LUND UNIVERSITY

Subharmonic and strongly subharmonic functions in case of variable coefficients

Wanby, Géran

Published in:
Mathematica Scandinavica

1968

Link to publication

Citation for published version (APA):
Wanby, G. (1968). Subharmonic and strongly subharmonic functions in case of variable coefficients.
Mathematica Scandinavica, 22, 283-309.

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY
PO Box 117

221 00 Lund
+46 46-222 00 00

Download date: 19. Jan. 2026


https://portal.research.lu.se/en/publications/bb65a7da-a24e-4f45-8cf1-fbfaec645cd9

MATH. SCAND. 22 (1968), 283-309

SUBHARMONIC AND STRONGLY SUBHARMONIC
FUNCTIONS IN CASE OF VARIABLE
COEFFICIENTS

GORAN WANBY

Introduction.

It is known that a subharmonic function % in the unit ball of R”,
which is majorized by a positive harmonic function, has a boundary
measure. This means that there exists a measure on the boundary of
the unit ball, which is the weak limit of the measures u(ro)dw (dow is
the Lebesgue measure on the boundary). Further, if ¢ is convex and
increasing on I and continuous for { = — oo, then ¢(u) is also subharmonic.
If in addition ¢ is non-negative and ¢(t)/f > o as ¢ — oo, then ¢(u)
is said to be strongly subharmonic in Garding-Hoérmander’s notation
(see [3]. By Solomentsev [12], it is called ¢-subharmonic.)

The interesting feature is that a strongly subharmonic function with
a positive harmonic majorant has an absolutely continuous boundary
measure. For a proof see [3] or [12]. The purpose of this paper is to
extend these results to subharmonic functions in a wider sense, that is
subsolutions of the Laplace-Beltrami equation on a Riemann manifold.
Our treatment is in particular valid in the case of subsolutions of a
selfadjoint uniformly elliptic operator of second order without constant
term, defined in an open and bounded set of E”.

It should also be noted that Privaloff and Kouznetzoff [9] extended
Solomentsev’s theorem to Liapounov regions in n-dimensional euclidean
space.

A brief outline of the paper goes as follows. After preliminary defi-
nitions and lemmas we consider local properties of harmonic and sub-
harmonic functions and discuss equivalent ways of defining subharmonic
functions. We prove that if « is subharmonie, so is g(u), with such
a @ as described above. This was proved by Moser [7] in the special
case, when u has square integrable first derivatives. In section 5 we
prove by a simple method, the existence of a boundary measure of a
subharmonic function which has a positive harmonic majorant. Riesz’
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representation formula is derived in section 6, and section 7 contains
our main theorem which asserts that ¢(u) has an absolutely continuous
boundary measure under the same assumptions of ¢ as in the classical
case when ¢(u) has a harmonic majorant. The proof mainly follows
the classical one. For part of the proof we need a Fatou theorem about
pointwise convergence on the boundary of the Poisson integral of a
measure. Such a theorem was recently proved by Widman [14]. How-
ever, it is possible to derive, without having to regularize the coefficients,
a somewhat weaker result (lemma 7.2), which is sufficient for our
purposes.

Finally, in section 8 we analyse the connection between quasibounded
resp. singular harmonic functions (defined by Parreau [8], see also
Heins [4]) and boundary measures.

The subject of this paper was suggested to me by Lars Garding.
I wish to thank him for his valuable advice and generous interest.

1. Preliminaries.

A function f defined in an open set w of R” is said to be of class C*
if it has k& continuous derivatives there and of class H¥ if its derivatives
of order k are Holder continuous. If in addition f has compact support,
fis of class Oy* or Hy*. Let V be an n-dimensional manifold of class H2.
When Q< V is open, we say that f belongs to O¥() if f, defined in Q,
is in C% in a fixed (and then in each) coordinate- system. The classes
CkQ), Ck(RQ), H¥Q), H*(Q) and H*RQ), k=0,1,2, are defined corre-
spondingly.

Let the topology on V be given by a positive definite metric
37 k=1956(x)daida® of class H'. If s(x,y) denotes the geodetic distance
and w<V, where & is compact, then s(z,y) belongs to H%w x w).

The inverse of the matrix (g,,(x)) is denoted (¢7%(x)), and g(x) = det g;;(x).
The volume element is then

adV(x) = gx)tdaxta ... Adz™ > 0,

and the Laplace-Beltrami operator on the manifold is
0

903 (g o) ).

Jrk= 1 ‘

The scalar product (gradf, grads) is denoted f,, and so we have

L T@) 05(2)
fo(@) =j’kE=lg k() o oo
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Let S be a hypersurface of class H!, defined by s(x)=0, where
grads(z)£0. Its volume element dS=04(s(x))dV(x) is defined by
dSads=dV on S. A substitution s(z)— A(z)s(z) changes dS into
A-Yx)dS. Since grads=0 on S, each compact part of § may be covered
by a finite number of spheres which have the property that, singling
out one coordinate, say x,, one can express the part of the boundary
contained in each of these spheres in the form

z; = h(z,,...,2,),

where h has Holder continuous first derivatives.
A region is said to be of class H! if its boundary 02 is a H!-surface.
Let 2 be an Hl-region such that Q is compact. The smoothness
property of the boundary and the Holder continuity of the coefficients
ensure that the following Dirichlet problem :

Af = h in Q,
f=¢9g ono2,

where he HY(Q)nC%2) and g¢ge HY2RQ), has a unique solution
fe HX(Q)nHYQ). (For the local theory, see [6]. The global existence
follows from standard arguments.)

Maximum principle. (See e.g. Courant—Hilbert [1, p. 326 ff.]) Let
feCHQ)nCYD). If Af=0 in 2 and f has a maximum at an interior
point x,, then f is constant in the connected component of £, which
contains x,. It follows that if Af20 in 2 and f=0 on 92, then f<0
in 2; and if further f is not identically zero, then f is strictly negative
in 2 and gradf=0 on 0Q.

