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Comparative Sequence Analysis of the Non-Protein-
Coding Mitochondrial DNA of Inbred Rat Strains
Avinash Abhyankar1*, Hee-Bok Park1, Giancarlo Tonolo1,2, Holger Luthman1
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Abstract

The proper function of mammalian mitochondria necessitates a coordinated expression of both nuclear and mitochondrial
genes, most likely due to the co-evolution of nuclear and mitochondrial genomes. The non-protein coding regions of
mitochondrial DNA (mtDNA) including the D-loop, tRNA and rRNA genes form a major component of this regulated
expression unit. Here we present comparative analyses of the non-protein-coding regions from 27 Rattus norvegicus mtDNA
sequences. There were two variable positions in 12S rRNA, 20 in 16S rRNA, eight within the tRNA genes and 13 in the D-loop.
Only one of the three neutrality tests used demonstrated statistically significant evidence for selection in 16S rRNA and
tRNA-Cys. Based on our analyses of conserved sequences, we propose that some of the variable nucleotide positions
identified in 16S rRNA and tRNA-Cys, and the D-loop might be important for mitochondrial function and its regulation.
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Introduction

Mitochondria are the major energy producers in eukaryotic

cells. Over millions of years of coexistence and coevolution,

mitochondria have lost a considerable amount of their genome to

the eukaryotic nuclear DNA [1,2]. The mammalian mitochondrial

DNA (mtDNA) encodes 37 genes, 13 of which form essential

subunits of four mitochondrial respiratory chain complexes. The

remaining genes for these complexes are encoded by the nuclear

genome. Consequently, mitochondrial biogenesis, and hence

function, needs an elaborate coordination of nuclear and

mitochondrial gene expression [3,4]. Apart from several ultra-

short intergenic non-coding regions, mtDNA possesses a large

non-coding D-loop that harbors regulatory regions for transcrip-

tion and replication. The D-loop regulates mitochondrial

replication and transcription in accordance with the energy

demands, while the mitochondrial rRNAs and tRNAs ensure

fulfillment of this task. Having its own genetic code different from

the nuclear genetic code, mitochondria need their own protein

biosynthesis system in the form of the mitochondrial ribosome

(mitoribosome) built around 12S rRNA and 16S rRNA. The

mitoribosome is responsible for the biosynthesis of the 13 proteins

coded by the mtDNA and translates them with the help of 22

tRNAs also encoded by mtDNA. The non-protein-coding regions

of the mtDNA are indispensable for cellular energy homeostasis,

and genetic variation in these regions could have metabolic and

fitness consequences. Since the protein-coding and the non-

protein-coding regions of mtDNA serve different purposes –

function and regulation of function – the variation pattern and the

evolutionary pressures are expected to be different. Furthermore,

the relative significance of coding sequence variation compared to

the regulatory sequence variation, from an evolutionary perspec-

tive, remains poorly understood [5]. For this reason we

investigated the protein-coding and the non-protein-coding

regions separately. Here we present a molecular evolutionary

analysis of the RNA genes and the D-loop of the rat mitochondrial

genome. Information from 27 complete Rattus norvegicus mtDNA

sequences was used.

Results

Ribosomal RNA Genes
The mitoribosome is composed of a small subunit consisting of

12S rRNA and 29 proteins and a large subunit consisting of 16S

rRNA and 58 proteins [6]. Comparison of the 27 rat mtDNA

sequences (Table S1) revealed seven variable positions in 12S

rRNA, five of them unique to the wild rats (Table S2). Excluding

the five variant positions unique to the wild rats, only positions 935

and 942 were considered for further analysis. None of these two

variable positions alter the predicted 12S rRNA secondary

structure or the free energy estimates. Mapping of these two sites

on the consensus secondary structure for mammalian mitochon-

drial 12S rRNA showed that they are located in the 39 minor

domain [7]. However, we could not find any conservation at these

two positions when compared to nine different mammalian species

(data not shown). In 16S rRNA there were 23 variable positions, 20

of those were found among the inbred strains, while three variable

positions were unique to the wild rats (Table S2). Within 16S

rRNA, we noted a poly-C tract starting at position 1131 varying

between five and eleven cytosines. Six of the variant positions were

located in this poly-C tract. Taken together in haplotypes, the

variant positions within 16S rRNA affect the topology and free
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energy estimates of the predicted secondary structures. We also

assessed the conservation pattern for these variants using multiple

alignments of nine different mammalian mitochondrial sequences.

