not observed for physical clusters, which hence have longer cluster
visibility regions. Also, the physical clusters can be single- and multiple-bounce
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clusters at the same time, which is not the case for parameter based clusters.
To our best knowledge, no such comparison has been made before. Based on
the definition of the physical clusters, we extract model parameters for the
COST 2100 channel model for sub-urban and urban micro-cell scenarios. As
such parameters are lacking in the literature, we also fill this gap of knowledge,
which is a second important contribution of this paper. In addition, we also
validate these parameters with the current COST 2100 channel model MAT-
LAB implementation. The validation results show that the physical clusters
give better control of delay spread and the singular value distribution. They
also give good agreement between simulations and measurements.

This work is done together with Aalto University, where I was a guest for
a week. I am the main author of the paper. I did the background studies,
as well as the data processing. I implemented the used analysis tool and al-
gorithm. Simulations, together with the related analysis, were performed by
me. The second and third authors contributed to the measurements and data
processing. The second author was involved in some of the data analysis. I
wrote the majority of the paper, and the other three authors contributed to
the discussions and gave valuable comments on the paper.

5.1.3 Paper III: Parameterization and Validation of the
COST 2100 Channel Model

The COST 2100 channel model is a geometry-based stochastic channel model
for MIMO simulations. The parameterization of this generic model from mea-
surements is not yet complete and only a few environments have been analyzed.
Furthermore, there is a lack of studies validating the COST 2100 channel model.
This paper presents a parameterization and validation of the channel model for
peer-to-peer communication in the 300 MHz band.

The main contributions of this paper are: Cluster parameters and cluster
time-variant properties are obtained from the 300 MHz measurements by using
a joint clustering and tracking algorithm. Parameterization of the channel
model for single-link outdoor MIMO communication at 300 MHz is conducted.
Validation of the channel model is performed for the considered scenario by
comparing simulated and measured delay spreads, spatial correlations, singular
value distributions and antenna correlations. Our findings suggest that the
model has potential for modeling 300 MHz channels in outdoor environments,
although some modifications are needed for the distribution of cluster delay
spreads and the size of cluster visibility regions.

I am the main author of the paper. I did the background studies, im-
plemented the algorithm for analysis, carried out simulations, analyzed the
measurement and simulation data, and summarized the conclusions, while the
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other authors contributed to the channel measurements, data processing, and
some valuable discussions, e.g., methodologies, and mathematical insights.

5.1.4 Paper IV: Cross-correlation of Large Scale Param-
eters in Multi-link Channels

In order to make realistic wireless channel models, extensive measurements are
required so that parameters for channel models can be extracted. Among these
parameters, there are so called large scale parameters describing the main char-
acteristics of the environment, such as shadow fading, angular spread and delay
spread. There has been extensive studies focusing on large scale parameters,
but only a few on cross-correlation properties of large scale parameters between
multiple links due to the fact that there is a lack of multi-link measurements.
Therefore, further analysis of multi-links properties is desirable.

In this paper, multi-site measurements with three BSs are analyzed where
the three BSs are far away from each other. We first estimate the wide sense
stationary (WSS) time by using the local scattering function. Together with a
map of the measured environment, we defined WSS regions for further correla-
tion property studies. The correlation properties of large scale parameters, e.g.,
shadow fading and delay spread, are investigated both for each link and between
different links in an urban macro scenario based on small WSS subsets. We con-
cluded that the cross-correlation of the large scale parameters between multiple
links do exist, even when the two links are far away from each other, with high
or low correlation coefficients. The shadow fading has been observed as nega-
tive cross-correlation between different links when the MS is moving towards
one BS but away from the other BS. On the other hand, when MS is moving
towards both BSs, the shadow fading is positively correlated. Similar behavior
was observed for cross-correlations of delay spread. To our best knowledge, the
observations are notable contributions for current channel model developing,
such as WINNER II channel model, where the cross-correlation between two
links for large scale parameters is modeled as zero.

I am the main author of the paper. I performed the analysis of the measure-
ments which were carried out by the third author. I did the data processing,
analyzed the measured data and summarized the conclusions. I wrote the pa-
per mainly with the second author, who had the original idea of the work and
gave valuable insights into the fundamental principle of the work.
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5.1.5 Paper V: Virtual Multi-link Propagation Investiga-
tion

The COST 2100 channel model supports multi-link simulation by dropping
multiple MSs and BSs in the simulation area. When multiple MSs/BSs are uti-
lized, cross-correlations between links, so called inter-link correlations, can have
significant effects on the system level performance. Hence, modeling of inter-
link correlations is required. To be compatible with previous geometry-based
stochastic channel models, common clusters are introduced in the COST 2100
channel model to model inter-link correlations. Recently, the indoor multi-link
measurements have been analyzed and common clusters and their properties
have been extracted. However, for the outdoor scenario, there is still a lack of
analyses and investigations.

In this paper, it has been found that in a multi-link outdoor propagation
scenario there are shared scatterers among different links, which reflects the
physical existence of common clusters. The identification of common clusters
in the measured outdoor scenario is discussed according to the shared scatterers
and distances between the scatterers and MSs. We observe that, as the MS
distance separation increases, the number of common clusters decreases and
the inter-link correlation decreases as well. Multi-link MIMO simulations are
also performed using the COST 2100 channel model with extracted common
cluster parameters. It has been demonstrated that the common clusters can
represent multi-link properties well with respect to inter-link correlations and
sum rate capacity. This work makes an important contribution to the COST
2100 multi-link channel model implementation, where the outdoor common
cluster ratios for different link distance separations are suggested.

I am the main author of the paper. I did the data processing, analyzed
the measured data, and summarized the conclusions. The other author gave
critical comments on the work and contributed to the paper writing.

5.1.6 Paper VI: Positioning Using Phase Information
from MPCs

Radio based positioning has attracted a lot of attention in the research field
during the past decades. GPS works well for most outdoor scenarios, but it can
lose its performance in shadowed areas, such as inside buildings, or beside tall
buildings. Therefore, indoor positioning with extraordinary accuracy grows as
a crucial issue in the field.

In this paper, we proposed a positioning technique using phase information
of MPCs from measured channels, so called phase based positioning. To our
best knowledge, no such method has been presented before. First, indoor MISO
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measurements have been conducted. In order to observe the phase changes of
the MPCs, an extended Kalman filter has been implemented to identify and
track the parameters of MPCs from the measured channel matrices. With the
tracked phases of the MPCs, the corresponding relative propagation distances
of each MPC are determined. Position estimates are obtained with a structure-
of-motion approach to determine the relative movement. Circular movement
has been tracked with root-mean-square error of 4.0 cm, using a bandwidth
of 40 MHz. The results represent a significant improvement compared to cur-
rent indoor positioning methods. The phase based positioning approach gives
valuable and promising results for further work on indoor positioning.

I am the main author of the paper. I did the theoretical study and car-
ried out the measurements together with colleagues. I partly contributed to
the implementation of the used algorithm. I performed data processing, esti-
mated parameters from the measured data, analyzed the estimation results and
summarized the conclusions. The other authors contributed to the algorithms,
which are used in the paper. The last author had the original idea of the work
and was involved in all parts of the work.

5.2 Conclusions

During this thesis work, lots of efforts were devoted to implementing and ex-
tending one of the geometry-based channel models, the COST 2100 channel
model, including providing parameters for the model, validating the model, in-
vestigating multi-link properties. After years of maintaining and implementing
the COST 2100 channel model framework, now it has a complete parameter
set for the outdoor single-link MIMO scenario. Also multi-link modeling pa-
rameters, i.e. common cluster ratio, are proposed in this thesis. In the mean-
time, tools and algorithms for fundamental channel modeling analysis have
been implemented or extended by the author, like the outdoor measurement
ray launching tool, which can be used for further multi-link channel charac-
terizations; the joint clustering and tracking algorithm, which can be applied
for general cluster identifications; and EKF algorithm, which highly improved
the tracking performance by visualizing and tracking MPCs jointly. These
tools and algorithms can cope with any additional measurements with a few
setups and data processing. With these tools and algorithms, the basis of the
COST 2100 channel model, clusters, is further investigated in detail in this
thesis. The author found that physical clusters, which are scatterers or groups
of scatterers, can improve modeling performance and can better reflect the
multi-link channel characteristics than the parameter based clusters, which are
grouped based on the parameter space of MPCs. In addition, in this thesis
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we have presented some initial research of phase based positioning. Both the
synthetic study and experimental investigations have shown promising results
of the introduced phase based positioning technique.

5.3 Future Work

First of all, this thesis has presented extensive work on the COST 2100 channel
model. The model has some limitations when controlling the delay spread in
outdoor scenarios. In the model, the radii of clusters are modeled as a log-
normal distribution which sometimes can give extremely large delay spreads.
It has been suggested that a truncated log-normal distribution of the radii of
clusters and has also verified with a considered outdoor scenario. More inves-
tigations can be carried out for this aspect to give a better description of the
radii of clusters. Also this thesis has shown that the model for visibility regions
cannot be well connected to the physical environment, where the distribution
of visibility regions is recommended to be included in the model. To our best
knowledge, there is a lack of investigations for such distribution. Looking at the
implementation of the COST 2100 channel model, there are some aspects that
can be improved. First of all, in the current model, the geometrical relation
between the cluster centroid and the center of visibility region is characterized
by a parameter that has not been thoroughly investigated. How to select this
value and what are the impact on the channel model performance is still an
open issue. DMCs have been well modeled in the COST 2100 channel model.
Further work on extracting the DMCs and their related parameterization for
the model are needed. More recently, the polarization modeling has been im-
plemented. Related parameters exist for some scenarios but further validation
of this implementation and parameters should be done in the future.

Secondly, as one of the most important features of the COST 2100 chan-
nel model, multi-link simulation still needs further work. Practically, it is
difficult to perform multi-link measurements, especially for outdoor scenarios.
Therefore, analysis for multi-link channel models is advantageous, including
providing multi-link channel model parameters and validating the parameters
etc. Here, as stated in this thesis, physical clusters have to be considered and
more sophisticated physical clustering methods are needed as well.

Thirdly, as one of the most important contribution of this thesis, the mea-
surement based ray launching tool has been used frequently in this thesis and
also can be used for future channel characterization. The current ray launching
tool visualizes MPCs based on the AOA, AOD and delay, where the power is not
taken into account. Angles and delay can determine the most likely MPCs with
a good enough accuracy, if together with a competent power model, visualized



58 Overview of the Research Field

paths can be made even more realistic. It is difficult to have power models for
some propagation scenarios, e.g., diffraction across the edge of buildings, and
scattering through vegetation. Therefore, more efforts are needed in order to
give better power model for ray launching tool. In addition, during developing
the ray launching tool, it has been noted that for outdoor scenarios, besides
buildings and vegetation, lamps and street signs can be significant scatterers,
which have not been included in the map for now. Therefore, 3D maps or floor
plan with more detailed descriptions are needed.

Lastly, phase based positioning has been discussed in this thesis and has
shown promising results. However, further analysis is required. First of all,
the utilized EKF algorithm can usually track a smooth change but not a sharp
variation, i.e., turning to the other direction at the corner. Therefore, the EKF
algorithm needs to be strengthened to have capabilities to handle all realistic
variations. Due to the multi-path environment, the positioning algorithm has
to decide the best candidate paths. A random sample consensus (RANSAC)
algorithm has been tried, which highly relies on the true positions. For now,
the MPCs with good tracked phases are selected as the best candidates for
positioning purpose. However, studies should be carried out to give a better
understanding of selecting the best candidate paths for positioning. One of the
most valuable advantages of the proposed positioning method in this thesis is
that a 40 MHz bandwidth can still give accuracy comparable to ultra wide-
band positioning. When a massive MIMO system is used, even with a single
frequency, comparable level of positioning accuracy can be achieved. However,
more investigations are needed in order to achieve this goal. Until now, we have
shown a promising result for movement tracking. An initial position or any ex-
act position is needed as a reference position for a precise localization. We have
tried to estimate the first or the last absolute positions by using the tracked
phases and delays, where it was found that the reference position is sensitive
and highly dependent on the accuracy of the delay estimates. Hence, accu-
rate delay estimation needs more efforts in the future. As this thesis presents
preliminary work for this topic, only LOS measurements have been studied.
NLOS scenarios, which are more common in real life, should also be studied.
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[38] N. Czink, C. Mecklenbräuker, and G. D. Galdo, “A novel automatic cluster
tracking algorithm,”, in Proc. IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC 06), Helsinki, Finland,
2006, pp. 1-5.

[39] N. Czink et al., “Tracking time-variant cluster parameters in MIMO chan-
nel measurements,” in Proc. China Communications Conference, Shanghai,
China, 2007, pp. 1147-1151.

[40] S. M. Kay, Fundamentals of Statistical Signal Processing, Estimation The-
ory, New Jersey: Prentice Hall, 1993.



References 63

[41] J. Poutanen et al., “Development of measurement-based ray tracer for
multi-link double directional propagation parameters,” in Proc. 3rd Euro-
pean Conference on Antennas and Propagation, Berlin, Germany, 2009, pp.
2622–2626.

[42] E. Olsson, “Analysis of radio wave propagation using 3D-maps and MIMO
measurements”, Msc. Thesis, Department of Electroscience, Lund Univer-
sity, Lund, June, 2004.

[43] M. Zhu, A. Singh, and F. Tufvesson, “Measurement based ray launching
for analysis of outdoor propagation,” in Proc. 6th European Conference on
Antennas and Propagation, Prague, Czech Republic, 2012, pp. 3332-3336.

[44] B. H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. Ingeman
Pedersen, “Channel parameter estimation in mobile radio environments us-
ing the SAGE algorithm,” IEEE Journal on Selected Areas in Communi-
cations, vol. 17, no. 3, pp. 434-450, Mar. 1999.

[45] J. Salmi, A. Richter, and V. Koivunen, “Detection and tracking of MIMO
propagation path parameters using state-space approach” IEEE Transac-
tions on Signal Processing, vol. 57, no. 4, pp. 1538-1550, Apr. 2009.

[46] J. Salmi, A. Richter, M. Enescu, P. Vainikainen, and V. Koivunen, “Prop-
agation parameter tracking using variable state dimension Kalman Filter,”
in Proc. IEEE Vehicular Technology Conference 2006 Spring, vol. 6, Mel-
bourne, Australia, 2006, pp. 2757-2761.

[47] J. Poutanen, K. Haneda, V.-M. Kolmonen, J. Salmi, and P. Vainikainen,
“Parameterization of the COST2100 MIMO indoor channel model,” in Proc.
5th European Conference on Antennas and Propagation, Rome, Italy, 2011,
pp. 3606-3610.

[48] C. Gustafson, K. Haneda, S. Wyne, and F. Tufvesson, “On mm-wave
multi-path clustering and channel modeling”, IEEE Transactions on An-
tennas and Propagation, vol. 62, no. 3, pp. 1445-1455, Mar. 2014.

[49] K. Haneda, J. Poutanen, C. Oestges, F. Tufvesson, and P. Vainikainen,
“Comparison of delay and angular spreads between channel measurements
and the COST2100 channel model,” in Proc. Loughborough Antennas and
Propagation Conference, Loughborough, UK, 2010, pp. 477-480 .

[50] D. S. Baum et al., IST-WINNER D5.4. (2005). Final report on link
and system level channel models. [Online]. Available: http://www.ist-
winner.org.



64 Overview of the Research Field

[51] N. Jaldén, P. Zetterberg, B. Ottersten, and L. Garcia, “Inter- and intra
site correlations of large-scale parameters from macrocellular measurements
at 1800 MHz,” EURASIP Journal on Wireless Communications and Net-
working, vol. 2007, article ID 25757, Jul. 2007.

[52] M. Zhu, F. Tufvesson, and J. Medbo, “Correlation properties of large
scale parameters for 2.66 GHz multi-site macro cell measurements,” in Proc.
IEEE 73rd Vehicular Technology Conference, Budapest, Hungary, 2011, pp.
1-5.

[53] J. Poutanen, K. Haneda, J. Salmi, V.-M. Kolmonen, and P. Vainikainen,
“Analysis of correlated shadow fading in dual-link indoor radio wave prop-
agation,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp.
1190–1193, Nov. 2009.

[54] R. Fraile, J. Gozalvez, O. Lazaro, J. Monserrat, and N. Cardona, “Ef-
fect of a two dimensional shadowing model on system level performance
evaluation,” in COST 273 TD(04)190, 2004.

[55] R. Fraile, J. Monserrat, N. Cardona, and J. Nasreddine, “Impact of shad-
owing modelling on TD-CDMA system-level simulations,” in Proc. Interna-
tional Symposium on Wireless Communication Systems (ISWCS), Valencia,
Spain, 2006, pp. 535-539.

[56] J. Poutanen et al., “Multi-link MIMO channel modeling using geometry-
based approach,” IEEE Transactions on Antennas Propagation, vol. 60, no.
2, pp. 587-596, Feb. 2012.

[57] L. Liu et al., “The COST 2100 MIMO channel model,” IEEE Wireless
Communications, vol. 19, no. 6, pp. 92-99, Dec. 2012.

[58] M. Gudmundson, “Correlation model for shadow fading in mobile radio
system,” IEEE Electronics Letters, vol. 27, no. 23, pp. 2145-2146, Nov.
1991.

[59] H. W. Arnold, D. C. Cox, and R. R. Murray, “Macroscopic diversity per-
formance measured in the 800-MHz portable radio communications envi-
ronment,” IEEE Transactions on Antennas and Propagation, vol. 32, no.
2, pp. 277–281, Feb. 1988.

[60] J. Weitzen and T. J. Lowe, “Measurement of angular and distance corre-
lation properties of log-normal shadowing at 1900 MHz and its application
to design of PCS systems,” IEEE Transactions on Vehicular Technology,
vol. 51, no. 2, pp. 265-273, Mar. 2002.



References 65

[61] A. Algans, K. Pedersen, and P. Morgensen, “Experimental analysis of the
joint properties of azimuth spread, delay spread and shadowing fading,”
IEEE Journal on Selected Areas in Communications, vol. 20, no. 3, pp.
523-531, Apr. 2002.

[62] A. Mawira, “Models for the spatial correlation functions of the (log-) nor-
mal component of the variability of the VHF/UHF field strength in ur-
ban environment,” in Proc. International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC 92), Boston, USA, 1992, pp.
436–440.

[63] A. Hong et al. “Experimental evaluation of correlation properties of large
scale parameters in indoor pico-cell environments,” in Proc. Interna-
tional Symposium on Wireless Communication Systems (ISWCS), Valencia,
Spain, 2006, pp. 55-59.

[64] V. Graziano, “Propagation correlation at 900MHz,” IEEE Transactions
on Vehicular Technology, vol. 27, no.4, Nov. 1978.

[65] T. Klingenbrunn and P. Mogensen, “Modeling cross-correlated shadowing
in network simulations,” in Proc. IEEE Vehicular Technology Conference,
Amsterdam, Netherlands, 1999, pp. 1407-1411.

[66] E. Perahia, D. C. Cox, and S. Ho, “Shadow fading cross correlation
between basestations,” in Proc. IEEE Vehicular Technology Conference,
Rhodes, Greece, 2001, pp. 313-317.

[67] N. Jaldén, P. Zetterberg, B. Ottersten, A. Hong and R. Thoma, “Correla-
tion properties of large scale fading based on indoor measurements,” in Proc.
IEEE Wireless Communications and Networking Conference (WCNC),
Kowloon, Hongkong, 2007, pp. 1894-1899,.

[68] V.-M. Kolmonen et al., “Measurement-based evaluation of interlink corre-
lation for indoor multi-user MIMO channels,” IEEE Antennas and Wireless
Propagation Letters, vol. 9, pp. 311–314, Apr. 2010.