Lemma 1.1, If Q is of class HY, there exists a function s € H 2(Q)n HY(Q)
such that s(x) > 0 in 2, s(x) =0 and grads(z) =+ 0 on 62, and As(x)/|grad s(z)|
arbitrarily large close to 982.

Proor. Take ke H(2), where k<0 and not identically zero in any
connected component of 2. The solution f of the Dirichlet problem
Af=hin Q, f=0 on dQ is then by the maximum principle strictly positive
in Q and gradf+0 on 2Q. Put y(f)=exp(kf)—1, where k is a constant.
Then s(x)=y(f(z)) has the required properties. In particular

As(x)[|grads(z)| = k|gradf (@) + Af(x)|gradf(@)|~ ,
which is arbitrarily large by proper choice of k.

In the following Q2 always denotes an H*-region such that Q is compact
with boundary s(x)= 0, where s is chosen as in lemma 1.1.
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DEerFINITION. Let A(Q) be the class of functions fe H%(Q)nHYQ)
such that Af(x)=0(s(x)~7) in a neighbourhood of 9£2, for some y with
O0<y<1, and A4,(L2) the subclass of 4({2), whose elements satisfy f=0
on 0R.

Green’s funmction. Under our assumptions on 92 and the coefficients,
Green’s function G(x,y) for 2 belonging to A exists. See for example [6].
We list some properties of G.

1) Q(z,y) satisfies the equation 4,G(z,y)=0 in 2 —{y}, and G(z,y)=0
when z€0Q, y e Q.

2) If y is fixed in 2, G and its first and second derivatives with respect
to x are continuous in 2 — {y}.

3) [Q(x,y)Av(x)dV (x)= —v(y) if ve C3Q).

4) G(W:y) = G(:’/,x)

5) If s denotes the geodetic distance between = and y,

oq %G

G(‘Z’y) = 0(82—n)’ %(x’y) = O(SI_n)’ W(x:y) = O(s—n)

uniformly on each compact subdomain of 2.

A consequence of 1) and 3) and the maximum principle for sub-
harmonic functions to be discussed in section 3 is that G=0.

When fe A(2), we have Green’s formula

1@) = [ @9 1) dsw) V@) ~ [ Gay) 470) V)
In particular
(L1) w(@) = [ Ofa,9) f@) (s(v) AV W)

solves Au=0 in 2, u=fe H{(082) on 0. For fixed x € 2 the harmonic
(or Poisson) measure

dP(x,y) = Gy(z,y) 6(s(y)) AV(y)

has a continuous density on 0Q.
In section 5 we need the following mean value theorem for right
derivatives.

Lemma 1.2. If h is continuous in the closed interval [a,b] and the right
derivative k., exists in the open interval (a,b), then there exist & and 7 in
(a,b) and A=A(&,n) and u=pu(E,n) with A>0, u>0 and A+u=1 such that

h(b) — h(a) = (b—a)(AR (&) + ph,(n)) .
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Proor. It is sufficient to study the case A(b)=h(a). We make use of
the following elementary fact: If A4 is continuous in [a,b], and k'+ is
20 in (a,b), then & is increasing in [a,b], and analogously if A 0.
Now, if there was no £ in (a,b) with h;< 0, » would be increasing, and,
since h(b)=h(a), constant. Then there is nothing to prove. In the
same way there is an 7 € (a,b) with %) (5)>0. Put

k() )
A, = 77 - T oy 0, > =77 * 7 0,
&) by () =k, (§) g ) by (n)— k. (§) g

and we are through with the lemma.

2. Local properties of harmonic functions.

DerFiNiTION. A function » is said to be harmonic in Q if u e C*RQ)
and Au=0 in . A measure dU is said to be harmonic in Q if

feCD) = f Af(z) dU() = 0.
ExampLE. A measure dU(x)=wu(z)dV(z) with 4 harmonic is a har-
monic measure.
By the analogue of Weyl’s lemma (see e.g. Friedrichs [2]) we obtain
Lemma 2.1. Every harmonic measure has a unique harmonic densily.
If we put f=1 in (1.1) and take v € C}(2), we get
0 = [ a0te) ([ €en0) o(atw) AV @) ) 4V @)
= [ ([ ostw) a0@) V(@) s(st)) avia)
which implies
jG’s(x,y) Av(z) dV(x) = 0 for each yedf2.

By lemma 2.1, G (z,y) for fixed y on o2 a.e. equals a harmonic function
in . But since it is continuous, it is harmonic. Renewed application
of lemma 2.1 shows that if fe C%9Q),

u(z) = [ /) dP(ay)

is harmonic. Approximating f by functions in H'(0{) we see that u
has continuous boundary values f. We have proved
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CororrArY. If fe C%08R2), then u(x)= [f(y)dP(x,y) solves the Dirichlet
problem Au=0 in 2, u=f on 00.

Mean values. Let B,(z) be the ball s(z,y)<r (s denotes the geodetic
distance) with center x and when fe C%0Q), let M, f(x) be the value
at x of the solution of Dirichlet’s problem Au =0 in B, (x) with boundary
values f. It is clear that the mapping f - M,f(z) is linear, reproduces
constants and that a < M, f(x)<b, where ¢ and b are minf and maxf
on B, respectively. If a<b, strict inequalities hold.

LemmaA 2.2. Let f be continuous from above, and (f,) a sequence of
continuous functions decreasing to f. Then

Mrf(x) = ]imn—moMrfn(x)

defines M,f uniquely and the map f— M, f(x) is positive and linear.
If f(y)<b on 0B, and M, f(x)=">, then f is constant =b on 0B,.

