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Chapter 1Introdu
tion and SummaryThis thesis examines �nan
ial market volatility and volatility spill-over between �nan
ialmarkets. It 
onsists of three papers and fo
uses on adapting and proposing models forthe estimation and fore
asting of �nan
ial market volatility. Di�erent appli
ations of theestimated and fore
asted volatility are demonstrated in ea
h paper. The next se
tionsgive a brief introdu
tion to the parametri
 and nonparametri
 volatility models, as wellas the estimation methods used in this thesis. A short summary of ea
h paper follows.1.1 The volatility modelsVolatility is de�ned as the degree to whi
h the pri
e of an equity or other �nan
ial assetstends to move or �u
tuate over a period of time. It plays a 
entral role in the valuationof su
h �nan
ial derivatives as options and futures and 
an, in fa
t, have a large e�e
t onportfolio sele
tion and risk management. Therefore, volatility modeling and fore
astingis 
entral to �nan
e; it has been one of the most a
tive areas of resear
h in empiri
al�nan
e and time series e
onometri
s during the past two de
ades.Most resear
hers agree that volatility is predi
table in many asset markets (see, e.g.,Bollerslev et al., 1992), although they di�er on how it should be modeled. The eviden
efrom the 
ontemporary �nan
e literature for predi
tability has led to a variety of ap-proa
hes. The initial developments were tightly parametri
, but the re
ent literature hasmoved in less parametri
, and even fully nonparametri
, dire
tions. The 
ommon empir-i
al observation is that �nan
ial market volatility is time varying and persistent, shows
lustering, responds asymmetri
ally to sho
ks, and is di�erent a
ross assets, asset 
lasses,and 
ountries. (see, e.g., Bollerslev et al., 1992)1.1.1 The parametri
 modelsIn �nan
ial time series, one often observes that big sho
ks tend to be followed by bigsho
ks in either dire
tion, and small sho
ks tend to follow small sho
ks. This is referredto as volatility 
lustering. In order to model su
h patterns, the ARCH model (Engle,1982) and the GARCH model (Bollerslev, 1986) allow the varian
e to depend upon1



2 CHAPTER 1its history. Sin
e those models were introdu
ed, the �nan
ial e
onometri
s literature hasfo
used 
onsiderable attention on time-varying volatility and development of new tools forvolatility measurement, modeling, and fore
asting based on the ARCH and the GARCHmodel. One of the most interesting extensions of the ARCH and GARCH models are the�asymmetri
� volatility models that 
onsider the asymmetri
 response to sho
ks.Volatility's asymmetri
 phenomenon, where it in
reases more after a negative thanafter a positive sho
k of the same magnitude, is another 
ommon empiri
ally observed
hara
teristi
 of �nan
ial markets. This implies a negative 
orrelation between returninnovations and future expe
ted 
onditional varian
es. Two e
onomi
 theories explainasymmetri
 volatility: the leverage e�e
t and time-varying risk premia (volatility feed-ba
k). The leverage e�e
t (see, e.g., Bla
k, 1976 Christie, 1982) indi
ates that an in
reasein �nan
ial leverage leads to an in
reased volatility level. Volatility rises when sto
k pri
esgo down and de
reases when sto
k pri
es go up. As an alternative explanation of thelarger in
rease in volatility after a negative sho
k, many resear
hers (see, e.g., Fren
het al., 1987 Campbell and Hents
hel, 1992 Wu, 2001) state that news that volatility willbe higher in the future will indu
e risk-adverse investors to sell positions today untilexpe
ted return rises to 
ompensate for the risk, ne
essitating an immediate sto
k-pri
ede
line to allow for higher future return. Hen
e, the leverage hypothesis 
laims returnsho
ks lead to 
hanges in 
onditional volatility, whereas the time-varying risk premiumtheory 
ontends that return sho
ks are 
aused by 
hanges in 
onditional volatility.The GJR-GARCH model of Glosten et al. (1993) is spe
i�
ally designed to a

ommo-date su
h asymmetries. Within this model, the asymmetry is identi�ed and determinedby a dummy that depends on the sign (negative and positive) of the 
orresponding re-turn innovations in the 
onditional varian
e equation. A similar motivation underlies theEGARCH model in Nelson (1991). Although the log-transform 
ompli
ates the 
al
ula-tion of 
onditional varian
e fore
asts, it 
onveniently avoids having to impose nonnega-tivity on the parameters of the varian
e equation.Alternatively, as dis
ussed above, the asymmetries in the return�volatility relation-ship may also be attributed to volatility feedba
k. This feature is 
aptured by theARCH/GARCH-in-Mean type formulation (Engle et al., 1987), in whi
h the fun
tionalform of the 
onditional mean depends expli
itly on the 
onditional varian
e. A number ofpapers have employed this framework to 
apture the empiri
ally observed asymmetry inequity-return volatility (see, e.g., Campbell and Hents
hel, 1992 Bekaert and Wu, 2000).Another important empiri
al �nding is the strong volatility persisten
e showing inmost daily and weekly �nan
ial returns. To 
apture this, Engle and Bollerslev's (1986)IGARCH model dire
tly imposes unity on the sum of the return-innovation 
oe�
ientsand the lagged varian
e. However, the imposition of a unit-root in the 
onditional varian
earguably exaggerates the true dynami
 dependen
ies. Several alternative long-memory, orfra
tionally integrated ARCH-type formulations have also been estimated and analyzedmore formally in the literature (see, e.g., Baillie et al., 1996 Ding et al., 1993 Zumba
h,2004). Possible explanations for the apparent long-memory dependen
ies based on theaggregation of volatility 
omponents have been explored by many resear
hers (see, e.g.,Andersen and Bollerslev, 1997 Engle and Lee, 1999 Liu, 2000).



1.1. THE VOLATILITY MODELS 3Meanwhile many resear
hers argue that the high persisten
e in volatility and lowera

ura
y in the volatility fore
ast are due to stru
tural breaks (see, e.g., Engle andBollerslev, 1986 Diebold and Inoue, 2001). Lamoreux and Lastrapes (1990) show thatthe model with swit
hed parameter values, su
h as Hamilton's (1989) Markov swit
hingmodel, may provide a more a

urate tool for modeling volatility. Hamilton and Susmel(1994) indi
ate also that a Markov swit
hing pro
ess 
an provide a better statisti
al �tto the data than the traditional GARCH model.1.1.2 The nonparametri
 modelsThe term nonparametri
 (Li and Ra
ine, 2007) refers to statisti
al te
hniques that do notrequire a resear
her to spe
ify a fun
tional form for the estimated obje
t. Rather thanassuming the fun
tional form of an obje
t is known up to a few unknown parameters, thenonparametri
 model substitutes less-restri
tive assumptions, su
h as di�erentiability andmoment restri
tions, on the estimated obje
t. Sin
e nonparametri
 te
hniques make fewerassumptions about the estimated obje
t than do parametri
 te
hniques, nonparametri
estimators tend to be slower to 
onverge to the obje
ts being studied than 
orre
tlyspe
i�ed parametri
 estimators. In addition, unlike their parametri
 
ounterparts, the
onvergen
e rate is typi
ally inversely related to the number of variables involved, whi
his sometimes referred to as the �
urse of dimensionality.� However, it is often the 
ase that,even for moderately sized data sets, nonparametri
 approa
hes 
an reveal stru
ture in thedata that might be missed when using parametri
 fun
tional spe
i�
ations. Therefore,nonparametri
 methods are more appropriate when i) we know very little about thefun
tional form or the distributions of the obje
t being estimated, ii) the number ofvariables is not too large, and iii) we have reasonably large data set.Further, semiparametri
 refers to statisti
al te
hniques that do not require a re-sear
her to spe
ify a parametri
 fun
tional form for some part of the estimated obje
tbut do require parametri
 assumptions for other parts.Nonparametri
 and semiparametri
 methods have attra
ted great interests from statis-ti
ians in the past few de
ades (see, e.g., Silverman, 1986 Härdle, 1990 S
ott, 1992 Wandand Jones, 1995 Fan and Gijbels, 1996 Härdle et al., 2004 Fan and Yao, 2005). The para-metri
 pro
edures for volatility modeling rely on expli
it fun
tional-form assumptionsregarding the expe
ted volatility. The nonparametri
 pro
edures are generally free fromsu
h fun
tional-form assumptions and a�ord estimates of volatility that are �exible yet
onsistent (Andersen et al., 2005). The advantages of the nonparametri
 model in
lude,for example, disregarding the fun
tional form of the volatility and the strong assumptionsof the distribution of the residuals in the 
onditional mean equation. Bülman and M
Neil(2002) introdu
e a nonparametri
 GARCH model in whi
h the latent volatility pro
essis a nonparametri
 fun
tion of the lagged return residuals and the lagged volatility.In this thesis, we apply Bülman and M
Neil's (2002) nonparametri
 GARCH modelto volatility estimating and fore
asting. As mentioned above, the 
urse of dimensionalityis a 
ommon problem in nonparametri
 smoothing. The additive semiparametri
 modelis a 
ommon tool to redu
e nonparametri
 fun
tions' dimension as a remedy to the
urse of dimensionality. Therefore, we use additive regression to de
ompose the whole



4 CHAPTER 1nonparametri
 fun
tion of Bülman and M
Neil's (2002) nonparametri
 GARCH modelinto several additive stru
tured nonparametri
 fun
tions.1.2 The estimation methodsIn this se
tion, we introdu
e the estimation methods used for the volatility estimationand fore
asting in this thesis.1.2.1 Bayesian-based Markov 
hain Monte Carlo methodThe maximum likelihood method is 
ommonly used for parametri
 estimation. With thismethod, a model is estimated by maximizing the likelihood fun
tion of the data, andthe statisti
al inferen
e is made based on the �tted models. However, some 
ompli
atedmodels, su
h as the Markov swit
hing model, are a mixture over all possible state 
on�g-urations. This makes model estimation infeasible with the maximum likelihood method.With the advan
es in the 
omputing fa
ilities, the Bayesian-based Markov 
hain MonteCarlo (MCMC) method has been widely used in �nan
ial e
onometri
s and �nan
ial mod-eling nowadays. We use the MCMC method for the estimation of the regime-swit
hingmodel used in the third paper (see Chapter 4 in details).The 
onditional distribution and the prior distribution play essential roles in theMCMC method. For example, 
onsider an inferen
e problem with parameter ve
tor θ ofan unknown model and with the data set, X. The distribution f(θ | X) of parametersgiven the data is 
alled the posterior distribution, and it is proportional to the produ
tof the likelihood fun
tion f(X | θ) and the prior distribution p(θ). In pra
ti
e, be
ausethe posterior is often either unknown or 
ompli
ated to a

ess dire
tly, one draws theparameters from the prior distributions, whi
h is highly dependent on the resear
her'sknowledge about the parameters of the model.For a univariate posterior draw, if the prior and posterior distributions belong to thesame family of distributions, the prior distribution is 
alled a 
onjugate prior distribution,and it 
an dramati
ally simplify the MCMC drawn. Some well-known 
onjugate priors
an be found in the Bayesian statisti
s of DeGroot (1990).For a joint posterior drawn, German and German's (1984) Gibbs Sampling (or GibbsSampler) is the most 
ommon method when the likelihood fun
tion is hard to obtain. Forexample, if one needs to randomly drawn from the joint distribution of f(θ1, θ2 | X), andthe individual 
onditional distributions (f1(θ1 | θ2,X) and f2(θ2 | θ1,X)) are available.One 
an �rst draw a random number from ea
h of the 
onditional distributions, θ1,0 and
θ2,0, and set it as iteration 0. Then iteration 1 is based on 
ontinuously drawn information,obtaining θ1,1 = f1(θ1 | θ2,0,X) and θ2,1 = f2(θ2 | θ1,1,X). Next, the resear
her uses thenew parameters as starting values and repeats the draw to obtain θ1,2 and θ2,2. Repeatingthe iterations for m times yields a sequen
e of (θ1,1, θ2,1), . . . , (θ1,m, θ2,m). Under someregularity 
onditions, (θ1,m, θ2,m) 
onverges to the targeted joint draw of f(θ1, θ2 | X).Besides the above method, in this thesis, we have also used a spe
ial type of GibbsSampler to draw the model parameters in the third paper: Tanner's (1996) Griddy Gibbs



1.3. SUMMARY OF THESIS 5sampler. This method is very appli
able when the posterior distribution is univariate. Themain idea is to form a simple approximation of the inverse CDF of the posterior density,then draw a uniform random number and transfer the observation via the approximatedinverse CDF to obtain a random draw for the parameters (see details in Chapter 4).1.2.2 The additive semiparametri
 regressionWe use the additive approa
h to redu
e the dimension of the nonparametri
 fun
tion forthe �rst two papers in the thesis. The method is from Hastie and Tibshirani (1990). We
onsider a estimation of s0, s1(·), . . . , sp(·) in the additive stru
ture,
E(Y | x) = s0 +

p∑

j=1

sj(Xj), (1.1)where Esj(Xj) = 0 for every j. If we assume that the model, Y = s0 +
∑p

j=1 sj(Xj) + εis in fa
t 
orre
t, and assume also that we know s0, s1(·), . . . , sj−1(·), sj+1(·), . . . , sp(·),and further de�ne the partial residual as
Rj = Y − s0 −

∑

k 6=j

sk(Xk), (1.2)then E(Rj | Xj) = sj(Xj) and minimizes E(Y − s0 −
∑p

k=1 sk(Xk))
2. As we do notknow sk(·)s, we 
an �nd a way to estimate ŝj(·) given the estimates {ŝi(·), i 6= j}. Theresulting iterative pro
edure is the ba
k�tting algorithm.For example, assume we need to estimate three nonparametri
 fun
tions, E[Y | X] =

s0 + s1(X1) + s2(X2), where X1 and X2 are the explanatory variables. We �rst set theinitialization iteration and let s00 = E(Y ), s01 ≡ s02(·) ≡ 0. The initial nonparametri
fun
tions will be (s00, 0, 0). We then nonparametri
ally regress Y − s00 on X1 to get thefun
tions s11 and regress Y −s00−s11(X1) on X2 to get s12. The same pro
edure is applied toget s10. The nonparametri
 fun
tions are now (s10, s
1
1, s

1
2). We then 
al
ulate RSS = E(Y −

s10−s11(X1)−s12(X2))
2. We go to the next iteration and repeat the same pro
edure to getthe nonparametri
 fun
tions (s20, s21, s22), repeating this pro
edure to iteration m to get thenonparametri
 fun
tions (sm0 , sm1 , sm2 ) su
h that RSS = E(Y − sm0 − s1(X1)

m− sm2 (X2))
2fails to in
rease, yielding the �nal smoothed fun
tions.1.3 Summary of thesisThere are three papers in this thesis. They examine the volatility in the equity and short-term interest-rate markets, and the spillover from the short term interest rate market tothe equity market.



6 CHAPTER 11.3.1 Summary of paper 1The �rst paper, titled "Asymmetry e�e
ts in Chinese sto
k market volatility: A gener-alized additive nonparametri
 approa
h" examines Chinese sto
k market volatility andreturn volatility asymmetry.Given the unique 
hara
teristi
s of the Chinese markets and the fa
t that the typi
alChinese investor is more prone to spe
ulation and less sophisti
ated than those from moremature markets (Tan et al., 2008), the Chinese sto
k volatility behaves di�erently fromthat of other markets. Therefore, the 
onventional volatility models, su
h as the GARCH-family approa
hes, that rely heavily on volatility spe
i�
ation and known distributions ofthe returns, might insu�
iently 
hara
terize the volatility of the Chinese markets. Thispaper therefore applies Bülman and M
Neil's (2002) nonparametri
 smoothing te
hniqueto examine the volatility of the Chinese sto
k markets. Further, we develop a new te
h-nique that applies the iterative estimation algorithm of Bülman and M
Neil's (2002) NPmodel to Hastie and Tibshirani's (1990) Generalized Additive Model. The motivation ofthis adjustment is to avoid the 
urse of dimensionality, to provide a more a

urate volatil-ity fore
ast than the parametri
 models, and to be
ome more 
omputationally e�
ientthan the original nonparametri
 model.The results from this paper suggest that the leverage e�e
t exists in the Chinesesto
k markets: Bad news does a�e
t the return volatility more than good news. How-ever, as implied by the news impa
t 
urve from the GAM NP model, a limited amountof good news is needed to keep the market 
alm. Further, 
ompared with the supe-rior performan
e of the nonparametri
 model in the in-sample volatility estimation andout-of-sample fore
ast, the GJR and EGARCH models tend to overestimate the volatil-ity pro
ess in turbulent periods and yield larger estimation errors. Our results suggestthat the nonparametri
 model is a more appropriate tool to use in estimating the Chi-nese sto
k-return volatility than the parametri
 GARCH models, su
h as the GJR andEGARCH models. We re
ommend the use of the nonparametri
 model in estimating andinvestigating the return volatility in the Chinese sto
k markets and other emerging sto
kmarkets that have features similar to those of the Chinese sto
k markets.1.3.2 Summary of paper 2The se
ond paper, titled �Modeling and fore
asting short-term interest rate volatility: Asemiparametri
 approa
h,� proposes semiparametri
 pro
edures to estimate the short-term interest-rate volatility. This paper is 
oauthored with Sandy Suardi.This paper proposes a semiparametri
 pro
edure to estimate the volatility of theweekly three-month U.S. Treasury bills. The new approa
h a

ommodates asymmetry,levels e�e
t and serial dependen
e in the 
onditional varian
e, and is based on the Bülmanand M
Neil's (2002) nonparametri
 pro
edure. The potential usefulness of the semipara-metri
 approa
h for estimating short-rate volatility is examined by 
omparing its fore
astperforman
e with a variety of one-fa
tor short-rate di�usion models. Results from ourMonte Carlo simulation illustrate the robustness of the semiparametri
 approa
h whenestimating short-rate volatility with misspe
i�
ation in the short-rate drift fun
tion and