Of the variable positions in 16S rRNA only position 2170 was

conserved among mammalian species; this C to T substitution is

located in a 28-nucleotide long conserved sequence in close

proximity to the L1-binding domain (Figure 1).

Transfer RNA Genes
The comparative analysis of the 22 tRNAs in mtDNA revealed

a high degree of conservation. Only five of the 22 tRNAs had

variable sites occurring in more than one strain (Table S2). All

singletons were attributed to the wild rat sequences, except one at

position 15350 that was unique to the WKY/NCrl strain. Three

variable sites were observed in tRNA-Cys and two in tRNA-Pro,

while tRNA-Tyr, tRNA-Asp and tRNA-Thr had one variable site

each. There was a clear grouping pattern of the Wistar-derived

and non-Wistar derived strains of the three variable positions in

tRNA-Cys (positions 5200, 5202 and 5237). All strains originating

from the Wistar rat (Table S2) shared the same allele at all these

three positions indicating inheritance of an ancestral haplotype. At

position 5202 the ‘Wistar’ allele was also shared by three wild rats

– Wild/Cop, Wild/Tku and Wild/Mcwi. A similar Wistar-specific

grouping was seen for the remaining four variable tRNA genes

(tRNA-Tyr, tRNA-Asp, tRNA-Thr and tRNA-Pro). To assess the

structural implications of these variants, we modeled their

secondary structures based on consensus secondary structures of

the mammalian mitochondrial tRNAs [8]. Figure 2 shows our

secondary structure models for all the five tRNA genes.

The D-Loop
The only major non-coding region of the mitochondrial DNA is

the D-loop. A total of 13 variable sites were found in the D-loop of

inbred strains – eleven substitutions and two insertion/deletions.

We mapped the known D-loop functional sites to the rat

mitochondrial sequence [9,10,11,12] (Table 1). Six substitutions

were located in the termination associated sequences (TAS,

ETAS), one substitution in the central block (CB), while the

conserved sequence block 2 (MT-CSB2) had one insertion/

deletion. Position 15460, located in ETAS1 deserves special

attention since it is not only conserved between various Rattus

species (R.rattus, R.exulans, R.tiomanicus, R.hoffmanni, R.tanezumi, and

R.sordidus) but also in nine different mammalian species. The last

nucleotide of the D-loop was also variable.

Tests for Selection
The Tajima’s D test and the Fu & Li’s D and F tests were

performed on all the RNA genes and the D-loop to assess any

deviation from neutrality. Since the results of these tests would also

be influenced by population size changes, we estimated the FS and

R2 statistics but did not find support for such population changes

(data not shown). We found evidence for selection in 16S rRNA and

tRNA-Cys based on Tajima’s D test, whereas Fu and Li’s D and F

tests did not provide any evidence for selection in the RNA genes

or in the D-loop (Table 2).

Discussion

Mitochondrial DNA encodes few but essential components of

the respiratory chain complexes I, III, IV and V. The two

ribosomal RNAs provide a scaffold for the mitochondrial

ribosomal proteins (MRPs). The mammalian mitoribosome has

significantly reduced RNA content as compared to its bacterial

counterpart; this reduction is accounted for by an increase in the

number of MRPs [13,14]. This reduction exerts strict structural

constraints on the ribosomal RNAs for efficient and accurate

Figure 1. Location of variable position 2170 in the predicted secondary structure of the mammalian mitochondrial 16S rRNA. In the
enlarged L1 binding domain, position 2170 is encircled and highlighted by a red arrow. L1-BD denotes the L1 binding domain. I, II, III, IV, V and VI
represent the rRNA domains, while black arrows represent the predicted tertiary interactions. Blue color represents regions predicted from
comparative sequence analysis, orange colour represents predictions by Mfold software, while green colour in domain III represents alternative
secondary structure predicted using Alifold software. The figure has been modified from reference [6].
doi:10.1371/journal.pone.0008148.g001
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function. In bacteria and archea the ribosomal protein L1 has a

dual function as a ribosomal protein binding 23S rRNA and as a

translational repressor by binding mRNA [15,16]. The L1 binding

domain in the mammalian mitochondrial 16S rRNA was found to

be highly conserved [17]. According to our analysis, only one of

the observed variable positions in the rat 16S rRNA (position 2170)

is highly conserved and might be of functional importance due to

its close proximity to the L1 binding domain (Figure 1).