The proof is standard.
Lemmas 2.1 and 2.2 also give

CoroLLARY. A monotone, locally integrable limit of harmonic functions
s harmonic and the convergence is locally uniform.

Proor. Let (u,) be a sequence of harmonic functions in 2, decreasing
(or increasing) to . It is clear that % a.e. in 2 equals a harmonic func-
tion u,. We shall prove that u=1wu, everywhere in 2. We have for small »

'“o(x) = Mruo(x) = Mru(x) = hmn—)ooMrun(x) = hmn—)ooun(x) = u(x) .

The uniform convergence follows by Dini’s theorem.

3. Local properties of subharmonic functions.

DeriniTION. A function % is said to be strictly subharmonic in 2
if it is continuous from above, not identically —oo and satisfies the
maximum principle with respect to harmonic functions in all subdomains
o of Q: if v is harmonic in w and [im (x—v) £ 0 on dw, then w<v in w.

Note that a strictly subharmonic function is locally integrable.

That subharmonicity is a local property follows from the following
lemma.

LemMma 3.1. An upper semicontinuous function u is strictly subharmonic
in Q if and only if w(x) < M, u(x) for every x € 2 and all sufficiently small r.
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The proof can be carried out almost as the classical one. (See e.g.
[5, p.16].)

It is clear that instead of M,u(x), we may take the mean value of u
over any domain, containing x, with sufficiently regular boundary for
the Dirichlet problem to be solvable.

It is also easy to see that the condition in lemma 3.1 is equivalent
to the following:

If K is a compact set, K<Q, if v is harmonic and »—v takes its
maximum at an interior point of X, then »— v is constant in a neighbour-
hood of the point.

Examere. If u e C*Q), then u is strictly subharmonic if and only if
Auz 0 in Q. This follows from the maximum principle formulated in
section 1.

We now generalize this example.
DEerFINITION. A measure dU(z) in Q is said to be subharmonic if
0<feC Q) = fAf(x)dU(x);o.

It is clear that this is a local property.

Exampre. If dU(zx)=u(x)dV(x), where u e C¥£), then dU is sub-
harmonic if and only if w is strictly subharmonic.

TuEOREM 3.2. Every subharmonic measure has a unique strictly sub-
harmonic density, locally the limit of a decreasing sequence of strictly sub-
harmonic functions in C3(8).

Proor.
[ 4@ dU@ = [f@) do@) vieCH@)

defines a non-negative local measure do in Q. The map dU —do is
positive linear. Let w<@<£ and let G be Green’s function of Q.

Green’s formula yields

f@) = - [ Gy 4 @) A7)

and we get

Math, Scand. 22 — 19
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[47(@) av@) -—j(famunAdevw»ddm

- f Af) ( f Glx,y) da(w)) av(y),

for every fe Cy*(w). By lemma 2.1 there exists a harmonic function A,
in w such that dU has the density

(3.1) u(@) = hy@) — [ G@,y) doty)

in . Now let y € 0;™(1,2), 20, 2 x()dt=1 and let

20 = 4x¢/TVT-* for T>0.
Put

t t
100 = [#0mdr and 5O = [ 1) de.
0 0

If ypo(t)=t— %, D(t), then y, belongs to C2. Moreover

ppl(t) = ¢ when t<7T
yp(t) = const. = Cp when t227,

T=<Cp=2T. For a fixed zxew, y—>ps(G(z,y)) belongs to C* and
(differentiations with respect to ¥)

Aypg(G(@,y)) = yr" |grad G| + yp'AG
= — 1™ (G(x,y)) lgrad G(z,y)1* = 0 if y+=
and
Ayp(G(x,y)) = 0 in a neighbourhood of z .
Put

Ur(@) = hyfa) = [v2(G(e,y) doty) -

Then wupe€ C?, Aup(r)=0 and when T — oo, up(x) decreases to u(x).
Also, up(x) S M, up(x) gives u(x)< M, u(x) so that « is a strictly sub-
harmonic density. Since u is continuous from above,

lim,_ o, M,u(z) < u(x) sothat w(z)= lim, .M, u(x).

If u(z)=u'(x) a.e. with ' strictly subharmonic, then u(y)=u'(y) a.e.
on almost all éB,(x) (when % is fixed). Hence M, u(x)=M, u'(x) for al-
most all r, which implies wu(x)=u'(x).
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Our description of subharmonic functions is complete with

THEOREM 3.3. If u is strictly subharmonic, then w(x)dV(x) is a sub-
harmonic measure.

The theorem is proved in the next section. In the sequel, by a sub-
harmonic function, we understand a strictly subharmonic function.
By theorem 3.3 it may be considered as the density of a subharmonic
measure.

We also obtain the following corollary.

CoROLLARY. Let g(t) be an increasing convex function on R, continuous
for t=—oo. Then, if w is subharmonic, so is @(u).

ExamprEs. ¢(t)=max(0,t); ¢(¢) =exp(pf), where p>0.

Proor oF CoroLLARY. That ¢(u) is upper semicontinuous is obvious.
Consider a sequence of functions u,, n=1,2,..., continuous on 9B,(x)
and decreasing to « there. Let u, also denote their harmonic extensions
to B,(x). We have

ue) S wle) = | uy) P@y)

9By(z)
which gives

Hu@) £ gun@) = | #@) dP@y).,
BNz

the last step by Jensen’s inequality. When n tends to «~ we get

p(u(@)) £ M, p(u)@) .
Below we will need

LeEMMA 3.4. Let s € CY(Q), grads+0 and let w be subharmonic. Then,
Jor feC0Q),

t > Ft) = [u) @) os@)-1) AV @)

s continuous and, if (y,) s a sequence of functions in CF(R), tending
to the Dirac measure 6,

Ft) = lim, ., [ (@) f@) za{o(e) 1) AV (z)
Proor. Using (8.1) it is sufficient to prove the statement when

u(a) = [ 6@y) doy)
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and fe Oy%w). But then, by the properties of G,

F(t.y) = [ 63) £(@) 8(s(@) =) aV (a)
is continuous, and ’

F(t,y) = limy oo, [ 6(2.9) f@) 2(5(2) 1) AV (2)
where the convergence is locally uniform in y. Since

) = [ Fty) doty)

the rest is clear.