1.3. SUMMARY OF THESIS 7the underlying innovation distribution. Moreover, the in-sample fore
ast performan
e ofthe semiparametri
 approa
h is superior to the parametri
 models 
onsidered. The empir-i
al appli
ation to three-month U.S. Treasury bill yields suggests that the semiparametri
estimation pro
edure provides superior in-sample and out-of-sample volatility fore
asts
ompared to the widely used di�usion volatility models of Brenner et al. (1996), whi
h fea-ture asymmetri
 and level-dependent 
onditional varian
e. Although the semiparametri
approa
h does not spe
ify asymmetry in the volatility pro
ess, this pro
edure improvesupon the �t and the predi
tive power of the volatility estimates. We do not �nd anyeviden
e of nonlinearities in short-rate drift and 
onditional skewness in the short-rate
hange distribution. Finally, we demonstrate that the semiparametri
 approa
h, whi
hyields a greater degree of a

ura
y in modeling short-rate 
hange volatility, has pertinentimpli
ations for pri
ing long-dated and path-dependent interest-rate derivatives. Usingthe simulation method, we show that the semiparametri
 modeling approa
h gives riseto signi�
antly di�erent probability distributions of future interest-rate levels 
omparedwith parametri
 short-rate models. The 
on�den
e intervals of future interest-rate levelsare narrower than for any of the parametri
 models 
onsidered, thereby leading to lesspri
e variability in interest-rate derivatives.1.3.3 Summary of paper 3The third paper, titled �The return varian
e of the EMU equity markets and spillovere�e
ts from short-term interest rates,� examines equity-return volatility and the spillovere�e
ts from short-term interest rates in the EMU area.The empiri
al study is 
arried out by estimating an extended Markov swit
hingGJR-in-mean (EMS GJR-M) model with a Bayesian-based Markov 
hain Monte Carlomethodology. Our results suggest that two regimes exist in the EURO area sto
k markets,a high-mean low-varian
e (bull) market and a low-mean high-volatility (bear) market.Most of the Euro 
ountries have the same regime-swit
hing status between the bull andbear markets. The 
orrelation between the �rst two moments of returns is not stableover time, but varies between the bull and the bear markets. Our results also suggestthat bad news from unexpe
ted sto
k returns (negative residuals from returns) has anasymmetri
ally larger e�e
t on the returns and the volatility than good news has. Su
han impa
t is larger in the bear market than in the bull market. Surprisingly, as impliedin the news-impa
t surfa
e, we �nd that 
hanges in short-term interest rates only signi�-
antly a�e
t sto
k market volatility in the bear period in most of the EMU 
ountries. Inparti
ular, the e�e
t of an in
rease in interest rates is asymmetri
ally larger than that ofa de
rease in interest rates. Portfolio performan
e, based on the out-of-sample fore
astresults of various models, indi
ates that the EMS GJR-M model outperforms the MSGJR-M (Markov swit
hing GJR-in-mean ), the single swit
hing GJR-M (GJR-in-mean),and the GJR models. Further, the models with regime swit
hing yield better portfolioperforman
e than those without it, emphasizing the importan
e of the interest-rate im-pa
t and the regime spe
i�
ation when modeling volatility. Ignoring su
h state-dependentasymmetri
 e�e
ts from short-term interest rates on sto
k returns and their volatility willlead to invalid inferen
es, biased volatility fore
asts.
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Chapter 2Asymmetry E�e
ts in Chinese Sto
kMarket Volatility: A GeneralizedAdditive Nonparametri
 Approa
h2.1 Introdu
tionThe Chinese sto
k markets have grown rapidly sin
e the establishment of the ShanghaiSto
k Ex
hange (SSE) in De
ember 1989 and the Shenzhen Sto
k Ex
hange (SZSE) inApril 1991. Spe
ially, with the re
ent boom in China's e
onomy, China's sto
k marketshave been attra
ting an enormous amount of attention from poli
y makers, investors, anda
ademi
s. Chinese sto
k markets are interesting and deserve attention also be
ause theyexemplify many unique 
hara
teristi
s that di�er from well-developed Western �nan
ialmarkets. One of the unique 
hara
teristi
s is that the Chinese sto
k markets are the onlyequity markets 
overed by the International Finan
e Corporation that have 
ompletelysegmented trading between domesti
 and foreign investors (see Chui and Kwok, 1998Yang, 2003). The A-share market is only open to Chinese domesti
 investors while theB-share market was only open to foreign investors before February 2001.1 Many stud-ies (see Chui and Kwok, 1998 Yang, 2003) also address the fa
t that the Chinese sto
kmarkets are tightly 
ontrolled by the government: The markets are at most partiallyprivatized, and the state maintains state shares in varying amounts. The presen
e ofmarket segmentation and heavy government regulations give rise to mispri
ing and in-formation asymmetry, making the market 
learly imperfe
t and in
omplete (Chan et al.,2007). Further, sto
k trading is still new to most domesti
 parti
ipants. The A shares aredominated by domesti
 individual investors who typi
ally la
k su�
ient knowledge and1In order to in
rease the mobility of B shares and to strengthen foreign fund investment on the 
apitalmarket, with a view of paving the way towards China a

ession to the WTO, the Chinese governmentlifted the restri
tion of people in the territory of China investing in B shares on February 19, 2001.However, even after the rule 
hanges, B shares 
annot ex
eed 25% of a 
ompany's total shares to ensurethat Chinese sto
k markets are not overly in�uen
ed by foreign investment, and domesti
 investors 
antrade and own B shares only if they have foreign 
urren
y.11



12 CHAPTER 2experien
e in investments (China Se
urities and Futures Statisti
al Yearbook, 2004).Given the unique 
hara
teristi
s of the markets and given that the typi
al Chineseinvestor is more prone to spe
ulation and less sophisti
ated than those from more maturemarkets (Tan et al., 2008), Chinese sto
k volatility behaves very di�erently from thatof other markets. Therefore, 
onventional volatility models, su
h as the GARCH-familyapproa
hes, that rely heavily on volatility spe
i�
ation and known distributions of re-turns, might insu�
iently 
hara
terize the volatility of the Chinese market. Bülman andM
Neil (2002) propose a nonparametri
 GARCH model (hereafter NP model), in whi
hthe hidden volatility pro
ess is a fun
tion of the lagged volatility and lagged value of theinnovations from returns and is estimated by an iterative nonparametri
 algorithm. Thismodel is more attra
tive than the parametri
 GARCH-family models be
ause it requiresneither a spe
i�
ation of the fun
tional form of the hidden volatility pro
ess nor that ofthe distribution of the innovations.In this paper, we investigate the Chinese sto
k return volatility and the asymmetri
e�e
t of sho
ks on return volatility2 by applying the NP model. Moreover, we 
ontributemethodologi
ally to the literature by suggesting a generalized additive model with thenonparametri
 approa
h (hereafter GAM NP model) that applies the iterative estimationalgorithm of the NP model to the generalized additive model of Hastie and Tibshirani(1990). The motivation for su
h an adjustment is that the GAM NP model 
an avoid the
urse of dimensionality, whi
h is a 
ommon problem for the nonparametri
 estimation ofa multidimensional regression.3 Further, as will be shown in the Monte Carlo simulationand the empiri
al investigation, this newly proposed GAM NP model 
an deliver a morea

urate volatility estimate than the parametri
 GARCH-family models and be
omes
omputationally more e�
ient than the NP model. Also novel in our approa
h is that weextend the news impa
t 
urve from Engle and Ng (1993) to the nonparametri
 
ontextand use it to measure and examine the asymmetri
 e�e
t of sho
ks on volatility.Currently, GARCH-family models are the most 
ommon in the investigation of theChinese sto
k-return volatility and the asymmetri
 e�e
t of market news on volatility.For example, Yeh and Lee (2000) use the GJR model proposed by Glosten et al. (1993)to examine Chinese sto
k market volatility from May 22, 1992, to August 27, 1996.They �nd that investors in China 
hase after good news indi
ating that the impa
t ofgood news (positive unexpe
ted returns) on future volatility is greater than that of badnews (negative unexpe
ted returns). By estimating both the GJR and the EGARCHmodel, Friedmann and Sanddorf-Köhle (2002) report that bad news in
reases volatilitymore than good news in A-share and 
omposite indi
es, whereas good news in
reasesvolatility more than bad news in B-share indi
es based on a sample beginning on May 22,1992, and ending on September 16, 1999. The good-news-
hasing-investor phenomenonin China makes the Shanghai and Shenzhen sto
k markets relatively unique and di�erentfrom many other sto
k markets in the world. Lee et al. (2001) provide the same result2The asymmetri
 e�e
t often refers to the volatility in
reasing more after a negative sho
k than aftera positive sho
k of the same magnitude (see Bla
k, 1976 Christie, 1982).3Under the 
urse of dimensionality, the optimal rate of 
onvergen
e of a nonparametri
 estimationof a multidimensional regression de
reases with in
reasing dimensionality (Linton and Mammen, 2005).For the multidimensional smoothing, e�orts must be made to alleviate the problem (Härdle et al., 2004).



2.2. MODELING TIME-VARYING VOLATILITY 13as Friedmann and Sanddorf-Köhle (2002) with the EGARCH model and daily returndata from De
ember 12, 1990, to De
ember 31, 1992. Zhang and Li (2008) investigatesthe asymmetry e�e
t of bad news on Chinese sto
k volatility with a partial adjustmentpro
ess. They �nd that the asymmetry e�e
t begins to appear in May 1996. Dividing thetotal sample into two periods, Huang and Zhu (2004) produ
e results from the EGARCHand GJR models showing that the asymmetry e�e
t only exists in the period betweenFebruary 2001 and September 2003.In view of the di�erent �ndings from past resear
h regarding the leverage e�e
t ofChinese sto
k-return volatility, we examine Chinese sto
k market volatility and the asym-metri
 e�e
t of market news on the volatility using data from January 2, 1997, to August31, 2007. Several questions will be addressed in the investigations: Do Chinese sto
k mar-ket volatilities rea
t asymmetri
ally to sho
ks as in most mature sto
k markets in theworld? Are investors in the Chinese sto
k markets still 
hasing after good news? Dovolatilities in the Shanghai and in the Shenzhen sto
k markets rea
t similarly to themarket news? The answers to these questions have important impli
ations for marketpra
titioners fore
asting sto
k returns and volatility, and for risk managers formulatingoptimal strategies for portfolio sele
tion and risk management.The results from this paper suggest that the leverage e�e
t exists in the Chinese sto
kmarkets: Bad news does a�e
t return volatility more than good news. However, as impliedby the news impa
t 
urve (NIC) from the GAM NP model, a small amount of good newsis needed to keep the market 
alm. Further, 
ompared with the superior performan
eof the GAM NP in the in-sample estimation and the out-of-sample fore
ast, the GJRand EGARCH models tend to overestimate the volatility pro
ess in turbulent periodsand yield larger estimation errors. Our results suggest that the nonparametri
 smoothingapproa
h is a more appropriate tool for estimating Chinese sto
k-return volatility thanthe parametri
 GARCH models.The rest of the paper is organized as follows. In se
tion 2.2, we present the non-parametri
 models and the model estimation algorithm. Se
tion 2.3 performs the MonteCarlo simulation to evaluate the performan
e of the parametri
 and nonparametri
 mod-els. Se
tion 2.4 
ompares the performan
e of the nonparametri
 models with variousGARCH-family models and examines the asymmetri
 e�e
ts of sho
ks on the volatility.Se
tion 2.5 
on
ludes.2.2 Modeling time-varying volatilityIn this se
tion, we introdu
e the NP and GAM NP models and the model-estimationalgorithm used to estimate Chinese sto
k market volatility. As we will evaluate and
ompare the performan
e of the nonparametri
 models with the parametri
 models, we�rst introdu
e the parametri
 GARCH-family models.



14 CHAPTER 22.2.1 Parametri
 GARCH-family modelsBollerslev (1986)'s GARCH model has been the most widely used model for the volatilityestimation sin
e it was �rst proposed. As pointed out by Bera and Higgins (1993), most ofthe applied �nan
ial works show that GARCH (1,1) provides a �exible and parsimoniousapproximation to the 
onditional varian
e dynami
s and is 
apable of representing themajority of �nan
ial series. The GARCH (1,1) model is written as
Rt = µ+Xt, Xt = σtzt, zt ∼ N(0, 1),

σ2
t = ω + α1X

2
t−1 + β1σ

2
t−1, (2.1)where ω > 0, α1, β1 ≥ 0, (α1+β1) < 1, and Xt−1 may be treated as a 
olle
tive measureof news about equity returns arriving to the market over the previous periods.In the simple GARCH (1,1) approa
h, good news and bad news�positive and neg-ative sho
ks�have the same impa
t on the 
onditional varian
e. Many studies havefound eviden
e of asymmetry in sto
k-pri
e behavior: Negative surprises seem to in
reasevolatility more than positive surprises do. To allow asymmetri
 e�e
ts in the volatility,Glosten et al. (1993) add an additional term in the 
onditional varian
e and formulatethe so-
alled GJR model. The GJR (1,1) is spe
i�ed as

Rt = µ+Xt, Xt = σtzt, zt ∼ N(0, 1),

σ2
t = ω + β1σ

2
t−1 + (α1 + γI)X2

t−1, (2.2)where ω > 0, (α1 + γ) ≥ α1 ≥ 0, β1 ≥ 0, (α1 + 0.5γ + β1) < 1. I is an indi
ator fornegative Xt−1. That is, I = 1 for Xt−1 < 0, and I = 0 for Xt−1 ≥ 0. The stru
ture of thismodel indi
ates that a positive Xt−1 
ontributes α1X
2
t−1 to σt, whereas a negative Xt−1has a larger impa
t of (α1+ γ)X2

t−1 with γ > 0. Therefore, if parameter γ is signi�
antlypositive, then negative innovations generate more volatility than positive innovations ofequal magnitude.Another volatility model that a

ounts for asymmetri
 impa
ts on the 
onditionalvarian
e is Nelson's (1991) exponential GARCH model (EGARCH). The EGARCH(1,1)is spe
i�ed as
Rt = µ+Xt, Xt = σtzt, zt ∼ N(0, 1),

log σ2
t = ω + β1 log σ

2
t−1 + α1





|Xt−1|√
σ2
t−1

− E


 |Xt−1|√

σ2
t−1





+ γ

Xt−1√
σ2
t−1

. (2.3)Here the 
oe�
ient γ signi�es the leverage e�e
t of sho
ks on the volatility. The keyadvantage of the EGARCH model is that the positive restri
tions need not be imposedon the varian
e 
oe�
ients. γ must be negative for eviden
e of asymmetri
 e�e
ts.In this paper, we leave the fun
tional form of the varian
e pro
ess unspe
i�ed andattempt to estimate it as a nonparametri
 mean. We show that the nonparametri
 model
an 
apture the asymmetry e�e
t from the unexpe
ted news and outperforms the more



2.2. MODELING TIME-VARYING VOLATILITY 15
ommon parametri
 GARCH-family models.2.2.2 The generalized additive nonparametri
 modelCompared with the parametri
 models, a nonparametri
 model enjoys advantages ofrelaxing the spe
i�
ation of the varian
e pro
ess and the error-distribution assumptions.One example is the NP model from Bülman and M
Neil (2002):
Rt = µ+Xt, Xt = σtzt,

σ2
t = f(Xt−1, . . . ,Xt−p, σ

2
t−1, . . . , σ

2
t−q), (2.4)where the stationary sto
hasti
 pro
ess {Xt; t ∈ Z} is adapted to the �ltration {Ft; t ∈

Z} with Ft = σ({Xs; s < t}). {zt; t ∈ Z} is an i.i.d. innovation with zero mean and unitvarian
e and a �nite fourth moment. zt is also assumed to be independent of {Xs; s < t}.
f : R×R+ 7−→ R+ is a stri
tly positive valued fun
tion. σt is the time-varying volatilityand σ2

t is the 
onditional varian
e of var[Xt | Ft−k], where {1 ≤ k ≤ max(p, q)}. Bülmanand M
Neil (2002) have shown that the nonparametri
 fun
tion f 
an be estimated byregressing X2
t on the lagged variables Xt−1 and σ2

t−1 using a nonparametri
 smoothingte
hnique.However, the proposed model 
annot avoid the 
ommon problem of a multidimen-sional nonparametri
 smoothing, the 
urse of dimensionality. In order to over
ome thisdi�
ulty, Hastie and Tibshirani (1990) propose the generalized additive model, whi
henables the dependent variable to depend on an additive predi
tor through a nonlinearfun
tion. We apply Hastie and Tibshirani's (1990) generalized additive pro
edure to theNP model whi
h gives rise to the GAM NP model:
Rt = µ+Xt, Xt = σtzt,

σ2
t = µ+ f(Xt−1) + g(σ2

t−1), (2.5)where f : R 7−→ R+ is a positive-valued fun
tion satisfying f(x) = f(−x)�i.e., f(x) =
α|x|, 0 < α < 1�and g : R+ 7−→ R+ is a positive nonde
reasing fun
tion satisfying
g(σ2) = βσ, 0 < β < 1.We observe that the model in equation (2.5) 
an be written with the following trans-formation.

X2
t = µ+ f(Xt−1) + g(σ2

t−1) + Vt,

Vt = (µ + f(Xt−1) + g(σ2
t−1))(z

2
t − 1) (2.6)Clearly, Vt is a martingale di�eren
e series with E[Vt | Ft−1] = 0 and cov[Vs, Vt | Ft−1] = 0for s < t.



16 CHAPTER 2From equation (2.6), it follows that
E[X2

t | Ft−1] = µ+ f(Xt−1) + g
(
σ2
t−1

)
,

var[V 2
t | Ft−1] =

(
µ+ f(Xt−1) + g

(
σ2
t−1

))2 (
E[z4t ]− 1

)
, (2.7)This suggests that we 
an estimate the 
onditional varian
e with a nonparametri
regression of a generalized additive model. The regression is performed a

ording to theadditive stru
ture of σ2

t using the ba
k-�tting algorithm, whi
h was �rst introdu
ed byFriedman and Stuetzle (1981) and generalized by Hastie and Tibshirani (1990). This toolis now widely used for nonparametri
 estimation in iterative pro
edures. We estimate the
onditional varian
e by the generalized additive model a

ording to the following formula.
σ̂2
t = µ̂+ f̂(Xt−1) + ĝ(σ̂2

t−1) (2.8)2.2.3 Estimation algorithmAssume we have a data sample {X2
t : 1 ≤ t ≤ n} satisfying the pro
ess of (2.5).41. In the �rst step, we set m = 1 (the 
urrent iteration) and 
al
ulate a �rst estimateof volatility {σ̂2

t,0: 1 ≤ t ≤ n} as the initial estimation by �tting the data with theGARCH (1,1) model with a maximum-likelihood estimate.2. We regress {X2
t : 2 ≤ t ≤ n} on the lagged returns, {Xt−1 : 2 ≤ t ≤ n} and

{σ̂2
t−1,m−1, 2 ≤ t ≤ n}, through a nonparametri
 smoothing pro
edure with theba
k-�tting algorithm to obtain estimates f̂m and ĝm.3. In the third step, we 
al
ulate {σ̂2

t,m = µ̂m + f̂m(Xt−1,m−1) + ĝm(σ̂2
t−1,m−1) : 2 ≤

t ≤ n} as spe
i�ed in (2.8).4. We pro
eed to in
rement the iteration m and return to the se
ond step until m =
M , where M is the prespe
i�ed total number of iterations.5. Finally, we average the last k of su
h estimates to obtain the �nal smoothed volatil-ity, σ̂t,final, and perform the �nal nonparametri
 regression with the ba
k-�ttingalgorithm by regressing {X2

t : 2 ≤ t ≤ n} against {Xt−1 : 2 ≤ t ≤ n} and σ̂2
t−1,finalto get the �nal estimates f̂final and ĝfinal. The �nal estimated volatility 
an be
al
ulated by σ̂2

t,final = µ̂final + f̂final(Xt−1) + ĝfinal(σ̂
2
t−1,final).2.3 Monte Carlo simulationWe use Monte Carlo simulation to estimate and examine a standard GARCH model anda GARCH model with an asymmetry e�e
t. The purpose of the Monte Carlo simulation isto show that with a signi�
antly large asymmetri
 e�e
t, the GAM NP model 
an o�er4Readers interested in the justi�
ations and proofs of this algorithm are referred to Bülman andM
Neil (2002)



2.3. MONTE CARLO SIMULATION 17better estimates of the unobserved volatility than 
an the parametri
 GARCH-familymodels and 
an perform as well as the NP model (performing even better in many 
ases).We generate n = 1000 observations and 50 realizations for ea
h random pro
ess. For thenonparametri
 models, the number of iterations is set to M = 8, and a �nal smoothing isperformed by averaging the previous four iterations (K = 5) a

ording to the algorithmpresented in the previous se
tion. The performan
e of ea
h model is evaluated usingthe mean of the Mean Squared Error (MSE) and the mean of the Mean Absolute Error(MAE) from ea
h iteration. The MSE and the MAE are 
al
ulated a

ording to theformulas
MSE (σ̂s,m) =

1

n− 20

n∑

t=21

(σ̂t,m − σt)
2 and

MAE(σ̂s,m) =
1

n− 20

n∑

t=21

|σ̂t,m − σt|, (2.9)where σ̂t,m is the estimated volatility at time t from ea
h iteration m and σt is the truevolatility at time t. The �rst 20 values are ex
luded from the 
al
ulation be
ause thevolatility estimates at the �rst few points may be unreliable.The data are simulated from the varian
e pro
ess, whi
h follows GARCH and Thresh-old GARCH (TGARCH) models spe
i�ed as follows.
σ2
t = 7 + 0.1σ2

t−1 + 0.66X2
t−1, (2.10)