[69] J. Poutanen et al., “Significance of common scatterers in multi-link indoor
radio wave propagation,” in Proc. 4th European Conference on Antennas
and Propagation, Barcelona, Spain, 2010, pp. 1–5.

[70] J. Poutanen, K. Haneda, J. Salmi, V.-M. Kolmonen, and P. Vainikainen,
“Analysis of radio wave scattering processes for indoor MIMO channel mod-
els,” in Proc. IEEE International Symposium on Personal, Indoor and Mo-
bile Radio Communications (PIMRC 09), Tokyo, Japan, 2009, pp. 102-106.



66 Overview of the Research Field

[71] M. Zhu, and F. Tufvesson, “Virtual multi-link propagation investigation
of an outdoor scenario at 300 MHz,” in Proc. 7th European Conference on
Antennas and Propagation, Gothenburg, Sweden, 2013, pp. 687-691.

[72] J. J. Spilker, Jr., “GPS signal structure and performance characteristics,”
Journal of the Institute of Navigation, vol. 25, no. 2, pp. 121–146, Summer
1978.

[73] L. Kaplan, “Global node selection for localization in a distributed sensor
network,” IEEE Transactions on Aerospace and Electronic Systems, vol.
42, no. 1, pp. 113–135, Jan. 2006.

[74] S. Gezici et al., “Localization via ultra-wideband radios: a look at position-
ing aspects for future sensor networks,” IEEE Signal Processing Magazine,
vol. 22, no. 4, pp. 70–84, Jul. 2005.

[75] Real-Time Kinematic surveying training Guide, part
number 33142-40, Revision D, Sep. 2003, [Online].
Available: http://gpstraining.com/downloads/MANUALS-
QUICK%20GUIDES/RTKTrainingRevD.pdf.

[76] J. Zhou, and J. Shi, “RFID localization algorithms and applications—a
review,” Journal of Intelligent Manufacturing, vol. 20, no. 6, Dec. 2009, pp.
695-707

[77] C. Li, et al., “Mobile healthcare service system using RFID,” in Proc.
IEEE International Conference on Networking, Sensing and Control, vol.
2, 2004, pp. 1014–1019.

[78] P. V. Nikitin et al., “Phase based spatial identification of UHF RFID tags,”
in Proc. IEEE RFID Conference, Orlando, FL, Apr. 2010, pp. 102-109.

[79] X. Li, Y. Zhang and M. Amin, “Multifrequency-based range estimation of
RFID tags,” in Proc. IEEE RFID Conference, Orlando, FL, Apr. 2009, pp.
147-154.

[80] A. Richter, “Estimation of radio channel parameters: Models and al-
gorithms,” Ph.D. dissertation, Technischen Universität Ilmenau, Ilmenau,
Germany, May 2005 [Online]. Available: www.db-thueringen.de

[81] X. Yin et al., “Tracking of time-variant radio propagation paths using par-
ticle filtering,” in Proc. IEEE International Conference on Communications
(ICC’08), Beijing, China, 2008, pp. 920–924.



References 67

[82] P. Meissner, D. Arnitz, T. Gigl, and K. Witrisal, “Analysis of an indoor
UWB channel for multipath-aided localization,” in Proc. IEEE Interna-
tional Conference on Ultra-Wideband, Bologna, Italy, 2011, pp. 565–569.

[83] P. Meissner, C. Steiner, and K. Witrisal, “UWB positioning with virtual
anchors and floor plan information,” in Proc. 7th Workshop on Positioning
Navigation and Communication (WPNC), Dresden, Germany, 2010, pp.
150–156.
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Measurement Based Ray Launching for

Analysis of Outdoor Propagation

Clustering is a key concept of existing MIMO channel models, such

as the COST 2100 model. Parameter based clustering has been studied

for a while, but how parameter based clusters relate to the physical envi-

ronment is not well known yet. A measurement based ray launching tool

is developed and used for studying clustering and its relation to physical

scatterers. By using estimated angles and delays of multi-path compo-

nents as input to the ray launching tool, the physical scatterers along

the propagation paths are visualized. After the physical scatterers are

grouped, we notice that when the receiver moves, some physical scatter-

ers continue to contribute to the channel response while others disappear

and sometimes also later re-appear as represented by the cluster life time

and common clusters in the COST 2100 model. Our measurement based

ray launching tool shows significant advantages for further channel analy-

sis and modeling.
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1 Introduction

Ray launching and ray tracing are attractive tools for wireless propagation
investigations since they can provide predictions of propagation characteris-
tics with high accuracy. Varieties of ray launching and tracing algorithms have
been developed [1][2], generally based on models of the same propagation mech-
anisms such as reflection, diffraction and transmission. In order to make even
better channel characterization, a combination of channel measurement results
and ray launching can give valuable insights. Measurement can provide addi-
tional information such as angle of arrival (AOA), angle of departure (AOD),
delay and power of multi-path components (MPCs), which helps identifying
the most likely propagation paths and reduces the complexity of calculations.

An indoor scenario is analyzed with a simple measurement based ray launch-
ing tool by Poutanen et al. in [3]. New concepts for multi-user MIMO channel
modeling and analysis such as common clusters [4], single/multiple interactions
with the environment have been studied with such a ray launching tool. The
indoor investigation in [4] shows the advantage and necessity of a ray launching
tool for multi-user channel modeling.

The objective of this work has been to develop a new ray launching tool for
outdoor scenarios based on channel measurement results and three dimensional
(3D) maps. With this ray launching tool we are aiming to visualize the most
likely propagation paths according to the measured information. The visualized
geometrical propagation paths can then be used for further channel analysis,
such as clustering, finding common clusters and identifying interaction pro-
cesses and so on. It should be noted that our purpose is not to provide a tool
competing with sophisticated ray tracing tools in performance and accuracy
but rather, to help interpreting and analyzing measurement results.

The paper is organized as follows. The modeling assumptions are studied
in Section II. Section III explains the main approach of the ray launching tool.
The development platform and parameter choice are discussed in Section IV.
Ray launching results are shown and analyzed in Section V. Section VI gives a
short conclusion of this work.

2 Modeling Assumptions

To visualize propagation paths, good models of objects in the environment
are required. For outdoor scenarios, the most important objects are buildings
and vegetation, which directly influence direction and power of propagation
paths. Vehicles, lamp posts and street signs can also be of interest, but they
are generally not available in commercial 3D maps, and are therefore excluded
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Figure 1: Object Models in 2-D projection: (a). Building reflection model, (b).
Vegetation area scattering model, (c). Transmitter and receiver models.

in this paper.

2.1 Building Model

Building models are usually defined by reflection, transmission and diffraction
properties [1]. The transmission through buildings is usually not considered for
outdoor scenarios. The walls of buildings are often modeled as flat surfaces,
however, real buildings are in general not totally flat. For example, in [5]
a building model including windows has been discussed. Only one specular
reflection is not enough to describe the building reflection process in general.
Therefore a cone of scattered rays is launched around the specular reflection
ray to represent rough wall reflections in our tool, see Fig. 1a. These scattered
rays are generated by rotating the specular reflection ray in angles.

There are many models describing the diffraction around the edges or cor-
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ners of buildings, such as Bullington’s model, Epstein-Petersen model and so on
[6]. To reduce the complexity of the building model, in our ray launching tool,
rays are launched from both sides, and diffraction is only considered when rays
from two sides can be matched though diffraction. Both single edge diffraction
and diffraction from two parallel edges are taken into account.

2.2 Vegetation Model

Existing vegetation models generally focus on describing attenuation through
a vegetation area. For example, in the ITU-R model [7], an attenuation fac-
tor based on frequency and distance is derived. Some research has been also
carried out to give more advance vegetation models for ray-based propagation
prediction tools. In [8], an expression for incoherent scattered field when rays
are coming out from the vegetation areas is derived. However, these models do
not fulfill the requirements in our ray launching tool design, since they usually
only consider attenuation and forward scattering processes caused by the veg-
etation area. No modeling of the backward scattered rays from the vegetation
area is given, and the vegetation scattering processes are not fully described .

In our tool, a slightly modified vegetation model is used, see Fig. 1b. The
vegetation area is described by its size and shape as well as its height. When
an incoming ray has an intersection point with an edge of the vegetation area,
backward scattered rays with different azimuth and elevation angles are gener-
ated at this intersection point. At the same time, the incoming ray continues
straight ahead until it reaches the other edge of the vegetation area. There, at
the second intersection point, additional forward scattered rays are launched.
Again, those scattered rays have varying azimuth and elevation angles around
the direct ray. We try to cover the sphere around the vegetation area since
the scattering of the vegetation area is quite complicated. It should be noted
that this is a very simplified vegetation model, but good enough to fulfill its
purpose here.

2.3 Transmitter and receiver model

The transmitter (TX) and receiver (RX) are represented by their orientation
and location. In the 3D map, they are only single points, and dummy cylin-
ders are introduced and centered at the coordinates of the TX and RX. The
cylinder has 1 meters radius and a height of 2.8 meter above the ground. The
rays passing through the cylinders do not change any properties and direc-
tions. The purpose of the dummy cylinder is to “capture” incoming rays in
the matching process described below. To account for measurement and po-
sitioning inaccuracies, rays from TX and RX are launched in a cone centered
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Figure 2: Structure of rays and intersection points.

around the measured AOA/AOD. Since it is a 3D ray launching tool, rays are
also launched with slightly varying elevation angles, see Fig. 1c.

3 Measurement Based Ray Launching Approach

Two important concepts are used for the measurement based ray launching
tool: intersection points and rays launched from these intersection points, see
Fig. 2. The intersection points are where rays intersect with objects. Rays are
launched at the intersection point according to the specific propagation mech-
anisms and they are characterized by their coordinates, propagation direction,
power, traveling distance and the next intersection point. Rays, objects and
intersection points are all processed in 3D.

Based on these two concepts, ray launching processes are implemented
from both TX and RX sides to increase accuracy and efficiency, see Fig. 3.
First, two points at TX and RX coordinates, respectively, are created. Dummy
cylinders are placed around these two points respectively and cones of rays
from these two points are launched according to the measured AOA/AOD as
described in Sec. 2.3. Secondly, the tool processes all rays launched from the
TX and RX points. For each ray, if there is an object at the propagation
path, a next intersection point is determined. Otherwise, this ray continues
propagating until it reaches the maximum traveling distance defined by the
measured delay, including some extra margin (10%). The dummy cylinders
around TX/RX are also taken into account and the corresponding intersection
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Figure 3: Float chart of the ray launching tool.
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points are called dummy intersection points. Different objects change the prop-
agation properties according to the building and vegetation models described
above. New intersection points are determined until all the rays are processed.
The tool continues launching new rays from these new intersection points and
determining next intersection points again. It keeps generating rays and in-
tersection points until either the number of reflection or scattering processes
for the rays exceeds a certain limit or the traveling distances of rays are larger
than the maximum traveling distance.

There is one important consideration when rays travel a long distance with-
out any intersection points. Over a long distance, even a little angle inaccuracy
at TX or RX side can lead to a large distance offset, which might lead to missed
intersection points. To account for this, ray splitting is implemented, where a
dummy intersection point is added at the position of ray splitting. Once the
traveled distance of a ray exceeds a predefined ray splitting distance, a new
cone of rays is released from this dummy point, centered around the propaga-
tion direction.

The last step of the algorithm is to check if rays launched from the TX and
RX can be matched or not. Since rays are launched from two sides, they can
only be matched at intersection points corresponding to physical objects or the
dummy cylinders around TX/RX. Two parameters are checked: the measured
delay for a certain MPC and the intersection angles of rays. In future versions,
power will likely also be checked. The total traveling time from TX to RX has
to be close to the measured delay.

|(DTX +DRX)/c− τMPC| < 0.1 ∗ τMPC (1)

where DTX is the distance from the TX to the matching point, DRX is the dis-
tance from the RX to the matching point, τMPC is the delay for this particular
MPC (from the measurement) and c is the speed of light. Similarly rays from
TX and RX have to meet in a valid angle at the dummy cylinders. For exam-
ple, the LOS ray departing from the TX should reach the RX with an angle
matching the AOA of this MPC. After the matching processes there might be
more than one candidate path for one particular measured MPC, the one who
has shortest delay difference compared to the measured value is chosen as the
final visualized propagation path.

Three matching scenarios are considered in this tool. 1) Matching at build-
ings. Reflection and diffraction are both investigated for the matching process
at buildings. Rays can match through reflection when their intersection points
with a building are on the same side and close to each other. Diffraction is
more complicated, not only single edge diffraction but also multiple diffrac-
tion is considered. Rays can match when they are close to the same edge of
a building or they intersect with two parallel edges. 2) For the matching at
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Figure 4: C++ application window showing the imported map.

a vegetation area, simple rules are applied. Rays can be matched when they
intersect with the same vegetation area and the distance between the two in-
tersection points is within the capture range. 3) Matching can occur when rays
intersect with the cylinder around the TX or RX. As mentioned in previous
paragraph, the angles are also checked here.

4 Development Platform and Parameters Setup

The ray launching tool is developed based on the C++ application built by E.
Olsson [9] and A. Stranne. This application provides a graphical user interface
(GUI), see Fig. 4, and we can easily import a 3D map. The map is shown by
its 2D projection, elevation information is represented by color. The measure-
ment results can also be handily imported into this application. With proper
parameter setup, we are able to visualize the propagation path and intersection
points on the map.

As we discussed in previous two sections, parameters such as number of
scattered rays, width of the cone for ray launching and so on need to be ini-
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Table 1: Parameters used.

Number of iterations from each side 3
Capture range [m] 10
Reflection coefficient 3
Path-loss exponent 4
Number of launched rays in Azimuth 4*2
Resolution of launched rays in Azimuth
[deg]

2.0

Number of launched rays in Elevation 10*2
Resolution of launched rays in Eleva-
tion [deg]

2.0

Number of rays for ray splitting 3*2
Resolution for ray splitting [deg] 1.0
Number of scattered rays for vegetation 20
Resolution of scattered rays for vegeta-
tion [deg]

18

Number of reflected rays at buildings 4*2
Resolution of reflected rays at buildings
[deg]

2.0

Maximum distance before ray splitting
[m]

200

Maximum mismatch of angle [deg] 10
Maximum delay offset (of τMPC) 10%

tialized. Those are given in the initialization window and the ray launching
parameters can be changed according to user requirements. The parameters
are listed in Table 1, the chosen values are set according to our analysis of mea-
surements in [10], which are also used for the further analysis in next section.
From the parameters, we can see the cone around the launched ray in azimuth
direction is formed by 8 rays with 2.0 degree difference, so in total the width
of launched cone is 14.0 degrees. Our measurement is in an outdoor scenario,
which has lots of large buildings and vegetation areas. The capture range is
set to 10 meter. The reflection coefficient is chosen as 3 [1]. The maximum
distance controls the distance when rays start to split, 200 meter is chosen in
this measured scenario. We also allow 10 degree mismatch when rays meet at
the dummy cylinders. The maximum offset in delay is set to 10% for a valid
match.
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Tx

Rx

Figure 5: Visualized paths for several MPCs from one Rx position. Colors only
present different MPCs.

5 Ray Launching Results

By using the parameters set in Table 1 and the measurement results in [10],
ray launching results are analyzed and studied in this section.

In Fig. 5, the most likely paths are visualized for a particular RX position.
These visualized MPCs have the strongest power among all MPCs at this RX
position. It can be seen that there is a small angle mismatch at the TX side
for the line-of-sight (LOS) MPC. The difference between the AOD and the
propagation direction of ray is around 5 degrees. According to the estimated
accuracy of the AOA/AOD and the TX and RX orientation, it is a reasonable
difference, and rays can be matched. In addition, non-LOS (NLOS) MPCs are
also visualized with several reflection and scattering processes that well reflect
real propagation phenomena. It can also be noted that the rays going through
the big vegetation area in the lower left side of the figure show a match at one
side of the vegetation area, which is marked by yellow color in the figure. In
fact, the ray from the TX can meet the RX ray in any place of the vegetation
area. The visualized path is matched in the right vegetation area but maybe
not at an accurate position. From a channel modeling point view, however, it
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Figure 6: Scattering points for different RX positions in LOS and NLOS scenar-
ios. Colors are used for different delays of MPCs, the size of markers represents
the power of MPCs.
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Figure 7: Visualized intersection points for two RX positions. Different markers
are used for two RX positions, and the color represents the delay of MPCs, the
size of markers represents the power of MPCs.

is good enough to obtain the physical scatterers and the propagation properties.
The intersection points for different RX positions are shown in Fig. 6, both

for a LOS and a NLOS scenario. The physical intersection points are grouped
together based on their physical positions and the power and delay of their
MPCs. We can see in general, the NLOS scenarios show more intersections
with physical scatters compared to the LOS scenarios. Clearly in this peer to
peer scenario [10], the objects around the TX and RX are the most important
scatterers.

In order to take a look at the time variant properties of clusters, we also
show the intersection points for two RX positions separated around 10 meters
(approximately 10 wavelengths), see Fig 7. When the RX is moved, some
scatterers keep contributing to the channel response, which means that the
cluster is active at different RX positions and has long cluster life time. In
addition, one cluster near the TX side disappeared when moving to the new
position and instead, a new cluster appears near the RX side. These results
indicate possibilities for further usage of this measurement based ray launching
tool, such as finding common clusters, extracting cluster life time etc.

In general, the tool is able to suggest the likely propagation paths for most
measured MPCs, but some exceptions can be found. A maximum number of
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iterations is set since in a real propagation scenario after several reflections,
the power of ray highly decreases and it is not necessary to go to large num-
ber of iterations. In the peer-to-peer scenario here, the TX or RX might be
surrounded by many objects. Rich reflection or scattering processes happen at
these objects, and then the iteration limit can cause rays not to match. Larger
number of iterations can also be considered in the future. At the same time,
one MPC can have several matched candidates from the tool, and the best
choice is still under discussion. In this work, the delay is chosen to be the most
important criterion.

6 Conclusions

In this paper, we have described a new measurement based ray launching tool
using 3D maps. Based on the delay and angular properties of the MPCs,
the ray launching tool provides a good interpretation of propagation paths
and shows the physical scatterers. This tool has a good GUI for analysis of
measurement results analysis and provide a good understanding of physical
propagation processes, e.g., multi-user MIMO channel modeling.
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1 Introduction

Cluster based modeling is a main concept in current channel models, such as the
COST 2100 [1] and WINNER II channel models [2]. Conventionally, a cluster
is defined as a group of multi-path components (MPCs) that have similar delay,
angle of arrival (AOA) and angle of departure (AOD). Clustering algorithms
have been developed to perform grouping of MPCs into clusters, examples in-
clude visual clustering, semi-automatic clustering and automatic clustering[3].
The clusters obtained from these approaches are called parameter based clus-
ters since they are determined based on the characteristic parameters of each
MPC. A parameter based cluster is usually characterized by its cluster lifetime,
cluster angular spread, cluster delay spread, cluster shadowing factor etc., see
e.g., [4, 5]. Parameter based clusters are usually not connected to scatterers
and physical reality. By using a measurement based ray launching tool [6, 7],
physical propagation processes of the parameter based clusters and their as-
sociated MPCs can be identified, which also offers the possibility to perform
geographical clustering, i.e., to extract clusters having a close connection to
physical reality. These extracted clusters are so called physical clusters, which
is an important concept for multi-link MIMO channel models. For example,
the multi-link extension in the COST 2100 channel model is implemented by
modeling the correlation between two links with common clusters. The com-
mon clusters are based on the concept of shared physical scatterers between
two links.