4. Proof of Theorem 3.3.

Let w be a subset of the Riemann manifold V. Throughout this sec-
tion w is supposed to be small enough. Consider the class 7 of all
functions f(xz,y) € H*w x ), where f(x,y)=1 + O(s*(z,y)).

ExameLE. f(z,y)=1+s%z,y) € &.

Lemma 4.1. If fe o/ and g(x,y)=1+s%z,y), then

Vol (@9) Vog(@,y) — Vuf(@,y) Vg@y) = o(s*(x,y)) .
(For shortness we write V instead of grad and Vf-Vg instead of
(gradf, gradg).)

Proor. Take a fixed coordinate system and put f(x,y) = 1 + s%(x,y) fy (2, y),
where f; is bounded. We have

» 0 2 0
= 3 o) (2600) o (00) FE0) + ) 22 00)) o) 1 )
Jrk=1

= 432(x,y)f1(x,?/)IVxS(x,?/)P + 233(90,3/) fol(x7y)'vws(x:y) .

Now |V,s|2=1 and a computation shows that s(V,f,*V,s) tends to zero
with s. Consequently

sz(x7y)'va:g(x7y) = 432(x,y)f1(x,?/) + 0(82(581:’/)) .
In the same way
V, f@,y)Vyg@,y) = 484x,y) fi(z,y) + o(s*(z,y))

and the lemma follows.



SUBHARMONIC AND STRONGLY SUBHARMONIC FUNCTIONS ... 293

LemMma 4.2. If f and g belong to <7, then
V,.sf-V,89 — V-V, sg = o(s?) .

Proor. The left member has four terms:

82(fo ng Vyf Vyg = (34)3

8g(Vof-V 5~ Vz/f v S = 29( Vol Vo(1+8%) — yf Vy(1+82)) = o(s?),
sf(V,9-V8-V,g- V »5) = o(s?) analogously,

Jg(V,8:V,s—V 5:V,y5) = 0.

It was mentioned in section 1 that a symmetric fundamental solution
exists. We write it in the form

G(x,y) = c,s(z,y)* " F(z,y) .

Here F e H*wxw), F(z,)=1 and ¢, '=(n—2)e,, where e, denotes
the surface of the unit sphere in R™ (n>2 is assumed. If n=2, the
singularity is logarithmic.)

Our first aim is to show that F € &/. Introduce normal coordinates
with center z, put

x(@,y) = tlogg(y) and V,x(z,y) Vys(2,y) = a2x,y) .
By use of the equalities

s¥(x,y) = Zi,kgik(x) YiYx»
Di9a®) ¥ = 2i9aW) Yy, k=1,...n,

we obtain for x+y

4,8(x,y)*" = (2—n)g(y)* s(z,y ‘”Zzyry—g Y.

Since
0
xW(2,y) = g(y)~ s(x,y) Dy, P gly)t
we get
Ays(x’ y)z—" = (2—"’) 8(.’1), y)l_n‘xs(y)(x: y)
and so

0 = 4,6(x,y) = c,(2—n)s(@,y)* " (F(x,y)aP(x,y) +
+S/(2—n)AyF(x7y) + 2F,(”)(x,y)) .

In the centre x of the normal coordinate system dg/0y’=0, so that
F )(x,y) tends to zero with s. From this we conclude that all the first
derivatives of F are zero on the diagonal z=y and consequently ¥ € &/,
If o is small enough, we may also assume F(x,y)2 constant> 0.
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Next, put
G(z,y) = cpol@,y) .

It is clear that o(x,y)=s(z,y) H(x,y) with H € o/, so that
(4.1) V.:Vo — Vy06:V,0 = 0(s?) = o(c?) .
Consider Green’s spheres

Cu): o(@,y) = r,
contained in w. Green’s function for C,(x) is

Gox,y) = cy(o(a,y)"—r*"),

and the Poisson measure at the centre = is by section 1
(4.2) dP,(x,y) = |V,G(x,y) V,o(x,y)0(o(x,y) — ) dV(y)|

= e, lo(x,y)t ™ (V,0-V,0)d(c(x,y) —r)dV(y) .
Let

M, f@) = [ )P, @y)

aCy

be the value at « of the harmonic function which has continuous bound-
ary values f on 0C,. Now suppose fin H2. According to Green’s formula

@) = Mf@ = o [ (ol@y)=—r=)4f(w) iV ().
Cr ()
We want to prove that

(4'3) limr—>or_2(Mrf(x) _f(x)) = Af(x)/(2n)

uniformly when z € w. Introduce normal coordinates with centre x
such that g¢*(x)=4"%, which implies dV(y)=(1+o(1))dy as r— 0.
Since Af(y)=A4f(x)+o(1), uniformly in z, it is sufficient to prove

lim,_, ,r2c, J. (o(x,y)* " —r*")dy = 1/(2n),
Cr@)

but since o(z,y)/s(x,y)=1+0(r?) (also uniformly), we have only to
verify that

hmr—>0 r

_2cn f (s(x’y)2—n__r2—n) dy = 1/(21&) s
By (x)

where B,(z) is the geodetic sphere s(z,y)<r. But
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(8 (@, y)*n—rt") dy = f (827 —r2-m) e, sn1 ds,
By(2)

so that (4.3) follows.
Let u be strictly subharmonic so that u(z) < M u(x) when C,(x)<w.
If 0= fe HP(w), we have by (4.2)

05 [ (M,u(@) - u@)f () AV (@)
= [u){ [ extotwg) 1V, 012/ ) o) ~1) AV(@) — F)}aV (),
when r is small. The difference between the last expression and
[v 110 -1w) av)
is, since o is symmetric,
en [ul){ [ o9 ="(1V,012 = 1V.1%) () 8(o(a,) 1) AV (@) }aV )

According to (4.1) and the fact that « is locally integrable, this is o(r2).
Thus

r=* [uly) (M,f 1) ~f @) AV () 2 o(1) .
By (4.3) we conclude
Juwarw aviy) = 0

and the proof is finished.