σ2
t = 7 + 0.1σ2

t−1 +
(
0.66I{X>0} + 0.2I{X≤0}

)
X2

t−1 (2.11)In the varian
e pro
ess of equation (2.11), the asymmetry e�e
t between the positiveand negative sho
ks is built into the ARCH e�e
t, along the lines of models suggestedby Glosten et al. (1993) and Fornari and Mele (1997). We simulate the pro
ess given byequation (2.11) with t-distributed residuals with four degrees of freedom and estimate itwith both Gaussian and t-distributed errors. Figure 2.1 plots the true volatility surfa
es ofthe pro
esses spe
i�ed in equations (2.10) and (2.11). It 
an be easily seen from Figure 2.1that if the true volatility is under the GARCH spe
i�
ation of pro
ess given by equation(2.10) (the left plot), the volatility surfa
e is very smooth. However, with the asymmetrye�e
t of the pro
ess given by equation (2.11), there is a signi�
ant dis
ontinuity in thevolatility surfa
e. In this 
ase, we show that the nonparametri
 model 
an smooth thesegmented volatility surfa
e quite well and therefore outperforms the parametri
 models.For the purpose of 
omparison, we �t the simulated pro
ess given by equation (2.11)with the EGARCH, GJR and NP models, and 
ompare their �t with that of the GAMNP and NP models. - Figure 2.1 about here -In Figure 2.2, we plot the estimated volatility surfa
es of the eight iterations andthe �nal smoothing of the GAM NP model from one randomly 
hosen iteration. We
an 
learly observe that the smoothing has been well performed already after the �rst



18 CHAPTER 2iteration and the surfa
e has been perfe
tly smoothed at the �nal stage of smoothing.This indi
ates that the estimation algorithm is re
overing the essential features of thevolatility surfa
e and demonstrates the 
onvergen
e of the smoothing method.- Figure 2.2 about here -Table 2.1 
ompares the performan
e of the GARCH, EGARCH, GJR, GAM NPand NP models. Table 2.2 presents the goodness-of-�t simulation results from the non-parametri
 models. It is evident from these two tables that the MSE and MAE of thenonparametri
 models are mu
h lower than those of the parametri
 GARCH models.For example, it 
an be seen from Table 2.2 that the MSE and the MAE are 0.555 and
0.615 for the GARCH model with Gaussian errors before smoothing. The MAE and theMAE start to de
rease in ea
h iteration and rea
h 0.221 (0.261) and 0.339 (0.405) atthe �nal stage of smoothing for the GAM NP (NP) model. Although the EGARCH andGJR (TGARCH) models 
apture the asymmetri
 e�e
ts partially, they 
annot mat
hthe nonparametri
 models' goodness of �t. For example, it 
an be seen from Table 2.1that the MSE and the MAE of the EGARCH model with Gaussian errors are 0.3 and
0.43, respe
tively, while those of the GJR model are 0.39 and 0.507, respe
tively. Moreinterestingly, the goodness of �t of the GAM NP model indi
ates that it performs evenbetter than the NP model: The MSE (MAE) of the GAM NP model (with normal �t)is 15.4% (16.4%) lower than that of the NP model. We also noti
e that the 
hoi
e of thedistribution for the parametri
 GARCH models 
learly matters. There is eviden
e thatthe EGARCH and GJR models with t-distributed innovations perform better than theones with Gaussian innovations, but this is not the 
ase for nonparametri
 estimations.The NP and GAM NP models provide nearly identi
al results with both Gaussian and terrors. Figure 2.3 plots the estimated volatility pro
ess 
ompared with the true volatility,whi
h is an arbitrary sele
tion of 100 observations from a simulated realization of thepro
ess given by equation (2.11). The left-hand plot shows the true volatility (solid line)
ompared with parametri
 GARCH (1,1) estimates with t innovations (dotted line) andthe right-hand plot shows the true volatility (solid line) with the GAM NP estimate ob-tained after a �nal smooth (dotted line). It is 
learly shown in the �gure that the GAMNP model yields volatility estimates that mat
h the true volatility movements betterthan those of the GARCH model. In parti
ular, the sharp spikes observed at the 40thand 90th observations of the true volatility are well 
aptured by the GAM NP model butnot by the GARCH model.- Tables 2.1, 2.2 and Figure 2.3 about here -From the Monte Carlo simulation, we 
on
lude that the GAM NP model providesmore a

urate volatility estimation and 
aptures more of the asymmetri
 e�e
t of sho
ks
ompared with the parametri
 GARCH models and the NP model.



2.4. CHINESE STOCK MARKET VOLATILITY 192.4 Chinese sto
k market volatilityThe Chinese sto
k market is relatively young, yet it is developing qui
kly. By the end of2007, there were 860 listed 
ompanies in the SSE with the total market value of RMB
29.09 trillion, of whi
h A shares represented RMB 26.85 trillion and B share representedRMB 1.3 trillion. In the SZSE, there were 670 listed 
ompanies with a total market
apitalization of RMB 5.73 trillion, of whi
h A shares represented RMB 5.61 trillion andB shares represented RMB 0.12 trillion.As dis
ussed by many reports, the Chinese sto
k market is highly 
ontrolled by thegovernment. The Chinese Se
urities Regulatory Commission (CSRC), as a ministry-rankunit of the State Coun
il, performs almost all supervisory, regulatory, and enfor
ementfun
tion over the se
urity market. Chinese �rms need the approval from CSRC to belisted and sell their equity. The approval pro
ess is a�e
ted by many nonmarket fa
tors,and it is not unusual for a 
ompany to wait several years to re
eive listing permission.Furthermore, many of the listed 
ompanies are former state-owned enterprises (SOEs).When the SOEs go publi
, no less than 50% of the shares will be kept by the state.5In addition, most 
ompanies will also hold retained shares for legal persons and internalemployees of the 
ompanies. The state-retained shares, legal-person shares, and employeeshares a

ount for 60%�70% of equity and only the other shares are publi
ly tradable.Another 
hara
teristi
 of the Chinese sto
k markets is the market segmentation. TheChinese equity markets have two 
lasses of ownership-restri
ted shares: A shares, whi
h
an be owned and traded by Chinese 
itizens, and B shares, whi
h 
an be owned andtraded by foreigners and, after February 2001, lo
al Chinese residents who hold foreign
urren
ies.6 Despite their identi
al payo�s and voting rights, A shares are mu
h moreliquid than B shares.7 The unique 
hara
teristi
s of the Chinese markets make them
learly imperfe
t and in
omplete (Chan et al., 2007).Some reports have given 
omprehensive reviews of the Chinese sto
k markets. Forthose interested in learning more about this emerging market, Wang et al. (2004), Chanet al. (2007) and Green (2004) are three very good referen
es.2.4.1 The dataThe data used in this paper in
lude the daily 
losing pri
es of the two primary Chineseindi
es, the Shanghai Sto
k Ex
hange Composite Index (SHCI) and the Shenzhen Sto
kEx
hange Component Index (SZCI) from January 2, 1997, to August 31, 2007. The SHCI5Shares 
lassi�ed as A shares are designated for domesti
 investors and B, H and N shares aredesignated for overseas investors. A shares are further divided into state shares, legal-person shares,tradable A shares, and employee shares. State shares are those owned by the 
entral government andlo
al governments. Legal-person shares are those held by domesti
 legal entities and institutions su
h asother sto
k 
ompanies, state�private mixed enterprises, and nonbank �nan
ial institutions. Both stateshares and legal-person shares are not tradable on the sto
k ex
hanges.6The B-share market is the result of Chinese regulation. Generally, 
ompanies allowed to list shareshave to ful�ll a greater number of restri
tions when issuing B shares than when listing A shares.7A shares traded on average for 420% more than the 
orresponding B shares. In addition, A sharesturned over at a mu
h higher rate�500% versus 100% per year for B shares (see Mei et al., 2009).



20 CHAPTER 2has been published sin
e 1991 and in
ludes all Shanghai-listed 
ompanies weighted by
apital sto
ks. The SZCI has been published sin
e 1995 and is a value-weighted indexof 40 sto
ks listed on the Shenzhen Sto
k Ex
hange. As key market regulations, su
has the raising/down limit, were not well established until the end of 1996, we 
hose toanalyze the data starting from January 1, 1997. The daily pri
es are downloaded fromhttp://www.sohu.
om.All data are 
onverted to their daily log returns, and multiplied by 100 as follows,
rt = 100(log(Pt)− log(Pt−1)). (2.12)In order to assess and 
ompare the predi
tive performan
e of the nonparametri
models with various parametri
 models, the data is further divided into an in-samplegroup (from January 1, 1997, to August 31, 2006) and an out-of-sample group (fromSeptember 1, 2006, to August 31, 2007). The whole sample has 2,573 observations andthe last 243 are used for the out-of-sample fore
asts. We use the expanding window for theout-of-sample fore
asts. We �rst do the in-sample estimation using the data from January1, 1997, to August 31, 2006, and use the parameters from the in-sample estimation tofore
ast the overnight volatility for the next day. Then we add one more data from these
ond day (September 1, 2006) and redo the estimation, using the parameters from thisestimation to fore
ast the volatility for the following day. We repeat this estimation-and-fore
ast pro
edure until the end of the out-of-sample fore
ast period.Further, we 
al
ulate the realized volatility as the proxy for the true volatility forthe out-of-sample fore
ast. The realized volatility is 
al
ulated using the high-frequen
y(5-minute) data as8

RVt =

n∑

i=1

r2i,t, (2.13)where n is the total number of high-frequen
y intervals (i) in day t. This method is usedextensively in the literature (see, e.g., Fren
h et al., 1987 Day and Lewis, 1992 Pagan andS
hwert, 1990 Andersen et al., 2001, 2000) The high-frequen
y data are obtained fromhttp://www.wsto
k.net.9Table 2.3 provides the statisti
al summary of the returns of both indi
es. Clearly, themean of both series is 
lose to zero, exhibits high kurtosis and is negatively skewed. Inparti
ular, the skewness in the Shanghai sto
k market is mu
h higher than that in theShenzhen sto
k market. The Jarque�Bera test further 
on�rms that the return distribu-tions are not normal. The augmented Di
key�Fuller test suggests that they are stationarytime series. The two series are highly positively 
orrelated at 0.926.Figure 2.4 plots the index pri
e and returns of the SHCI and the SZCI. The returnslargely mirror ea
h other and look very volatile. Both series also display strong volatility8Due to the data availability, we use the realized volatility as a proxy for the true volatility only forthe out-of-sample fore
asts.9This is the website of a Chinese investment 
ompany named Huasheng and is only available inChinese. However, the site 
an be well translated into English by Google's translation system.
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lustering. These are typi
al 
hara
teristi
s of �nan
ial time series. Further, there areseveral peaks and troughs in the return series. The �rst peak o

urred on May 12, 1997,where the SHCI/SZCI hit a re
ord high 6103.62/1500 points. After going through a stabletwo-year period, it experien
ed a sharp de
line before rising and rea
hing its se
ond peakon July 1, 1999. Thereafter the sto
k indi
es began to in
rease in a relatively stablefashion, rea
hing its third peak in 2000�2001. It then de
lined again until the �rst halfof 2005. However, after that the sto
k market began to rise rapidly and 
ontinued toa

elerate upwards until it rea
hed another histori
al high on August 31, 2007. It 
an beseen, therefore, that the period 2005 to 2007 is the most volatile period in the SHCI andSZCI. - Table 2.3 and Figure 2.4 about here -2.4.2 The in-sample estimation results from various modelsWe �rst �t the series from January 1, 1997, to August 31, 2006, with the standardGARCH(1,1) model. Considering the existen
e of the asymmetry e�e
ts of sho
ks on thereturn volatility in the Chinese sto
k markets, we also �t the data with the EGARCHand GJR models. For all these models, the innovations are assumed to be both Gaussianand Student-t distributed. The estimated parameters and Ljung�Box Q-statisti
s testsof the standardized residuals are presented in Table 2.4. Note that all parameters of the
onditional volatility are signi�
ant at the 5% level. The 
oe�
ient of lagged varian
e
β shows very high volatility persisten
e. The sum of α and β from the GARCH modelis 
lose to 1, o�ering eviden
e of volatility 
lustering. The p-values of the Ljung�BoxQ-statisti
 test at the lag 20 of the standardized residual series from all models fail tosuggest the auto
orrelation at a 5% signi�
an
e level. Thus, all models appear to beadequate in des
ribing the linear dependen
e in the return and volatility series.In the Shanghai sto
k market, the estimated leverage parameters γ of the EGARCHand GJR models with Gaussian (t) distributed innovations are −0.036 (−0.063) and 0.06(0.095), respe
tively. In the Shenzhen sto
k market, the values of γ for these two modelsof Gaussian (t) innovation are 0.028 (−0.035) and 0.036 (0.055). All these parametersare signi�
ant at the 5% level with the ex
eption of the γ from the EGARCH modelwith Gaussian errors in the Shenzhen market. The signi�
an
e of the parameters indi-
ates the existen
e of the asymmetry e�e
t in the Chinese sto
k markets. That is, badnews (negative sho
ks) has a larger impa
t on return volatility than good news (positivesho
ks). Notably, the asymmetri
 e�e
t is higher in the SHCI than in the SZCI. It is alsoworth noting that the leverage e�e
t estimated from models �tted with t-distributed in-novations is higher than that with normally distributed innovations. The existen
e of theasymmetry e�e
t as in other mature sto
k markets in the world may be a positive signfor market e�
ien
y and 
ompleteness. It also suggests that the Chinese sto
k market isintegrating with other world sto
k markets.- Table 2.4 about here -Next we use the NP and the GAM NP approa
hes to smooth the Chinese sto
k



22 CHAPTER 2volatility surfa
e based on the volatility and innovations obtained from the GARCH(1,1)model. We evaluate the performan
e of various models by 
al
ulating four loss fun
tionsand 
omparing the results from the GAM NP model with the parametri
 models. Forreferen
e, we also estimate the NP model from Bülman and M
Neil (2002) and 
ompareits result with the newly proposed GAM NP model. The goodness-of-�t measures are,1. MSE1: MSE1 is 
al
ulated as 1
n

∑n
t=1(X

2
t − σ̂2

t )
2, whi
h is the mean squared errorbetween the squared innovation X2

t and the squared estimated volatility σ̂2
t . As

X2
t = σ2

t + Vt, where Vt is the martingale series with zero mean, the mean squarederror between both 
an be a good indi
ator to illustrate the goodness of �t.2. MAE1: MAE1 is 
al
ulated as 1
n

∑n
t=1 |X2

t − σ̂2
t |, whi
h is the Mean Absolute Errorbetween the squared innovation X2

t and the squared estimated volatility σ̂2
t .3. MSE2: MSE2 is 
al
ulated as 1

n

∑n
t (σ̂t − σt)

2, whi
h is the Mean Squared Errorbetween the estimated volatility, σ̂t, and the true volatility proxy, σt =√y2t , where
yt is the daily return at time t.4. MAE2: MAE2 is 
al
ulated as 1

n

∑n
t=1 |σ̂t−σt|, whi
h is the Mean Absolute Errorbetween the estimated volatility, σ̂t, and the proxy for the true volatility, σt =√y2t ,where yt is the daily return at time t.Besides 
he
king the goodness of �t of the models, we also use the DM test suggested byDiebold and Mariano (1995) to 
he
k the signi�
an
e of the improved predi
tability ofthe nonparametri
 models,

DM =
E(dt)

var(dt)
∼ N(0, 1), (2.14)where dt = (eA,t − eB,t)

2 and eA,t and eB,t are predi
tion errors of two rival models, Aand B, respe
tively. E(dt) and var(dt) are the mean and varian
e of the time series of dt,respe
tively.The goodness-of-�t results of various models are presented in Table 2.5. It is 
learthat the GARCH model performs the worst a

ording to all goodness-of-�t measures.Compared with the GARCH model, the EGARCH model improves the volatility esti-mation by 
apturing the leverage e�e
ts. For the GJR model, it slightly improves theresult from the GARCH estimation in the Shanghai Sto
k Ex
hange (SSE), while in theShenzhen Sto
k ex
hange (SZSE), it is even worse o� than the GARCH model. This isperhaps not surprising be
ause the asymmetri
 e�e
t is not as strong in the Shenzhensto
k market as it is in the Shanghai sto
k market. However, this may indi
ate that theEGARCH model 
an 
apture more leverage e�e
t than the GJR model 
an in the Chi-nese sto
k markets. When looking at the nonparametri
 models, we �rst �nd that thedistributions of errors do not matter in the estimation, be
ause all loss fun
tions fromthe GAM NP and the NP model with t distributions do not di�er from the ones withGaussian distributions. We observe also that the GAM NP model outperforms all theparametri
 models and the NP model. The NP model outperforms the GARCH and the



2.4. CHINESE STOCK MARKET VOLATILITY 23GJR models, but not the EGARCH model with t-distributed errors a

ording to all ofthe goodness-of-�t measures ex
ept the MSE1.We then perform the DM test to investigate the signi�
an
e of the improvementof the nonparametri
 model. The DM test is performed under the null hypothesis thatthe improvement of the model in the 
olumn (the GAM NP and the NP model) uponthe model in the row (the parametri
 models) is not signi�
ant. The DM test resultsreported in Table 2.6 show that both the GAM NP model and the NP model signi�
antlyoutperform the GARCH and GJR models at the 5% signi�
an
e level a

ording to almostall of the sele
ted goodness-of-�t measures. The improvement of the GAM NP modelupon the EGARCH model with t-distributed errors is only marginal. Further, we �ndthat the NP model signi�
antly underperforms the EGARCH with t-distributed errorsin the SSE, but this underperforman
e is nearly insigni�
ant in the SZSE. Although theimprovement upon the EGARCH model with t-distributed errors is at the marginal level,with the advantages of no need to assume the fun
tional form of the varian
e pro
ess andthe distribution of errors, the GAM NP 
an still be an appropriate tool for examining thereturn volatility in the Chinese equity markets. Spe
ially, in order to show the fore
astability of these models, we need to examine their out-of-sample performan
es.- Table 2.5 and Table 2.6 about here -2.4.3 The out-of-sample fore
ast improvements of the nonparametri
modelsThe out-of-sample period is from September 1, 2006, to August 31, 2007. Besides thetrue volatility proxy of, √y2t , used the in in-sample estimation, the realized volatility,
al
ulated from the 5-minute high-frequen
y data, is also used as the true volatility proxy.Further, to demonstrate the importan
e of our results and the appli
ation of the GAMNP model in pra
ti
e, we 
al
ulate the 90%-fore
asted return intervals whi
h are basedon the one-day ahead out-of-sample fore
asts.The performan
e of the out-of-sample volatility fore
asts of various models are sum-marized in Table 2.7. We �nd from this table that the nonparametri
 models performmu
h better than the parametri
 models in delivering a lower fore
ast error. For example,in the Shanghai sto
k market, the MSE (MAE) of the GAM NP model (with normal�t) is 10% (7%), for the |yt| volatility proxy, and 13% (9%), for the implied volatilityproxy, lower than the one from the GARCH model. Similarly, in the SZSE, there is anapproximately 5% redu
tion in the MSE and MAE for both volatility proxies. Comparedwith the GJR model, the EGARCH model appears to be a better parametri
 model in
apturing the asymmetri
 e�e
t of market news in the out-of-sample fore
ast. We noti
ethat the GJR model in many 
ases performs even worse than the GARCH model. Thepoor performan
e of the GJR model in the out-of-sample volatility fore
ast has also beenreported by Wei (2002). The author shows that the GJR model has higher fore
ast errorsthan a random-walk model when examining the Chinese sto
k markets' return volatility.- Table 2.7 about here -