It is still an open issue how the physical clusters behave compared to the
parameter based clusters and therefore we analyze this in more detail in this
paper. To our best knowledge no such comparison has been done before. From
the point view of physical clusters, we extract model parameters for the COST
2100 channel model for sub-urban and urban micro-cell scenarios. As such pa-
rameters are lacking in the literature, we also fill this gap of knowledge, which
is a second important contribution of this paper. In addition, we also vali-
date these parameters with the current COST 2100 channel model MATLAB
implementation [8].

The paper is organized as follows: first, the considered two measurement
campaigns are described in detail in section II. A brief introduction to the ray
launching tool is given in section III. Section IV analyzes the properties of
the parameter based clusters, for the two measurement campaigns. Clustering,
based on physical properties of MPCs, is performed and the corresponding
physical cluster properties are analyzed in Section V. Section VI discusses the
COST 2100 channel model simulations with the physical cluster parameters.
Finally, conclusions in section VII wrap up the paper.
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2 Measurements and Data Processing

To make the study more general, two different measurement campaigns, con-
ducted by two different institutions, were used for the analysis. One campaign
is performed in a sub-urban scenario; the other is in an urban scenario.

2.1 Measurement Campaign I - Sub-urban

Sub-urban measurements were performed outdoors on the campus of Linköping
University, Sweden, using the RUSK LUND MIMO channel sounder. The
transmit antenna array (Tx) was placed 1.8 m above ground, at a static posi-
tion and about 35 m from a large building. The receive antenna array (Rx) was
mounted on a car with its lower ground plane approximately 2.1 m above the
ground and was moving with a nearly constant speed. The measurements were
carried out at a center frequency of 285 MHz, with a bandwidth of 20 MHz. Fur-
ther details about the measurement campaign and the measurement principle
can be found in [5], [9], [10]. The space-alternating generalized expectation-
maximization (SAGE) [11] algorithm was used to estimate the parameters of
the MPCs. The observed MPCs were characterized by their complex ampli-
tude, delay, AOA and AOD, which all are used for the further cluster analysis.

2.2 Measurement Campaign II - Urban

Urban measurements were carried out in downtown Helsinki, Finland, using
the TKK MIMO wideband channel sounder. A detailed description of the
measurement equipment can be found in [12] and [13]. The transmitter was
placed 10 m above ground, located on a crane 2 m in front of a building with
5-8 floors. The receiver was moved on the streets and the receive antenna was
located around 1.6 m above ground. The center frequency is 5.3 GHz and the
bandwidth is 120 MHz. More information about the measurement campaigns
and principles are given in [14]. Further, the parameters of the MPCs were
estimated by the improved SAGE algorithm as detailed in [15]. The relative
delays, AOA, AOD and complex amplitudes of the MPCs were extracted from
the measured impulse responses. By considering the geography of the measured
area, the absolute delays are estimated from the observed relative delays. With
these observed MPCs, further clustering analysis can be applied.

3 Ray Launching Tool

The used measurement based ray launching tool has been developed for visual-
izing the most likely MPCs with their AOA, AOD and delay in 3-dimensional
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(3D) manner[7]. The measurement based ray launching tool supports ray re-
flection, diffraction, and scattering processes. It launches rays from the Tx
and Rx sides independently, according to the AOD and AOA of an MPC. The
launched rays can meet and interact with different objects such as buildings,
trees, and the corresponding reflection, diffraction or scattering process takes
places. To keep the complexity and processing time at a reasonable level, the
maximum number of bounces (interactions) is set to 5. To account for mea-
surement and positioning inaccuracies, rays from Tx and Rx are launched in a
cone centered around the estimated AOA/AOD for each MPC. Delay is then
used to determine the most likely one from the entire possible candidate MPCs.
Therefore, the interacting scatterers for an MPC along its propagating route
can be visualized and the number of interactions for a MPC can be determined
as well. A cluster is also characterized by its cluster AOA, cluster AOD and
cluster delay, and can thus be visualized in a similar manner as visualizing
MPCs.

For the considered urban and sub-urban scenarios, we first extract 3D maps
of the measured environments. For the sub-urban scenario, both buildings and
trees are considered while for the urban scenario, only buildings are taken into
account as trees are rare there. With the maps and the extracted AOA, AOD
and delay of MPCs, the most likely MPCs are visualized by the ray launching
tool. For parameter based clusters, the interacting properties of the associated
MPCs can be observed as well as the cluster centroids, which give detailed
insights of the geographical characteristics of the parameter based clusters. On
the other hand, MPCs can be associated to so-called physical clusters based on
their interaction with scatterers.

4 Parameter Based Clusters

Parameter based clusters are widely used for describing the characteristics of
MIMO channels. In this section, a brief summary of the parameter based clus-
tering algorithm and the cluster properties is given. By visualizing the clusters
and their associated MPCs, the geographical properties of the parameter based
clusters can be investigated. In addition, the properties of the interacting scat-
terers will be studied as well.

4.1 Clustering and Cluster Properties

There are a number of parameter based clustering algorithms used in the lit-
erature, for example, KPowerMeans, Hierarchical [17] and Gaussian-mixture
clustering. The KPowerMeans clustering algorithm has been extensively used
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to extract clusters from the MPC parameter space. This algorithm performs
clustering based on the values of the delay, AOD, AOA and power of each
MPC from one measured snapshot. Each cluster is characterized by its cen-
troid position, and described by its cluster delay, cluster power, cluster AOD,
and cluster AOA, as well as by its intra-cluster spreads, including cluster delay
spread, cluster AOD spread, and cluster AOA spread [4][5]. In this paper, the
KPowerMeans algorithm is used to identify the parameter based clusters both
for the sub-urban and urban scenarios.

A cluster is also characterized by the number of interactions; there are
single-bounce and multiple-bounce clusters. For single-bounce clusters, only a
single interaction with a scatterer during the wave propagation between Tx and
Rx is modeled. The cluster delay determines the propagation distance between
the Tx and Rx while the cluster AOA and AOD determine the possible position
of the scatterer. A multiple-bounce cluster is modeled as a cluster that can be
seen differently from the Tx and Rx side, respectively. Between the cluster seen
from the TX and seen from the RX, a link propagation delay is modeled to
describe high order interactions. The single- and multiple-bounce clusters are
determined for the sub-urban and urban scenario with the same methodology
detailed in [5].

4.2 Visualization of the Clusters and their Associated
MPCs

The parameter based clusters are extracted based on the parameters of MPCs,
but how they relate to the physical reality is not well understood. Therefore,
the geographical properties of the parameter based clusters are studied with
respect to the clusters and the associated MPCs in this section.

With the measurement based ray launching tool, the cluster centroids as
well as the associated MPCs are visualized on the maps together with the
interacting scatterers, see Fig. 1 and Fig. 2. In the figures, the buildings are
represented with their regular shapes and the darker the higher. The trees
are usually with irregular shapes and are only shown in sub-urban scenario.
The ellipses represent the clusters, and the size of the ellipses is determined
by the corresponding cluster delay spread and angular spread. Note that the
parameters have been scaled so that the sizes of the ellipses do not correspond to
the true distances in the map but they show relative relations. Different colors
of the ellipses represent the cluster seen from the Tx or Rx side. The small
circles and crosses represent the interacting points of the cluster centroids seen
from the TX and RX sides, respectively. The color of the markers represents
different delays of each MPC and the size of the markers represents the power
of each MPC.
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Figure 1: A visualized parameter based single-bounce cluster and the associated
MPCs at a RX position in the sub-urban and urban scenarios.

Single-bounce Clusters

First, single-bounce parameter based clusters are investigated for both the sce-
narios, see Fig. 1. In the sub-urban scenario, the trees nearby the Rx (high-
lighted with yellow color, I) become the dominant interacting objects. It can
be noted that the MPCs with strong power (the ones with larger marker size)
usually interact with the same scatterer, and also this scatterer is usually the
one where the cluster centroid is placed at. In this sense, we can say that these
single-bounce parameter based clusters can be well reflected by the geographi-
cal properties of the scatterers, thus the physical reality. But when it comes to
the urban scenario, the situation becomes more complicated. First, there are
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Figure 2: A visualized parameter based multiple-bounce cluster and the asso-
ciated MPCs at a RX position in the sub-urban and urban scenarios.

a few MPCs interacting with the same building where the cluster centroid is
placed at. However, there are some MPCs from the same cluster interacting
with other buildings, such as the ones at the opposite street (highlighted with
cyan color, II). In this scenario, the MPCs interacting with buildings along the
two sides of the street can have similar AOAs or AODs and reasonably equiv-
alent delays, which consequentially cause these MPCs to be grouped into one
cluster. However, generally speaking, single-bounce parameter based clusters
have a high possibility to be reflected in the physical reality, except for some
specific cases.
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Multiple-bounce Clusters

Multiple-bounce clusters have been studied as well, see Fig. 2. The two cluster
centroids seen from the Tx and Rx side and the associated MPCs are visualized
on the map. When a dominant scatterer is near the Tx/Rx, MPCs associated
to such a cluster have a high possibility to interact with this dominant scatterer,
see the clusters at the Rx side in Fig. 2 (a) (highlighted with yellow color, I).
The cluster centroid is also placed at the same dominant scatterer, and can thus
be reflected in the physical reality. We also notice that the associated MPCs
of the cluster interact with multiple geographically separated scatterers, while
the cluster centroid only indicates interaction with a single dominant scatterer,
see the clusters at the Tx side in Fig. 2 (highlighted with cyan color, II).
These MPCs are grouped together according to their parameter space without
physical consideration, and in this case we cannot expect a close connection
with physical reality. It is seen that it is hard to relate multiple-bounce clusters
to the physical reality when we have rich scattering around the Tx/Rx, e.g.,
peer-to-peer communication, urban micro-cell.

4.3 Properties of Interacting Scatterers

We have seen that the associated MPCs of a parameter based cluster can
interact with several scatterers, distributed in a large or small, far or nearby
area, which can cause ambiguities when relating the parameter based clusters
to the physical reality. So we take a further step to investigate the properties
of these scatterers, to gain more insights of the relations between parameter
based clusters and the physical reality.

Distance Spread of Interacting Scatterers

First, the second order statistics of the distances from the Tx/Rx to the inter-
acting scatterers of the associated MPCs of a cluster is investigated. We call
this the distance spread of the cluster. Large distance spread indicates that
the MPCs associated to the cluster interact with a group of scatterers which
in turn are highly separated. A low distance spread means that, the scatterers
are less separated and MPCs often stem from a single scatterer. The distance
spread is here defined as

DSc =

√√√√∑Nc

i Pi(di − d̄)2∑Nc
i Pi

, (1)

where Nc is the number of MPCs associated to the cluster, di is the distance
from the Tx/Rx to the interacting point for each MPC, and Pi is the corre-
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Figure 3: Properties of the interacting scatterers for the associated MPCs
of a parameter based cluster: distance spread, angular spreads, number of
scatterers.

sponding power. d̄ is the power weighted mean distance, calculated as

d̄ =

∑Nc

i Pidi∑Nc

i Pi
. (2)

In Fig. 3, the distance spreads are evaluated. On average, distance spreads
of 15 m and 20 m are observed at the Tx and Rx side in the sub-urban scenario
and 10 m and 15 m in the urban scenario, respectively. It can be noted that the
clusters usually have less than 50 m distance spread in the sub-urban scenario
while in the urban scenario, it is typically less than 20 m. In general, the
scatterers are distributed in a limited area. However, there are some clusters
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with large distance spreads, such as the ones with more than 100 meter spreads
in the sub-urban scenario. In short, the scatterers contributing to a parameter
based cluster can either be reasonably concentrated or highly separated. In
current parameter based clustering methods, the geographical properties of
scatterers are not considered. Clustering in the delay domain does control
the total traveling time of an MPC, but not the distances between scatterers.
Especially in an outdoor scenario, the distances between scatterers and the
distances from the scatterers to Tx/Rx can be of different orders [16], which
can cause the loss of physical interpretation.

Angular Spread of Interacting Scatterers

The AOA and AOD of a cluster are basically determined by the positions of the
first and last interacting scatterers of the MPCs with respect to the TX and RX
locations. Moreover, the AOA and AOD spreads for a cluster also indicate the
geographical relations among interacting scatterers of the associated MPCs.
In Fig. 3 (b), it can be noted that the AOA and AOD spreads mostly have
small values, approximately 80% of the spreads are smaller than 23 degrees,
which means that the parameter based clustering algorithm limits the scatterers
to a narrow angle. However, the AOA spreads in the urban scenario have
significantly larger values. The reason is that MPCs, with AOAs determined
by scattering from a large wide wall, are grouped in a single cluster due to their
similarities in the delay and AOD domain. In general, for the angular domain,
the parameter based clusters have strong connections with the physical reality.

Number of Interacting Scatterers

An MPC will interact with one or several scatterers along its propagation route.
The number of interacting scatterers of a cluster is determined by the interact-
ing scatterers of its associated MPCs. Fig. 3 (c) shows the number of interacting
scatterers for the extracted clusters in sub-urban and urban scenarios. Only
around 15% of the clusters interact with a single scatterer, most of the clusters
interact with more than one scatterer. The reason is that in the measured sub-
urban and urban scenarios, the scatterers near the Tx/Rx can provide similar
propagation properties, and are grouped into one cluster. Such a single scat-
terer well explains the single-bounce clusters and has strong relation to the
physical reality, but with the increase of the number of scatterers, it becomes
more challenging to connect the parameter based clusters to the physical real-
ity. Especially, there are clusters that are interacting with a very large number
of scatterers, such as 5 or 6. It can be the scatterers that are closely located or
highly separated geographically but are concentrated in angular domain when
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illuminated by the specific position of the TX and RX.

4.4 Summary

From the analysis above, we can conclude that parameter based clusters usually
group the MPCs inside a narrow angle, as expected. The delay of the MPCs
used in the clustering algorithm can only control the total traveling distance
from the Tx to Rx, but cannot determine if the MPCs with similar delays arise
from the same/close scatterer or not. The clusters can interact with one or
several scatterers, and usually single-bounce clusters have a strong connection
to physical reality but not necessarily the multiple-bounce clusters. We have
to be aware that the parameter based clusters sometimes lose connection to
the physical reality which can cause some bias for the parameter extraction for
the COST 2100 channel model. Therefore, further analysis of physical clusters
is required.

5 Physical Clusters

Generally speaking, a cluster is defined as follows [17]: a cluster is a collection
of data objects that are similar to one another within the same cluster and
are dissimilar to the objects in other clusters. From this general definition,
a physical cluster can be defined as a group of scattering objects, which are
close in the physical reality. In this section, we aim to group the scatterers
into clusters according to their geographical properties. In the meantime, the
properties of the extracted physical clusters are investigated as well.

5.1 Physical Clustering

In outdoor environments, it is often possible to identify dominant scatterers
from a map, for example, the two large buildings around the Tx and the groups
of trees around the Rx in the sub-urban scenario, or the buildings around the
Rx and Tx in the urban scenario. These dominant scatterers contribute to the
channel impulse response over a large area of Rx movements and determine the
main properties of the channel. The proposed geographical scatterer grouping
is based on these dominant scatterers. These physical scatterers usually have
a power contribution to the channel for a long time, i.e., over many different
channel snapshots, however, the power has variations. A scatterer can be a
single physical cluster. On the other hand, a scatterer can be blocked for a
while, but later be visible and contribute to the channel again. This means
that the scatterer can give rise to two physical clusters with different cluster
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Figure 4: The proposed grouping of scatterers based on geographical properties
for the sub-urban and urban scenarios.

properties. Also the scatterers who are geographically close to each other and
result in MPCs with thus similar parameters can be treated as a single scatterer.
In other words, the scatterer based physical clusters can be related to a single
scatterer or a group of scatterers and a scatterer can contribute to different
physical clusters based on how it is seen. When grouping scatterers, the most
important condition is the distance between scatterers. The distance between
scatterers should be sufficiently close, so that the Tx/Rx cannot distinguish
them. Here we define “close” as when the distance between scatterers is much
smaller than the distance to the Tx/Rx, more specifically one third of the
distance between Tx and Rx.

Fig. 4 shows an example of the extracted physical clusters for the sub-urban
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Figure 5: An example of physical single and multiple-bounce MPCs.

and urban scenarios. It can be noted that some dominant scatterers are treated
as physical clusters alone, and some of the scatterers are grouped together as
a single physical cluster. By visualizing the MPCs on top of the 3D maps,
they can be associated to physical clusters. In addition, a physical cluster
is also determined as single- or multiple-bounce cluster. It has to be noted
that a physical cluster can be a single- or multiple-bounce cluster at the same
time but with different cluster properties, see Fig. 5. It shows that MPCs can
reach the different Rx positions by interacting with the same scatterer while
they arise from different scatterers at the Tx side, and thus the MPC reaching
Rx2 is associated to a single-bounce cluster while the other is associated to a
multiple-bounce cluster.

5.2 Properties of Physical Clusters

To apply physical clusters to current cluster based models, the cluster prop-
erties have to be investigated. In this work, we discuss the cluster spreads,
cluster visibility region, cluster power model and cluster cross-polarization dis-
crimination in detail for the physical clusters. Other properties, i.e. number
of MPCs inside a cluster, cluster selection factor, cluster shadowing etc., are
parameterized in Table 3. Detailed extraction methodologies with respect to
these parameters can be found in [5].



Parameter Based Clusters, Physical Clusters and Cluster Based Channel
Modeling in Sub-urban and Urban Scenarios 105

Table 1: Cluster properties of single-bounce physical clusters.

Sub-Urban
Cluster C1 C2 C4 C5 C6
Delay spread [µs] 0.11 0.05 0.12 0.06 0.15
AOD spread [deg] 21 12 10 4 4
AOA spread [deg] 3 3 6 12 17
VR [m] 173 164 97 182 172
Urban
Cluster C1 C2
Delay spread [µs] 0.009 0.009
AOD spread [deg] 5 4
AOA spread [deg] 12 6
VR [m] 68 79

Cluster spreads

The physical clusters are also characterized by the associated MPCs. The cor-
responding cluster spreads are AOA spreads, AOD spreads and delay spreads,
defined as [1]:

DSc =

√√√√∑Nc

i Pi(τi − τ̄)2∑Nc
i Pi

, (3)

ASc =

√√√√∑Nc

i Pi(angle(exp(j · (ϕi − ϕ̄))))2∑Nc
i Pi

(4)

where DSc is cluster delay spread, ASc is cluster angular spread, Nc is number
of MPCs in each cluster and j is the imaginary unit. Furthermore, Pi is the
power for the ith MPC, ϕ̄ and τ̄ are power weighted means calculated as

τ̄ =
1∑Nc

i Pi

Nc∑
i

Piτi (5)

ϕ̄ = angle(

Nc∑
i

Pi exp(j · ϕi)), (6)

where τi is the delay and ϕi is the AOD/AOA of the ith MPC. Note that, the
AOA/AOD discussed here is in azimuth plane.
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For the single-bounce physical clusters, the delay spread and angular
spreads have in general small values in the sub-urban and urban scenarios. It
is also true for the multiple-bounce clusters. From the cluster spread proper-
ties, it can be concluded that the physical clusters have a good control of delay,
and angular properties. Therefore, the size of the cluster is also in a limited
range.

Visibility Region and Transition Region

The visibility region is another important property of a cluster; it determines
the activity of the cluster. The visibility region of the physical cluster is also
studied here in detail, see Table 1 and Table 2. Here the visibility region
is defined as, along the RX moving route, the length of the route where the
physical cluster can be seen. It can be noted that physical clusters usually
have relatively long visibility regions which well reflect the fact that the nearby
scatterers are the main contributors to the channel. Together with the visibility
region, transition regions for the physical scatterers are extracted in the same
manner as in [5], and starts from the half of the maximum cluster power until
the cluster has disappeared. Due to the frequent fluctuations in the cluster
power, the estimated transition regions are subject to some uncertainty.