5. Existence of boundary measures.

Let W denote the class of all subharmonic functions in £ having
non-negative harmonic majorants there. We choose s(x) according to
lemma 1.1 such that As(x) =0 for s(z) <some s;. Put

M (fu)(t) = f |grads(z)[2 f(z) u(x) 6(s(@) ~t) AV(z) .

If % is subharmonic, there exists a local measure do=dg, in 2, do 20,
such that

(5.1) f w(@)Af (z) AV (@) = f f(@)do(z), VfeCHR).
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If fe A(Q) (defined in section 1) and y is a C2-function on the positive
real axis such that x(s)=0 when s is small, y(s(z))f(x) € Cp2(2) and
we have, with f (z)=(gradf(z), grads(z)),

(5.2) f 2(s(@)) |grad s (z) 21 (z) u(z) dV (x) +
+ [ 2(6s@) (As(a) ) + 21 (@) u(z) AV (z) +
+ [ ds@) A @) ut@) avia)

= [ #e@Nf @) dota)

For a fixed ¢>0, we choose y=y, by taking
X =0, x/ €CPit—e t+e), I 2o (8)ds = 1

and y'=y=0 for small s. Denote by 6 the function which is 0 for s<0
and 1 for s>0. When ¢ tends to 0, we get from (5.2)

(5.3) [ #(s()—1) lgrads@)l2f @) u(w) AV (@) +
+ [ 8(sta) 1) (As()f @)+ 21,(0) u(w) AV (z) +
+ [ (6@ =0)0(s(2) 1) 4f (@) ) AV (@)
= [ (st@) 1) 8(s(a) ~1) £ (@) do(e)

From lemma 3.4 we know that the mean value M (fu)(f) is continuous
for t> 0. This could also be seen from (5.3). Our purpose is to show that
M (fu)(t) has a limit when ¢ tends to zero, if # has a non-negative har-
monic majorant.

First let # be harmonic and non-negative and take f identically 1
in (5.3). Since do=0, we have for small >0

(5.4)
M, (u)(t) + f 0(s(x) —t) As(@)u(x) AV (x) + f As(z)u(z) dV(z) = 0

858 8>81
and we see that M (u)(f) is an increasing function of ¢. Since it is positive,
it has a limit when ¢ tends to zero. Now, let fe A(£2) and consider the
second integral of (5.3):
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[ 8lste) ~ 1) (@) 4512 + 21 (2)) utz) @V (@)

[ (x)As(x) + 2f ()
|grad s(z)|?

= J 0(s(x) — t) |grad s(z)|? [ ] w(@) dV () .

We may restrict ourselves to the case when the function within the
bracket is non-negative. The integral then increases when ¢ tends to
zero and is dominated by C-[M (u)(s)ds<oo. (In the following C de-
notes various constants.) In the same way, we find that the third
integral in (5.3) has a limit and consequently lim, , oM (fu)(t) exists.
Clearly the limit is linear in f and since we have

[ M (fu)t)] S M (u)(t) maxglfl,
it follows that

lim,_, .o M(fu)(®)] £ C maxy,-olfl VfeA().
By approximation we get the same for f € C({2) and thus we have proved
THEOREM 5.1. If w is harmonic and non-negative in £, then
limt—>+0 Ms(fu)(t)
exists and is a positive measure on 082
Next, we extend theorem 5.1 to the class W.

TeEOREM 5.2. If ue W, then

(5.5) f s(x)do(z) < oo

and lim,_, o M (fu)(t) exists and is a measure on 98.

Proor. Let w<v, v=0 and harmonic. Choosing f=1 in (5.3), we
have, when ¢ is small,

f (s(z) —t) O(s(x) —t)do(x)
= M u)t) + f 0(s(x) —t) As(z)u(z) dV(z) + f As(z)u(z) AV (z)

4820 48<0

M (v) + f@(s(m)—t)ds(x)v(x) aviz) + C,

IIA

which is bounded, and (5.5) follows. Further

M) = — J' z)—t) ds(z)o(z) AV (@) + C,
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so that M (u)(t) is bounded from below. Let ut=max (%,0), u=u*+—u".
Then
M (lul)t) = 2M (ut)(t) — M (u)(t)

is bounded and we may proceed as in the proof of theorem 5.1 to conclude
that the second and third terms in (5.3) have limits when ¢ tends to zero.
The convergence of the right side follows from (5.5).

Since

| M (fu)(®)] £ M (|ul)(t) max | f],

we see as before that the limit is a measure on 0Q2. As grads(x)+ 0 near
the boundary,

limy ..o [ o(s(@) —1)f () u(@) AV (@)

exists too. That means that the measures §(s(x) —¢)u(z) dV(x), >0 and
small, have a weak limit as ¢ tends to zero. The limit is called the bound-
ary measure of u.

From (5.3) we obtain by taking the right derivative with respect to ¢

(5.6) —M, (fu)t) + f (s(x) — t)u()(f (x)ds(x) + 2f () AV (x) +
+ f 6(s(x) — ) u(z) Af (z) AV (z) = f 6(s(x) —t)f (z) do(z) .