24 CHAPTER 2As in the in-sample estimation se
tion, we do the DM test to investigate the signi�-
an
e of the nonparametri
 model's improvement. Table 2.8 shows the results of the DMtest under the null hypothesis that the improvement of the model in the 
olumn (theGAM NP and the NP model) upon the model in the row (the parametri
 models) is notsigni�
ant. This table shows that the nonparametri
 models signi�
antly outperform theGARCH, GJR and EGARCH models in the Shanghai sto
k market a

ording to almostall of the measures. However, in the Shenzhen market, 
ompared with the EGARCHmodel, the improvements of the nonparametri
 model are almost signi�
ant at the 5%level when the volatility proxy is squared returns and are only at the marginal level whenvolatility proxy is the realized volatility. One of the reasons 
an be that the asymmetrye�e
t in SZSE is not as high as in the SSE. The performan
e of the GAM NP model isnearly as good as the NP model. However, during the estimation, we experien
ed a signif-i
ant redu
tion of 
omputing time when estimating the GAM NP model 
ompared to theNP model. Further, with the advantage of avoiding the 
urse of dimensionality, the GAMNP model 
an be an attra
tive tool for multidimensional nonparametri
 smoothing.- Table 2.8 about here -After obtaining the out-of-sample fore
asted volatility, we use the fore
asted valuesto build up the 90% return interval. The return intervals are 
al
ulated a

ording to
r̂t = µ̂± qk

√
σ̂, where qk is the per
entage of the quantile of normally distributed errorsand µ̂ and σ̂ are the fore
asted 
onditional mean and volatility. It is worth noting that thelower bound of the interval is appraoximately the 5% daily value-at-risk (VaR) measurewhen the initial value of the investment is 1 Yuan.Figure 2.5 plots the 90% intervals of the fore
asted returns based on the fore
asted
onditional mean and the volatility from the EGARCH, GJR and GAM NP models forthe SHCI and the SZCI. Interestingly, the intervals built upon the fore
asted 
onditionalmean and varian
e from various models do not di�er that mu
h when the market isrelatively stable. When extreme events o

ur in the market, however, both the EGARCHand the GJR model provide a mu
h wider return interval than the GAM NP model does.The most obvious example is the sudden drops in the SHCI and SZCI indi
es on February27, 2007,10 where the return from the EGARCH and GJR models is overestimated in theupper bound and underestimated in the lower bound. As mentioned earlier, the lowerbound of the interval is the 5% daily VaR measure when the initial value of the investmentis 1 Yuan. Hen
e, when the market be
omes extremely volatile, the 5% VaR based onthe parametri
 model is overestimated in both Shanghai and Shenzhen sto
k markets.- Figure 2.5 about here -This result is generally in line with Engle and Ng's (1993), Yeh and Lee's (2000),and Friedmann and Sanddorf-Köhle's (2002) studies. In parti
ular, Engle and Ng (1993)10In the absen
e of any sign of 
ir
umstan
es, this �Bla
k Tuesday� 
ame and dumped the SSE andthe SZSE. The SHCI and the SZCI de
lined by 8.84% and 9.29%, and hit the re
ord of the biggest dailydrop within the last ten years.
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e that the volatility predi
ted by the EGARCH model is mu
h higher thanthat predi
ted by the other models. Yeh and Lee (2000) argue that the appli
ation of theGJR model to daily Chinese returns leads to overshooting in the estimated 
onditionalvarian
e in periods of high volatility. Friedmann and Sanddorf-Köhle (2002) examineasymmetry by extending the news impa
t 
urve of Engle and Ng (1993) to the 
onditionalnews impa
t 
urve and argue that the overshooting of the volatility predi
tions from theGJR model is due to an a

eleration of the news impa
t in the periods of high volatility.They also found that the EGARCH 
an overestimate volatility in a manner similar tothe GJR model.In summary, the GAM NP and the NP models perform mu
h better than the para-metri
 model in des
ribing the volatility 
hara
teristi
s and 
apturing the rise and fallof the volatility in the Chinese sto
k markets. Be
ause the EGARCH and GJR modelstend to overestimate the volatility in turbulent periods and therefore yield larger esti-mation errors in general, they are less appropriate tools for estimating the Chinese sto
kvolatility than the nonparametri
 models.2.4.4 Analyzing asymmetry via the news impa
t 
urveIn the previous se
tion, the estimation results from the EGARCH and GJR modelshave shown that the asymmetry e�e
t of unexpe
ted news exists in the Chinese sto
kmarkets. We now further examine the asymmetry e�e
ts from the perspe
tive of thenonparametri
 model. We use the news impa
t 
urve (NIC) proposed by Engle and Ng(1993) to demonstrate the asymmetry of sho
ks estimated from the GAM NP model.The NIC relates today's returns to tomorrow's volatility and works as a major tool formeasuring how new information is in
orporated in volatility estimates. Holding 
onstantthe information dated t− 2 and earlier, it displays the implied impa
t of the fun
tionalrelationship between 
onditional varian
e at time t and the sho
k term (error term) attime t− 1. Engle and Ng (1993) de�ne the NIC as the expe
ted 
onditional varian
e ofthe next period 
onditional on the 
urrent sho
ks, ǫt.
E(σ2

t+1 | ǫt), (2.15)For the NIC of the GAM NP model, we extend the original news impa
t 
urve to thenonparametri
 
ontext:
σ2
t = f(Xt−1) + g(σ2), (2.16)where σ is the 
onditional volatility, Xt−1 are the sho
ks from news, and f and g are theestimated nonparametri
 fun
tions from the GAM NP model. The relationship betweenthe sho
ks and the 
onditional volatility is therefore des
ribed in the nonparametri
fun
tions of f . - Figure 2.6 about here -The news impa
t 
urves of the EGARCH, GJR, and GAM NP models in the Shang-hai and Shenzhen markets are plotted in Figure 2.6. The parameter values used for
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onstru
ting the NIC of the EGARCH and GJR models are from Table 2.4. f and g arethe estimated nonparametri
 fun
tions from the in-sample estimation. It is obvious thatall models suggest the existen
e of asymmetri
 e�e
ts in sto
k returns be
ause the NICsof all models are not symmetri
 about zero. Typi
ally, negative news drives volatility upmore than good news. In these models, any news today drives up volatility tomorrow. Forexample, in the SHCI, the asymmetri
 e�e
t is 
learly shown with all 
urves displayingan approximately 20◦ slope for �good news� and a 40◦ slope for �bad news.� We observeless asymmetri
 e�e
t of bad news relative to good news in the Shenzhen sto
k market.The NIC of the EGARCH and GJR models have their minimum sho
ks at Xt = 0implyingnNo news is good news. In 
ontrast to the parametri
 models, the NIC of theGAM NP model has its minimum larger than zero, 0.5 in the SSE and 1.5 in theSZSE. In this model, the NIC is a right-shifted asymmetri
 parabola. This phenomenonis 
onsistent with the TGARCH model NIC from Engle and Ng (1993) and Christian(2007). This may suggest that, in the Chinese sto
k markets, a minimum amount ofgood news is required for the markets to remain as 
alm as possible. In this 
ase, nonews implies a higher volatility than in the tranquil market period. This further suggeststhat although the model implies the existen
e of a leverage e�e
t, the typi
al good-news-
hasing behavior of the Chinese sto
k investors found by Yeh and Lee (2000) has not
hanged. One of the reasons for Chinese investors' good-news-
hasing behavior explainedby Yeh and Lee (2000) is that due to the la
k of institutional investors, the trading valuesof the Shanghai and Shenzhen sto
k markets are 
ompletely generated by individualinvestors who have no a

ess to inside information and irrationally a
t on noise as ifit were information that would give them an edge. This typi
ally re�e
ts the investorsbehavior in Shenzhen.11 The fast-growing sto
k market and its development produ
emore noise, making the investors more likely to spe
ulatively and impetuously 
hase�good news.�Given the fa
t that GAM NP better explains the volatility of the Chinese sto
k mar-kets, we 
an see from the NIC that both the EGARCH and the GJR model overestimatethe volatility rea
tion to the sho
ks between 2 and −2. However, the parametri
 modelsunderestimate the volatility rea
tion to the extremely large sho
ks (the GAM NP hasthe highest varian
e in both dire
tions when news is larger than 2 and smaller than −2).Further, the GAM NP model has the best performan
e in 
apturing more asymmetri
e�e
ts of sho
ks be
ause the slopes of the two sides of the GAM NP model's NIC areboth steeper than the EGARCH and the GJR models.As a result, 
ompared with the EGARCH and the GJR model, the GAM NP model
an provide us with better volatility estimates whi
h 
apture the asymmetri
 e�e
ts ofmarket news. The GAM NP model is more �exible in re�e
ting the a
tual market's
onditions as implied by the news impa
t 
urve. The �ndings from this paper haveimportant impli
ations for portfolio sele
tion, asset pri
ing, and risk management. For11Within the last 20 years, owing to China's e
onomi
 liberalization under the poli
ies of reformistleader Deng Xiaoping, Shenzhen be
ame China's �rst, and arguably one of the most su

essful Spe
ialE
onomi
 Zones, moving from a small village to a major �nan
ial 
enter and China's se
ond busiestport.
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e, as implied by the news impa
t 
urves, there are signi�
ant di�eren
es in thepredi
ted volatility in
orporated with asymmetri
 e�e
ts of market news in the GAM NPmodel and other models. This may lead to a signi�
ant di�eren
e in 
urrent option pri
e,portfolio sele
tion, and dynami
 hedging strategies. Only the most appropriate model
an provide us with the best estimate of return volatility.2.5 Con
lusionUsing more re
ent data, this paper updates previous studies on Chinese sto
k-returnvolatility by examining the return volatility and the asymmetri
 e�e
t of market newson the volatility in the Chinese sto
k markets using a nonparametri
 approa
h. Further,in order to avoid the 
urse of dimensionality, the ba
k-�tting algorithm from the gener-alized additive model of Hastie and Tibshirani (1990) is applied to the nonparametri
smoothing te
hnique from Bülman and M
Neil (2002). Compared with the parametri
GARCH models 
ommonly used for 
apturing volatility asymmetry, the nonparametri
models perform mu
h better in 
apturing the asymmetry e�e
t and in des
ribing the
hara
teristi
s of Chinese sto
k-return volatility.With respe
t to the predi
ted return volatility's asymmetri
 rea
tion to good newsand bad news, we �nd that the return volatility responds more strongly to bad news inthe Chinese sto
k markets in our sample period. We extend the news impa
t 
urve tothe nonparametri
 setting to further examine the asymmetry e�e
t implied by the GAMNP model. Interestingly, the eviden
e based on the news impa
t 
urve of the GAM NPmodel suggests that the good-news-
hasing behavior of the Chinese domesti
 investor
ontinued. Additionally, the markets behave su
h that they require a 
ertain amount ofgood news in order to remain as 
alm as possible.When all the models are employed to obtain the overnight out-of-sample fore
ast,the nonparametri
 models yield the lowest fore
ast errors and outperform the paramet-ri
 models by 
apturing the observed spikes in the volatility of returns. In 
ontrast, theEGARCH and the GJR models tend to overestimate the volatility and returns in thehigh-volatility periods. The fore
asted returns are therefore more a

urate from the non-parametri
 model espe
ially when the market is very volatile. There are many emergingsto
k markets attra
ting investors from all over the world. These markets may be as im-perfe
t and in
omplete as the Chinese sto
k markets have been. We re
ommend the useof the GAM NP and the NP model in estimating and investigating the return volatilityin the Chinese sto
k markets and other emerging sto
k markets with features similar tothose of the Chinese sto
k markets.
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Tables
Table 2.1: Simulation results from the parametri
 and nonparametri
 modelsNormal Student-tModel MSE MAE MSE MAEGARCH 0.5554 (0.0466) 0.6154 (0.0201) 0.5553 (0.0464) 0.6155 (0.0201)GJR 0.3901 (0.0424) 0.5070 (0.0272) 0.3896 (0.0420) 0.5066 (0.0270)EGARCH 0.3004 (0.0445) 0.4295 (0.0296) 0.2976 (0.0378) 0.4273 (0.0230)NP 0.2614 (0.0477) 0.4051 (0.0373) 0.2614 (0.0477) 0.4051 (0.0373)GAM NP 0.2215 (0.0581) 0.3387 (0.0459) 0.2215 (0.0582) 0.3387 (0.0459)Note: This table shows the estimated mean of the Mean Squared Errors (MSE) and the mean of theMean Absolute Errors (MAE) for the estimated samples of n = 1000 and 50 realizations for the GARCH,GJR, EGARCH, and nonparametri
 models. In the 
ase of the t distributed errors, there are four degreesof freedom. The standard errors of the MSE and the MAE are in parentheses.
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Table 2.2: Simulation results from the GAM NP and the NP modelNormal Student-tNP model GAM NP model NP model GAM NP modelModel MSE MAE MSE MAE MSE MAE MSE MAEGARCH 0.555 (0.047) 0.615 (0.020) 0.555 (0.047) 0.615 (0.020) 0.555 (0.046) 0.616 (0.020) 0.555 (0.046) 0.616 (0.020)Iteration 1 0.347 (0.043) 0.460 (0.027) 0.286 (0.048) 0.393 (0.031) 0.347 (0.043) 0.460 (0.027) 0.286 (0.048) 0.393 (0.031)Iteration 2 0.281 (0.045) 0.414 (0.032) 0.237 (0.053) 0.349 (0.041) 0.281 (0.045) 0.414 (0.032) 0.237 (0.053) 0.349 (0.041)Iteration 3 0.267 (0.045) 0.406 (0.034) 0.225 (0.056) 0.339 (0.044) 0.267 (0.045) 0.406 (0.034) 0.225 (0.056) 0.339 (0.043)Iteration 4 0.262 (0.044) 0.405 (0.033) 0.221 (0.055) 0.338 (0.044) 0.262 (0.044) 0.405 (0.033) 0.221 (0.055) 0.338 (0.044)Iteration 5 0.264 (0.046) 0.406 (0.035) 0.221 (0.058) 0.337 (0.045) 0.264 (0.046) 0.406 (0.035) 0.221 (0.057) 0.337 (0.045)Iteration 6 0.263 (0.047) 0.406 (0.037) 0.222 (0.058) 0.339 (0.045) 0.263 (0.047) 0.406 (0.037) 0.222 (0.058) 0.339 (0.045)Iteration 7 0.262 (0.048) 0.405 (0.037) 0.224 (0.061) 0.341 (0.049) 0.262 (0.048) 0.405 (0.037) 0.224 (0.061) 0.341 (0.049)Iteration 8 0.263 (0.048) 0.406 (0.037) 0.224 (0.060) 0.340 (0.047) 0.263 (0.048) 0.406 (0.037) 0.224 (0.060) 0.340 (0.047)Final 0.261 (0.048) 0.405 (0.037) 0.221 (0.058) 0.339 (0.046) 0.261 (0.048) 0.405 (0.037) 0.221 (0.058) 0.339 (0.046)Note: This table shows the estimated mean of the Mean Squared Errors (MSE) and the mean of the Mean Absolute Errors (MAE) at ea
h iterationfor the simulated sample of n = 1000 and 50 realizations for the GAM NP and NP models. The �rst iteration of the nonparametri
 models is basedon the result of the GARCH model. In the 
ase of the t distributed errors, there are four degrees of freedom. The standard errors of the MSE andthe MAE are in parentheses.



TABLES 33Table 2.3: Data des
riptionShanghai Composite Index (SHCI) Shenzhen Component Index (SZCI)Size 2573 2573Mean 0.068 0.067Median 0.070 0.048Min −9.334 −9.935Max 9.401 9.530Std. Dev. 1.576 1.738Skewness −0.203 −0.090Kurtosis 8.331 7.524JB test 3064.2 (0.001) 2198.0 (0.001)ADF test −50.972 (0.001) −49.107 (0.001)Correlation 0.926Note: This table reports summary statisti
s for the Shanghai Composite Index (SHCI) and the ShenzhenComponent Index (SZCI) return series from January 1997 to August 2007. The JB test is the Jarque�Bera test for normality and the ADF test is the augmented Di
key�Fuller test for stationarity. The pvalues for the Jarque�Bera test and the augmented Di
key�Fuller test are reported in parentheses.
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Table 2.4: In-sample estimations of the GARCH, EGARCH, and GJR modelsShanghai Composite Index Shenzhen Component IndexGARCH EGARCH GJR GARCH EGARCH GJRNormal Student-t Normal Student-t Normal Student-t Normal Student-t Normal Student-t Normal Student-t
µ 0.000 0.014 −0.011 0.009 −0.018 0.004 −0.021 −0.029 0.040 −0.034 −0.034 −0.037

(0.021) (0.023) (0.024) (0.023) (0.025) (0.023) (0.026) (0.026) (0.029) (0.025) (0.028) (0.026)

ω 0.095 0.093 0.038 0.027 0.082 0.090 0.067 0.097 0.080 0.027 0.062 0.093
(0.013) (0.023) (0.005) (0.009) (0.012) (0.022) (0.010) (0.024) (0.010) (0.009) (0.010) (0.024)

α1 0.139 0.117 0.242 0.239 0.098 0.077 0.100 0.102 0.276 0.216 0.082 0.080
(0.011) (0.018) (0.018) (0.029) (0.011) (0.018) (0.007) (0.016) (0.018) (0.027) (0.008) (0.016)

β1 0.829 0.848 0.964 0.957 0.845 0.844 0.879 0.865 0.932 0.967 0.882 0.863
(0.013) (0.021) (0.006) (0.010) (0.012) (0.021) (0.007) (0.019) (0.009) (0.009) (0.007) (0.019)

γ −0.036 −0.063 0.060 0.095 0.028 −0.035 0.036 0.055
(0.008) (0.016) (0.014) (0.028) (0.010) (0.014) (0.011) (0.024)DoF 4.638 4.87 4.725 4.848 4.952 4.882

(0.455) (0.486) (0.458) (0.517) (0.539) (0.518)Q(20) 24.32 24.43 24.91 25.48 25.12 25.53 27.29 27.17 26.10 27.55 28.28 28.97Note: This table shows the estimated 
oe�
ients of the parametri
 GARCH, GJR and EGARCH models for the Shanghai Composite Index andthe Shenzhen Component Index return series. The sample period is from January 1997 to August 2006. The data are on a daily basis and have2,330 observations. All returns are s
aled by 100. The GARCH, GJR and EGARCH models are estimated a

ording to equations 2.1, 2.2 and 2.3.The standard errors are reported in parentheses. The last row reports the test statisti
s of the Ljung�Box Q-test for residual auto
orrelation of allmodels at lag 20. The 
riti
al value for 20 lags at the 5% signi�
an
e level is 31.4104.



TABLES 35Table 2.5: Goodness of �t for in-sample fore
astsSHCI SZCIModel Distribution MSE1 MAE1 MSE2 MAE2 MSE1 MAE1 MSE2 MAE2GARCH Normal 39.123 2.677 1.310 0.879 48.509 3.081 1.472 0.934Student-t 38.908 2.655 1.297 0.878 48.380 3.062 1.461 0.934EGARCH Normal 38.037 2.576 1.246 0.859 48.232 3.061 1.462 0.944Student-t 37.883 2.564 1.240 0.858 47.956 3.013 1.431 0.926GJR Normal 38.884 2.663 1.299 0.875 48.564 3.082 1.471 0.933Student-t 38.787 2.652 1.293 0.873 48.457 3.068 1.462 0.934NP Normal 37.846 2.595 1.261 0.870 47.734 3.037 1.439 0.930Student-t 37.851 2.596 1.261 0.870 47.735 3.037 1.438 0.929GAM NP Normal 37.700 2.553 1.236 0.857 47.858 3.015 1.429 0.924Student-t 37.708 2.553 1.238 0.856 47.874 3.012 1.429 0.924Note: This table shows the goodness of �t of all models for the in-sample fore
ast for the ShanghaiComposite index (SHCI) and the Shenzhen Component Index (SZCI) using four di�erent measures.
MSE1 = 1

n

∑n

t=1(X
2
t − σ̂2

t )
2 is the mean squared error between the squared innovation, X2

t , and thesquared estimated volatility, σ̂2
t . MAE1 = 1

n

∑n

t=1 |X
2
t − σ̂2

t | is the mean absolute error between thesquared innovation, X2
t , and the squared estimated volatility, σ̂2

t . MSE2 = 1
n

∑n

t (σ̂t − σt)
2 is the meansquared error between the estimated volatility and the true volatility proxy, σt = |yt|, where yt is thedaily return at time t. MAE2 = 1

n

∑n

t=1 |σ̂t,m − σt| is the mean absolute error between the estimatedvolatility and the true volatility proxy, σt = |yt|, where yt is the daily return at time t. n is the totalobservations in the in-sample estimation.