Cluster Power Model

The cluster power model is mainly characterized by the cluster power decay
factor and the cluster cut-off delay. The cluster power decay factor is a result of
linear regression analysis of the cluster power versus the cluster delay. For the
two considered scenarios, 14.5 and 248.3 dB/µs are observed. The significantly
large decay factor in the urban scenario is due to the lack of large distance
clusters, while the extracted clusters are within a small area. The cut-off delay
is recommended as the delay where cluster power has decreased 30 dB from
the maximum cluster power in the COST 2100 channel model. The power
of clusters with delays larger than the cut-off delay is modeled as constant.
From the measurements, cut-off delays of 2.5 and 0.29 µs are observed for the
sub-urban and urban scenarios, respectively.

Cluster Cross-polarization Discrimination

The cluster cross-polarization discrimination (XPD) characterizes the power
proportion from one polarization to another polarization. First, the XPD ratios
of the MPCs associated to one cluster are determined as:

XPDV =
PVV

PVH
(7)
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Table 3: Channel model parameters extracted from the physical clusters.

Scenario Sub-urban Urban
Radius of visibility region:
µR[m] 127 59
Radius of transition region:
µT [m] 48 18
Number of far clusters:
µNc 6 5
Number of MPCs per cluster:
µN 8 4
Cluster selection factor:
µKsel

0.33 0.2
Cluster power decay factor:
µkτ [dB/µs] 14.5 248.3
Cluster cut-off delay:
τcutoff [µs] 2.5 0.39
Radius of LOS visibility region:
µRLOS

[m] 343 16
Radius of LOS transition region:
µTLOS

[m] 93 11
LOS power factor:
µKLOS

[dB] -4.7 2.6
σKLOS

[dB] 2.0 3.2
Cluster angular spreads:
µASAOD

c
[deg] 9.5 5.0

σASAOD
c

[dB] 3.0 4.3

µASAOA
c

[deg] 8.1 7.5

σASAOA
c

[dB] 3.2 2.3

Cluster delay spread:
µDSc [µs] 0.08 0.01
σDSc [dB] 2.5 2.7
Cluster shadowing:
σShc [dB] 5.2 13

and

XPDH =
PHH

PHV
, (8)

where PVH is the power from the vertical polarization to the horizontal polar-
ization and vice versa. The MPC XPD ratios are log-normally distributed over
different clusters, with a mean µXPD and standard deviation σXPD for a clus-
ter. Thus the cluster cross-polarizations are also log-normally distributed, with
parameters (mµXPD , SµXPD) and (mσXPD , SσXPD). The extracted cluster cross-
polarization parameters in the urban scenario are listed in Table 4. However,
the cross-polarization parameters for the sub-urban scenario are not extracted
due to the use of single-polarized antenna elements in the sub-urban measure-
ments.
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Table 4: Cluster Cross-polarization parameters extracted from the physical
clusters.

Scenario Urban
V-polarization:
mµXPDV

[dB] 4.4

SµXPDV
[dB] 3.9

mσXPDV
[dB] 3.8

SσXPDV
[dB] 2.0

H-polarization:
mµXPDH

[dB] 6.3

SµXPDH
[dB] 3.0

mσXPDH
[dB] 3.9

SσXPDH
[dB] 2.0

6 Channel Model Evaluation

The COST 2100 channel model is a geometry-based stochastic channel model
(GSCM) for MIMO channel simulations [18]. It supports both single- and
multiple-link MIMO channel accesses. The channel model is characterized by
individual clusters, and corresponding visibility regions of the clusters. There-
fore, in the MATLAB implementation of the COST 2100 channel model, the
inputs to the model are based on the cluster parameters, i.e. cluster power
decay factor, cluster visibility region and transition region. With a complete
set of parameters, the channel model can give simulated propagation channels
without effects of antennas. To include antenna effects, complex polarimetric
radiation patterns of TX and RX antenna elements are needed.

First, we simulate channel realizations based on the COST 2100 channel
model MATLAB implementation with the extracted parameters of physical
clusters that are summarized in Table 3. A set of 100 simulation runs for
both sub-urban and urban scenarios has been carried out. For the sub-urban
scenario, the center frequency is set to 285 MHz and the channels are generated
for a bandwidth of 20 MHz, while the frequency for the urban scenario is
5.3 GHz and the bandwidth is 120 MHz. These settings are identical to the
measurements introduced in Section II. For both the scenarios, the BSs are
placed at the center of the simulation area, and the MSs are moving along
the pre-determined routes similar to the measurement routes. In total, 33200
and 50000 snapshots of propagation channels have been simulated for the sub-
urban and urban scenarios, respectively, to provide enough statistics for the
investigations.
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Figure 6: Delay spreads of the measured and simulated omni-directional an-
tenna responses for the sub-urban scenario.

6.1 Delay Spread

We first compare simulated and measured channels concerning their respective
delay spreads. For the sub-urban scenario, the comparison is performed for
channel responses with an omni-directional antenna pattern in azimuth both
at the TX and RX sides. Note that, when the measurements were carried out,
a reference omni-directional antenna was set up at the RX side. Therefore,
data connected from this single TX-RX pair can be used to evaluate the delay
spread performance. The delay spreads are computed from the channel power
delay profiles (PDPs) by using a noise threshold of 30 dB below the peak
power in each PDP. All PDPs are truncated at 6 µs, and it can be assumed
that no significant power will be received after this delay. The results are
shown in Fig. 6, where the solid lines are cumulative distribution functions
(CDFs) for the delay spreads extracted from the measured raw data and the
others are CDFs for the delay spread from all simulation runs. It can be noted
that the median delay spread is only 0.02 µs off between the simulations and
measurements, which is a promising improvement compared to the parameter
based cluster simulation performance [5]. However, significantly smaller and
larger delay spreads still exist due to the limitations of the current channel
model as pointed out in [5]. For the urban scenario, the delay spreads are
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Figure 7: Distributions of ordered singular values of the measured and simu-
lated channel impulse responses for the sub-urban scenario.

calculated based on the simulated and measured MPC parameters, see Fig. 6.
It can be noted that the small delay spread values have been captured by the
simulations, and up to 80%, the simulations and the measurements show a
good agreement. However, the large delay spread is over estimated from the
simulations that we think it is mainly due to the model limitations [5].

6.2 Singular Value Distribution

From a system perspective, the singular value distribution has been investigated
as well. First, for the sub-urban scenario, 7-by-7 MIMO channel matrices have
been simulated based on the COST 2100 channel model simulations and the Tx
and Rx antenna radiation patterns. The patterns correspond to those of the
measurement antennas. The singular values are derived from the normalized
channel frequency response at an SNR of 20 dB. A good agreement between the
measurements and simulations is obtained in the sub-urban scenario, especially
for the first three dominant singular values, see Fig. 7. In the urban scenario,
the same radiation patterns are also used for the comparison of the simulation
and measurements. However, only a subset of measurement antenna feeds is
considered in order to avoid too large MIMO channel matrix dimension. More
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Figure 8: Distributions of ordered singular values of the measured and sim-
ulated channel impulse responses for the urban scenario with modified power
decay factor.

specifically, a subset of RX spherical antenna elements that mainly receives
the vertically polarized fields and the vertically polarized elements of the Tx
planar antenna are used which leads to a MIMO channel of size 10-by-16. The
distribution of the first five dominant singular values are investigated, see Fig. 8.
It can be noted that the distributions of the second singular values show some
differences between the simulations and measurements, which is mainly due to
the extracted biased power decay factor. As mentioned before the extracted
power decay factor is estimated from few realizations of large delay clusters,
and therefore a modified power decay factor with value 24 dB/µs is applied.
With the modified power decay factor, the simulated and measured channels
give better agreements in singular value distribution, specifically speaking, less
than 2 dB mismatch. In short, the channel characteristics with respect to
singular value distribution show reasonable agreement between simulations and
measurements when the physical clusters are used, therefore also the channel
capacity can be well represented.
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7 Conclusion

The cluster concept is widely used in current channel models, and the clusters
help to reduce the modeling complexity. However, the cluster extraction is still
an open topic. The parameter based clustering algorithms are based on the
parameters of the MPCs. There is no common view of the relation between
the parameter based clusters and physical reality. In this paper, we analyzed
geographical properties of parameter based clusters with a ray launching tool.
It has been seen that single-bounce parameter based clusters can well be re-
flected in the physical reality, but this is not necessarily the case for multiple-
bounce clusters, which have more complicated behavior. Therefore, a simple
geographical clustering method is proposed and we observed the corresponding
physical clusters and their properties. A physical cluster can be seen for a long
time. The frequent cluster deaths observed for the parameter based clusters
are disappeared for physical clusters, which gives longer cluster visibility re-
gions. Also, the physical clusters can be single- and multiple-bounce at the
same time, which is not the case of parameter based clusters. The extracted
parameters from the physical clusters have been applied to the COST 2100
channel model MATLAB implementation. In addition, the validation of these
parameters is also performed with respect to the delay spread, and singular
value distribution. We conclude that the physical clusters give better control
of delay spread and the singular value distributions also give good agreement
between the simulations and measurements.

In general, the physical clusters show promising results regarding the param-
eter extraction for the single-link COST 2100 channel model. The multi-link
COST 2100 channel model is described by the concept of common clusters,
which are interpreted based on the physical scatterers. Therefore, a more
sophisticated physical clustering algorithm and physical cluster analysis are
needed for the multi-link 2100 channel model development.
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1 Introduction

The channel model from COST 273 [1], and its successor COST 2100 [2] are
now available and can account for most of the important propagation processes
and effects that influence multiple-input multiple-output (MIMO) system per-
formance. The COST 2100 channel model is characterized by individual clus-
ters, i.e. group of multipath components (MPCs) showing similar properties
in delay, angle of arrival (AOA), angle of departure (AOD) and power, and
corresponding visibility regions of the clusters [2]. The model supports both
single-link and multiple-link MIMO channel access; the latter is achieved by us-
ing the concept of common clusters [3]. An overview of the COST 2100 channel
model is presented in [4], whereas a detailed description of the channel model
can be found in [2]. The parameterization of this generic model from measure-
ments is not yet complete and only a few environments have been studied. For
example, parameterization of the channel model has been performed for indoor
environments though some parameters are missing, such as cross-correlation co-
efficients for cluster spreads, and cluster shadowing [5]. Furthermore, there is a
lack of studies validating the COST 2100 channel model. One reason for this is
that there is no general methodology to evaluate the validity of channel models,
and the validation processes also depend on available measurement data and
the nature and usage of the particular channel model. In [6], validation of the
COST 2100 channel model, with respect to large-scale properties such as delay
spread and angular spread, has been carried out for an indoor environment
with good results. So far, studies on the COST 2100 channel model mostly
focus on indoor environments, but are missing for outdoor scenarios. For a
good generic model, different environments should be included and completely
parameterized. In addition, validation should be performed to determine the
accuracy and limitations of the channel model in those environments as well.

In order to perform parameterization and validation of the COST 2100
channel model in outdoor scenarios, 300 MHz outdoor measurements were per-
formed and the collected data is used for further analysis in this paper. Fre-
quencies in the lower UHF range, as used for the measurements, are often used
for tactical communication. In addition, public cellular communication systems
are present at 450 MHz and 900 MHz, and TETRA, a cellular and peer-to-peer
system for first responders, operates at frequencies around 400 MHz. From a
scientific point of view, it is also of interest to characterize propagation condi-
tions at those frequencies as many common larger objects in the environments
(like vehicles, smaller buildings, and lamp-posts) have the size of a few wave-
lengths instead of tens to hundreds of wavelengths as for the standard cellular
frequencies. Hence, it is of significant interest to investigate and characterize
the channel properties and provide a basis for the usage of the COST 2100
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channel model at lower frequencies.
The main contributions of this paper are:

• Cluster parameters and cluster time-variant properties are obtained from
the 300 MHz measurements by using a joint clustering and tracking al-
gorithm.

• Parameterization of the channel model for single-link outdoor MIMO
communication at 300 MHz is conducted.

• Validation of the channel model is performed for the considered scenario
by comparing simulated and measured delay spreads, spatial correlations,
singular value distributions and antenna correlations.

The remainder of the paper is organized as follows: Sec. II describes the
300 MHz outdoor measurement campaign. Sec. III introduces the joint clus-
tering and tracking algorithm for cluster extraction from the measurements.
The parameterization for the COST 2100 single-link MIMO channel model in
an outdoor scenario is performed in Sec. IV. Sec. V validates the single-link
parameters for the channel model. Finally, the conclusions in Sec. VI complete
the paper.

2 Measurement Campaign

The measurements were performed outdoors on the campus of Linköping Uni-
versity, Sweden using the RUSK Lund MIMO channel sounder [7], [8]; the
measurement principle is described in [9], [10]. Identical antenna arrays were
used for both the transmitter and the receiver. The antenna arrays are ver-
tically polarized, 7-element uniform circular dipole arrays (UCDA), with one
additional dipole element located at the center, in an elevated position [7], [11].
All 8 elements are sleeve dipoles and the center element, which has an omni-
directional antenna response in azimuth, is located 0.78 m above the 7-element
UCDA. The bandwidth of the antennas is 30 MHz, and the antenna gain for
the UCDA is 8 dBi and 5 dBi for the omni-directional antenna. The 3 dB beam
width of the lower antenna elements is 95 degrees in azimuth and 59 degrees in
elevation. The transmit antenna array (Tx) was placed 1.8 m above ground, at
a static position with coordinate (0, 0) and about 35 m from a large building.
The receive antenna array (Rx) was mounted on a car with its lower ground
plane approximately 2.1 m above the ground. The car was driven at a speed
of around 8 m/s along the marked routes in Fig. 1, and the routes are labeled
as 1 to 4. The minimum and maximum separation between the Tx and Rx are
197 m and 451 m, respectively. The measurements were carried out at a center
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Figure 1: Overview of the measurements area at the campus of Linköping
University, Sweden. The transmitter with coordinate (0, 0) was placed near
the building, and the receiver was moved along the marked routes 1-4. B1 and
B2 represent two new buildings which were not present at the time the picture
was taken.

frequency of 285 MHz, with a bandwidth of 20 MHz, which is smaller than the
antenna bandwidth, and an output power of 43 dBm. The sounding signal is a
periodically repeated sequence with a length of 12.8 µs and the guard interval
between the repetitions is 12.8 µs. In the measurements, we used a wheel trigger
on the car to control the snapshot distance, which is approximately 0.97 m and
corresponding to 0.92 λ, where λ is the wavelength at the center frequency of
285 MHz.1 This snapshot distance is also used in Sec. 4. At each trigger event,
one data block of 4 channel snapshots is recorded and averaged into a single
snapshot to increase the signal-to-noise ratio (SNR). The channel is assumed
to be approximately stationary over 4 consecutive snapshots, an assumption
that is verified. Due to practical constraints, all measurements were performed
using vertical polarization only. One should be aware of the limitations of the
parameter estimates from such a setup [12], and we have made every effort to
validate the directional estimates using 3-dimensional maps and photos of the

1Snapshots with distance 0.115 λ were actually measured, but every 8th snapshot is used
for further parameterization analysis.
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environments.
By using the SAGE algorithm [13], MPCs with delay, AOA, AOD and com-

plex amplitude were estimated from the measured transfer function matrices.
From the analysis in [7], it can be seen that there are line-of-sight (LOS) con-
ditions for most parts of routes 1 and 2, but occasionally with small obstacles
blocking the LOS. Routes 3 and 4, on the other hand, are completely non
line-of-sight (NLOS). In the following investigations, routes 1 and 2 are pro-
cessed together and named group 1. This group is mostly LOS and partially
obstructed LOS. Similarly, routes 3 and 4 are named group 2 and this group is
completely NLOS.

3 Clustering and Tracking Method

Since the COST 2100 channel model is based on the concept of clusters, a joint
clustering and tracking algorithm [14] is used to identify clusters and determine
their time-variant properties from the measurements. The KpowerMeans clus-
tering algorithm [15] is implemented to cluster each temporal snapshot of the
channel, while a Kalman filter [16] is designed to track clusters from snapshot
to snapshot. Previous research [17] has shown that the cluster time-variant
behavior can be obtained with this joint algorithm.

MPCs extracted by the SAGE algorithm are used as the input to this joint
clustering and tracking algorithm. In the first step, the KpowerMeans cluster-
ing algorithm performs clustering based on the values of the delay, AOD, AOA
and power of each MPC from one measured snapshot. Each cluster is charac-
terized by its centroid position, which is determined by cluster delay, cluster
power, cluster AOD, and cluster AOA, as well as by its intra-cluster spreads,
including cluster delay spread, cluster AOD spread, and cluster AOA spread.
The identified clusters for a particular snapshot are known as current clusters.
In the next step, a Kalman filter is applied to track the clusters over different
snapshots. Based on the current clusters and clusters from the previous snap-
shot, the Kalman filter provides a prediction of the cluster centroids for the
next snapshot and its state is also updated. If possible, the current clusters
are associated with those from the previous snapshot and are then regarded
as tracked clusters. Otherwise, untracked clusters in the previous snapshot are
regarded as dead, and untracked clusters in the current snapshot are considered
as new-born clusters. In this way, we could obtain the time-variant properties
of clusters.

The number of MPCs extracted with the SAGE algorithm is 200 for each
snapshot; MPCs with a power 30 dB lower than the peak power are discarded
from further analysis. To ensure tracking stability, a sliding window with a
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length of 2 snapshots is chosen [14]. A 1% cluster power threshold is set to
ensure that the identified clusters do not carry less than 1% of the total received
power. In addition, if the power of a tracked cluster never exceeds 2.5% of the
total received power somewhere during its lifetime, this tracked cluster is not
taken into account in the subsequent analysis. By considering the map of the
environments and in order to avoid cluster splitting, the maximum number of
clusters is chosen as 12, which is well above the extracted average number of
clusters, see the results in Sec. 4.2.

4 Channel Model Parameters

In this section, the methodologies for the parameterization are studied in de-
tail. Our goal is to extract the required parameters for the COST 2100 channel
model based on the 300 MHz outdoor measurements. All the extracted param-
eters are listed in Table 1.

4.1 Cluster Visibility Region and Transition Region

Cluster visibility regions are typically assigned to clusters in such a way that
when an Rx is inside a visibility region (VR), the cluster assigned to this
visibility region is active (contributes to the impulse response). The size of a
cluster visibility region is thus linked to the lifetime of a cluster: assuming a
stationary environment, the lifetime of a cluster is determined by the number
of snapshots over which the cluster is sequentially active. The product of the
cluster lifetime and the snapshot distance is called cluster life distance.

There is a general difficulty in extracting the size of cluster visibility regions
from a single measured route. For the measured route, the Rx does not always
go through the center of the cluster visibility regions. We propose a method for
finding the relation between the cluster visibility region radius and the mea-
sured cluster life distance as follows. Assume that the cluster visibility region
is a circle, and the radius of the circular visibility region R is deterministic.
Further assume that the measured route traverses the circular visibility regions
at a random (uniformly distributed) distance D from the respective centers of
the cluster visibility regions. Given this geometry, the length of an intersection
between a measured route and a cluster visibility region is

L =

{
2
√
R2 −D2 0 ≤ D ≤ R,

0 otherwise.
(1)
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Now, the average cluster life distance is

Γ , E [L] =

∫ R

0

2
√
R2 − x2 fD(x) dx, (2)

where E[·] denotes statistical expectation and fD(x) is the probability density
function for D. By solving the integral in (2) for a uniformly distributed D,
0 ≤ D < R, we obtain

Γ =
π

2
R, (3)

where the factor π
2 is defined as compensation factor between the cluster visi-

bility region radius R and the average cluster life distance Γ.
We group the measurements into two categories. The measured scenario of

group 1, with routes 1 and 2, is categorized as a semi-rural environment where
some scatterers have contributed to the impulse response for a long time, which
leads to longer cluster life distances, and thus larger cluster visibility region
radii. The measured scenario of group 2, with routes 3 and 4, on the other
hand, is categorized as a sub-urban area. Scatterers can be blocked more often
in this group, and thus smaller cluster visibility region radii are observed. Fig. 2
shows the distributions of the cluster visibility region radii for the two groups.
Most of the visibility region radii are in the range of 10 to 100 m (approximately
10 to 100 λ). The average cluster visibility region radii for groups 1 and 2 are
32.8 and 24.5 m, respectively.