Let fe Ay(2) (defined in section 1). Then f(x)=0(s(x)) and so
Jof (y)da(y) exists. Since Af(x)=0(s(x)"?), 0<y <1, the third term in
(5.6) is dominated by

maxs

C of srds .

Hence, for such an f, each term in (5.6) has a limit when ¢ — + 0, except
possibly the first, and consequently also the first. If we denote by du,
the boundary measure of » and put lim, , ., M, (fu)(t)=A(f), we get

—A() + 2 [ du) + [v)47(@) aV@) = [£) dotw) -
02 Q Q

According to lemma 1.2, M, (fu)(0) exists and is equal to A(f), and
so we have A(f)=1lim, oM (fu)t)/t. On the other hand, let x — z, be
the mapping from 02 orthogonally onto the level surfaces s(x)=¢. Then

z,=x+ty+o(t) ast—>+0,

where y=(y,...,Y,),
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2
kE g*(x) - (@) lgrad s(x)|
]’ 1

and o() is uniform in z. Further

fx) = tf(x)|grads(z)|-2 + o(t), o(t) uniform in x ,
so that

Mfu)Oft > [£.0) dufy) as t— +0.
2

Thus A(f)= [fy)dusy) and we have obtained

67 [unarw) ave) + f 1) duty ff(y)da(y)

Q

To sum up, we have proved
THEOREM 5.3. If uc W, then
limy o [ @)/ @)8(s() 1) V@) = [ £) duy)
o
exists when f € C(3), and
Juwar@) av) + [ £.0) duy) = [ 1(0) dotw)
when fe A,(Q).

ReMark. It is clear that du, depends on the choice of s (lemma 1.1),
but it follows from (5.7) that [f,du, is not depending on s.

We now show that du, and do determine % uniquely.

THEOREM 5.4. If do=0 is a measure in Q with [ys(x)do(x) < oo and
du, a measure on 082, then

- [ 41w ave) ffs(y)d,us?/) [10 i, feai,

defines a unique subharmonic measure dU with a density w in the class W,
such that do=do, and du, is the boundary measure of u.

Proor. We start with the special case do=0 and du,20. Given
h e HO(Q), there is a unique f e A4,(2) with Af=h and the map dU:

af > = [ 19 duw)
22
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is linear. Further, 220 implies, because of the maximum principle,
J=0in 2, and so f,<0 on 92. Consequently dU is a positive measure.
If feCy2), then f, is zero on 92 and so [Af(x)dU(x)=0. Hence
dU(z)=u(x)dV(x) with % harmonic and non-negative. If its boundary
measure is dv,, we have by theorem 5.3

[vw 2w ave) + [fw dw =0 Viea@).
Q2 Q2

We conclude

[ £ox@mm) - ) = 0
LXe]

for every fe Ay(2). To show that du,=dv,, let 2,502 and F € H%(2,)
and put f(x)=s(x)F(x) with s as before. Then se H%Q)nHY(Q),
As € HY(Q), and grads+0 on d2. We see that

Af () = As(z) F(x) + 2F () + s(x) AF (x)

belongs to HO(Q) so that fe Ay (2). Further f,(x)=|grads(z)?F(x)
on 9. If p € C°0R2) and ¢> 0 are given, we take F so that

| P(2) - ¢(x) lgrads(@)| | < e|grads(z)|-2
on ¢f2. Thus
[ o), —dsy) = 0
22

for each continuous ¢, so that du,=dv,.

The extension to the case do =0, du, arbitrary, is trivial. In the case
do =0, du,=0, we proceed as above. Given h € H°(Q2), there is a unique
fe Ay(82) with Af=h and the map

Af—»ffda

is negative and linear and thus defines a negative measure, which is
seen to be subharmonic. We conclude that there exists a subharmonic
function v, v<0, with boundary measure dv, such that

[4rwrw avw) = [f@ doty)  Vie4y2).

By theorem 5.3 it follows that dv,=0. A combination of the two special
cases gives the existence part of the theorem. The uniqueness is obvious.



SUBHARMONIC AND STRONGLY SUBHARMONIC FUNCTIONS ... 301

6. Riesz’ representation and least harmonic majorants.

Let we W and denote its boundary measure du,, With G' and y,
as in section 3 we have by theorem 5.3

vp(e) = - j 1) dyo(G(,y) AV (y)

| o) duy) - [ valG@9) dotw) -
Q2 Q

Since A,yn(G(x,y)) <0, vy is subharmonic. When 7' — oo, vp(z) de-
creases to »(z), say, where

o@) = [ Gay) duy) - [ ey doty)
o2 Q2

Here v=u, for if fe 0, Q) and
) = [ 6af@ dve),
then F e Ay(Q) and AF= — f.g Further
Fyy) = [ Gay)f@) aV()
:
and we get

[v@)1@ av@ = [ F@) dusw) - [ F@) doty)
o2 Q

2

= - [uw)aF@) aV ) = [uwfw) dVQ) .
Q Q
Since % and v are subharmonic, we conclude u=v. We have proved

TarorEM 6.1 (Riesz’ representation theorem). If u e W, then
ua) = [ Gey)duy)- [ Gle.y) doty)
a0 Q

where du, ts the boundary measure of w and do= Au.

Since the greatest harmonic minorant of [,G(x,y)do(y) is zero, we
get

CorOLLARY 1. If ue W, then [G(x,y)duyy), where du, is the boundary
measure of u, 18 the least harmonic majorant of u in £.
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Theorem 5.4 and the representation theorem immediately give

COROLLARY 2. If du,is a measure on 0%2, then [Q (x,y)duyy) is the har-
monic function in 2 which has the boundary measure du,.