Out of the 22 tRNA genes only five had variant positions among

the 27 investigated rat sequences. According to our prediction,

tRNA-Cys variant A5202G could potentially have a destabilizing

effect on its secondary structure and compromise the efficiency of

cystein incorporation in a growing peptide chain. Stem-loop

structures in the vicinity of the L-strand origin are also important

for accurate and efficient replication of mtDNA [18,19,20]. Two

of the three tRNA-Cys variants (positions 5200 and 5202) are

located in these loop structures. Taken together, the observed

variation in the rat mitochondrial tRNA-Cys might not only affect

the role as a tRNA but also affect priming of L-strand replication.

Mitochondria have an unusually high capacity for initiation of

DNA replication, higher than needed for maintenance of mtDNA

copy number. However, almost 95 percent of the replication events

terminate prematurely resulting in formation of the 7S DNA [21].

Specific conserved short sequences have been identified that are

associated with this premature termination event and are referred to

as TAS and ETAS (extended TAS) elements [11,22]. It has been

shown that this replication termination might regulate the mtDNA

copy number [23,24]. The levels of mtDNA within a cell change

Figure 2. Inferred secondary structures for (A) tRNA-Cys, (B) tRNA-Tyr, (C) tRNA-Asp, (D) tRNA-Thr and (E) tRNA-Pro. Variable sites are
highlighted in grey. The anticodon loop appears at the bottom of each model.
doi:10.1371/journal.pone.0008148.g002
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according to the oxidative needs and, coupled with transcription,

defines the oxidative capacity of the cell. Eight variant nucleotide

positions within the D-loop were located in known functional sites.

However, analysis of mitochondrial D-loop sequences from 27

mammalian species revealed a length variation in the ETAS

sequences [25]. Moreover, in the human mtDNA two regions, HV1

and HV2, have been shown to be hypervariable [26,27]. HV1 in

human mtDNA corresponds to positions 15284215643 in the rat

and hence, the variant nucleotide positions at these locations might

not lead to major functional changes (Table 1). However, the D-

loop variations located within the central block (CB) and conserved

sequence block 2 (MT-CSB2) might affect mitochondrial biogen-

esis, since they are located outside the two hypervariable regions.

The results of the neutrality tests did not provide obvious

evidence for selection in any of the non-protein-coding regions.

Only Tajima’s D test provided evidence for selection in 16S rRNA

and tRNA-Cys. The disagreement between the tests is likely caused

by the different approaches employed to identify deviation from

neutrality. The two Fu & Li’s tests consider the genealogy of the

sequences used to estimate the statistics, while the Tajima’s test is

genealogy independent. Considering the different sensitivities of the

neutrality tests to the number of variable sites, these results must be

interpreted with caution. Moreover, due to high mutation rate in

mtDNA, especially in the D-loop, it is not possible to account for

reverse-mutations, and hence we cannot completely rule out

selection with the methods used. It should also be considered that

the results presented here are based on analysis of 23 inbred strains

and only four sequences from wild rats. In conclusion, we have

identified a few sites in the RNA genes and the D-loop that might

play a role in mitochondrial biogenesis and maintenance.

Table 1. Functional sites in the D-loop of rat mtDNA.

Locus Description Start (bp) End (bp) Variants

ETAS1 Termination-associated sequence 15446 15503 1 substitution

TAS-D Termination associated sequence 15497 15511 1 substitution

TAS-C Termination associated sequence 15520 15531 0

TAS-B Termination associated sequence 15541 15554 1 substitution

TAS-A Termination associated sequence 15571 15584 1 substitution

ETAS2 Termination-associated sequence 15511 15572 2 substitutions

CB Central Block 15673 15979 1 substitution

MT-OHR H-strand origin 16026 16026 0

MT-CSB1 Conserved sequence block 1 16027 16052 0

MT-CSB2 Conserved sequence block 2 16083 16099 1 insertion/deletion

MT-CSB3 Conserved sequence block 3 16116 16133 0

MT-LSP L-strand transcript initiation site 16193 16193 0

MT-TFL Tfam binding site 16212 16226 0

MT-TFH Tfam binding site 16267 16286 0

MT-HSP1 H-strand transcript initiation site 16298 16298 0

Nucleotide numbering represents position in the BN/SsNHsdMCW mtDNA sequence (Acc. No. NC_001665).
doi:10.1371/journal.pone.0008148.t001

Table 2. Summary statistics for selection analyses in the non-protein-coding mtDNA.