36 CHAPTER 2Table 2.6: The DM test results for the in-sample fore
astsGAM NP NPModel Distribution MSE1 MAE1 MSE2 MAE2 MSE1 MAE1 MSE2 MAE2SHCIGARCH Normal 3.209 5.504 4.512 4.231 2.389 3.710 2.977 2.003Student-t 2.874 4.905 4.022 4.024 2.224 3.000 2.399 1.889EGARCHNormal 1.0464 1.653 1.026 0.378 0.550 −1.443 −1.472 −3.882Student-t 0.796 0.859 0.506 0.168 0.118 −2.710 −2.353 −4.99GJR Normal 2.856 5.51 4.389 3.820 1.954 3.379 2.545 1.209Student-t 2.562 5.329 4.294 3.812 1.700 2.888 2.212 0.832SZCI GARCH Normal 2.373 4.988 4.648 3.199 2.165 3.268 3.566 1.468Student-t 2.271 4.187 3.940 3.613 2.000 2.281 2.805 2.140EGARCHNormal 0.897 2.701 2.759 4.860 1.049 1.324 1.864 3.593Student-t 0.445 0.125 0.266 0.565 0.883 −2.171 −0.963 −1.269GJR Normal 2.419 5.506 5.029 3.347 2.160 3.476 3.589 1.332Student-t 2.223 5.155 4.681 3.910 1.865 2.638 2.828 1.975Note: This table shows the DM test results of various models for the in-sample fore
asts of the ShanghaiComposite Index (SHCI) and the Shenzhen Component Index (SZCI). The reported values are the teststatisti
s of the DM test under the null hypothesis that the improvement of the model in the 
olumn(the GAM NP and the NP model) upon the model in the row (the parametri
 models) is not signi�
ant.The nonparametri
 models in the 
olumns are the ben
hmark models. The signi�
an
e level is 5%.



TABLES 37Table 2.7: The Goodness of �t for the out-of-sample fore
astsShanghai Composite Index Shenzhen Component IndexBen
hmark I Ben
hmark II Ben
hmark I Ben
hmark IIModel Distribution MSE MAE MSE MAE MSE MAE MSE MAEGARCH Normal 2.13 1.129 0.596 0.578 2.602 1.257 0.731 0.653Student-t 2.088 1.114 0.587 0.575 2.559 1.241 0.709 0.642EGARCH Normal 2.026 1.087 0.573 0.546 2.531 1.228 0.696 0.644Student-t 1.983 1.064 0.577 0.542 2.49 1.218 0.693 0.62GJR Normal 2.138 1.123 0.639 0.587 2.607 1.256 0.724 0.643Student-t 2.12 1.109 0.625 0.581 2.563 1.238 0.744 0.655NP Normal 1.905 1.047 0.515 0.526 2.411 1.195 0.686 0.614Student-t 1.903 1.045 0.517 0.525 2.403 1.192 0.689 0.614GAM NP Normal 1.909 1.056 0.516 0.526 2.468 1.205 0.690 0.620Student-t 1.908 1.055 0.517 0.525 2.442 1.207 0.689 0.619Note: This table shows the goodness of �t for various models for the out-of-sample fore
ast in theShanghai and Shenzhen markets. The out-of-sample period is from September 2006 to August 2007.Ben
hmark I uses σ̂t =
√

(yt)2 as the true volatility proxy. Ben
hmark II uses the realized volatility,
σ̂t =

√

∑n

i=1 r
2
i,t, as the true volatility proxy, where n is the total number of high frequen
y intervals, i,in day t



38 CHAPTER 2Table 2.8: The DM test results for out-of-sample fore
astsVolatility Shanghai Composite Index Shenzhen Component Indexproxy GAM NP NP GAM NP NPBen
hmark Model Distribution MSE MAE MSE MAE MSE MAE MSE MAEI GARCH Normal 4.47 5.04 4.50 5.50 3.32 4.57 4.00 4.77Student-t 3.73 4.44 3.96 5.07 2.97 3.82 3.87 4.16EGARCH Normal 2.28 2.46 2.92 3.57 1.98 2.02 2.22 2.21Student-t 2.19 1.89 2.51 2.01 1.87 1.99 2.11 1.99GJR Normal 4.53 4.55 4.68 5.28 3.70 4.79 4.14 4.54Student-t 4.32 3.87 4.45 4.55 3.74 4.08 4.10 3.78II GARCH Normal 2.49 3.24 2.78 3.44 3.98 3.12 4.36 3.85Student-t 2.20 3.03 2.59 3.31 3.41 2.61 3.88 3.25EGARCH Normal 2.05 2.27 2.26 2.26 0.32 1.68 0.65 1.95Student-t 3.17 2.14 3.15 2.13 0.22 0.80 0.35 1.06GJR Normal 3.35 3.77 3.68 4.16 2.77 3.56 4.61 3.98Student-t 3.76 4.14 4.00 4.49 2.30 3.23 4.17 3.39

Note : This table shows the DM test results for the goodness of �t for various models for the out-of-sample fore
ast in Shanghai and Shenzhen markets. The reported values are the test statisti
s from theDM test under the null hypothesis that the improvement of the model in the 
olumn upon the model inthe row is not signi�
ant. The Ben
hmark I uses σ̂t =
√

(yt)2 as the true volatility proxy. The Ben
hmarkII uses the realized volatility RVt =
√

∑n

i=1 r
2
i,t as the true volatility proxy.
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Figure 2.1: Volatility surfa
es from simulated pro
esses
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(b) Asymmetri
: pro
ess (2.11)Note: This �gure plots the volatility surfa
es from the pro
esses spe
i�ed in equations 2.10 and 2.11.
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40 CHAPTER 2Figure 2.2: Smoothed volatility surfa
e from ea
h iteration

Note: This �gure plots the volatility surfa
e of the GAM NP model at ea
h iteration of a randomly
hosen realization. The last plot is the �nal smoothed volatility surfa
e. In ea
h plot, the z-axis is thesmoothed volatility from ea
h iteration. The x-axis is the lagged return, Xt−1. The y-axis is the laggedsmoothed sigma, σ̂t−1, from the previous iteration.



FIGURES 41Figure 2.3: Estimated and the true volatility

Note: This �gure plots the true volatility and the estimated volatility from the GARCH and the GAMNP model for a randomly 
hosen iteration of 100 points. The solid line is the true volatility and thedotted line is the estimated volatility. The left plot is the true and estimated volatility from the GARCHmodel. The right plot is the true and estimated volatility from the GAM NP model.



42 CHAPTER 2Figure 2.4: Pri
e and return for Shanghai Composite Index and the Shenzhen Compo-nent Index
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Note: This �gure plots the pri
e and the return series of the Shanghai Composite Index (SHCI) andthe Shenzhen Component Index (SZCI) for the entire sample period from January 1997 to August 2007.The �rst two plots are the pri
e and return series of the SHCI and the last two plots are the pri
e andthe return series of the SZCI.



FIGURES 43Figure 2.5: The 90 % 
onditional predi
tion interval
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Note: This �gure plot the 90% 
onditional predi
tion interval for the return of the Shanghai CompositeIndex and the Shenzhen Component Index. The returns intervals are 
al
ulated based on the out-of-sample fore
ast results for these two series. The out-of-sample fore
ast starts on September 01, 2006 andends on August 31, 2007.
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Figure 2.6: News impa
t 
urves
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Note: This �gure plot the news impa
t 
urve from the GAM NP, EGARCH and GARCH models. The
x-axis represents the lagged market news, and the y-axis represents the volatility 
al
ulated based onequation 15 (for parametri
 models) and equation 16 (for the GAM NP model).



Chapter 3Modeling and Fore
astingShort-Term Interest Rate Volatility:A Semiparametri
 Approa
h3.1 Introdu
tionThere is an extensive literature on the modeling of the short-term interest rate as thisrate is fundamental to the pri
ing of �xed-in
ome se
urities. The short-term rate isalso a ne
essary input, for example, for the optimal portfolio 
hoi
e, hedging strategies,and other investment de
isions. Further, the short rate in�uen
es the ma
ro e
onomy;therefore, it is a target instrument for monetary poli
y makers. One of the earliest papersthat formally 
ompares a number of single-fa
tor models is Chan et al. (1992) (we referthe proposed model from this paper as CKLS hereafter). Based on U.S. data, their study
ontroversially reje
ts the 
ommonly adopted square root di�usion model of Cox et al.(1985), whereby the volatility of short-rate 
hanges is proportional to the square rootof the interest-rate levels. Instead, their model shows that volatility is more sensitive tointerest-rate levels, spe
ifying an exponent for the 
ommonly known level e�e
t in theregion of 1.5. A more re
ent study by Brenner et al. (1996) (we refer the proposed modelfrom this paper as BHK hereafter) shows that models that parameterize volatility as afun
tion of only interest-rate levels tend to over emphasize the sensitivity of volatility tolevels and do not take into 
onsideration the serial 
orrelation in 
onditional varian
es.They propose a new 
lass of models whi
h allows volatility to depend on both interest-rate levels and information sho
ks. There is by now a general 
onsensus in the literaturethat short-rate models that a

ount for both the levels e�e
t and serial 
orrelation in thevolatility pro
esses perform better than models that parameterize only the levels e�e
tor the serial dependen
e in the 
onditional varian
es (Bali, 2000).Unlike for the di�usion pro
ess, analysis of short-rate models provides mixed empiri
aleviden
e of mean reversion and it remains highly 
ontroversial about whether the possiblemean reversion is linear or nonlinear. While a large proportion of resear
h reports a lineardrift (see, e.g., CKLS and the models nested by it), others argue to the 
ontrary (Aït-45



46 CHAPTER 3Sahalia, 1996b,a Conley et al., 1997 Jones, 2003), �nding nonlinear mean reversion. Usinga semi-nonparametri
 approa
h, Aït-Sahalia (1996b,a) 
onstru
ts a general spe
i�
ationtest of a short-rate model and reje
ts a linear drift in favor of models that imply no meanreversion for levels of the short rate between 
ertain threshold levels and strong meanreversion for extreme levels of the short rate. Stanton (1997) and Jiang (1998) estimatea model of the short rate nonparametri
ally using di�erent data sets from Aït-Sahalia(1996b) and �nd eviden
e in support of nonlinearities in the drift fun
tion. Arapis andGao (2006) also use nonparametri
 methods to show that the short-rate drift is nonlinear.Bali and Wu (2006) do
ument eviden
e that the speeds of mean reversion for short-term interest rates at extremely high interest rates su
h as in the Vol
ker (1979�1982)regime are di�erent than at normal times. They attribute the nonlinearity in short-rate drift to the di�eren
es in the degree of mean reversion at di�erent interest-ratelevels. Christiansen (2010) allows for extreme value mean reversion by in
luding thesmallest short rate during the previous year in the mean equation and �nds that the USshort rates exhibit extreme value mean reversion. Be that as it may, the robustness ofthe nonlinear drift fun
tion in short-rate models has been questioned by some authors.Pritsker (1998) examines the �nite-sample properties of Aït-Sahalia's nonparametri
 test,showing that upon adjusting for the high persisten
e in interest rates, the nonlinearityin the drift fun
tion be
omes statisti
ally insigni�
ant. Chapman and Pearson (2000)perform simulation exer
ises and show that the eviden
e supporting the nonlinear driftfun
tion 
ould be an artifa
t of the nonparametri
 estimation pro
edure rather than atrue feature of the data-generating pro
ess. Using Bayesian estimation methods, Jones(2003) shows that the determination of short-rate drift spe
i�
ation is dependent on theassumption of the prior distribution. In parti
ular, under the assumption of a �at priordistribution and the imposition of stationarity in interest-rate dynami
s, he identi�es anonlinear drift. However, when he implements an approximate Je�rey's prior, there isno mean-reverting eviden
e. Durham (2004) �nds that the signi�
an
e of nonlinearity inthe drift fun
tion depends on the spe
i�
ation of the di�usion pro
ess, a �nding whi
hagrees with Bali (2007). Takamizawa (2008) uses 
ross-se
tional relations to estimate Aït-Sahalia's (1996a) model, but he �nds that there is generally no nonlinear mean reversion.This paper 
onsiders an alternative method for modeling short-rate volatility. We ap-ply a semiparametri
 smoothing te
hnique to the generalized autoregressive 
onditionalheteroskedasti
ity (GARCH) model of short-rate volatility. This involves estimating aparametri
 form of the short-rate drift fun
tion followed by estimating the hidden volatil-ity pro
ess nonparametri
ally. Be
ause the literature is divided on the appropriate driftspe
i�
ation, we estimate both linear and nonlinear drift fun
tions of the short rate. Theestimation of a parametri
 drift spe
i�
ation quali�es this approa
h as a semiparametri
method (Jiang and Knight, 1997). To estimate the latent volatility pro
ess, we use the al-gorithm developed by Bülman and M
Neil (2002) and apply it to Hastie and Tibshirani's(1990) generalized additive model. Bülman and M
Neil (2002) argue that estimating thevolatility pro
ess with the nonparametri
 approa
h is less sensitive to model misspe
-i�
ation and does not require a priori knowledge of the innovation distribution. Thisfeature makes the appli
ation of the nonparametri
 method attra
tive for estimating a



3.1. INTRODUCTION 47short-rate di�usion pro
ess given that short rates are known to possess distributions thatdepart from normality. We spe
ify the latent volatility pro
ess as a general additive fun
-tion of the lagged value of the 
onditional varian
e, innovations, and interest-rate levels.This spe
i�
ation is 
onsistent with a 
lass of single-fa
tor short-rate di�usion modelswhere the volatility of short-rate 
hanges is serially dependent on past volatility, squaredinnovations, and interest-rate levels. In addition, the additive stru
ture of the hiddenvolatility fa
ilitates the use of a ba
k�tting algorithm to estimate the di�usion pro
ess.The potential usefulness of the proposed semiparametri
 approa
h for estimatingshort-rate volatility is examined by 
omparing its fore
ast performan
e with a variety ofone-fa
tor short-rate di�usion models. Results from our Monte Carlo simulation illustratethe robustness of the semiparametri
 approa
h when estimating the short-rate 
hanges'sensitivity to misspe
i�
ation in the short-rate drift fun
tion and the underlying innova-tion distribution. Moreover, the fore
ast performan
e of the semiparametri
 approa
h issuperior to that of the parametri
 models 
onsidered in the simulated data. The empiri
alappli
ation to three-month U.S. Treasury bill yields suggests that the semiparametri
 es-timation pro
edure provides in-sample and out-of-sample volatility fore
asts superior tothe short-rate volatility models of BHK, whi
h feature asymmetri
 and level-dependent
onditional varian
e. Although the semiparametri
 approa
h does not spe
ify the asym-metri
 feature of the volatility pro
ess, this pro
edure improves upon the �t and thepredi
tive power of the volatility estimates. We do not �nd any eviden
e of nonlinear-ities in short-rate drift or 
onditional skewness in the short-rate-
hange distribution.Finally, we demonstrate that the semiparametri
 approa
h, whi
h yields a greater degreeof a

ura
y in modeling short-rate-
hange volatility, has pertinent impli
ations for pri
-ing long-dated and path-dependent interest-rate derivatives.1 Using simulation methods,we show that the semiparametri
 modeling approa
h gives rise to signi�
antly di�erentprobability distributions of future interest-rate levels 
ompared with parametri
 short-rate models. The 
on�den
e intervals of future interest-rate levels are narrower than forany of the parametri
 models 
onsidered, thereby leading to a less pri
e variability forinterest-rate derivatives.The rest of the paper is organized as follows. Se
tion 3.2 des
ribes the short-ratemodels and the semiparametri
 smoothing te
hnique. Se
tion 3.3 outlines the design ofthe Monte Carlo experiment to examine the in-sample predi
tive power of the semi-parametri
 approa
h and its fore
ast property when subje
t to possible misspe
i�
ationsin the drift fun
tion and the innovation distribution. This se
tion also reports the re-sults of the simulation study. Se
tion 3.4 applies the semiparametri
 te
hnique to theU.S. short-term interest rates to evaluate its in-sample and out-of-sample fore
ast per-forman
e relative to other short-rate models. Impli
ations of this fore
ast improvementon pri
ing interest-rate derivatives are also dis
ussed. Se
tion 3.5 
on
ludes.1These interest-rate derivatives in
lude index amortizing rate swaps, CMO swaps, swaptions, mort-gages, and adjustable-rate preferred se
urities.



48 CHAPTER 33.2 The short-rate models and the semiparametri
 approa
h3.2.1 The short-rate modelsThe generalized 
ontinuous-time short-rate spe
i�
ation of CKLS is,
dr = (µ+ λr) dt+ φrδdW, (3.1)where r denotes the level of the short-term interest rate, W is a Brownian motion, and

µ, λ, and δ are parameters. The drift 
omponent of short-term interest rates is 
apturedby µ + λr while the varian
e of unexpe
ted 
hanges in interest rates equals φ2r2δ. Theparameter φ is a s
ale fa
tor and δ 
ontrols the degree to whi
h the interest-rate levelin�uen
es the volatility of short-term interest-rate 
hanges. The CKLS model nests manyof the existing interest-rate models. For example, when δ = 0 then (3.1) redu
es toVasi
ek's (1977) model, while δ = 1/2 yields the Cox et al. (1985) model, see CKLSinter alia for further details. There is a dearth of literature fo
using on the univariateCKLS model. Czellar et al. (2007) study di�erent estimation te
hniques for the CKLSshort-rate model. Bali and Wu (2006) investigate extensions of the mean spe
i�
ation ofthe CKLS model. On the other hand, Nowman and Sorwar (2005) use the CKLS modelto pri
e bonds and 
ontingent 
laims.It is 
ommon to 
onsider the Euler�Maruyama dis
rete time-approximation to (3.1):
∆rt = µ+ λrt−1 + εt. (3.2)Let Ωt−1 represent the information set available at time t− 1, and let E(εt | Ωt−1) = 0.Suppose ht represent the 
onditional varian
e of the short-term interest-rate 
hanges;then E(ε2t | Ωt−1) ≡ ht = φ2r2δt−1. It 
an be seen that the only sour
e of 
onditionalheteroskedasti
ity in (3.2) is through the level of the interest rate. BHK relaxes theassumption of a 
onstant φ2 by allowing it to vary a

ording to the information arrivalpro
ess. One 
ommon approa
h to 
apturing the e�e
t of unanti
ipated news is theGARCH(1,1) model:

ht = α0 + α1ε
2
t−1 + α2ht−1. (3.3)The innovation εt denotes a 
hange in the information set from time t−1 to t and 
an betreated as a 
olle
tive measure of unanti
ipated news. In (3.3), only the magnitude of theinnovation is important in determining ht. BHK extends (3.2) to allow information fromunanti
ipated news and the one-period lagged interest-rate levels to govern the dynami
sof short-rate volatility in the following way.