7. Main theorem.

THEOREM 7.1. Let u be subharmonic in 2, let p be a non-negative convex
increasing function on R such that

(7.1) pt)t >0 ast—> +oo,

@(—oo)=lim, , _o(t), and assume that @(u) has a harmonic majorant.
Then w has a boundary measure

dpx) = Mw)o(s@)) V() + du, @) ,
where the singular part du, is <0, and the boundary measure of @(u)
ts absolutely continuous and equals @(A(y))d(s(y))dV (y).

Proor. Formula (7.1) implies that « has a non-negative harmonic
majorant, since g(u) has one. Hence » has a boundary measure du,.
Let £ < 022 be open with Lebesgue measure m(¥) and let f be continuous
in2, 0<f(y)<1 when y € E and f=0 on 92n[E. Then we have, follow-

ing [3],
[8(st@) ) u@)f(@) V(@) < supear Tlo() [ o(s(@) — 1) gpu(@)f (@) AV (z) +
+ T f 8(s(z) —t)f(x) AV (z) .

When ¢ tends to zero we get
(12) [f@dua) = € (supantipt) + TmiE).

Putting 7'=(m(£))-* the right side tends to zero with m(E). Hence
pt is absolutely continuous and so du,” <0. Hence

u(z) < [ G AY(s) V)

and Jensen’s inequality implies

Pu(@) S [ 6901w sw) V(@)

The right member has by corollary 2 of section 6 the boundary measure
®(A(y))6(s(y))dV(y). If dv, is the boundary measure of g(u), then dv, is
absolutely continuous and
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(7.3) dv(y) = @(Ay))d(s(y)) dV(y) .

For the opposite inequality we require a result concerning pointwise
convergence on the boundary. Let v be harmonic and belong to W.
Then v has a boundary measure

du(y) = My)d(s(¥) AV (y) + dp'*(y) — dus'~(y) ,
where 4 € L1(0Q2), and v(x)= [G(x,y)du(y).

LemmA 7.2. To each sequence (t;) with lim;
ence (t;;) such that
(7.4) v(wy) > Ax)  a.e. on 22 .

j-soolj =0 there is a subsequ-

Proor. Let us first assume that du/+t=du,/-=0. Put
[ sls@)—t))o(a) AV (@) = (@) y(@y)ols@) V@),
where y(x,) tends to 1 as j — co. It is sufficient to prove
(15 [y -2@)]os@) dV@) ~ 0 as j— oo
For (7.5) implies that there exists a subsequence (f;;) such that

3 [ ey - 1@ 8(s@) V@) < o
=1

By Beppo Levi’s theorem we conclude that

00

2. [o(@y)y(@y)—Ma)| e LY99Q),

=1

and so v(xtf)y(xt’,)——l(x) tends to zero for almost every x e 0f2.
To prove (7.5), put A=4;+4,, where 1, is continuous and

[ @l o(s) aV () < e
We have

[ o) - 2@ 8(s(z) 4V @)
= [ [ 6z 1) 8(s(w) V(@) = 1o | s(s(@) AV @) +
+ [l ([ olete)—1) 6.0 aV1@)) 8(s0) 4V ) +

+ [ In@)ofew) dve) .
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The first integral tends to zero, If we may establish

(7.6) [ 851 -0)6@9) aV(z) s ©

for every small ¢ and the constant not depending on y, the rest is less
than a constant times &.

For the proof of (7.6) we remind ourselves that the mean value M (u)(¢)
of a non-negative harmonic function over the level surface s(x)=¢ is
increasing when ¢ is small. Taking a fixed #, such that 4s=0 and
|grads|+0 for s<t,, we have by (5.4)

fé(s(x) —t)Qy(x,y) |grads(z)2 dV (z) < f& 8(x) —ty) Az, y) |grad s(z) 2 d V()
= — f 8(x) —t,) Gy(x,y) As(z) AV (x) .
Now the Harnack inequality (Serrin [11]) gives

Go(z,y) = MG (x,,y)

for each x in the compact K: s(x)=t, (z,€ K fixed), and M does not
depend on y. Hence

f O(s(x) —t) Go(x,y) |grad s(x)|2 d V()
S MG (my) [ 14@)|dV@) S C max,epnulony)

8=ty
and (7.6) follows.

To complete the proof of the lemma it is sufficient to suppose du,=
du, <0, which implies v<0. Then ¢'® is subharmonic and bounded.
By the first part of this section it has an absolutely continuous boundary
measure J#(x)d(s(x))dV(x). Consequently, for each sequence (f;) there
exists a subsequence (f;), such that

@) > #(x) a.e. on 02,
that is
v(x,y,) - log #(z) = o(x) .
We shall show that g(z) equals zero a.e. By Fatou’s lemma
f F(@) dpy@) = limy f 8(s(x) — t,)v() f (z) AV ()
< [ Wiy ey 7(0,)f () 8(5(2) V(@)

- f o(2)f (@) d(s(x)) AV ()
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for each fe C(@Q), f=0. Since du, is singular, it follows that o(x)=0
a.e., and we are through with the proof of the lemma.
If we W and has the boundary measure dy,,

= [ 6@y du )
is by corollary 1, section 6, the least harmonic majorant of w. Further
fé(s(x)—t)(u(x) —h(x))dV(z) >0 ast— +0.

By the same argument which led to (7.4) there exists a sequence (#;)
such that for a.e. x € 92
u(xtj)~h(xt7.) -0 asj—>oo.

Applying lemma 7.2 to & we conclude that there exists a subsequence
(t;) with the property that

u(xt’,) —>Ax) as j - oo,

a.e. on 0f2.

Proor oF THEOREM 7.1 CONTINUED. By Fatou’s lemma
[1@ (@) 2 [lim, o plut@)f @) o(s(@) ~t;) AV @)
= [#r@)f@o(s@) aV @)
for each continuous f=0 and so

dv(x) 2 p(A(x))d(s(x)) dV(x) .