The cluster visibility region is modeled as a circle, where the cluster is
active, with radius R. Centered in this circle is an effective area, a circle with
radius r, where the cluster power exceeds a level of 6 dB below its maximum
[18]. There is a smooth transition, from the border of the effective area to
the border of the active area, taking place in the so-called cluster transition
region. The size of the transition region is determined as T = R − r, and the
extracted sizes of the transition regions are 16.8 m and 12.2 m for groups 1 and
2, respectively.2

4.2 Number of Clusters and Average MPCs per Cluster

There are two kinds of clusters in the channel model: local clusters and far
clusters. Usually a local cluster occurs around the Rx. In our measurements,
there is one active cluster which is visible along most of the snapshots for the
two groups. At the same time, we notice that the distance between this cluster
centroid and the Tx is larger than the distance from the cluster centroid to
the Rx. In addition, often there is a larger cluster angular spread at the Rx

2r is extracted in a similar way to R.
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Figure 2: Distributions of the extracted cluster visibility region radii for the
two groups.

side, compared to the Tx side. These observations indicate that we observe an
Rx local cluster in the two measured groups. Far clusters are defined as any
clusters that are not local clusters. On average, approximately 6 far clusters
(Nc) are active for both groups 1 and 2.

Each cluster contains a few MPCs, and the average number of MPCs per
cluster (NMPC) is extracted as the ratio between the total number of MPCs
and the number of clusters in each snapshot. There are approximately 27 and
48 MPCs per cluster for groups 1 and 2, respectively. For group 2, there are
generally more scatterers in the environment, which leads to a larger number of
MPCs per cluster, compared to group 1. Here, it should be noted that specular
components and dense multipath components [19] are not separated, and all
MPCs are considered as specular components.

4.3 Single-bounce and Multiple-bounce Clusters

Besides local clusters and far clusters, single-bounce and multiple-bounce clus-
ters are also distinguished in the channel model. Here, we suggest classifying
the clusters using their geometric properties. First, we take a look at the AOA
and AOD of a cluster and determine whether a ray from the Tx in the clus-
ter AOD direction and a ray from the Rx in the cluster AOA direction can
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meet each other. If there is no valid intersecting point between the two rays,
a multiple-bounce cluster is observed. With a valid intersecting point, we also
analyze the total traveling time of these two rays. The traveling time from the
Tx to the cluster centroid is τTx and from the Rx to the cluster centroid is
τRx. Theoretically, the difference between the total traveling time of the two
rays and the cluster delay τdelay should be zero for a single-bounce cluster, but
with the measured results, a threshold larger than zero has to be used. The
threshold here is set as two times the cluster delay spread τds, since we allow
one delay spread offset from both the Tx and Rx sides. In other words, if a
valid intersecting point between rays from the Tx and the Rx sides is obtained,
and |τTx + τRx − τdelay| < 2τds is satisfied, a single-bounce cluster is observed,
otherwise it is classified as a multiple-bounce cluster. The relation between
the number of single-bounce clusters NSB and the number of multiple-bounce
clusters NMB is characterized by the cluster selection factor Ksel,

Ksel =
NSB

NMB +NSB
. (4)

The extracted cluster selection factors are 0.1 and 0.2 for groups 1 and 2,
respectively. We conjecture that these low Ksel factors are due to the fact that
the measured scenario is peer-to-peer, where the Tx and Rx are only around 2 m
above ground, and both surrounded by scatterers along most of the measured
routes.

The concept of cluster link delay is introduced in conjunction with
the multiple-bounce clusters. The cluster link delay τlink is calculated as
|τTx + τRx − τdelay|. Hence, for a single-bounce cluster, there is no cluster
link delay. The cluster link delay is modeled as an exponential distribution,
with its mean and minimum value [2]. Since we use 2τds as our threshold
when distinguishing single/multiple-bounce clusters, the cluster link delay for
multiple-bounce clusters never goes below 2τds. The extracted average cluster
link delays are 0.9 and 1.1 µs with minimum values of 0.048 and 0.052 µs for
groups 1 and 2, respectively.

4.4 LOS Parameters

The LOS component is extracted, based on the AOA, and AOD of the MPC
with the strongest received power. In theory, the LOS component should have
a matched pair of AOA and AOD and also the strongest power. However, due
to uncertainties in vehicle positions and estimation errors of MPC parameters,
there might be an offset in the measured AOA and AOD. Here, a maximum
10 degrees mismatch for the AOA and AOD is allowed. In other words, when
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the mismatch between AOA and AOD of the MPC with the strongest power
is smaller than 10 degrees, this MPC is determined as a LOS component.

The size of the LOS visibility region is extracted based on the appearance of
the LOS component. When the power of the LOS component goes 6 dB below
the maximum LOS power during its lifetime, it enters the transition region
where it stays until it disappears. The transition region of the LOS component
is defined as the duration between the transition starting and ending points.
For group 1, the LOS component exists for almost the whole Rx traveling
route; 343 m is observed as the averaged LOS visibility region radius (RLOS)
and 93 m as the averaged LOS transition region radius (TLOS). There is no
LOS component in group 2 so the sizes of LOS visibility and transition regions
are set to zero.

The relation between the power of the LOS component and the other MPCs
is denoted as LOS power factor [1],

KLOS =
PLOS

Ptot − PLOS
, (5)

where PLOS is the power of the LOS component and Ptot is the total power for
MPCs. The observed mean KLOS factor is -4.7 dB for group 1 with a variance
of 2.0 dB. In group 2, KLOS is zero since it is a NLOS scenario.

4.5 Cluster Power Model

The cluster power Pic of the icth cluster, is modeled as [1]

Pic = P0 max{exp(−kτ (τic − τ0)),

exp(−kτ (τcutoff − τ0))}. (6)

Besides the peak cluster power P0 factor, there are four more parameters in
this power model. Parameter kτ is the power attenuation coefficient given in
unit of dB/µs, and is also called cluster power decay factor. τic is the cluster
delay while τ0 is the delay of the LOS component. They are both in the unit
of µs. The last one is the cut-off delay τcutoff , with the unit of µs.

The cluster power decay factor is a result of linear regression analysis of
the cluster power versus the cluster delay. The slopes in Fig. 3 describe the
two power decay factors, which are 12.1 and 7.2 dB/µs for groups 1 and 2,
respectively. Moreover, it can be noted that the cluster power has residuals
from the regression lines. The residuals are referred as cluster shadowing com-
ponents, which will be discussed further in Sec. 4.7. The delay of the LOS
component is determined by the distance between the Tx and Rx. The cut-off
delay is determined as the delay where cluster power has decreased 30 dB from
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Figure 3: Cluster power decay factor. Scatter plots show the cluster power vs.
the cluster delay. The reference level for the cluster power is the Tx power of
43 dBm. The power decay factors are 12.1 and 7.2 dB/µs for groups 1 and 2,
respectively.

the maximum cluster power. The power of clusters with delays larger than the
cut-off delay is modeled as constant, i.e., at a level 30 dB below the maximum
cluster power. From the measurements, cut-off delays of 2.4 and 4.2 µs are
observed for groups 1 and 2, respectively.

4.6 Cluster Spreads

Cluster spreads in delay, AOD and AOA determine the shapes of clusters, and
are defined as [1]

DSc =

√√√√∑N
i Pi(τi − τ̄)2∑N

i Pi
, (7)

ASc =

√√√√∑N
i Pi(ϕi − ϕ̄)2∑N

i Pi
, (8)
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where DSc is the cluster delay spread, ASc is the cluster angular spread and N
is the number of MPCs belonging to each cluster. Pi is the power for the ith
MPC, τi is the delay and ϕi is the AOD/AOA of the ith MPC. Furthermore,
ϕ̄ and τ̄ are power weighted means calculated as

τ̄ =

∑N
i Piτi∑N
i Pi

, (9)

ϕ̄ = angle(

N∑
i

Pi exp(j · ϕi)), (10)

where j is the imaginary unit. The cluster spreads for a particular cluster are
computed from the set of MPCs that has been associated with that cluster. The
mean value and standard deviation of the extracted cluster spreads are listed
in Table 1, where ASAOD

c defines the cluster angular spread at the Tx side and
ASAOA

c is the cluster angular spread at the Rx side. It can be noted that the
average cluster delay and angular spreads are smaller in group 1 compared to
group 2. The reason is that in group 2, the rich scattering processes around
the Tx and Rx increase the spreads of the clusters. The MPCs from scatterers
near the Rx in group 2 can, for example, have really large angular spread but
are still grouped into one cluster.

4.7 Cluster Shadowing

Clusters experience large-scale fading in a similar way to that of MPCs. The
cluster shadowing is obtained during the process of estimating the cluster power
decay factor, see Sec. 4.5. When the cluster power decay factor is estimated, the
linear regression lines provide an expected cluster power for a certain cluster
delay. The cluster shadowing is defined as the residual between a cluster power
and its expected cluster power [20]. Note, however, that this shadowing is
not necessarily related to the physical effects of partial obstructions of clusters
by other objects. The observed standard deviations of the cluster shadowing
(σShc

) are 2.05 and 2.27 dB for groups 1 and 2, respectively.

4.8 Cross-correlation Coefficients

In order to jointly model cluster spreads and shadowing, the cross-correlation
coefficients of different pairs of the cluster spreads and shadowing are consid-
ered. We estimate the cross-correlation coefficient between a and b as

ρ(a, b) =

∑M
k (a(k)− ā)(b(k)− b̄)√∑M

k (a(k)− ā)2
∑M
k (b(k)− b̄)2

, (11)
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Table 1: Extracted parameters from the 300 MHz measurements for the COST
2100 channel model.

Groups Group 1 Group 2
Radius of visibility region: µR[m] 32.8 24.5
Radius of transition region: µT [m] 16.8 12.2
Number of far clusters: µNc 6 6
Number of MPCs per cluster: µNMPC 27 48
Cluster selection factor: µKsel

0.1 0.2
Cluster power decay factor: µkτ [dB/µs] 12.1 7.2
Cluster cut-off delay: τcutoff [µs] 2.4 4.2
Radius of LOS visibility region: µRLOS

[m] 343 0
Radius of LOS transition region: µTLOS [m] 93 0
LOS power factor:
µKLOS

[dB] -4.7 0
σKLOS

[dB] 2.0 0
Cluster angular spreads:
µASAOD

c
[deg] 14.6 18.6

σASAOD
c

[dB] 2.43 2.02
µASAOA

c
[deg] 14.8 19.0

σASAOA
c

[dB] 2.68 2.03
Cluster delay spread:
µDSc

[µs] 0.14 0.32
σDSc [dB] 3.66 2.05
Cluster link delay:
µτlink

[µs] 0.85 1.02
minτlink

[µs] 0.048 0.052
Cluster shadowing: σShc

[dB] 2.05 2.27
Cross-correlation coefficients:
ρ(DSc, AS

AOD
c ) 0.9 0.9

ρ(DSc, AS
AOA
c ) 0.9 0.9

ρ(DSc, Shc) 0.0 -0.1
ρ(ASAOD

c , Shc) 0.0 0.1
ρ(ASAOA

c , Shc) 0.0 0.1
ρ(ASAOD

c , ASAOA
c ) 0.9 0.9

µ denotes expected value, σ denotes standard deviation and min denotes min-
imum value.
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where ā and b̄ are the sample mean of the sets {a(k)} and {b(k)} with length M ,
respectively, and all the samples are in logarithmic scale [21]. The results for the
extracted cross-correlation coefficients are shown in Table 1. A high correlation
always exists between the delay spread and the angular spreads at both the Tx
and Rx sides. Meanwhile, the cluster spreads exhibit low correlation with the
cluster shadowing.

5 Channel Model Validation

The COST 2100 channel model with parameters from Table 1 is validated by
comparing the channel properties of its output with the corresponding mea-
sured channel for the outdoor single MIMO link at 300 MHz in this section.
Ideally, one should perform validation based on many independent measure-
ments in similar but different environments, but due to the efforts involved in
such a task, this is not practically possible. The comparison with the measure-
ments is performed for the following four channel properties: 1) delay spread,
2) spatial correlation, 3) singular value distribution, and 4) antenna correlation.

5.1 Initial Considerations

The channel model has been implemented in MATLAB by Liu et al. [22],
and this implementation provides a suitable framework for our validation. The
input of this framework is based on both external and stochastic parameters.
First, the external parameters include parameters such as frequency, and band-
width. To be directly comparable with the measured data, the center frequency
is set to 285 MHz and the channels are generated for a bandwidth of 20 MHz.
The simulated area is defined as a cell with a radius of 500 m. Based on the
cluster power decay factors derived in Sec. 4.5, we assume that clusters outside
this radius will give a negligible contribution to channel responses. The Tx
is placed in the cell center and the Rx is moving according to the measured
routes. In order to evaluate the details of delay spreads and spatial corre-
lations, channel snapshots are generated for every 0.115 λ movement of the
Rx in the simulations. For each simulation run, this sampling distance gives
us 5304 simulated snapshots corresponding to the group 1 measurements, and
1570 simulated snapshots corresponding to the group 2 measurements. Besides
the external parameters, Table 1 summarizes all the stochastic parameters that
are used as the input of the MATLAB framework. Evaluation, using a group
of 100 simulation runs, is carried out for further validation, and for each such
simulation run, we have simulated channel snapshots from a route similar to
the measured one. This means that the number of channel snapshots used for
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Figure 4: Delay spreads of the measured and simulated omni-direction antenna
responses for groups 1 and 2.

validation exceeds 50,000 and 15,000 for groups 1 and 2, respectively, which
gives us representative statistics. To verify the latter, another independent 100
simulation runs have been performed. By comparing the distributions of delay
spreads, spatial correlation, and singular values, similar results were obtained,
indicating that a group with 100 simulation runs is enough.

5.2 Delay Spread

Delay spread is the normalized second-order central moment of the power delay
profile, and defined as [23]

Sτ =

√√√√∫∞−∞ Pττ2dτ∫∞
−∞ Pτdτ

− µ2
τ , (12)

where

µτ =

∫∞
−∞ Pττdτ∫∞
−∞ Pτdτ

, (13)

τ is the delay and Pτ is the corresponding power arriving in the delay interval [τ ,
τ +dτ ]. The delay spread shows the frequency selectivity of the channel, and it
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Figure 5: PDP examples. Measured PDP is extracted from a regular channel
under NLOS conditions. Simulated PDPs are for a well represented channel
under NLOS conditions and channels with very small and large delay spreads
under LOS conditions.

is a fundamental validation metric, affecting other validation metrics such as the
singular value distribution. We first compare simulated and measured channels
concerning their respective delay spreads. The comparison is performed for
channel responses with an omni-directional antenna pattern in azimuth. The
delay spreads are computed from the channel power delay profiles (PDPs) by
using a noise threshold of 30 dB below the peak power in each PDP. In addition,
all PDPs are truncated at 6 µs, and it can be assumed that no significant power
will be received after this 6 µs delay.

In Fig. 4, the dashed lines are cumulative distribution functions (CDFs) for
the delay spreads from all simulation runs, and the solid lines are CDFs for
the delay spreads extracted from the measured raw data. Group 1, which has
mostly LOS conditions, shows smaller delay spreads than group 2, which has
NLOS conditions. It can be noted that the CDFs for the simulated channels
start at smaller delay spreads than the corresponding CDFs for the measured
channels. Furthermore, the distributions for the simulated channels have tails
with significantly larger delay spreads than those which can be observed from
the two measured groups. It can also be noted that in the LOS scenario,
the simulated channels result in larger delay spreads, while in the NLOS sce-
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nario, the simulated channels show smaller delay spreads for most of the time
compared to the measurements. The delay spread differences of the medians
between the simulations and measurements are 0.17 and -0.12 µs for groups 1
and 2, respectively. One should note that the measurement area, though we
think it is representative for the intended scenarios and that there are differ-
ences in the propagation conditions within the area, might not show all possible
channel variations when measuring at various places.

To understand the mechanisms behind the observed deviations between
the simulated and measured delay spread distributions, we have investigated
individual PDPs from simulations and measurements in detail. First, we show
an example of a case in which the PDPs of simulated and measured channels
agree well, see the two solid curves in Fig. 5. The PDPs indicate channels with
rather dense multipath propagation. Next, the two dashed lines in Fig. 5 show
examples of PDPs from simulated channels with delay spreads that deviate
significantly from what have been observed in the measurements; one of the
profiles leads to a very small delay spread, which is smaller than 0.2 µs and
the other one causes a very large delay spread, which is larger than 1 µs.
The profile leading to the small spread has contributions from only the LOS
component and the local cluster, with no far clusters being present. Here,
we find a limitation of the COST 2100 channel model when it is applied to
outdoor scenarios. In reality, as the measurements indicate, it is not likely to
have only one cluster active in an outdoor scenario in a built-up area with a few
objects somewhere around Tx and/or Rx, but it can occur in the simulations.
In the profile with the large delay spread, a large gap exists between the local
cluster and the far clusters. This gap, which causes the delay spread to increase
significantly, is observed only in the simulations. In reality, however, the PDP
for such a scenario tends to be close to a continuous decay without large gaps.
In the channel model, the radius of a cluster is generated according to a log-
normal distribution, and thus some small radii exist. As a consequence, the
MPCs belonging to the clusters with small radii are squeezed into a small delay
region, which causes the gap in the PDP. In conclusion, a truncated log-normal
distribution, which takes away the small cluster radii, can provide a better fit
for the distribution of delay spreads in an outdoor scenario.

5.3 Spatial Correlation

Spatial correlation describes how the channel varies for a certain distance sep-
aration, and the normalized spatial correlation is evaluated for the channel
envelope as [23]

ρ(∆d) =
1

NdNf

∑
d

∑
f

C(|H(d, f)|, |H(d+ ∆d, f)|)√
C(|H(d, f)|)C(|H(d+ ∆d, f)|)

, (14)
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Figure 6: Spatial correlations of the envelope of the channels both in the mea-
surements and simulations.

where f is the frequency, d is the distance of a certain snapshot, ∆d is the dis-
tance difference between two snapshots, C means the covariance and |H| repre-
sents the envelope of the channel, which is achieved from the omni-directional
antenna element responses. We choose the envelope correlation since an os-
cillatory behavior of the averaged complex correlation is observed when the
measured route is symmetric relative to the Tx, see routes 1 and 2 in Fig. 1.
The symmetric property of the measured route is not representative, but a spe-
cial case for this particular Tx-Rx arrangement. We investigate the envelope
correlation properties for distance differences from 0 to 10 wavelengths. Data
subsets with a size of 12 λ are used to maintain wide-sense stationarity (WSS)
when evaluating the spatial correlation.

In Fig. 6, it can be noted that the match between the simulations and mea-
surements is good for group 2, but not for group 1. The main deviations are
in the region of low correlation, hence not so important. When the spatial cor-
relation coefficient is around 0.5, the corresponding spatial distance differences
between the simulations and measurements are only 0.2 and 0.1 λ for groups 1
and 2, respectively. The simulations have high correlation within a quarter
of a wavelength, while the measurements show high correlation within half a
wavelength. The spatial correlation is mostly determined by the distribution
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Table 2: Comparison of mean and standard deviation of the singular values
between the simulations and measurements.