∆rt = µ+ λrt−1 + εt,

εt =
√

htzt, zt ∼ t(v) and
ht = α0 + α1ε

2
t−1 + α2ht−1 + br2δt−1 (3.4)Equation (3.4) is known as the GARCH-X pro
ess. Under the restri
tion α0 = α1 =

α2 = 0, (3.4) 
ollapses to (3.2) where b = φ2 and volatility depends on interest-rate levels



3.2SHORT-RATE MODELS 49alone. Furthermore, when b = 0, there is no levels e�e
t. The GARCH-X model doesnot permit short-rate volatility to respond asymmetri
ally to interest-rate innovationsof di�erent signs. BHK relaxes the assumption of a symmetri
 GARCH-X pro
ess bymodeling the 
onditional varian
e spe
i�
ation as
ht = α0 + α1ε

2
t−1 + α2ht−1 + br2δt−1 + α3ξ

2
t−1, (3.5)where ξt−1 = min(0, εt−1). BHK refers to this model as the AsyGARCH-X. For simpli
-ity, we refer to the symmetri
 (asymmetri
) GARCH-X as the GARCHX (AGARCHX)model. For the purpose of this paper, we only 
onsider the additive levels e�e
t as the(A)GARCHX model is 
onsistent with the generalized additive nonparametri
 GARCHmodel dis
ussed in the next subse
tion.2 In pra
ti
e, when estimating the (A)GARCHXmodel, it is 
ommon to s
ale the interest-rate-level term in the varian
e equation with afa
tor (1/10) su
h that the levels dependen
e in the 
onditional varian
e is 
aptured by

b(rt−1/10)
2δ (see Brenner et al., 1996).The linear drift in equation (3.2) implies that the strength of mean reversion is thesame for all levels of the short rate. Even though there is no a priori e
onomi
 intuitionthat would suggest the existen
e of a nonlinear drift, empiri
al resear
h has shown thatthere is eviden
e of nonlinear drift in short-term interest rates. That is, mean reversionis stronger for extreme low or high levels of short rates. Aït-Sahalia (1996b) advo
atesthe use of a �exible fun
tional form to approximate the true unknown shapes of theshort-rate pro
ess. He estimates a short-rate model,

drt = (µ+ λ1rt + λ2r
2
t +

λ3

rt
)dt+

√
β0 + β1rt + β2r

β3
t dWt, (3.6)and �nds that the test reje
ts a linear drift in favor of models that imply no meanreversion for levels of the short rate between 4% and 22% and strong mean reversion forlevels outside that range. Conley et al. (1997) adopt the same drift parameterizations asAït-Sahalia but keeps the 
onstant elasti
ity varian
e di�usion used by CKLS:

drt = (µ+ λ1rt + λ2r
2
t +

λ3

rt
)dt+ σrγt dWt. (3.7)They �nd that the drift fun
tion displays mean reversion only for rates below 3% orabove 11%. Bali (2007) also estimates Aït-Sahalia's (1996b) nonlinear drift spe
i�
ation in(3.6) but with a di�usion pro
ess that follows a GARCH(1,1) model and is dependent oninterest-rate levels. Bali and Wu (2006) estimate a variant of the drift spe
i�
ation in (3.6)whi
h in
ludes a �fth-order polynomial. Be
ause of the extensive resear
h that adoptsAït-Sahalia's (1996b) nonlinear drift spe
i�
ation and the possible in�uen
e this nonlineardrift might exert on the 
onditional volatility of interest-rate 
hanges, we also estimate2BHK also 
onsiders the multipli
ative levels e�e
t in whi
h φ2 in E

(

ε2t | Ωt−1

)

≡ ht = φ2r2δt−1 followsa GARCH(1,1) pro
ess.



50 CHAPTER 3a dis
rete-time approximation of Aït-Sahalia's (1996b) nonlinear drift spe
i�
ation,
∆rt = µ+ λ1rt−1 + λ2r

2
t−1 +

λ3

rt−1
+ εt, (3.8)and the 
onditional varian
e of the short-term interest-rate 
hanges that follows equation(3.5).Empiri
al studies on short-term interest rates have shown that the standardizedresiduals obtained from the GARCH models exhibit leptokurtosis. The assumption ofnormality is easily reje
ted by the Jarque�Bera test when applied to short-rate data.Consequently, the Student's t distribution is 
ommonly employed to 
apture the thi
kertails in the empiri
al distribution of short rates. There are, however, other nonnormaldistributions that have been used to 
hara
terize the distribution of short-rate 
hanges.In parti
ular, mu
h attention has been paid in modeling the skewness of the distribu-tion. Bali (2007) adopts the skewed generalized error distribution of Theodossiou (1998)as well as Hansen's (1994) skewed t distribution to 
apture the skewness in the empir-i
al distribution of the three-month U.S. Treasury bill yield. Following Bali (2007), weemploy both the Student's t and Hansen's skewed t distributions in the Monte Carlo ex-periment and empiri
al appli
ation. For the skewed t distribution, we de�ne the residualsin equation (3.4) as

εt =
√

htzt, zt ∼ Hansen's t(v, η). (3.9)The parameters η and v 
ontrol the dire
tion of asymmetry and kurtosis of the distribu-tion. Hansen's skewed t distribution is de�ned by
f(zt; Θ, v, η) =





bc

(
1 + 1

v−2

(
bzt+a
1−η

)2)− v+1
2 if zt < −a

b

bc

(
1 + 1

v−2

(
bzt+a
1+η

)2)− v+1
2 if zt ≥ −a

b
,

(3.10)where zt =
εt√
ht
, Θ is the set of parameters asso
iated with the drift and di�usion spe
i-�
ations of the short-rate model, and the 
onstants a, b and c are given by

a = 4ηc

(
v − 2

v − 1

)
, b2 = 1 + 3η2 − a2, c =

Γ
(
v+1
2

)
√

π(v − 2)Γ
(
v
2

) .For η = 0, Hansen's distribution redu
es to the traditional standardized t distribution,while for η = 0 and v = ∞, it redu
es to a normal density. The density (3.10) is de�nedfor 2 < v < ∞ and −1 < η < 1.



3.2SHORT-RATE MODELS 513.2.2 The generalized additive semiparametri
 GARCH modelConsider the short-rate model,
Xt = σtZt (3.11)
σ2
t = f1(Xt−1) + f2(σ

2
t−1) + f3(rt−1), (3.12)where {{Zt; t ∈ Z} is an i.i.d innovation with zero mean, unit varian
e, and �nite fourthmoment; Xt = ∆rt− (µ+λrt−1) for a linear drift; and Xt = ∆rt− (µ+λ1rt−1+λ2r

2
t−1+

λ3
rt−1

) for a nonlinear drift. Let f1 : ℜ → ℜ+, f2 : ℜ+ → ℜ+, and f3 : ℜ+ → ℜ+ be stri
tlypositive-valued fun
tions. The 
onditional varian
e and volatility are denoted by σ2
t and

σt, respe
tively. Further, assume that Xt and rt are stationary sto
hasti
 pro
esses and
{Xt : t ∈ Z} is adapted to the σ-�ltration {Ft; t ∈ Z} with Ft = σ ({Xs; s ≤ t}). Theassumption of stationarity in rt is empiri
ally veri�ed by performing Seo's (1999) unitroot test on the three-month U.S. Treasury bill rate. To ensure 
omparability with theCKLS and BHK short-rate models, we �rst estimate the linear drift fun
tion spe
i�edin equation (3.2). However, given the vast literature on short-rate models with nonlin-ear drift fun
tions, we also investigate Aït-Sahalia's (1996b) nonlinear-drift spe
i�
ationgiven by equation (3.8). The exa
t form of the fun
tions f1, f2, and f3 in (3.12) is leftunspe
i�ed, but it 
an be estimated by a nonparametri
 method in whi
h X2

t is regressedon the lagged variables Xt−1, σ2
t−1, and rt−1. To show that this pro
edure is appli
ablefor estimating the unobserved variable σ2

t , we rewrite the model (3.11 and 3.12) as
X2

t = f1(Xt−1) + f2(σ
2
t−1) + f3(rt−1) + Vt (3.13)

Vt =
[
f1(Xt−1) + f2(σ

2
t−1) + f3(rt−1)

]
(Z2

t − 1),where Vt is a martingale di�eren
e series with E(Vt) = E(Vt | Ft−1) = 0 and cov(Vs, Vt) =
cov(Vs, Vt | Ft−1) = 0 for s < t. Taking the 
onditional expe
tations of X2

t in (3.13) yields
E(X2

t | Ft−1) = f1(Xt−1) + f2(σ
2
t−1) + f3(rt−1), (3.14)and its 
onditional varian
e 
an be shown to be

var(X2
t | Ft−1) =

[
f1(Xt−1) + f2(σ

2
t−1) + f3(rt−1)

]2 [
E(Z4

t )− 1
]
. (3.15)To estimate the latent variable σ2

t in (3.12), we adopt the estimation algorithm ofBülman and M
Neil (2002). For a given data sample, we �rst 
al
ulate the volatility esti-mate, σ̂t,0, by estimating the linear drift spe
i�
ation (3.2) and the 
onditional varian
e(3.3) using the method of maximum likelihood. Further, we verify that the semiparamet-ri
 approa
h is robust to possible nonlinear drift by 
al
ulating the volatility estimate
σ̂t,0 with a nonlinear drift spe
i�
ation. Note that σ̂t,0 is used as the initial volatilityestimate. In the �rst iteration, we regress {X2

t ; 2 ≤ t ≤ n
} against {Xt−1; 2 ≤ t ≤ n},{

σ̂2
t−1,0; 2 ≤ t ≤ n

}, and {rt−1; 2 ≤ t ≤ n} using a nonparametri
 smoothing pro
edure



52 CHAPTER 3with a ba
k�tting algorithm to obtain an estimate f̂i,1 of fi for i = 1, 2 and 3.3 Theregression is performed with regression weights {σ̂−2
t,0 ; 2 ≤ t ≤ n

} as this yields improvedestimates of σ2
t (Bülman and M
Neil, 2002). Having estimated fi,1, we then 
al
ulate

σ̂2
t,1 = f̂1,1(Xt−1) + f̂2,1(σ̂

2
t−1,0) + f̂3,1(rt−1). In the next iteration, we perform anotherregression to obtain f̂i,2 and σ̂2

t,2 whi
h yields improved estimates of the 
onditional vari-an
e σ̂2
t,2. This iterative pro
ess is performed for a prespe
i�ed number of iterations, m.As shown by Bülman and M
Neil (2002) and a

ording to our estimation experien
e,whi
h is do
umented in the simulation results, the improvement over the parametri
GARCH estimation of volatility 
an be attained in a small number of iterations, usuallythe �rst four iterations. The algorithm 
an be improved by averaging over the �nal Kestimates:

σ̂t,∗ =
1

K

M∑

m=M−K+1

σ̂t,m. (3.16)Note that we average over the volatility rather than the 
onditional varian
e sin
e σ̂t isour proxy for volatility. In the �nal smoothing, we regress X2
t against Xt−1, σ̂2

t−1,∗, and
rt−1 to obtain f̂i and σ̂2

t = f̂1(Xt−1) + f̂2(σ̂
2
t−1,∗) + f̂3(rt−1). In our empiri
al appli
ationand simulation experiments, we obtain the �nal smoothing based on K = 4 for eightiterations (m = 8).3.3 Monte Carlo study3.3.1 Experimental designThe purpose of the simulation experiment is to illustrate the superior volatility-fore
astperforman
e of the semiparametri
 pro
edure 
ompared with parametri
 short-rate mod-els. In addition, we show that the semiparametri
 method yields volatility fore
asts thatare invariant to the underlying distribution of the short rate and its drift spe
i�
ation.The data generating pro
ess (DGP) for interest rates with a linear drift follows theAGARCHX model (3.2) and (3.5). Spe
i�
ally, the DGP with a linear drift is

∆rt = 0.06− 0.008rt−1 + εt,

εt = σtzt, zt ∼ t (4), (3.17)
σ2
t = 0.24 + 0.1026ε2t−1 + 0.5595ξ2t−1 + 0.3282σ2

t−1 + 0.015(rt−1/10),where ξt−1 = min(0, εt−1). The use of Student's t distribution for the interest-rate inno-vation is 
onsistent with the widely observed nonnormal short-term interest-rate distri-bution. Moreover, for the purpose of examining the e�e
ts of nonlinear drift fun
tions on3For a dis
ussion of the ba
k�tting algorithm, refer to Friedman and Stuetzle (1981) and Hastie andTibshirani (1986).
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asts generated by the semiparametri
 approa
h, we 
onsider the DGP,
∆rt = 0.06 + 0.008rt−1 − 0.01r2t−1 + 0.0002/rt−1 + εt,

εt = σtzt, zt ∼ t (4), (3.18)
σ2
t = 0.24 + 0.1026ε2t−1 + 0.5595ξ2t−1 + 0.3282σ2

t−1 + 0.015(rt−1/10),where ξt−1 = min(0, εt−1). The parameter values used in the DGPs are typi
al of short-rate empiri
al resear
h. We dis
ard the initial 50 observations to mitigate the e�e
t ofstart-up values yielding samples of 1000 observations, drawn with 50 repli
ations. Thesmall number of repli
ations does not bias the results in any way. In fa
t, this is 
onsis-tent with the number of repli
ations performed in the simulation experiment 
ondu
tedby Bülman and M
Neil (2002). Upon generating the data, we estimate the parametri
models of short-term interest rates with linear and nonlinear drifts, with symmetri
 andasymmetri
 GARCHX models, and with three di�erent innovation distributions, namelynormal, Student's t, and Hansen's (1994) skewed t distributions. In addition, we estimatethe latent volatility using the method of the generalized additive semiparametri
 GARCHmodel dis
ussed in the previous se
tion. For both DGPs, we �t linear and nonlinear driftspe
i�
ations before applying the nonparametri
 smoothing te
hnique to the volatilityestimates. The parametri
 models are estimated by maximizing the log-likelihood fun
-tion using the Broyden, Flet
her, Goldfarb, and Shanno algorithm with the Bollerslevand Wooldridge (1992) robust standard error.To 
ompare the goodness of �t of the in-sample volatility estimates for the di�erentmodels, we 
ompute the mean of the Mean Absolute Error (MAE) and the mean of theMean Squared Error (MSE) of ea
h realization. The MSE and the MAE are 
al
ulatedas:
MAE(σ̂.,m) =

1

1000 − r

1000∑

t=r+1

|σ̂t,m − σt| and MSE(σ̂.,m) =
1

1000 − r

1000∑

t=r+1

(σ̂t,m−σt)
2,(3.19)where r = 50 be
ause the semiparametri
 estimate of volatility at the �rst �fty timepoints are omitted as these estimates may be unreliable, and m applies only to thesemiparametri
 approa
h and refers to the spe
i�
 number of iterations. These measuresare 
omputed at ea
h iteration of the semiparametri
 pro
edure to show the degree ofimprovement in the goodness of �t of the volatility estimates. For the 50 independentrealizations, we average our volatility estimation error statisti
s to provide an estimateof mean of the MSE and the mean of the MAE, as well as the standard errors for theMSE and MAE estimates.3.3.2 Simulation resultsFigures 3.1(a) and (b) plot volatility estimates from the DGP with linear and nonlineardrifts, respe
tively. Column three of Figures 3.1(a) and (b) shows volatility plots of thesemiparametri
 method while 
olumns one and two show volatility plots of the paramet-
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 GARCHX and AGARCHX models. Both the true and estimated volatility are plottedtogether to provide a visual impression of the �t. To 
onserve spa
e, we only report an ar-bitrarily sele
ted sample of 100 observations from one of the repli
ation results. The plotof the volatility estimates produ
ed by the semiparametri
 method is based on the �nalsmoothed σt estimate. A 
ursory look at Figures 3.1(a) and (b) suggests that the semi-parametri
 approa
h yields volatility estimates that mat
h the true simulated volatilitybetter than the parametri
 models' estimates. This result is robust to the innovation-distribution assumption. The GARCHX and AGARCHX models fail to produ
e volatilityestimates that 
an adequately 
apture the variation in the true volatility even thoughin some instan
es they 
apture the spikes relatively well. Another interesting observa-tion shows in Figures 3.1(a) and (b) is that the parametri
 volatility estimates tend tobe higher than the a
tual volatility level. This is not the 
ase with the semiparametri
estimates; they tra
e the level of the true volatility well. When 
omparing the volatilityestimates produ
ed by the GARCHX and the AGARCHX models, we �nd that a modelwith asymmetri
 
onditional varian
e produ
es estimates that better depi
t the a
tualvolatility. This result may not be surprising as the DGP possesses this asymmetri
 fea-ture in the 
onditional varian
e. There are some indi
ations that the volatility estimatesgenerated by the same parametri
 model but with di�erent innovation-distribution as-sumptions are distin
t. This distin
tion is less noti
eable with estimates produ
ed by thesemiparametri
 approa
h.- Figures 3.1(a) and (b) about here -Tables 3.1(a) and (b) show the estimation error results for the in-sample volatilityestimates of various short-rate models for DGPs with linear and nonlinear drifts, respe
-tively. For both DGPs, there is eviden
e that the standard GARCH model yields thelargest MSE and MAE. This result is robust to the innovation-distribution assumptionand the drift spe
i�
ation that is estimated. On the other hand, amongst the di�erentparametri
 GARCH models, the AGARCHX model produ
es the lowest MSE and MAE.There is eviden
e that �tting the 
orre
t 
onditional varian
e spe
i�
ation and usingthe appropriate innovation distribution give rise to signi�
ant improvement in the MSEand MAE. In the 
ase of the linear-drift DGP with a linear drift �t, the improvementin the MSE between the GARCH and AGARCHX models is about 16% for the normaldistribution, 26% for the Student's t distribution, and 16% for the skewed t distribution.On the other hand, for a nonlinear drift DGP with a linear �t, the improvement in theMSE between the GARCH and AGARCHX models is about 12% for the normal distri-bution, 14% for the Student's t distribution, and 9% for the Skewed t distribution. Wealso observe that �tting an erroneous drift spe
i�
ation tends to in
rease the MSE andMAE of the in-sample �t. -Tables 3.1(a) and (b) about here -The estimation error of the semiparametri
 approa
h for both DGPs indi
ates thatthe MSE and MAE are substantially smaller than for the parametri
 models. For the



3.4. EMPIRICAL APPLICATION 55linear drift DGP, between the best-�tting AGARCHX model with linear drift and thesemiparametri
 approa
h with linear drift, the improvement in the MSE (MAE) is about21% (6%) for both normal and skewed t distributions, and 20% (6%) for the Student's tdistribution. Similarly, for the nonlinear drift DGP with a nonlinear �t, the improvementis about 9% (4%) for normal distribution, 7% (4%) for Student's t, and 12% (3%) forskewed t distribution. It 
an be inferred, therefore, that while there is gain to be madefrom using a semiparametri
 approa
h over parametri
 GARCH models in estimatinglatent volatility, the bene�t is more substantial for the 
ase of a short-rate model with alinear drift. An interesting observation about the semiparametri
 approa
h, whi
h 
on-trasts the parametri
 models, is that the MSE and MAE produ
ed by the �nal smoothedsemiparametri
 approa
h tend to be very 
lose to ea
h other for the three di�erent inno-vation distributions, as well as the di�erent drift spe
i�
ations. This result is interestingas it suggests that the semiparametri
 approa
h yields volatility estimates that are robustto the innovation-distribution assumption and possible misspe
i�
ation of the short-ratedrift fun
tion�a feature that is la
king in the parametri
 models.Last but not least, a

ording to Bülman and M
Neil (2002), the apparent improve-ment in the volatility estimates produ
ed by the semiparametri
 te
hnique should showup in the �rst four iterations of the smoothing pro
edure. Indeed we observe that theredu
tion in the estimation error (relative to a GARCH model) is largest at the �rstiteration of the pro
edure. However, this redu
tion is more substantial in the 
ase of thelinear-drift model than the nonlinear-drift model.3.4 Empiri
al appli
ation3.4.1 Data des
riptionThe empiri
al investigation is based on 1,892 weekly observations on the 3-month U.S.Treasury bill rate, sampled from February 9, 1973 to May 8, 2009. The data are obtainedfrom the Federal Reserve Bank of St. Louis (FRED) database. This period in
ludes a shiftfrom histori
ally high interest rates in the late 1970s to early 1980s during the Vol
kermonetary regime to low interest-rate levels in the latter part of the sample period. Theinterest-rate data and the �rst di�eren
ed series are presented in Figure 3.2. Summarystatisti
s for the data set are provided in Table 3.2.- Figure 3.2 about here -From Figure 3.2 it is 
lear that there is indeed a tenden
y for the volatility in theinterest-rate series to be positively 
orrelated with 
urrent interest-rate levels. At thestart of the sample period, the asso
iation between the interest rate and its volatility isvisible. This feature be
omes more apparent for the 1979�1983 period during whi
h boththe level and volatility of the rate are high. The level e�e
t is not as obvious after theVol
ker monetary regime. These empiri
al features tally with those reported in Brenneret al. (1996). The time-varying nature of the volatility in the sample is indi
ative thatunexpe
ted �news� might be equally important in explaining the volatility of interest



56 CHAPTER 3rates, in addition to the level e�e
t.- Table 3.2 about here -The time-varying nature of the volatility that is evident in Figure 3.2 is asso
iated,in turn, with an empiri
al distribution for the �rst-di�eren
ed data that exhibits ex
esskurtosis. The relevant kurtosis statisti
 reported in Table 3.2 is signi�
antly greater thanthe value of 3 asso
iated with the normal distribution. The negative skewness 
oe�
ientis also signi�
antly less than the value of zero asso
iated with the symmetri
 normaldistribution. This is re�e
tive of a �leverage� e�e
t of sorts, whereby interest-rate fallsare asso
iated with higher volatility than in
reases of the same magnitude. The �rst-di�eren
ed data exhibits strong 
orrelation as shown by the Ljung�Box test statisti
whi
h overwhelmingly reje
ts the null hypothesis of no serial 
orrelation at the 10thlag orders. The interest-rate series 
learly possesses 
onditional heteroskedasti
ity asindi
ated by appli
ation of a formal 10th-order LM test for ARCH to the residuals froman AR(10) regression of the interest-rate data. The Jarque�Bera test strongly reje
ts thenull of normality in the interest-rate series.The stationarity property of the interest-rate data is less 
lear 
ut. There is a lot of
ontroversy in the literature surrounding the unit root property of interest rates. Short-rate di�usion models estimated by Marsh and Rosenfeld (1983), Chan et al. (1992),and Aquila et al. (2003) inter alia based on U.S. data do
ument eviden
e that short-term interest rates behave like a random-walk pro
ess. In 
ontrast, Brenner et al. (1996)and Ball and Torous (1999) amongst others show supporting eviden
e that the U.S.short-rate means revert. As is widely known, the standard Di
key�Fuller test is subje
tto typi
ally moderate-size distortion in the presen
e of a negle
ted GARCH e�e
t inthe series (see Kim and S
hmidt, 1993 Haldrup, 1994). To 
ir
umvent the problem ofnegle
ted GARCH e�e
ts in unit-root testing, Seo (1999) suggests the unit-root testequation and the GARCH pro
ess should be estimated jointly when the series examinedexhibits GARCH e�e
ts. We pursue this testing approa
h to ensure that the unit-roottest result is robust to the presen
e of GARCH e�e
ts. As is evident from Table 3.2, themean level of interest rate is 5.8252. This suggests that the unit-root tests should in
ludean inter
ept in the mean equation.Seo (1999) augments the standard Di
key-Fuller testing equations as follows.
∆yt = α+ βyt−1 + εt

σ2
t = φ0 + φ1ε

2
t−1 + φ2σ

2
t−1 (3.20)

εt = σtvt , vt ∼ N(0, 1)The mean equation in (3.20) di�ers slightly from Seo's (1999) approa
h in whi
h theinter
ept is ex
luded. Seo (1999) 
onsiders the use of a preliminary regression to demeanor detrend the series prior to testing the series for a unit root. Cook (2008), however,presents an approa
h where the deterministi
 terms are expli
itly in
luded in the testingequation su
h as in (3.20). Moreover, he simulates a new set of 
riti
al values involvingdi�erent φ0, φ1, and φ2 parameter values that are more typi
al in empiri
al resear
h.