Feature No. variable sites No. haplotypes Diversity per site Tajima’s D Fu & Li’s D Fu & Li’s F

12S rRNA 3 2 0.001 2.037 0.858 1.35

16S rRNA 20 8 0.003 2.56** 0.765 1.48

tRNA-Cys 3 3 0.022 2.323* 0.62 1.00

tRNA-Tyr 1 2 0.007 1.566 0.642 1.01

tRNA-Asp 1 2 0 1.566 0.62 1.00

tRNA-Thr 1 2 0.007 1.505 0.642 0.99

tRNA-Pro 2 3 0.003 21.164 21.558 21.66

D-loop 12 6 0.003 1.334 1.105 1.10

All estimates exclude singletons observed in the sequences from wild rats.
Tajima’s D = Results of Tajima’s D test.
Fu & Li’s D = Results of Fu & Li’s D test with outgroup.
Fu & Li’s F = Results of Fu & Li’s F test with outgroup.
* = P,0.05.
** = P,0.01.
doi:10.1371/journal.pone.0008148.t002
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Materials and Methods

Sequences and Analysis
Twenty seven complete Rattus norvegicus mtDNA sequences

available in public databases were used, 13 of which have been

sequenced in our laboratory (Table S1). The wild rats included in

the study were caught at different geographical locations – Wild/

Swe (Malmö, Sweden), Wild/Mcwi (Milwaukie, USA), Wild/Cop

(Copenhagen, Denmark), and Wild/Tku (Tokyo, Japan). Total

genomic DNA extracted from rat tail was used to PCR amplify

mtDNA with 32 overlapping primer pairs (Table S3). PCR

products were cleaned with ExoSAP-IT (USB Corporation). Cycle

sequencing was performed using BigDye (Applied Biosystems)

followed by ethanol-EDTA precipitation and separation on

ABI3730 DNA Sequencer (RSKC-Malmö core facility). The

sequences were processed with Phred [28,29] to assign quality

values to each base call and assembled with the STADEN software

[30].

Comparative Sequence Analysis of the Non-Coding
Mitochondrial DNA

Multiple sequence alignments were computed using ClustalX

[31] and visually inspected. DnaSP v. 4.50.3 [32] was used to

estimate the nucleotide statistics (segregating sites, haplotypes,

nucleotide diversity). Since no crystal structure data are available

for mammalian mitochondrial ribosomal RNAs, we referred to the

predicted models for the mammalian mitoribosome [6,33,34].

Selected rat mitochondrial tRNA secondary structures were

modeled on the predicted mammalian mitochondrial tRNA

structures [8]. To assess the impact of variations in the RNA

genes Mfold web server was used to compute the minimum free

energy structures [35].

Tests to Identify Selection
Tajima’s D test [36], Fu & Li’s D and F tests with outgroup [37]

were performed using DnaSP v. 4.50.3 [32]. For the Fu & Li’s

tests, we used the mouse reference mtDNA sequence (NC_005089)

as outgroup. All these tests assess whether the DNA sequence is

evolving randomly (neutrally) or by a non-random process. Non-

random processes stand for either directional selection or

balancing selection. However, non-random events might also be

due to changes in the population size. To assess the effect of

population changes we estimated the FS [38] and R2 [39] statistics

using the DnaSP program. Fu’s FS test estimates population

changes by considering the number of different haplotypes in the

sample, while the R2 compares the difference between the number

of singleton mutations and the average number of nucleotide

differences. In lieu of coalescence based permutation tests, the

selection tests were assessed for sensitivity to the number of

segregating sites. Both the Fu & Li’s tests were considerably less

sensitive to the number of segregating sites modeled on the dataset.

Since the wild rat sequences were quiet divergent from the inbred

population we did not include these wild rat sequences in the

neutrality tests.
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