Singular values Group 1 Group 2
(Ordered) (Sim./Mea.) (Sim./Mea.)

Mean [dB] Std. [dB] Mean [dB] Std. [dB]
1 15.7/16.2 1.8/1.4 15.2/15.4 2.3/1.8
2 6.7/4.8 4.3/2.9 7.8/8.2 3.9/2.5
3 0.1/0.4 4.5/2.8 2.5/3.5 4.2/2.7
4 -5.3/-3.6 3.8/2.6 -2.2/-0.8 4.1/2.7

of the AOA spreads of the MPCs. In general, a large angular spread leads
to a low spatial correlation. In measured group 1, the MPCs reach the Rx
with a small angular spread since the scatterers are located close to the direc-
tion of the LOS component; the averaged measured AOA spread is around 39
degrees. As the Rx is moving, the channel is changing slowly. In measured
group 2, more scatterers surround the Rx, and an AOA spread of 68 degrees
is observed. Compared to group 1, this AOA spread is larger and leads to a
lower spatial correlation. In the simulations, on the other hand, the clusters
are placed uniformly in the cell; the AOA spread of the simulated MPCs is not
controlled, so the two simulated spatial correlations are reduced compared to
the values from the measurements. On the other hand, the size of the cluster
visibility region also affects the spatial correlation; a longer visibility region ra-
dius gives a higher spatial correlation. As described in Sec. 4.1, some clusters
have a really large visibility region radii, e.g. the local cluster, though many
clusters have a short visibility region radii. An average cluster visibility region
radius cannot reflect the real environment well, which in turn leads to the mis-
match in the spatial correlation. The variations of the visibility region radius
cannot be accurately described solely by an average value and a distribution
function is therefore suggested for outdoor environments.

5.4 Singular Value Distribution

The capacity at a fixed mean SNR is strongly dependent on the singular value
distribution. The singular value is extracted from the normalized channel fre-
quency response by singular value decomposition. For the simulated channels,
7-by-7 channel transfer functions are generated for the two groups, based on
the channel model and measured antenna calibration data. All singular values
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Figure 7: Distributions of ordered singular values of the measured and simu-
lated channel impulse responses.

are evaluated at an SNR of 20 dB for both the simulations and measurements.
The channel model shows good agreement with the measurements in terms

of the distributions of the singular values obtained from the channel matrices,
and thus, in terms of channel capacity, see Fig. 7. The simulated dominant
singular value has a mean of 15.7 dB and standard deviation (std.) of 1.8,
while the measured one has a mean of 16.1 dB and a std. of 1.4 for group 1.
The second largest singular value also matches well with the measured data in
group 1. More numeric results are listed in Table 2. The fourth singular value
is nearly 20 dB lower than the largest singular value in each group, and its
contribution to the channel capacity is insignificant. It can thus be noted that
the channel model provides a good model of the measured channel regarding
channel capacity for outdoor measurements.

5.5 Antenna Correlation

Antenna correlation indicates the possible diversity and the richness of the
multipath channel in the environment. The correlation coefficient between two
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Table 3: Antenna correlations for one simulation run of the group 1 channels.

Tx side (Measured/Simulated)
1/1 0.3/0.3 0.2/0.2 0.0/0.3 0.0/0.3 0.1/0.1 0.5/0.4

0.3/0.3 1/1 0.4/0.1 0.1/0.3 0.0/0.2 0.1/0.2 0.2/0.2
0.2/0.2 0.4/0.1 1/1 0.3/0.2 0.1/0.1 0.1/0.0 0.1/0.2
0.0/0.3 0.1/0.3 0.3/0.2 1/1 0.3/0.0 0.2/0.2 0.1/0.2
0.0/0.3 0.0/0.2 0.1/0.1 0.3/0.0 1/1 0.5/0.4 0.4/0.3
0.1/0.1 0.1/0.2 0.1/0.0 0.2/0.2 0.5/0.4 1/1 0.5/0.3
0.5/0.4 0.2/0.2 0.1/0.2 0.1/0.2 0.4/0.3 0.5/0.3 1/1
Rx side (Measured/Simulated)

1/1 0.3/0.2 0.3/0.1 0.1/0.2 0.2/0.1 0.3/0.1 0.6/0.1
0.3/0.2 1/1 0.2/0.1 0.3/0.2 0.1/0.1 0.3/0.2 0.3/0.1
0.3/0.1 0.2/0.3 1/1 0.1/0.2 0.1/0.1 0.4/0.1 0.3/0.1
0.1/0.2 0.3/0.2 0.1/0.2 1/1 0.7/0.1 0.3/0.2 0.2/0.1
0.2/0.1 0.1/0.1 0.1/0.1 0.7/0.1 1/1 0.4/0.2 0.1/0.1
0.3/0.1 0.3/0.2 0.4/0.1 0.3/0.2 0.4/0.2 1/1 0.1/0.1
0.6/0.1 0.3/0.1 0.3/0.1 0.2/0.1 0.1/0.1 0.1/0.1 1/1

antennas is calculated according to

ρ12 =
E{H1H

∗
2}√

E{H1H∗1}E{H2H∗2}
, (15)

where H1 and H2 represent the channel response from two antennas, E{·} is
the expectation operator over all the possible samples of H1 and H2, and ∗
represents the Hermitian transpose. The correlation coefficients for different
antenna element offsets are extracted from the measured and simulated channel
frequency responses by clockwise and counter-clockwise shifting of antenna
elements. A sliding window of length 20 λ is used to ensure that we remain in
a WSS region when evaluating the antenna correlation. Here, we only show the
7-element UCDA antenna correlation coefficients by using one simulation run
over the area. Otherwise, over many simulation runs, the antenna correlation
will finally become low due to the uniform cluster distribution in the channel
model.

Table 3 summarizes the averaged absolute values of the complex correla-
tion coefficients over different WSS regions for one simulation run of group 1
channels at both the Tx and Rx sides. The root-mean-square-errors (RMSE)
between the measured and simulated antenna correlation are 0.1 and 0.2 for
the Tx and Rx side, respectively. It can be noted that at the Tx side, better
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agreement between the simulations and measurements is achieved compared to
the case at the Rx side. In the measurements, group 1 has a LOS component
and the AOA spread of the MPCs is only 39 degrees, which leads to the high
antenna correlation at the Rx side. In the simulations, however, the clusters
are placed uniformly in the cell which causes the large angular spread at the
Rx side, and leads to the lower Rx antenna correlation. Similarly, the RMSE of
antenna correlation at the Tx side is 0.3 while 0.1 at the Rx side for one simu-
lation run of the group 2 channels, which means larger differences are observed
at the Tx side. The measured angular spread at the Tx side is small, and most
of the MPCs stem from the trees and buildings in the upper north direction,
see Fig. 1, thus a high antenna correlation is observed from the measurements.
However, in the simulations, the uniformly distributed clusters decrease the
antenna correlation, which leads to the large RMSE at the Tx side. In general,
when the measured AOD or AOA are close to being uniformly distributed, a
good match is achieved with respect to the antenna correlation, but when the
angular spread is limited by the environment (the close building in our case)
the antenna correlation can be underestimated in the simulations.

6 Conclusion

The COST 2100 channel model framework is a good platform for realistic
MIMO simulations. Parameterization and validation of the channel model for
the scenarios of interest are necessary to get realistic and representative results.
In this paper, we parameterize and validate the channel model for outdoor envi-
ronments based on channel measurements at 300 MHz. Table 1 summarizes the
stochastic parameters of the outdoor MIMO measurements at 300 MHz. These
parameters provide a basis for the usage of the channel model in outdoor envi-
ronments. By applying the extracted parameters to the COST 2100 MATLAB
channel model, we perform validation by four means: delay spread, spatial
correlation, singular value distribution and antenna correlation. The spatial
correlation shows high similarity within a quarter of a wavelength between the
simulations and measurements. Similarly, the singular value distributions for
the three dominant eigenvalues also show good agreement. Regarding the de-
lay spreads, some mismatch occurs for the two investigated groups, one has
0.17 µs difference and the other has -0.12 µs difference for the delay spread dif-
ferences of the medians. Antenna correlation shows good agreement between
the simulations and measurements, when there are uniformly distributed scat-
terers around the antennas. Otherwise, there might be some mismatch. In
addition, the validation processes also provide a deep insight of the channel
model behavior for outdoor environments.
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Table 4: Suggested modifications of the COST 2100 channel model for a
300 MHz outdoor scenario.

Parameters In the model Suggested modifications
Cluster delay spread log-normal truncated log-normal

Cluster visibility region mean mean and variance

In general, the COST 2100 channel model works well for representing the
300 MHz outdoor scenario, however, not all the properties show good agree-
ment. We suggest that with the modifications of the distribution of cluster
delay spreads, and cluster visibility regions in the channel model, see Table 4,
better results can be obtained. The channel model also enables multi-link
MIMO modeling, and studies related to multi-link will be carried out in the
future.
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Correlation Properties of Large Scale

Parameters for 2.66 GHz Multi-site

Macro Cell Measurements

Multi-site measurements for urban macro cells at 2.66 GHz are per-

formed with three base stations and one mobile station. The autocor-

relation distance properties of large scale parameters for each link are

analyzed, intra-site correlation of large scale parameters is also evaluated.

By comparing these properties with the corresponding parameters from

the COST 2100 and WINNER II models, we can see the measured au-

tocorrelation distance of the shadow fading has similar properties as in

the two models as well the autocorrelation distance of delay spread. The

shadow fading and delay spread are negatively correlated in each link and

match the two models well. In order to analyze the correlation proper-

ties of large scale parameters, we split up the routes into subsets, where

it can be assumed that wide-sense stationarity (WSS) applies. Based on

the WSS subsets, we can see that large scale parameters can be corre-

lated, also when two BSs are far away from each other. In those cases the

correlation of different links tends to be positively correlated when both

base stations are in the same direction compared to the movement of the

MS, otherwise the two links will be negatively correlated. We also can

see that the cross-correlation between large scale parameters for different

links usually have opposite signs.
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“Correlation properties of large scale parameters for 2.66 GHz multi-site macro cell

measurements,”
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1 Introduction

In order to make realistic wireless channel models, lots of measurements are
required so that parameters for channel models such as the COST 2100 [1],
WINNER II [2] can be extracted. Among these parameters, there are so called
large scale parameters describing the main characteristics of the environment,
such as shadow fading, angular spread and delay spread. In the literature, many
investigations of the shadow fading correlation in a single MIMO link can be
found. In [3], the autocorrelation of shadow fading is modeled as an exponential
function of the distance. The joint correlation properties of angular spread,
delay spread and shadow fading is investigated in [4]. The two recent models
also include all these correlation properties between the large scale parameters,
but usually these parameters are studied for the single MIMO link. Due to
the use of base station cooperation, the behavior of multi-site MIMO wireless
channels become more and more interesting as well. Often it is assumed that
there is no correlation between two links if the two links are far away from
each other [5]. In [6] the cross-correlation of shadow fading for separate base
stations is discussed and substantial correlation for closely located base station
is found, but still not enough measurements are performed to form a generic
model. In [7], it was found that the shadow fading can be correlated also for
widely separated base stations in the indoor case. Recently, in [8] the cross-
correlation properties for large scale parameters between different links in an
outdoor scenario is studied from measured data, but there is no consideration
about the wide-sense stationary region for the large scale parameters. If the
large scale parameters in two non-WSS regions, then it is unfair to evaluate
the correlation properties. Willink analyzed WSS regions based on the first
and second moments of the data series for the MIMO radio channels [9]. There
it can be seen that a homogeneous building has high possibility to get larger
WSS regions. However, the parking lot between homogeneous buildings will
interrupt the WSS regions.

In this paper, multi-site measurements with three base stations are analyzed
where the three base stations are far away from each other. We propose a WSS
region definition based on a map and the environments as well as the WSS time
estimation and local scattering function. The correlation properties of large
scale parameters are investigated both for each link and between different links
in a urban macro scenario based on small WSS subsets. The autocorrelation
distance and cross-correlation of each link are evaluated and compared with
the corresponding values in the COST 2100 and WINNER II models. The
correlation between different links provide a basis to model the cross-correlation
in different links when base stations are separated.

This paper is organized as follows: In section II, a short introduction to the
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Figure 1: Subsets of measured routes.

measurement campaign and data processing are given. Large scale parameter
estimation is discussed in section III. Section IV presents an analysis of the
autocorrelation distance for the large scale parameters for each link. Section
VI gives a deep analysis for the large scale parameters correlation properties
when the routes are divided into small WSS subsets. Finally the conclusions
are given in section VII.

2 Multi-site Measurement Campaign and Data
Processing

2.1 Measurement Campaign

The measurements were performed in a urban macro cell environment in Kista,
Stockholm, Sweden, see Fig. 1. Three base station (BS) sites with one antenna
each are used, which are referred as BS1, BS2 and BS3 in the following. At
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the mobile station (MS) side two dipole antennas and two loop antennas are
placed on the roof of a measurement van 30 cm from each other. The measured
center frequency is 2.66 GHz with a bandwidth of 20 MHz. The transmit
power of each BS is 0 dBm. The MS traveled along the routes in Fig. 1 and
the GPS positions of the MS were also recorded together with the channel
samples. Along the routes, the links between the BSs and MS experience line-
of-sight (LOS), obstructed line-of-sight (OLOS) and non line-of-sight (NLOS)
conditions. The routes are divided in to 18 small subsets which are called Si.
The distance between BS1 and BS2 is approximately 354 m, 489 m between
BS1 and BS3, and 617 m between BS2 and BS3. A 4-by-3 MIMO channel
matrix over 432 frequency bins are obtained for each measured snapshot. The
links from the MS to each BSs are called link 1, link 2 and link 3 corresponding
to the index for each BS, respectively.

2.2 Data Processing

In order to extract the large scale parameters in a proper way, we consider
four rules when dividing the subsets for further analysis. First, the NLOS
and LOS scenarios have to be separated. Second if the environments are not
homogeneous we also need to separate the routes into small subsets. For BS2
as an example, S9 and S11 have to be separated, since S9 is in a large open
area without any building in the south west direction whereas S11 will be
shadowed a lot by a building. Third, if the traveling routes are orthogonal we
also need to split them, this applies e.g. to S1 and S2. Finally, the difference
in angle seen from the BS to the routes in a subset can not be too large. The
antenna gain have to be constant over the “sector” considered and the same
main propagation processes should be maintained.

At the same time, a WSS time is estimated according to the methodology
in [10]. The snapshot repetition time is 0.0053µs, and the MS was moving
with velocity of 30km/h in average. The estimated WSS region are 75, 99 and
42 meters for three links respectively with the assumption that the correlation
threshold is 0.9. It can be generally said that the WSS region usually with
length around 100 meters which has a good agreement with subsets deviation.
When the traveling routes are orthogonal, a significant change of local scat-
tering function(LSF) will happen, see Fig.2, which well implies the deviation
of orthogonal routes. This change is applied for scenario change as well, Fig.3
show the LSF change from NLOS to LOS.
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Figure 2: Comparison of local scattering function for orthogonal routes.
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Figure 3: Comparison of local scattering function for NLOS and LOS scenarios.
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3 Large Scale Parameter Estimation

The most widely used large scale parameters for wireless channel modeling
and analysis are shadow fading, angular spread, cross polarization discrimina-
tion and delay spread. In this work two parameters are investigated in detail,
shadow fading and delay spread. The antenna arrangements do not allow a
straightforward analysis of angular properties.

3.1 Shadow Fading

Shadow fading (SF) is the power fluctuation over a large area where the small
scale variations are averaged out. Usually the small scale fading is removed
by averaging the received power inside a 10λ window [11]. Then the averaged
received power level can be modeled as

P (d) = P0 − n ∗ log10(
d

d0
) + SF (d), (1)

where d is the distance, n is the path-loss exponent and P0 is a reference
value at the distance d0. To determine the shadow fading, a linear regression
is performed and the deviation from the linear trend (in the log-domain) is
determined.

In Table 1, the shadow fading for the subsets are listed. It can be seen that
the path-loss exponents sometimes are negative, see S1 and S9 in link 2. One
reason might be in the short route lengths here. The power varied a lot due
to obstacles and the path-loss model parameter estimation becomes unreliable.
Similarly, if the MS route is below the BS, when the MS and BS are quite close,
the shadow might be shadowed by the building where the BS is placed.

3.2 RMS Delay Spread

The RMS delay spread (DS) is estimated based on the power delay profile
(PDP) [11]. The PDP is extracted based on a quasi-stationarity time span,
and a window with length 10λ is used in this work. The RMS delay spread is
estimated in each time span according to:

Sτ =

√
ΣNbini=1 Ph(τi)τ2

i

ΣNbini=1 Ph(τi)
− T 2

m, (2)

where

Tm =
ΣNbini=1 Ph(τi)τi

ΣNbini=1 Ph(τi)
(3)



Correlation Properties of Large Scale Parameters for 2.66 GHz Multi-site
Macro Cell Measurements 155

Table 1: Subsets for each link with route length, path-loss exponent n, and
standard deviation of the shadow fading.

(a) Link 1

Subset Length [m] n SF std Scenario

S1,S3,S4,S6,S17 1145 3.83 4.78 NLOS

S2,S5,S7,S8,S12,S13 697 4.12 3.15 NLOS

S9 150 1.56 2.06 NLOS

S10 110 4.92 2.93 LOS

S11,S14,S15 357 0.23 3.14 NLOS

S16,S18 207 0.23 3.14 LOS

(b) Link 2

Subset Length [m] n SF std Scenario

S1 230 -0.59 3.34 LOS

S2,S5,S7,S8,S12,S13 697 2.82 4.51 NLOS

S3,S4,S17,S11,S14,S15 1164 3.30 3.63 NLOS

S6 159 4.58 3.35 NLOS

S9 150 -5.34 1,58 NLOS

S10 110 5.43 1.58 NLOS

S16,S18 207 0.03 2.25 LOS

(c) Link 3

Subset Length [m] n SF std Scenario

S1,S6,S3,S4,S17 1145 7.16 6.40 NLOS

S2,S5,S12,S13,S16,S18 566 8.76 5.73 NLOS

S7,S8 338 0.25 3.20 LOS

S9,S11 270 1.44 5.63 LOS

S10 110 11.06 4.24 LOS

S14,S15 288 6.00 5.32 NLOS
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Table 2: Autocorrelation distances comparison.

Link 1 Link 2 Link 3 COST
2100

WINNER
II C2

SF [m] LOS/NLOS 35/56 50/185 90/86 100 45/50

DS [m] LOS/NLOS 28/62 45/40 80/90 100 40/40

and Ph is the PDP for each time span, Nbin is the number of delay bins and τ
is the delay.

4 Autocorrelation Distances of Large Scale pa-
rameters

The large scale parameters do not change within a few wavelengths distance
and when the MS is moving, the large scale parameters change slowly. The
autocorrelation distance reflects how fast the large scale parameters are chang-
ing over the route. The autocorrelation distances of large scale parameters are
quite important for channel models such as the COST 2100 and WINNER II
models. In the WINNER II model, the autocorrelation distance is supported
by measurements and is around 45/50 (LOS/NLOS) meters for the outdoor-
to-outdoor scenario. In the COST 2100 model 100 meters is used. In this
work, we estimate the autocorrelation distance for each link of the multi-site
measurements according to the method in [8]. The autocorrelation distance is
calculated by sorting the data into separate groups, with 40 meters between two
adjacent groups. Then correlation coefficients are evaluated based on groups
with different distances. The autocorrelation distance is defined as the distance
when the correlation coefficient decreases to e−1.