3.4. EMPIRICAL APPLICATION 57The unit-root hypothesis is examined via the maximum likelihood t-ratio for β, whi
h isdenoted as tβ. Seo (1999) shows that the asymptoti
 distribution of tβ is a mixture of thenonstandard Di
key�Fuller distribution and the standard normal. The extent to whi
hthe distribution moves towards the standard normal from the Di
key�Fuller dependsupon the strength of the GARCH e�e
t whi
h is determined by a nuisan
e parameter,
ρ. The null hypothesis of a unit root is reje
ted if tβ is less than the 
riti
al value at the
onventional signi�
an
e levels.In addition to applying the Seo (1999) test, we also perform the augmented Di
key�Fuller (ADF) test and the higher powered GLS-based Di
key�Fuller test (Elliott et al.,1996). The optimal lag length, or degree of augmentation, of the testing equation isdetermined using the modi�ed Akaike Information Criterion (MAIC) proposed by Ngand Perron (2001) following initial 
onsideration of a maximum lag length given by
int[12(T/100)]0.25 , where T is the total sample size. Hayashi (2000) provides a justi�-
ation of this upper bound. The appropriate degree of augmentation for both tests isfound to be 25. The results obtained from the appli
ation of these tests, denoted as
τµ and τGLS

µ , are given in Table 3.2. Using the 5% 
riti
al values obtained from Fuller(1996) and Pantula et al. (1994), the derived test statisti
s, respe
tively, show the unit-root null hypothesis is not reje
ted by either of the tests. However, the interest-rateseries 
learly possesses 
onditional heteroskedasti
ity as indi
ated by the appli
ation ofa formal 10th order LM test for ARCH to the residuals from the ADF test. Given thepresen
e of 
onditional heteroskedasti
ity, Seo's (1999) approa
h outlined above is fol-lowed to test the unit-root hypothesis. A

ordingly, an ADF testing equation with 18lags is estimated jointly with a GARCH(1,1) pro
ess using maximum likelihood estima-tion and the Bernt�Hall�Hall�Hausman algorithm. The test statisti
 using Bollerslev andWooldridge's (1992) standard errors is denoted as tβ(BW).4 We simulate the 5% 
riti
alvalue for the estimated GARCH parameters of {φ̂1, φ̂2} = {0.14, 0.85} along with thee�e
tive sample size of 1,892 observations sin
e neither Seo's (1999) nor Cook's (2008)studies provide 
riti
al values that 
an be applied to our results.5 The simulated 
riti
alvalue at the 5% level of signi�
an
e is −1.9073 for the nonrobust standard errors and-1.8891 for the Bollerslev-Wooldridge robust standard errors. The 
al
ulated test statisti
for tβ and tβ(BW) are −2.4301 and −2.5147, respe
tively. These results imply that theunit-root hypothesis 
an be reje
ted 
omfortably in both 
ases. On the basis that Seo's(1999) test in
orporates the GARCH e�e
ts into the testing framework, we are morein
lined to believe in its robust inferen
e. That is, the weekly 3-month U.S. Treasury billinterest rates are stationary.4Cook (2008) shows that the maximum likelihood estimation of the Seo (1999) unit-root test equations
ould employ Bollerslev and Wooldridge's (1992) robust standard errors. The t-test statisti
 for the slope
oe�
ient β with robust standard error is given by tβ(BW).5The appendix provides details of the simulation to obtain 1%, 5%, and 10% 
riti
al values for tβand tβ(BW).



58 CHAPTER 33.4.2 Empiri
al resultsThe data-des
ription statisti
s indi
ate that an appropriate model of short-rate volatil-ity should a

ount for its time-varying nature, its asymmetri
 response to sho
ks ofdi�erent signs and its dependen
e on interest-rate levels. For this reason, we estimate theGARCHX and AGARCHX models for the di�usion pro
ess. As for the drift spe
i�
ation,we estimate both linear and nonlinear drifts to determine the presen
e of nonlinearities.Given the eviden
e of un
onditional skewness in short-rate 
hanges, we also estimatethe models with three di�erent distribution assumptions, namely normal, Student's tand skewed t. All the models are estimated with Bollerslev and Wooldridge's (1992)quasi-maximum likelihood method, whi
h gives robust standard errors. The in-sampleand out-of-sample volatility fore
asts of these parametri
 models are then 
omparedwith those of the semiparametri
 model. To produ
e the one-period-ahead out-of-samplevolatility fore
asts, we ex
lude the last 100 observations from our sample and estimatethe parametri
 and semiparametri
 models re
ursively over the remainder of the data.In other words, ea
h time we produ
e a one-period-ahead volatility fore
ast, we estimatethe model using all the data up until the period prior to that fore
ast. The estimationresults for the parametri
 models with linear and nonlinear drifts are reported in Tables3.3(a) and (b), respe
tively.- Tables 3.3(a) and (b) about here -It 
an be seen in Table 3.3(a) that the 
oe�
ients of the linear drift fun
tion areonly statisti
ally signi�
ant at the 5% signi�
an
e level for the models �tted with aStudent's t distribution. The estimate for the 
oe�
ient λ, whi
h 
aptures the degreeof mean reversion, is very small, implying that the degree of mean reversion is weak.The estimates of the interest-rate-level sensitivity parameters (b and δ), the 
oe�
ientsof last period's unexpe
ted news (α1), the last period's volatility (α2), and the 
oe�-
ient of the asymmetri
 response of 
urrent volatility to last period's bad news (α3), arefound to be highly signi�
ant. Taken together, these results suggest that there is over-whelming eviden
e of GARCH, levels, and asymmetri
 GARCH e�e
ts in the di�usionpro
ess. In terms of maximized log-likelihood values, the AGARCHX with Student's tdistribution performs better than the other models. There is eviden
e that, independentof the underlying distribution, models that a

ount for both asymmetri
 GARCH andlevels e�e
ts perform better than models that do not a

ount for asymmetri
 GARCHe�e
ts. The simple GARCH model performs the worst in terms of the log-likelihood val-ues. This model fails to 
apture the asymmetry and level dependen
e in the short-ratevolatility pro
ess. Moreover, the Ljung�Box test of the 12th-order serial 
orrelation inthe squared standardized residuals reje
ts the null of no serial 
orrelation, implying thatthe GARCH model does not adequately 
hara
terize the volatility dynami
 of short-rate
hanges. The skewness parameter, η, of the skewed t distribution turns out to be sta-tisti
ally insigni�
ant at all 
onventional signi�
an
e levels. Furthermore, the η estimatefor the three short-rate models is virtually zero, implying that a Student's t distributionis adequate to 
hara
terize the short-rate distribution. Our �nding supporting the use of



3.4. EMPIRICAL APPLICATION 59the Student's t instead of skewed t distribution is 
onsistent with Bali's (2007) results.In Table 3.3(b), we show the estimation results for nonlinear-drift short-rate models.Regardless of the error-distribution assumption, the 
oe�
ients λ2 and λ3, whi
h governthe nonlinear dynami
s in the drift fun
tion, are statisti
ally insigni�
ant. Our results,whi
h support the la
k of eviden
e of nonlinearity in the 3-month T-bill data, 
on
ur withBali's (2007) earlier �ndings showing that the in
orporation of the GARCH e�e
ts intothe volatility pro
ess gives rise to no eviden
e of nonlinearity in the drift spe
i�
ation.The skewness parameter, η, of the skewed t distribution again turns out to be statisti
allyinsigni�
ant for all models, suggesting there is no eviden
e for skewness asymmetry in theshort-rate-
hange distribution. Comparing models with linear and nonlinear drifts a
rosssimilar distribution assumptions indi
ates a substantial redu
tion in the log-likelihoodvalue, thereby suggesting that a short-rate model with linear drift is the preferred spe
i�-
ation. Based on this result, we do not 
onsider the in-sample and out-of-sample fore
astperforman
e of short-rate models with nonlinear drift and a skewed t distribution.We use four di�erent metri
s to evaluate the in-sample and out-of-sample volatility-fore
ast performan
e of the semiparametri
 approa
h 
ompared to its parametri
 
oun-terparts. In addition to the MAE and MSE measures given in equation (3.19), we alsouse the Akaike Information Criterion (AIC), whi
h is a penalized negative log-likelihood
riterion adjusted for the degree of parameters that are estimated, and Bali's (2007)
R2

vol measure. For the four metri
s, we proxy the unobserved true volatility, σt, with
|rt − rt−1|. The AIC is 
omputed as

AIC = 2K + T

[
ln

(
2π · RSS

T

)
+ 1

]
, (3.21)where K is the number of estimated parameters, T is the sample size, and RSS =∑T

t=1(σt− σ̂t)
2, where σt is the true volatility proxy, σ̂t is the model estimated volatility.The R2

vol measure essentially 
omputes the total variation in the true volatility proxiedby |rt − rt−1| that 
an be explained by the estimated 
onditional volatilities. This isobtained from the 
oe�
ient of determination of an OLS regression of the form
σt = a0 + a1σ

f
t + et, (3.22)where σt and σf

t are the volatility proxy of |rt − rt−1| and the fore
asted volatility,respe
tively. It should be highlighted that the R2
vol measure is a 
rude measure andis subje
t to the following 
aveat. As pointed out by Andersen and Bollerslev (1998),the idiosyn
rati
 
omponent of daily interest-rate 
hanges is large, thus the use of re-alized interest-rate 
hanges may not fully 
apture day-by-day movements in volatility.To 
ir
umvent this problem, we use a range-based volatility proxy by adopting the Gar-man and Klass's (1980) extreme-value estimator to 
onstru
t a minimum-varian
e un-biased estimator that utilizes the opening, 
losing, high, and low pri
es. Due to thepau
ity of high-frequen
y data, the use of the GK extreme-value estimator is deemed asa 
ompromise to the preferred realized-volatility measure derived from high-frequen
y



60 CHAPTER 3data (see Andersen et al., 2001).6 Our 
hoi
e of the GK estimator is also motivatedby the �ndings of Bali and Weinbaum (2005), who perform a horse ra
e among allthe extreme-value estimators featured in the literature. They show that, in pra
ti
e,the GK estimator is the least biased and most e�
ient estimator 
ompared with otherextreme-value estimators. The GK minimum varian
e and unbiased estimator is σ̂2
GK =

1
n

∑n
t=1

{
0.511

(
ln Ht

Lt

)2
− 0.019

[
ln
(
Ct

Ot

)
ln
(
HtLt

Ot

)
− 2 ln

(
Ht

Ot

)
ln
(
Lt

Ot

)]
− 0.383

[
ln
(
Ct

Ot

)]2}, n >

1, where Ot, Ct, Ht, and Lt denote, respe
tively, the opening, 
losing, high and lowpri
es on day t and n is the number of days in the sample. The IRX (the value of the13-week Treasury Index) index data are obtained from the Yahoo/�nan
e web site.7- Tables 3.4(a) and (b) about here -Tables 3.4(a) and (b) report the results of the four metri
s for evaluating the in-samplefore
ast performan
e of the models using the volatility ben
hmarks |rt − rt−1| and σ̂GK,respe
tively. Fo
using on the results with volatility proxy |rt − rt−1|, we �nd that theAGARCHX model with the Student's t distribution performs the best 
ompared withother parametri
 models. Not only does it deliver the lowest MSE and MAE, it also givesthe lowest AIC and highest R2
vol. The GARCH model, whi
h does not take into a

ountthe level dependen
e and asymmetri
 response in the 
onditional varian
e of short-rate
hanges, performs the worst. However, there is eviden
e that the semiparametri
 modelyields a superior in-sample volatility fore
ast as judged by the four metri
s. When 
om-pared with the best-�tting AGARCHX Student's t model, the redu
tion in the MSE andMAE based on the �nal smoothed semiparametri
 method is about 3% and 1%, respe
-tively. The AIC shows a marked improvement in the �t, falling from −498.52 to −601.92,while the R2

vol in
reases by about 10%. Looking at the four metri
s, we also �nd that inea
h iteration of the semiparametri
 smoothing pro
edure there is a signi�
ant improve-ment in the volatility fore
ast performan
e 
ompared with the AGARCHX Student's tmodel. Interestingly, we �nd that for the semiparametri
 approa
h, �tting a nonlineardrift fun
tion erroneously to obtain an initial volatility estimate does not give rise to aninferior fore
ast performan
e. The di�eren
e in fore
ast performan
e results for the linearand nonlinear drifts with the semiparametri
 approa
h is negligible, implying that the
hoi
e of the drift fun
tion is immaterial to the fore
ast performan
e of the semipara-metri
 approa
h. This result 
orroborates the simulation results in whi
h we �nd thatnegle
ting to �t the 
orre
t drift fun
tion in the semiparametri
 approa
h does not bearany in�uen
e on its volatility-fore
ast performan
e. Another important �nding is thatthe 
hoi
e of the innovation distribution, whether it is normal, Student's t, or skewed
t, does not have a 
onsiderable impa
t on the fore
ast performan
e of the semipara-6Implied volatility 
an be obtained from the value of the 13-week Treasury index (IRX), whi
h isbased on the dis
ount rate of the most re
ently au
tioned 13-week U.S. T-bill. However, high-frequen
yIRX data are only available from November 3, 1997. Our sample period, on the other hand, 
ommen
esfrom February 9, 1973.7The URL for the IRX data is http://�nan
e.yahoo.
om/q/hp?s=%5EIRX+Histori
al+Pri
es. Wethank the anonymous referee for dire
ting us to this data sour
e.
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 approa
h.8 Taken together, these results highlight the robust fore
ast propertyof the semiparametri
 approa
h to possible misspe
i�
ations of the drift fun
tion andthe innovation distribution. In Table 3.4(b), we show that these results are qualitativelyun
hanged even with the use of a more a

urate volatility ben
hmark (i.e. σ̂2
GK) to assessthe fore
ast performan
e of the semiparametri
 approa
h relative to parametri
 models.- Figure 3.3(a) and (b) about here -Given the extensive results reported in Tables 3.4(a) and (b), we summarize these �nd-ings by presenting them in Figures 3.3(a) and (b). To interpret the plot, the four shadedbars represent the metri
 value of the parametri
 models: AGARCHX-T, AGARCHX-N, GARCHX-T, and GARCHX-N in that order. The line plotted a
ross the x-axis is alo
us of the metri
 value for the GARCH model (represented by the �rst mark on thex-axis), the metri
 value for the eight iterations of the semiparametri
 approa
h (rep-resented by the se
ond to ninth marks on the x-axis), and the �nal smoothed stage ofthe semiparametri
 approa
h (represented by the tenth mark on the x-axis). It is evidentfrom the plot that the semiparametri
 approa
h yields the best results based on all fourfore
ast-performan
e measures. The results are 
onsistent whether we use the 
rude ormore a

urate volatility ben
hmark. To visually illustrate the superior performan
e ofthe semiparametri
 approa
h 
ompared with the AGARCHX Student's t model, we plotin Figures 3.4(a) to (d) the in-sample volatility estimates of the two models for an arbi-trarily sele
ted period January 1, 1997�January 1, 2000. Figures 3.4(a) and (b) employ

|rt− rt−1| as the true volatility proxy while Figures 3.4(
) and (d) are based on the morea

urate volatility proxy given by σ̂2
GK.- Figures 3.4(a), (b), (
) and (d) about here -By 
omparing the plots of the volatility estimates between the best-�tting parametri
AGARCHX Student's t model and the semiparametri
 model, we 
an see that the lattermodel is 
apable of 
apturing movements of the short-rate volatility pro
ess better thanthe former model. The AGARCHX Student's t model tends to yield an overly smoothedvolatility estimate of the true volatility pro
ess proxied by |rt − rt−1| (σ̂2

GK) in Figure3.4(b) (Figure 3.4(d)). There are two important features about the way the volatilityestimates obtained from the semiparametri
 approa
h improve upon the estimates of theAGARCHX Student's t model. First, there are peaks or spikes in the volatility of theshort-rate 
hanges that are well 
aptured by the semiparametri
 model, but not by theAGARCHX Student's t model. For example, the peak observed on January 1, 1998 is
learly 
aptured by the semiparametri
 approa
h, but not by the AGARCHX Student's
t model. Se
ond, the volatility estimates produ
ed by the semiparametri
 approa
h tendto mat
h the rise and fall in interest rates better than the AGARCHX Student's t model.The most obvious of this point is the drop in interest rates between the two peaksthat happened prior to January 1, 1999 (see Figure 3.4(a)). While the semiparametri
8To 
onserve spa
e, we do not report the results for the semiparametri
 approa
h with a skewed tdistribution. These results are available from the authors upon request.
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h does not fully 
apture the drop in rates, it does a better job at 
apturing thefall in interest rates than the AGARCHX Student's t model.- Tables 3.5(a) and (b) about here -- Figures 3.5(a), (b), (
) and (d) about here -Turning to the out-of-sample volatility-fore
ast performan
e of the semiparametri
model, we �nd that the volatility estimates obtained from the �nal smoothed stagehave better predi
tive power than those produ
ed by the parametri
 models. Using thevolatility ben
hmark σ̂2
GK (see Table 3.5(b)), the improvement in the volatility-fore
astestimation error measured by the MSE and the MAE is 14% and 11%, respe
tively,between the �nal smoothed semiparametri
 approa
h and the AGARCHX Student's tmodel. On the other hand, the redu
tion in the fore
ast estimation error based on the
rude volatility proxy |rt−rt−1| is more 
onservative: The MSE and MAE fall by 6% and5%, respe
tively (see Table 3.5(a)). Figures 3.5(a) to (d) provide plots of the volatility-fore
ast estimates of the two 
ontending models. Unlike the in-sample volatility estimates,we fail to �nd that the semiparametri
 approa
h is 
apable of 
apturing the observedpeaks in interest-rate volatility, parti
ularly with the volatility ben
hmark σ̂2