REMARK. As observed by Garding and Hormander [3], Solomentsev’s
theorem may be used to give a short proof of the following theorem by
F. and M. Riesz [10]: Let f be analytic in the unit disc. If

2n
f |f(re®)|d@ is bounded ,
0

then f has an absolutely continuous boundary measure f(e®)df. Further
f(re®) — f(e¥) a.e. 6 and
2n
f |f(rei®) —f(e9)] d > 0 as r— 1.
0
A corresponding theorem concerning harmonic gradients in a half-

Math. Scand. 22 — 20
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space has been proved by Stein and Weiss [13]. If (u,...,%,) is a
harmonic gradient, i.e. if there exists a function U, harmonic in the
classical sense, such that oU[ox;=w;, then |u|=(Z}w)! is strongly
subharmonic. This follows from the fact that |u|? is subharmonic for
p=(n—2)/(n—1), which is proved in [13]. From [13] we also get the

following result: If w=(uy,...,%,) is a harmonic gradient in the half-
space {(2,,...,%,) € R*; 2, >0} and
(7.7) J‘ |lu(z,y)| dz2 = C  for every y>0,

RA—1

then » has an absolutely continuous boundary measure u(z)dz on x, =0
and

|lu(z,y)| —u(z)|dz -0 as y—>0.
RA—1

Since (7.7) implies the existence of a harmonic majorant of |u| in
the half-space, we may apply our main theorem to convenient smooth
domains having a part of the boundary contained in x,=0 to get an
alternative proof of the result of Stein and Weiss.

8. Quasibounded and singular harmonic functions.

Parreau [8] has introduced the notions of quasibounded and singular
harmonic functions. Our form of the definition is found in [4]:

DEFINITION. A non-negative harmonic function p is said to be quasi-
bounded if there exists an increasing sequence (b,) of non-negative
bounded harmonic functions such that

p = lim b,;

Nn—>00 "N

p is called singular provided that the only non-negative bounded har-
monic function dominated by p is the constant 0.

As M. Heins [4] has pointed out in the case of harmonic functions
in the open unit disc (or »-dimensional ball), quasibounded (resp. singular)
harmonic functions are precisely those given by Poisson integrals of
non-negative absolutely continuous (resp. singular) boundary measures.

Let W' denote the class of all non-negative harmonic functions in 2
and let ¢ be as in section 7. Denote by LHMu the least harmonic majorant
of a subharmonic function . We recall some result of [4].

(i) If pe W', it admits a unique representation p=g+s, where
¢ is quasibounded and s singular.
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(ii) If p € W' and ¢(p) has a harmonic majorant, then p and LHMg(p)
are quasibounded.

(iii) Let w be subharmonic and suppose that ¢(u) has a harmonic
majorant. Then g(ut) and w* have one. Further, if LHMu=v
and LHMu+t=w, then ¢(w) has a harmonic majorant and

LHMg(u) = LHMgp(v)
and
LHMgp(ut) = LHMgp(w) .

(iv) If & is harmonic and belongs to W, it has a representation
h=p,—p,, where p,e€ W'. The component terms are least, if
we choose p;=LHMu* and p,=p,—h.

Now, if u is subharmonic and ¢(u) € W, by (iii) the function » has a
harmonic majorant. Application of (iv) to LHMu=v gives v=0 —s,
where @ is a difference of quasibounded non-negative harmonic functions
and s is non-negative and singular.

So far, all verifications only use the definition of quasibounded and
singular harmonic functions, and so they are valid in our case.

From (i)-(iv) it follows that

LHMg(u) = LHMgp(Q) ,

and if @ has the boundary measure Q*(y)d(s(y))dV(y), it is possible to
conclude, by help of Riesz’ representation formula that the boundary
measure of LHMg(w) is ¢(Q*(y))d(s(y))dV(y). This gives an alternative
proof for this part of the Solomentsev theorem, and consequently for
the corresponding part of ours. It remains to prove the following lemma.

Lemwma 8.1, If ue W', then

(a) w is quasibounded if and only if its boundary measure is absolutely
conlinuous,
(b) w is singular if and only if its boundary measure is singular.

Proor. To prove (b), suppose w € W’ with singular boundary measure
du, If h is bounded and non-negative, its boundary measure dy, is
absolutely continuous. If % is dominated by u, we get

0 < dv, < du,,

and so dv, is singular. Consequently A is zero.
Conversely, suppose that w e W' is singular. We have
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u(w) = [ G,@.9) duyy).,

where dy,(y)=A(y)8(s(y))dV(y) + du,'(y) with Ae L}(3@2) and dp, 20
and singular. Since

0 < min(A(y),m)d(s(y)) dV(y) = duly),

where m is a positive integer, we get
0 = b,(2) = [ Gy(a,y) min(A(y),m) o(s(y) AV(y) < ulx) .

It follows that b, is 0, and so (by lemma 7.2) that min(A(y),m)=0 a.e.
We conclude A=0 a.e., and du, is singular.

For the proof of (a), assume that ¢ is quasibounded and let (b,) be
a sequence of non-negative bounded harmonic functions increasing to g.
Then each b, has an absolutely continuous boundary measure and

ba(e) = [ G ) 2,0 0(sw) AV (),
where (4,) is an increasing sequence of L!-functions on 02. Since
lim, ., [ 64(2,9)20)8(s(0)) AV (9) = q@) < .
Beppo Levi’s theorem asserts that lim, , 4,=24¢€ LY(92) and
1@) = [ 6,9)1)8(s(0)) AV @) .

Conversely, if ¢ has an absolutely continuous boundary measure and
g=q' +s is the representation of ¢ with ¢’ quasibounded and s singular,
from what we just have proved, ¢’ has an absolutely continuous boundary
measure. Then, so has s and by (b), s is zero.
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