In Table 2, the autocorrelation distance are separated into LOS and NLOS.
For link 1 and 2, the LOS routes is quite short, the autocorrelation might be
underestimated. In link 3 the LOS connection is quite typical, and the value is
nearly a good agreement with the COST 2100 model. In the NLOS scenario,
all the autocorrelation distance somehow reflect the value in both of the two
models, except for one extreme case in link 2.

5 Correlations of Large Scale Parameters

The lager scale parameters describe the wireless channel from different aspects,
and they are usually correlated with each other [4]. When there are several
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Table 3: Intra-site correlation for all subsets.

Subsets SF-DS L1 SF-DS L2 SF-DS L3

1 -0.70 -0.71 -0.67

2 -0.50 -0.87 -0.90

3 0.07 -0.22 -0.53

4 -0.82 -0.77 -0.69

5 -0.58 -0.87 -0.91

6 -0.35 -0.77 -0.83

7 -0.66 -0.91 -0.60

8 -0.89 -0.78 -0.43

9 -0.83 -0.45 -0.61

10 -0.37 -0.34 -0.51

11 -0.83 -0.15 0.03

12 -0.26 -0.75 -0.92

13 0.07 -0.60 -0.93

14 -0.80 -0.93 -0.45

15 -0.79 -0.54 -0.68

16 -0.80 -0.28 -0.90

17 -0.81 -0.61 -0.90

18 -0.51 -0.43 -0.58

BSs in the measured environment, the multi-path components from BSs to MS
might have the same traveling route or at least some common traveling route.
It is of interest to investigate these dependencies as they should be included into
the wireless channel models. The large scale parameters in each link are usu-
ally correlated, which is called the intra-site correlation. The cross-correlation
of large scale parameters in different links is called inter-site correlation [8].
Next, we will investigate both intra-site correlation and inter-site correlation
for multi-site measurements in the measured urban macro cell.
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Intra-site correlation

The intra-site correlation between shadow fading and delay spread at each link
is extracted from the whole MS traveling route according to:

ρ〈a, b〉 =

∑N
i (a(i)− ā)(b(i)− b̄)√∑N

i (a(i)− ā)2
∑N
j (b(j)− b̄)2

, (4)

where ā and b̄ are the means of sample sets {a(i)} and {b(i)} with length N .
The correlation coefficient is calculated in the log-domain as in [12] and the
shadow fading is calculated based on the subsets in Table 1. The intra-site
correlation is included both in the COST 2100 and WINNER II C2 model for
the macro cell, with values -0.6 and -0.4 respectively. In Table 3, the correlation
coefficient between shadow fading and delay spread for all small subsets are
shown. Nearly all have negative values which means that when the shadow
fading becomes larger, i.e. -0.87, there is usually a large delay spread. The
mean values for all NLOS scenarios is -0.65 and -0.47 for LOS scenario, which
more or less match to the COST 2100 and WINNER II models well.

Inter-site correlation

Until now there are not too many studies on the inter-site correlation, the main
reason is the lack of multi-site measurements. It is usually assumed that there
is no correlation between different links. However inter-site correlation exists
and affects on system performance [13]. Here we also investigate the inter-site
correlation for the urban macro cell.

The inter-site correlation is evaluated based on the same approach as we
generated the groups of subsets, only inter-site correlation of subsets in homo-
geneous groups are analyzed, see Table 4. Generally the inter-site correlation
and cross-correlation have opposite signs, e.g. see S2 and S5, which well reflect
the negative intra-site correlation. It also can be seen that if the MS is placed
in between two BSs, the link inter-correlation are higher, e.g. S2 and S5 for
link 2 and 3.

One interesting thing is that the distance from the MS to BSs and distance
of two BSs can’t be used to determine the inter-site correlation. For example,
S7 and S8 are far away from BS1 and BS2 and a quite small inter-site correlation
is observed. S1 and S6 are also far away from BS1 and BS3, but instead a large
shadow fading correlation is obtained for these two links. S2 and S5, they are
highly correlated with respect to shadow fading and delay spread for link 1 and
3 which are far from the MS and far from each other.
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Table 4: Inter-site correlation based on subsets.

(a) Inter-site correlation of Link 1 and 2

Subsets SF-SF DS-DS SF-DS DS-SF Scenario

S2,S5 0.31 -0.26 -0.2 0.20 NLOS

S7,S8 0.16 0.05 0.08 -0.22 NLOS

S12,S13 0.48 -0.05 -0.25 0.21 NLOS

S3,S4 0.48 0.21 0.07 -0.51 NLOS

S6 -0.23 -0,39 -0.06 0.50 NLOS

S17 0.62 0.58 -0.43 -0.45 NLOS

S11,S14,S15 -0.11 -0.27 0.09 0.54 NLOS

S16,S18 -0.13 0.51 0.13 -0.03 LOS

(b) Inter-site correlation of Link 1 and 3

Subsets SF-SF DS-DS SF-DS DS-SF Scenario

S1,S6 -0.4 -0.06 0.48 0.08 NLOS

S3,S4 0.60 0.05 -0.3 0.08 NLOS

S17 -0.5 -0.78 0.62 0.79 NLOS

S2,S5 0.82 0.26 -0.7 -0.24 NLOS

S12,S13 -0.49 -0.1 0.51 0.07 NLOS

S14,S15 -0.16 -0.19 0.10 0.38 NLOS

S10 -0.31 0.16 -0.06 0.16 LOS

(c) Inter-site correlation of Link 2 and 3

Subsets SF-SF DS-DS SF-DS DS-SF Scenario

S3,S4 0.22 -0.04 -0.2 0.07 NLOS

S6 0.16 -0.36 0.13 0.23 NLOS

S17 -0.39 -0,69 0.56 0.71 NLOS

S2,S5 0.59 0.53 -0.63 -0.51 NLOS

S12,S13 -0.08 -0.36 0.16 0.31 NLOS

S14,S15 -0.14 -0.36 0.21 0.49 NLOS
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Here, we analyze mainly the NLOS scenario since we do not have enough
measurements for the LOS scenario. Only one inter-correlation is given for S16
and S18 in link 1 and 2 which are highly correlated in delay spread and the
other for S10 in link 1 and 3 with high negative correlation in shadow fading.

S17 has high inter-site correlation for all links, since S17 is always between
two links in our measurements. When we take a look at link 1 and 2, the MS
is moving towards both BSs in S17, and then a positive correlation is obtained
both shadow fading and delay spread. But for link 1 and 3, and with respect
to link 2 and 3, the MS is always moving towards one BS and moving away
to the other one, then a negative correlation is obtained. S2 and S5 also have
the similar properties in link 1 and 3, high positive inter-site correlation is
observed. In general, when the MS is between two BSs and also the main lobe
of BSs face to the routes, then a high inter-site correlation often exist even if
the BSs are far away from each other. If the MS is moving towards, or away
from both BSs, positive inter-site correlations are obtained otherwise negative
correlations are obtained.

6 Conclusions

In this paper, the properties of large scale parameters are analyzed and com-
pared to the existing COST 2100 and WINNER II models. The autocorrelation
distances for shadow fading and delay spreads more or less agree with the two
models. The intra-site correlations from measurements have all negative values,
and the average intra-site correlation have a good match with the two models.
Another interesting observation is the inter-site correlation between multi-base
stations. A study of the inter-site cross-correlation properties, especially for
the shadow fading and delay spread, is presented. From the results, we can
confirm that the inter-site correlation exists, even when the two links are far
away from each other, with high or low correlation coefficients. Sometimes
high correlation appeared for the different large scale parameters in different
links. The shadow fading has shown negative cross-correlation between differ-
ent links when the MS is moving towards one BS but away from the other BS.
On the other hand, when MS is moving towards both BSs, the shadow fading
is positively correlated. Similar behavior was shown for DS-DS inter-site cor-
relations. The inter-site SF-DS cross-correlations have opposite sign since the
corresponding intra-site correlations are also negative. It is quite important to
include all these properties in wireless channel models. However, more multi-
site measurements are needed to make a generic model for these properties and
provide more realistic models.
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Virtual Multi-link Propagation

Investigation of an Outdoor Scenario At

300 MHz

The COST 2100 channel model has introduced the concept of common

clusters to model multi-link MIMO characteristics. In this paper, a ray

launching tool is used to analyze multi-ink propagation properties in an

outdoor scenario at 300 MHz. It is shown that in a multi-link propagation

scenario there are shared scatterers among the different links, which re-

flects the physical existence of common clusters. The identification of com-

mon clusters in the measured outdoor scenario is discussed with respect

to the shared scatterers and distances between the scatterers and multiple

mobile stations (MSs). We observe that, as the MS separation distance is

increasing, the number of common clusters is decreasing and the inter-link

correlation is decreasing as well. Multi-link MIMO simulations are also

performed using the COST 2100 channel model with extracted common

cluster parameters. It is shown that the common clusters can represent

multi-link properties well with respect to inter-link correlation and sum

rate capacity.
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1 Introduction

Current geometry-based MIMO channel models, such as COST 2100 [1] and
WINNER II [2], are all based on the concept of clusters. The COST 2100 chan-
nel model supports multi-link simulation by dropping multiple mobile stations
(MSs) and base stations (BSs) in the simulation area. When multiple MSs/BSs
are used, inter-link correlation can have significant effect on the system level
performance [3]. Hence, modeling of inter-link correlation is required. To be
well connected with the previous geometry-based stochastic channel models,
common clusters are introduced in the COST 2100 channel model to model
inter-link correlation. The significance of common clusters has been investi-
gated for indoor environments in [3] to quantify their power contributions to
each link. The common clusters have shown a certain level of significance, es-
pecially for the indoor corridor measurements, where, e.g., wave-guiding can
cause high significance of the common clusters. However, the method of iden-
tifying common clusters is not straightforward in outdoor environments. In
[3], criteria have been introduced for common cluster identification in indoor
environments. When these criteria are applied in an outdoor scenario, their
relevance and validity have to be considered.

In this paper, based on 300 MHz outdoor measurements and a ray launching
tool for outdoor environments, we investigate interacting scatterers for virtual
multi-links, and provide a simple method for identifying common clusters in
outdoor scenarios. The number of common clusters is extracted for both line-
of-sight (LOS) and non line-of-sight (NLOS) scenarios and the significance of
the common clusters is also studied for the considered scenarios. Furthermore,
the observed common cluster ratios are used with the COST 2100 channel
model framework to perform multi-link MIMO channel simulations. We vali-
date the common cluster modeling by means of inter-link correlation and sum
rate capacity.

The remainder of the paper is organized as follows: Sec. II describes the 300
MHz outdoor measurements and the ray launching tool. Sec. III introduces
the method for identifying common clusters in outdoor scenarios. Sec. IV
evaluates the number of common clusters, and significance of common clusters
based on the 300 MHz outdoor measurements. Sec. V validates the common
cluster modeling with the COST 2100 channel model simulations. Finally, the
conclusions in Sec. V complete the paper.
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Figure 1: Overview of the measurement area at the campus of Linköping Uni-
versity, Sweden. The BS with coordinate (0, 0) was placed near the building,
and the MS was moved along the marked routes with LOS and NLOS condi-
tions. B1 and B2 represent two new buildings which were not present at the
time the picture was taken.

2 Visual multi-link Measurements and the Ray
Launching Tool

The measurements were performed outdoors on the campus of Linköping Uni-
versity, Sweden, using the RUSK Lund MIMO channel sounder [4]. Identical
antenna arrays were used for both the transmitter and the receiver. The an-
tenna arrays are vertically polarized, 7-element uniform circular dipole arrays
(UCDA), with one additional dipole element located at the center, in an ele-
vated position [4]. The transmit antenna array was placed 1.8 m above ground,
at a static position with coordinate (0, 0) and about 35 m from a large build-
ing. The receive antenna array was mounted on a car with its lower ground
plane approximately 2.1 m above the ground. The car was driven at a speed
of around 8 m/s along the marked routes in Fig. 1. The measurements were
carried out at a center frequency of 285 MHz, with a bandwidth of 20 MHz,
and an output power of 43 dBm. Since the measured environment is nearly
static, different positions of the measured routes can be used as virtual multi-
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ple MS positions. LOS and NLOS virtual multi-link scenarios are assumed, see
Fig. 1. From the measured transfer function matrices, the properties (delay,
angle of arrival (AOA), angle of departure (AOD), and complex amplitude)
of multiple-path components (MPCs) were obtained by means of the SAGE
algorithm [5].

The used ray launching tool has been developed for visualizing the propa-
gation path of a particular MPC with its AOA, AOD and delay [6]. Similarly,
a cluster is characterized by its cluster AOA, cluster AOD and cluster delay,
which can thus be visualized in a similar manner as visualizing MPCs. There-
fore, the interacting scatterers for the clusters along the propagating paths
can be visualized. With these interacting scatterers, the commonality of clus-
ters can be decided based on their geometry properties, which will be further
discussed in the next section.

3 Identification of Common Clusters

There are basically two difficulties when identifying common clusters. One is
to identify clusters themselves, and the other is to determine the commonality
of clusters. A detailed study about cluster extraction by the KpowerMeans
algorithm has been carried out in [7]. It has been shown that the resulting
clusters can represent the channel in a good manner and reflect the statistics
of an environment to a reasonable level. The identified clusters from [7] are
used as the basis for further common cluster identification.

With the ray launching tool, the interacting scatterers of the extracted clus-
ters are visualized. If clusters from two links interact with the same scatterer at
the BS side, these two clusters have the possibility to form a common cluster.
This is, however, not a sufficient condition in outdoor scenarios since the same
scatterer can lead to different propagation conditions depending on how the
BS and MS see it. On the other hand, different scatterers can lead to similar
propagation conditions. For example, a large building can be treated as sepa-
rate scatterers when the clusters see different parts of the building, that are far
away from each other (e.g., two opposite sides of a building). Similarly, when
two scatterers are close to each other and also have similar distance to the BS,
they can be treated as a single scatterer. In [3], the commonality of clusters has
been determined in indoor scenarios by analyzing the distance and angle be-
tween them. This method works well in the indoor scenario since the scatterers
are within in a small range and the angle limitation between two clusters is an
efficient criterion. However, it is difficult to extend this method of identifying
common clusters to outdoor scenarios directly since the angle condition in [3]
becomes a bit vague. For short ranges, the angle can reflect distance differences



170 PAPER V

C1

C2 MS1

MS2BS

(a) Common when clusters overlap each other.
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Figure 2: Concept of single interacting common clusters. Single interacting
common clusters can have different associated MSs. The ellipses represent
clusters.

efficiently, but for larger ranges, a small angle can be caused by scatterers with
a large separation distance.

In order to achieve a clear identification of common clusters in outdoor
scenarios, the positions of physical objects belonging to a possible common
cluster are investigated. First single interacting clusters are studied, see Fig. 2.
A typical common cluster is shown in Fig. 2 (a), where the clusters from two
links overlap each other. It can also be noted that if the distance between two
single interacting clusters is small compared to the distance from the BS to the
cluster centroids, these two clusters can be treated as a common cluster since
the BS cannot distinguish them, see Fig. 2 (b). At the MS side, no matter
where the MS is placed, the commonality of the clusters is not affected. That
is because the transmitted signal from the BS contributes to the received signal
through the common clusters and gives similar properties in these two links,
and there is some degree of correlation between the two links. There is also
another type of clusters called multiple interacting clusters, it can be noted
that the multiple interacting clusters can reach the MS side in different ways,
see Fig. 3 (a) and (b). However, for identifying common clusters, we only
consider if the two clusters have similar properties but not how they are seen
from the MSs. Again, the commonality of two clusters also depends on the
relation between the cluster centroid distance and the distances from the BS
to the cluster centroids. With respect to the angle between the two clusters at
the BS side, a small angle can be linked to physically highly separated clusters



Virtual Multi-link Propagation Investigation of an Outdoor Scenario At 300
MHz 171

BS

MS1

MS2

C1,MS1

C2.MS2
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(a) Common when clusters at the receiver side are far
away from each other.
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C2,BS

MS1

MS2

C1,MS1

C2,MS2

BS

(b) Common when clusters at the receiver side have
overlapping areas.

Figure 3: Concept of multiple interacting common clusters. Multiple interact-
ing cluster can be common no matter how the clusters are seen from the MS
side. The ellipses represent clusters.

that are without commonality. The angle condition becomes less important in
an outdoor scenario, and hence we focus on the physical distance between the
clusters. Thus, we introduce a simple way for identifying common clusters as
follows. Assume that the distance from the BS to cluster C1 and C2 are dBS,C1

and dBS,C2, respectively, and that the distance between two clusters is denoted
dC1,C2. If the condition

dC1,C2

max(dBS,C1, dBS,C2)
< α (1)

is satisfied, C1 and C2 are said to be a common cluster.

4 Common Cluster Evaluation

By using (1), the number of common clusters with different thresholds of α =
0.1 and α = 0.2 is evaluated both for the LOS and NLOS scenarios, see Fig. 4.
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Figure 4: Average number of common clusters for different MS separation
distances with different thresholds.

Generally, the extracted number of common clusters gives reasonable values for
the considered scenarios. It can be noted that, as the MS separation distance
is increasing, the number of common clusters is decreasing and only 1 common
cluster is observed at a distance of around 100 meters for both the LOS and
NLOS scenarios. At a distance of 20 m, approximately 3 and 2 common clusters
are observed on the average for the two thresholds for the LOS scenario, while
approximately 2 and 1 common clusters are observed in the NLOS scenario.
The threshold influences the number of common clusters to some extent. For
the distances between 0 to 5 m, a similar number of common clusters are
obtained for the different thresholds. But as the MS separation distance is
increasing, a difference of approximately one cluster is observed for different
thresholds both for the LOS and NLOS scenarios. It is hard to determine the
best threshold precisely, and based on our observations, a threshold of 0.2 is
recommended for further analysis.

We also investigate the significance of common clusters, which shows the
power contribution to each link from common clusters. The significance is
defined as [3]

Sicommon =
P icommon

P itot

(2)
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Figure 5: Example of significance of common cluster for different MS separation
distances, threshold = 0.2.

where P icommon is the power for a common cluster in link i, and Pitot is the sum
of powers of link i. Here the cluster power is given by the total power of the
MPCs belonging to the cluster. The total power is given by the sum of powers
of all MPCs contributing to the link. For the LOS scenario with threshold 0.2,
approximately 10% significance is obtained in average, see Fig. 5. The reason
for this low value is that in the considered outdoor scenario, some clusters that
are not common can have strong power contribution and diminish the signifi-
cance of the common clusters, for example, the large building close to the BS.
When the MS separation distances are small, such as 10 or 20 wavelengths,
the common cluster can in a few cases have around 40% significance. In those
cases, there are some important scatterers that can be seen by the two links at
the same time, such as the trees close to the MS at the beginning of the LOS
route. For the NLOS scenario, the common clusters generally show low signifi-
cance due to the large open sub-urban scenario, approximately 8% significance
is observed in average.
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5 Common Cluster Validation

The purpose of introducing common clusters is to model the multi-link MIMO
properties. The effects of common clusters on system level characteristics are
here analyzed with the COST 2100 MIMO channel model by means of inter-link
correlation and sum rate capacity.

5.1 Simulation Considerations

To see the behavior of the COST 2100 channel model with the extracted com-
mon cluster ratio, we simulate multi-link MIMO channels with the COST 2100
MATLAB framework implemented by Liu et al. [8]. The input to this frame-
work is based on both external parameters (e.g., frequency, bandwidth, scenar-
ios) and stochastic parameters. To be directly comparable with the measured
data, the center frequency is set to 285 MHz and the channels are generated for
a bandwidth of 20 MHz. The simulated area is defined as a cell with a radius
of 500 m, and we assume that clusters outside this cell will give a negligible
contribution to channel responses [7]. The BS is placed in the cell center and
the MS is moving according to the measured routes. Paper [7] summarizes
the required stochastic parameters for the single-link simulations. In addition,
common cluster ratios are extracted for different MS separation distances to
fulfill the multi-link MIMO simulation requirements, see Table 1. Evaluation
of 100 multi-link MIMO simulation runs is carried out for each common clus-
ter ratio and its corresponding MS separation distance, and we have seen that
these 100 simulation runs can provide enough statistics [7].

5.2 Inter-link Correlation

The inter-link correlation reflects the similarity between two links, and is de-
fined as

ρ(∆d) =
1

NdNf

∑
d

∑
f

C(H(d, f), H(d+ ∆d, f))√
C(H(d, f))C(H(d+ ∆d, f))

, (3)

where f is the frequency, d is the reference distance for one link, ∆d is the
separation distance between two links, C is the covariance and H represents
the channel transfer function for the centered dipole antenna elements.

First, the measured inter-link correlation between two links and the common
cluster ratios for the considered LOS scenario are investigated for different MS
separation distances, see Table 1. It can be noted that the measured inter-
link correlations and the common cluster ratios show a similar tendency as the
MS separation distance is increasing, that is to say that the common clusters
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Table 1: Common cluster ratios and inter-link correlations for different MS
separation distances for the LOS scenario.

MS separation distance [m]
5 10 15 20 25 30 35 40

Common cluster ratio
0.52 0.50 0.46 0.44 0.42 0.42 0.38 0.38
Measured inter-link correlation
0.61 0.45 0.43 0.35 0.32 0.29 0.26 0.25
Simulated inter-link correlation
0.75 0.48 0.16 0.14 0.20 0.16 0.10 0.10

well capture the multi-link characteristics and thus seem to be an efficient
modeling method for multi-link properties. Furthermore, the simulated inter-
link correlations from the COST 2100 channel model for different MS separation
distances are also investigated, see Table 1. Also, as the common cluster ratios
are decreasing, the simulated inter-link correlations are decreasing in a similar
manner, however, the simulated inter-link correlation decreases faster than the
measured one after a distance of 20 m. One should note that the simulations
provide a statistical evaluation for the considered scenario but do not reproduce
the measured route. In short, the common clusters seem to represent the inter-
link correlation and interference in a good manner.

5.3 Sum Rate Capacity

The multi-link channel capacity reflects the system level characteristics, and
we investigate its behavior as well with the extracted multi-link parameters.
The capacity with interference is expressed as [9]

CH0,H1 = log2

[
det

(
INR +

ρ

NT
H0H

H
0 R

−1
I

)]
, (4)

and the instantaneous correlation matrix RI is defined as

RI = η1H1H
H
1 + INR , (5)

where H0 represents the channel of interest and H1 represents the interfering
channel. They are both the transfer functions for the UCDA elements. Further,
ρ is the signal-to-noise ratio (SNR) and η is the interference-to-noise ratio
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Figure 6: Relative sum rate capacity for different MS separation distances for
the LOS scenario.

(INR), while NT and NR are the number of transmit and receive antennas,
respectively. INR is the identity matrix of size NR. When the correlation
matrix RI = INR , the corresponding capacity is in fact the single-link channel
capacity, which is denoted CH0

. The overall sum rate capacity (SRC) is thus
defined as the average value of the instantaneous capacity over the frequency
band. The relative sum rate capacity, has been used in [3], is given by the ratio
between the sum rate dual-link capacity and the sum rate single-link capacity:

SRC =
E{CH0,H1}+ E{CH1,H0}
E{CH0

}+ E{CH1
}

. (6)

We evaluate the relative SRC for the considered LOS scenario for differ-
ent MS separation distances and common cluster ratios with 10 dB SNR and
10 dB INR, see Fig. 6. It can be noted that as the MS separation distance is
decreasing 1, the sum rate capacity is decreasing. Both the simulations and
measurements show this tendency, which indicates that the common clusters
can capture the multi-link characteristics and well reflect the system level per-
formance. However, it can be noted that the relative SRCs of the simulations

1In the published version of this paper, the word “increasing” was used, and it is corrected
as “decreasing” in this thesis.
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does not perfectly match with that of the measurements, the simulations cover
a larger span than the measurements. One should note that the considered LOS
scenario is from a single area measurement, and the simulations show the sta-
tistical characteristics for the measured scenario rather than reproducing it. In
addition, the statistical performance is more interesting since it can give more
insights of the multi-link properties for various, but similar, environments.

6 Conclusions

Common clusters have been introduced to describe the multi-link propagating
phenomena, but the definition and the method for identifying common clus-
ters have been open topics. In this paper, we introduce a simple and efficient
method to identify common clusters in outdoor scenarios with a ray launch-
ing tool. It has been shown that common clusters can represent the inter-link
correlation well. As the distance between two links is increasing, the number
of common clusters is decreasing, and the inter-link correlation is decreasing
as well. Moreover, the common clusters show a reasonable level of significance
with respect to the power contribution to each link for small MS separation
distances. However, less significance of common clusters is observed compared
to the indoor measurements due to the large open sub-urban scenario. The ex-
tracted common cluster ratios are used together with the COST 2100 channel
model and an initial analysis of the multi-link simulated channel is performed.
For the considered LOS scenario, the simulated inter-link correlation and sum
rate capacity are investigated. The inter-link correlation shows a decreasing
trend as the common cluster ratio is decreasing. Similarly, the SRC is also
decreasing as the common cluster ratio is increasing. It seems that the COST
2100 channel model can represent the inter-link correlation and sum rate ca-
pacity in a good manner, but more measurements and analysis are needed,
which will be performed in future work.
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1 Introduction

Radio based positioning and tracking is a research area that has attracted a
lot of attention during the past decades. The technology is often seen as a key
enabler for new cellular services. Global Navigation Satellite Systems (GNSS)
such as the Global Positioning Systems (GPS) is one of the most important
technologies to provide location information around the globe through a con-
stellation of at least 24 satellites [1]. However, the accuracy of GPS is usually
limited and the GPS system even cannot work properly in shadowed areas,
such as inside buildings, and beside tall buildings. Therefore, there has been
extensive research in developing new positioning techniques to cover these areas
and providing ubiquitous positioning solutions with accuracy down to meters
or centimeters.

Ultra wideband (UWB) positioning is an attractive candidate due to the
characteristics of the UWB signals, which allow centimeter accuracy in ranging
[2]. Operating with GHz of bandwidth allows distances to be resolved within
centimeter accuracy, mainly due to the fine delay resolution. However, band-
width is itself an expensive resource. How to obtain the same accuracy as in
UWB system but with a smaller bandwidth has emerged as a crucial problem
for positioning.

To address the previous problem, let us take a step back and consider wire-
less propagation channel characteristics. Wireless channels are often described
by a sum of multi-path components (MPCs), which carry information of propa-
gation distances in terms of delay and phase. As long as the MPCs propagate in
the space, the delay and phase are varying at the same time. Delay estimates,
which are used in UWB system to estimate propagation distances, are usually
limited by the bandwidth while the phase estimates are not dependent on the
bandwidth. Generally speaking, a 2π rotation of the phase is corresponding
to a propagation distance of one wavelength. Usually, cellular systems are op-
erating at high frequency, e.g., GHz, so that the corresponding wavelengths
are in units of centimeters. If frequent measurements are conducted during
one wavelength movement, the position accuracy can get down to centimeters
or even millimeters consequentially. Therefore, it becomes attractive to utilize
phase information for high accuracy positioning within cellular systems.

Phase based positioning and tracking has previously been proposed for Ra-
dio Frequency Identification (RFID) systems, where the phase of the dominant
LOS component is tracked and used for positioning or tracking purposes, see
e.g. [3]. Phase information is also used in a related way to improve the perfor-
mance of GNSS, through Real Time Kinematics (RTK) and differential phase
measurements [4]. In this paper, we use the MPCs as virtual, but coherent,
transmitters located at unknown positions for positioning and tracking pur-
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poses. The relative propagation distance of each MPC is estimated from the
tracked phase information, where an EKF algorithm is implemented and uti-
lized. Relative movements are located with a structure-of-motion approach
that previously has been successfully applied to UWB measurements for track-
ing [5]. To the authors’ best knowledge, until now this phased based approach
for tracking and positioning purpose has not been implemented before.

The paper is structured as follows. Phase estimation and tracking are
discussed in section II, including the implementation of the EKF algorithm.
Section III gives details of an indoor measurement campaign at 2.6 GHz and
tracked phases of the MPCs from the measured channels are discussed. Section
IV discusses the used positioning algorithm and presents the tracked move-
ments. Finally, conclusions in section V wrap up this paper.

2 Phase Estimation and Tracking

Phase estimation and tracking is one of the most challenging parts for phase
based positioning. EKF, which is based on a state-space description, is an ideal
solution for this purpose. In the following subsections, the dynamic model and
EKF implementation are discussed for estimation and tracking of the phases
of MPCs.

2.1 Dynamic Model

To extract parameters, e.g., delay, angle-of-arrival (AOA), angle-of-departure
(AOD) and phase, from the measurements, a double-directional channel model
is employed, and thus the channel can be represented as [6]:

H(f) =

L∑
l=1

GRx(ϕRx,l, θRx,l)

[
γHH,l γHV,l
γVV,l γVH,l

]
GTx(ϕTx,l, θTx,l))

Te−j2πfτl ,

(1)
where GRx and GTx are the mappings of antenna responses at AOA (ϕRx,l, θRx,l)
and AOD (ϕTx,l, θTx,l) of the lth path. τl is the delay of lth path and L is
the number of MPCs. γHV,l is the amplitude of the lth path in horizontal-to-
vertical polarization and vice versa. The amplitude γl consists of magnitude
and phase, and can be written as:

γl = αe−jφ. (2)

The parameters of the propagation paths in the double directional channel
model are comprised as

µ = [ τT ϕT
Tx θTTx ϕT

Rx θTRx ]T (3)
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and
γ =

[
γTHH γTHV γTVV γTVH

]T
. (4)

Note that, here only the specular propagation paths are considered, but
not the diffuse multi-path components (DMCs), which act as interference for
positioning purposes and are treated as noise in this work. So the channel
observation at time k can be approximately as a superposition of specular
paths and random noise:

yk = s(µk,γk) + wk, (5)

where s is a nonlinear equation originating from the double directional channel
model and w is the Gaussian white noise.

To form a dynamic model of the propagation parameters, it is assumed
that the propagation parameters are correlated over subsequent measurement
snapshots and, specifically, depending linearly on the distance traveled. There
have been a number of linear dynamic models for tracking purposes. In this
work, a constant velocity model is employed, and it has also previously been
shown that this model can give proper tracking performance of propagation
parameters [7]. The state vector of the parameters x at time k is given as

xk =
[
µT ∆µ̄T αT φT ∆φ̄

T
]T
, (6)

where ∆µ̄ and ∆φ̄ are the corresponding velocities for their belonging parame-
ters. Note that the magnitude parameters α is the logarithmic of the absolute
amplitude same as stated in [7]. The discrete-time state transition equation is
then defined as:

xk = Fxk−1 + vk, (7)

where F is the state transition matrix, and vk is the state noise following
Gaussian distribution with covariance matrix Q.

This model is optimized to track MPCs resulting from smooth movements.
However, there can be non-smooth or even discontinuous behavior in some
specific scenarios, e.g., at the corners of a square movement pattern. In such
situations, this model can show performance degradation for tracking and even
diverge. In that case, state noise with large variance is needed, such that the
model allows more random deviations.

2.2 Extented Kalman Filter Design

An extended Kalman filter is implemented for the purpose of estimation and
tracking of the phases of MPCs. The EKF structure is reviewed here for con-
venience, but the interested reader is referred to [7] for further details. The
EKF algorithm consists of two steps, namely prediction and correction:
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Prediction:
x̂(k|k−1) = Fx̂(k−1|k−1) (8)

P(k|k−1) = FP(k−1|k−1)F
T + Q (9)

Correction:

P(k|k) =
(
P−1

(k|k) + J(x̂(k|k−1))
)−1

(10)

∆x̂k = P(k|k)q(yk|xk|k−1) (11)

x̂(k|k) = x̂(k|k−1) + ∆x̂k. (12)

The prediction step gives the predictions based on the previous state and the
transition matrix. The filter error covariance P(k|k) is also estimated in a similar
manner considering the influence of the noise. The correction step aims to
decrease the errors by using the new observed samples to correct the prediction.
In the correction step, the first and the second order partial derivatives of
the log-likelihood function of the measurement model are used, and these are
defined as

q(y|x) = 2 · <{D(x)H(y − s(x))}, (13)

and
J(x) = 2 · <{D(x)HD(x)}, (14)

respectively, where D(x) is the first-order partial derivatives with respect to
the parameters x of the observation model s(x).

3 Experimental Investigation

Experimental tests are performed for the purpose of positioning with tracked
phase of MPCs from measured radio channels. In this section, the measurement
campaign is described in detail, followed by phase tracking for a circular and
a square movements, where both a smooth and a discontinues behavior are
experienced.
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3.1 Channel Measurements

The measurements were conducted in a large open hall, using our RUSK LUND
channel sounder. 161 frequency points of a 40 MHz bandwidth channel were
measured with center frequency of 2.6 GHz. A Skycross SMT-2TO6MB-A
omni-directional antenna is mounted on a tripod on wheels 1.7 m above the
ground to represent a single-antenna user (MS). A cylindrical array acts as a
base station (BS), and the center of the cylindrical array is about 2.07 m above
the ground. The single antenna was moved manually along the predefined
movement patterns, which are a circle with radius 0.6 m and a square of side
length 1 m, until 5000 channel snapshots are harvested. We made sure that
the person moving the station influenced the measurements as little as possible
by remaining close to the floor to minimize body reflections, while at the same
time not to block the ground reflection. During the measurements, line-of-sight
(LOS) conditions are always fulfilled. The LOS distances are 12.6 m and 19.5
m for the circular and square movements, respectively.

3.2 Results and Discussions

Phases are expected to show sinusoidal shapes for the circular movement. Fig. 1
shows examples of the tracked phase of four MPCs in the vertical-to-vertical
polarization, where the sinusoidal patterns are clearly captured. It can be
crucial to note the maximum phase difference of each MPC is around 62 radians.
Consequently, it reflects the maximum distance change that is approximately
1.2 m, which also corresponds to the diameter of the circle. Note that, some of
the MPCs have phase differences slightly less than 62 radians. That is primarily
due to that these MPCs stem from scatterers, which are not in the same plane
as the single antenna MS. Thus, the scatterers see a slightly projected and
scaled copy of the circle, which leads to the projection of the phases of the
corresponding MPC.

Regarding square movement case, we note that at the corner of the square,
the movement follows a stop-and-go behavior since it was moved manually.
This movement is not considered as smooth. Thus, the tracking tolerance of
the filter was increased by defining a higher variance for the process noise to help
tracking this sharp change while staying with the same dynamic model. For
the square movement, an anti-symmetric pattern in phase is expected. Fig. 1
shows four tracked MPCs from the square movement measurements, where it
can be noted the anti-symmetric pattern is observed for each of the MPCs.
However, at the corner of the square, the phase does not show a sharp change
in slope. Instead, a smooth transition around the corners takes place. This is
a consequence of smoothing by the EKF. Also the maximum phase difference
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Figure 1: Tracked phases of a number of MPCs in circular and square movement
measurements.

Table 1: Azimuth and elevation angle of the four MPCs both in circular and
square movements at the base station side.

MPCs
Circular movement Square movement

Azimuth [deg] Elevation [deg] Azimuth [deg] Elevation [deg]
MPC 1 282 104 144 64
MPC 2 92 100 348 74
MPC 3 190 102 356 72
MPC 4 160 92 152 46

of an MPC is around 40 radians, which corresponds to a movement around
0.75 m. Compared to the predefined 1 m2 square, the movement is somewhat
scaled.

To have a thorough understanding of the projected phases, the elevation
angles at the MS side are needed for each of the MPCs, which cannot easily
be obtained straightforward due to the single antenna set up. However, it
can be noted that the BS and MS are roughly in the same plane. If a single
interaction is assumed, the elevation angles at the MS side can be estimated
roughly. Table 1 lists the elevation angle at the BS side for the circular and
square movements. It can be noted that the differences between the plane
of the BS and the planes of the scatterers are approximately 10 degree at
maximum for the circular movement. So the four MPCs can be either the LOS
components or single reflections from the wall. Thus, the differences between
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the plane of scatterers and the MS are also small as well as the projections of the
tracked phase for the circular movement. The MPCs of the square movement
are mostly from the ceiling, and at maximum an angle difference of 44 degrees
is observed between the scatterers and the plane of the BS. With the single
interaction assumption, the MS will see the scatterers from the ceiling with an
elevated angle, which causes large differences between the plane of scatterers
and the plane of MS. Therefore, the propagation distance of each MPC will be
scaled and projected.

4 Positioning

We are aiming for positioning based on relative movements in this work. There-
fore, a TDOA positioning algorithm based on the structure-of-motion problem
at hand is utilized. A detailed description of the algorithm can be found in [5].

The input to the TDOA positioning algorithm is the measured distance
matrix D̄, whose columns are MPCs and rows are estimated relative distances
for each channel snapshot. Therefore, the tracked phases are translated into
distance to form the matrix D̄. Specifically the distance for the lth MPC at
snapshot k is defined as

dl,k = cτref +
(φk − φref)

2π
λ (15)

where c is the speed of light, τref is the selected reference delay, e.g., the
estimate delay of the first snapshot, φref is the selected reference phase, φk is the
phase at snapshot k, and λ is the wavelength. By singular value decomposition
of D̄, the user movement can be estimated.

Fig. 2 shows the estimated movements together with the predefined moving
patterns. As stated before, the virtual transmitters and the MS are not in the
same plane. Therefore, the movements are slightly projected as well. For the
circular movement, it can be noted that the offset between the planned circular
movement and the tracked movement is 5 centimeters in maximum, and more
than 50% of the locations are within 2 centimeter offset. The overall standard
deviation of the circular movement is estimated as

σ =

√√√√ 1

n

n∑
i=1

|rtrue,i − rlocated,i|2. (16)

where rtrue,i is the true position, rlocated,i is the estimated position and n is
with a number of 3120. The standard deviation of the errors is approximately
4.0 cm. Note that the user movement is controlled manually, so the movements
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Figure 2: Positioning results for circular and square movements.

are most likely not a perfect circle, which can be part of the 4.0 cm offset as
well. For the square movement, such comparison is not conducted due to the
scaled tracked movement. Nonetheless, still it can be seen that the tracked
square movement has a reasonably well projected track. If we assume the
propagation environment is known, e.g. through floor plan information, we
can actually compensate for the projection error as long as we are dealing with
single reflections or interactions. However, for the proof of concept in this
paper, this is out of scope of the investigation.

5 Conclusions

We have implemented EKF to perform phase tracking of MPCs for positioning
purposes. With the tracked phase information, the relative distance changes of
each MPC are observed. By using the structure-of-motion based TDOA posi-
tioning algorithm, relative movements have been tracked with accuracy down
to centimeters. Our investigation has shown that with the 40 MHz bandwidth,
the phase information of each MPCs can be properly estimated and tracked
from the radio channels, which can be consequently translated into estimation
of time-of-arrival. Therefore, positioning with accuracy down to centimeters is
also possible with a limited bandwidth by using phase information. Overall,
phase based positioning is a promising technique for tracking and localization
purposes. This is the initial work in this area, investigations of different move-
ment patterns, e.g., 3D movements, and the initial positioning will perform as
future work.
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