GK and thesharp spike at the start of the fore
ast horizon (see Figure 3.5(
)). However, this doesnot diminish the out-of-sample fore
ast performan
e of the semiparametri
 approa
h
ompared with the AGARCHX Student's t model. The latter model 
ontinues to providean overly smoothed out-of-sample volatility fore
ast of interest rates. In 
ontrast, thesemiparametri
 approa
h yields volatility fore
asts that better 
apture �u
tuations inthe short rate, thus leading to a smaller estimation error than the AGARCHX Student's
t model.3.4.3 Impli
ations for pri
ing interest-rate derivativesGiven that the volatility pro
esses of the semiparametri
 and parametri
 models are dis-tin
t, it is very likely that the two 
lasses of models will generate di�erent probabilitydistributions of future interest-rate levels. Predi
tions of future interest rates are essentialfor pri
ing long-dated, path-dependent interest-rate derivatives su
h as the index amor-tizing rate (IAR) and swaps, amongst others. For the purpose of illustration, we 
onsiderthe IAR swaps. The notional value of the IAR swaps is redu
ed over time a

ording toan amortization s
hedule based on the level of a referen
e interest rate on a parti
ular�xed date in the future (usually every three or six months). The value of this swap is
ontingent on the probability distribution of the referen
e rate on ea
h reset date. Sin
ethe amount of prin
ipal that remains on any reset date depends on past interest-ratelevels, the IAR swaps are 
onsidered �path-dependent� se
urities. In other words, �u
tu-ations in interest rates and hen
e the a

ura
y in modeling short-rate volatility mattersfor the pri
ing of the IAR swaps. For a detailed dis
ussion of the IAR swaps refer toGalaif (1993).To examine how an improvement in the estimation a

ura
y of short-rate volatility
ould a�e
t the pri
ing of interest-rate derivatives, we follow BHK and perform the



3.4. EMPIRICAL APPLICATION 63following experiment. We simulate the semiparametri
 model and the parametri
 models5,000 times using the 3-month U.S. Treasury bill rate estimation results with June 8,2007, as the starting date. The interest-rate level is 4.67% on this date. Following BHK,we fo
us on the volatility pro
ess and employ the mean equation rt − rt−1 = −0.0015given that the average weekly 
hange in the interest rate over the estimated sample periodis −0.0015.9 Figure 3.6 graphs the 5th, 25th, 50th, 75th and 95th per
entiles of the 5,000simulated paths for ea
h horizon up to 100 weeks for the di�erent short-rate models.The solid lines represent the 
on�den
e intervals for simulated interest rates based onthe parametri
 models. The ordering from the outermost to innermost lines representsthe resulting interest-rate distributions for the AGARCHX-T, GARCHX-T, AGARCHX-N and GARCHX-N models. The dotted lines denote the short-rate distribution of thesemiparametri
 model. - Figure 3.6 about here -Visual inspe
tion of Figure 3.6 suggests that there are several interesting results.First, the distribution assumption in the parametri
 models does not seem to matter forderivative pri
es. The interest-rate distributions are very similar when 
omparing betweenthe same type of model with di�erent distribution assumptions. Se
ond, like BHK, we �ndthat whether we model asymmetries in the parametri
 models or not is immaterial for thepaths of future interest rates; therefore, this will not greatly a�e
t interest-rate derivativepri
es. Third, amongst the di�erent models 
onsidered, the 
on�den
e intervals of futureshort-rate levels generated by the semiparametri
 model are narrower, parti
ularly atthe 5% and 95% levels. In other words, the semiparametri
 model predi
ts a narrower
on�den
e band of extreme interest-rate movements than the parametri
 models. Forother 
on�den
e levels 
onsidered, we �nd that the future levels of short-term interestrates are 
omparable with the parametri
 models.Based on these results, what 
an be said about the pri
ing of 
ertain path-dependentinterest-rate derivative su
h as the IAR swaps mentioned above, mortgages and 
ollat-eralized mortgage obligations? Given that parametri
 models produ
e larger upper tails,the average predi
ted amortization will be less for su
h models than the semiparamet-ri
 model. In other words, the predi
ted lives of these se
urities and their 
ash �owswill in
rease. A

ordingly, these se
urities would be overpri
ed by the parametri
 modelsrelative to the semiparametri
 model. On the other hand, the larger lower tails of theparametri
 models would imply that these se
urities would be underpri
ed 
ompared tothe semiparametri
 model. Our results for the parametri
 models are 
onsistent withthose of BHK who �nd that the 
onditional-varian
e model spe
i�
ation does not in-�uen
e the pri
ing of interest-rate derivatives. In parti
ular, they show that whether amodel spe
i�es an asymmetri
 
onditional varian
e or an additive or multipli
ative levelse�e
t in the varian
e spe
i�
ation does not yield signi�
ant di�eren
es in the pri
ing ofinterest-rate derivatives. Likewise, we demonstrate that the asymmetri
 spe
i�
ation ofthe di�usion pro
ess and the distribution assumption for parametri
 models do not af-fe
t the pri
ing of interest-rate derivatives. More importantly, we �nd that the narrower9Although the mean-reverting slope 
oe�
ient is signi�
ant, the 
oe�
ient estimate is very 
lose tozero. Therefore, ignoring the mean-reverting dynami
s in the simulation is a reasonable simpli�
ation.
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on�den
e intervals of future interest-rate levels produ
ed by the semiparametri
 modelrelative to any of the parametri
 models suggests that our method would yield less pri
evariation for long-dated and path-dependent interest-rate derivatives.Although the semiparametri
 model does not give rise to a simple analyti
al solutionfor the pri
ing of derivatives, the estimation pro
ess sets up naturally for Monte Carloevaluation. Thus, like the BHKmodels, the semiparametri
 model 
an be easily applied tothe valuation of se
urities that already require Monte Carlo evaluation. These se
uritiesin
lude those interest-rate derivatives dis
ussed above.3.5 Con
lusionIn this paper an appli
ation of a semiparametri
 GARCH approa
h to modeling short-term interest-rate volatility has been proposed. The semiparametri
 smoothing te
hniqueuses a general additive fun
tion of lagged innovations, volatilities, and past interest-rate levels with a ba
k�tting algorithm to estimate the unobserved di�usion pro
ess.While the volatility model is estimated semiparametri
ally, it resembles the widely usedshort-rate volatility models of BHK, whi
h feature interest-rate-level dependen
e andan asymmetri
al dynami
 in the 
onditional varian
e. Consequently, we 
ompare theperforman
e of the semiparametri
 approa
h with this 
lass of single-fa
tor short-ratedi�usion models in terms of its ability to 
hara
terize short-rate volatility. Our simulationstudy shows that the semiparametri
 model provides a superior �t of the in-samplevolatility estimates to a GARCHmodel that exhibits asymmetry and the levels e�e
t. Thevolatility fore
ast performan
e of the semiparametri
 pro
edure, unlike the parametri
GARCH models, is also robust to potential misspe
i�
ation in the short-rate drift andthe innovation distribution. The empiri
al appli
ation to weekly 3-month U.S. Treasurybill rates between 1973 and 2009 further illustrates improvement in the in-sample andout-of-sample predi
tive power of the semiparametri
 model over BHK's models. Finally,we show that the greater degree of a

ura
y in modeling short-rate volatility o�eredby the semiparametri
 model is important for pri
ing long-dated and path-dependentinterest-rate derivatives.For future resear
h, we intend to apply this te
hnique to Bla
k et al.'s (1990) two-fa
tor model of with sto
hasti
 volatility, whi
h was developed and estimated by Bali(2003). The two fa
tors of the model are the short-term interest rate and the volatilityof interest-rate 
hanges. This would involve performing a nonparametri
 estimation onboth the drift and di�usion of the short-rate pro
ess. The appli
ation of this te
hnique tothe two-fa
tor arbitrage-free model 
ould be used to assess the importan
e of modelingshort-rate-
hange volatility a

urately and its impli
ations on default-free bond pri
ing.



AppendixTo simulate the 
riti
al values for the Seo (1999) test, the following DGP is employed.
yt = yt−1 + εt, t = 1, . . . , T

σ2
t = φ0 + φ1ε

2
t−1 + φ2σ

2
t−1 (3.23)

εt = σtvt, vt ∼ N(0, 1)We set the parameters φ1 = 0.14, φ2 = 0.85, and φ0 = 1− φ1 − φ2. These values aretaken from estimates of our ADF testing equation with 18 lags whi
h is estimated jointlywith a GARCH(1,1) pro
ess. T is set to 1,892 to mat
h our sample size. On
e the dataare simulated, we perform Seo's (1999) test by estimating
∆yt = α+ βyt−1 + εt

σ2
t = φ0 + φ1ε

2
t−1 + φ2σ

2
t−1 (3.24)

εt = σtvt, vt ∼ N(0, 1),with the maximum likelihood method using the Bernt�Hall�Hall�Hausman algorithm.The resulting t-test for the null hypothesis of a unit-root pro
ess in yt (i.e., β = 0), whi
his denoted as tβ, is 
omputed. In addition, we 
ompute the robust t-test, tβ(BW), usingBollerslev and Wooldridge's (1992) robust standard error. The experiment is repeated25,000 times and ea
h time the test statisti
 values for tβ and tβ(BW) are saved. Theresulting series of t̂β and t̂β(BW) are sorted and the 1%, 5%, and 10% 
riti
al valuesare obtained a

ordingly. The 
riti
al values at the 1%, 5%, and 10% signi�
an
e levelsfor tβ are −2.4280, −1.9073, and −1.6701, and for tβ(BW) are −2.4196, −1.8891, and
−1.6454, respe
tively.
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Table 3.1: Estimates of Mean Squared and Mean Absolute Volatility Estimation Error for Simulated Data(a) DGP - linear driftNormal Student's t Skewed tModels MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err.Estimated with a linear drift fun
tionGARCH 0.3262 0.1210 0.3794 0.0638 0.3558 0.1357 0.4044 0.0716 0.3229 0.1193 0.3772 0.0559Iteration 1 0.2316 0.1065 0.3561 0.0664 0.2310 0.0968 0.3561 0.0638 0.2308 0.0962 0.3558 0.0635Iteration 2 0.2036 0.0861 0.3336 0.0617 0.2028 0.0944 0.3337 0.0629 0.2027 0.0951 0.3333 0.0631Iteration 3 0.2065 0.0886 0.3359 0.0598 0.2030 0.0839 0.3336 0.0595 0.2033 0.0847 0.3336 0.0595Iteration 4 0.2126 0.0961 0.3411 0.0627 0.2038 0.0855 0.3349 0.0607 0.2057 0.0845 0.3370 0.0593Iteration 5 0.2085 0.0855 0.3402 0.0603 0.2057 0.0876 0.3371 0.0597 0.2062 0.0881 0.3379 0.0602Iteration 6 0.2095 0.0846 0.3408 0.0605 0.208 0.0864 0.3389 0.0607 0.2083 0.0876 0.3392 0.0624Iteration 7 0.2155 0.0934 0.3445 0.0628 0.2094 0.0864 0.3398 0.0602 0.2098 0.0868 0.3399 0.0604Iteration 8 0.2137 0.0906 0.3426 0.0623 0.2117 0.0916 0.3404 0.062 0.2119 0.0918 0.3401 0.0619Final smoothing 0.2158 0.0929 0.3442 0.0617 0.2123 0.0909 0.3415 0.0611 0.2125 0.0911 0.3417 0.0614AGARCHX 0.2738 0.1193 0.3674 0.0693 0.265 0.1011 0.3631 0.0652 0.2705 0.1052 0.3640 0.0511GARCHX 0.3194 0.1234 0.3789 0.0711 0.2945 0.1217 0.3704 0.0686 0.3116 0.1143 0.3755 0.0532Estimated with a nonlinear drift fun
tionGARCH 0.3286 0.1234 0.3785 0.065 0.3552 0.1352 0.4025 0.0717 0.3224 0.1324 0.3826 0.06Iteration 1 0.231 0.1071 0.3552 0.0677 0.2306 0.0972 0.3551 0.0644 0.2378 0.0984 0.3638 0.0661Iteration 2 0.2038 0.0871 0.3331 0.0623 0.2039 0.0951 0.3343 0.0644 0.213 0.0961 0.3436 0.0642Iteration 3 0.2081 0.0897 0.3368 0.0611 0.2031 0.0835 0.3335 0.0597 0.2154 0.0888 0.3454 0.0626Iteration 4 0.2147 0.0996 0.3413 0.0639 0.2053 0.0856 0.3362 0.0611 0.2143 0.086 0.346 0.0613Iteration 5 0.2082 0.0857 0.3397 0.0613 0.2069 0.0892 0.3374 0.0604 0.2176 0.0918 0.3484 0.0636Iteration 6 0.2117 0.0852 0.3423 0.0618 0.2098 0.086 0.3397 0.0605 0.2192 0.0884 0.3499 0.0628Iteration 7 0.2143 0.0907 0.3438 0.0632 0.2095 0.0864 0.3392 0.0599 0.2211 0.0901 0.3502 0.0629Iteration 8 0.2173 0.0958 0.345 0.0641 0.2135 0.0921 0.3414 0.0621 0.2233 0.0942 0.3512 0.0644Final smoothing 0.2167 0.0927 0.3449 0.0629 0.2134 0.0909 0.3418 0.0613 0.2239 0.094 0.3522 0.0639AGARCHX 0.2846 0.1237 0.3689 0.0714 0.2739 0.1223 0.3672 0.0692 0.2814 0.1248 0.3681 0.0663GARCHX 0.3205 0.1260 0.3813 0.0725 0.3131 0.1255 0.3811 0.0710 0.3207 0.1269 0.3859 0.0701
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(b) DGP - Nonlinear driftNormal Student's t Skewed tModels MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err. MSE Std. err. MAE Std. err.Estimated with a linear drift fun
tionGARCH 0.1094 0.0708 0.1893 0.0741 0.1077 0.072 0.1877 0.067 0.1042 0.0714 0.1907 0.0667Iteration 1 0.0808 0.0651 0.1791 0.0501 0.0809 0.0649 0.1791 0.0500 0.0805 0.0637 0.1788 0.0497Iteration 2 0.0704 0.0532 0.1669 0.0461 0.0685 0.0524 0.1651 0.0449 0.0692 0.0529 0.1649 0.0443Iteration 3 0.0756 0.0568 0.1747 0.0498 0.0780 0.0758 0.1739 0.0522 0.0764 0.0722 0.1735 0.0509Iteration 4 0.0710 0.0517 0.1693 0.0431 0.0729 0.0581 0.1703 0.0415 0.0716 0.055 0.1695 0.0439Iteration 5 0.0772 0.0605 0.1740 0.0473 0.0739 0.0558 0.1725 0.0460 0.0770 0.0596 0.1746 0.0523Iteration 6 0.0782 0.0680 0.1748 0.0533 0.0700 0.0521 0.1684 0.0427 0.0721 0.0569 0.1691 0.0448Iteration 7 0.0755 0.0568 0.1746 0.0467 0.0756 0.0614 0.1724 0.0466 0.0750 0.0583 0.1721 0.0458Iteration 8 0.0782 0.0623 0.1750 0.0471 0.0754 0.0577 0.1752 0.0486 0.0742 0.0577 0.1732 0.0467Final smoothing 0.0772 0.0603 0.1750 0.0472 0.0756 0.0591 0.1734 0.0464 0.0753 0.0595 0.1725 0.0462AGARCHX 0.0967 0.0695 0.1851 0.0652 0.093 0.0645 0.1825 0.0607 0.0944 0.0673 0.1838 0.0625GARCHX 0.0991 0.0705 0.1872 0.0643 0.0956 0.0671 0.186 0.0618 0.0968 0.068 0.1867 0.0632Estimated with a nonlinear drift fun
tionGARCH 0.0998 0.1057 0.1865 0.0724 0.0843 0.0646 0.1823 0.0647 0.0963 0.0693 0.1909 0.0653Iteration 1 0.0917 0.0961 0.1816 0.0591 0.0846 0.0782 0.1786 0.0518 0.083 0.0564 0.1843 0.0502Iteration 2 0.0856 0.0948 0.1727 0.0602 0.0688 0.0519 0.163 0.0422 0.0719 0.0572 0.1686 0.048Iteration 3 0.0888 0.097 0.1772 0.0591 0.0754 0.0555 0.1716 0.0478 0.0726 0.0528 0.1721 0.0469Iteration 4 0.0852 0.0907 0.1751 0.0559 0.0709 0.0501 0.1682 0.0432 0.0751 0.0579 0.1739 0.0494Iteration 5 0.0844 0.0899 0.1738 0.0527 0.0779 0.0597 0.1733 0.0481 0.0798 0.0628 0.1778 0.0499Iteration 6 0.0841 0.0907 0.176 0.0551 0.074 0.0538 0.1721 0.0462 0.0777 0.0603 0.1764 0.049Iteration 7 0.0839 0.0884 0.1766 0.0543 0.0737 0.0557 0.1713 0.0454 0.0768 0.0597 0.1751 0.0476Iteration 8 0.0869 0.0906 0.1783 0.055 0.0747 0.0542 0.1732 0.0458 0.0789 0.0532 0.1769 0.0492Final smoothing 0.0862 0.0907 0.1766 0.0535 0.0747 0.055 0.1731 0.0463 0.079 0.0551 0.177 0.0493AGARCHX 0.0945 0.1022 0.1846 0.0619 0.0806 0.0612 0.1804 0.0521 0.0901 0.0635 0.1825 0.0534GARCHX 0.0977 0.1025 0.1852 0.0637 0.0838 0.0637 0.1817 0.058 0.0942 0.0668 0.1843 0.0599Note: The results are for simulated data from the DGP in equation (3.17) for the linear drift and equation (3.18) for the nonlinear drift with the 
onditionalvarian
e following equation (16). The sample size is 1,000 and the number of repli
ations is 50. The rows labeled as iterations and �nal smoothing are theresults for the semiparametri
 approa
h.
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s for the U.S. Short RatesVariable Mean SD Skewness Kurtosis JB test Q(10)
rt 5.8252 3.0448 0.7665 1.0476 271.82 18017.36

[0.00] [0.00]

∆rt −0.0028 0.2319 −0.6466 17.9637 25557.59 185.53

[0.00] [0.00]Variable ARCH(10) τµ τGLS
β τβ τβ(BW)

rt 35.5992 −1.4902 −1.5440 −2.4301 −2.5147

[0.00]Note: The JB test represents the Jarque�Bera test of normality. Q(10) is the Ljung�Box test of serial 
orrelationof order 10. ARCH(10) is the test for ARCH e�e
t up to order 10 for the resulting residual of an AR(10)regression on the short rate. τµ and τGLS
β are the ADF and the GLS-based Di
key-Fuller test statisti
s and their5% 
riti
al values are −2.8629 and −1.95, respe
tively. τβ and τβ(BW) are the test statisti
s for Seo's (1999)test with the latter using Bollerslev and Wooldridge's (1992) robust standard errors. The simulated 
riti
alvalues of τµ and τGLS

β
are −1.9073 and −1.8891 at the 5% signi�
an
e level.
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Table 3.3: Short-Term Interest-Rate Model Estimates (February 2, 1973�June 8, 2007)(a) Linear drift spe
i�
ationNormal Student's t Hansen's Skewed tModels GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX
µ 0.0042 0.0039 0.0033 0.0037 0.0018 0.0014 0.0026 0.0041 0.0015

(0.0063) (0.003) (0.0031) (0.0039) (0.0024) (0.0026) (0.0019) (0.0058) (0.0045)

λ −0.0014 −0.0002 −0.0004∗∗ −0.0002∗ −0.0003∗∗ −0.0003) −0.0007∗ −0.0004 −0.0006

(0.0016) (0.0008) (0.0002) (0.0001) (0.0001) (0.0001) (0.0003) (0.0008) (0.0008)

α0 0.0001 0.0001 0.0003∗ 0.0000 0.00002 0.00002 0.0002 0.0003∗ 0.0000

(0.0003) (0.0002) (0.0001) (0.00001) (0.00002) (0.00004) (0.0005) (0.0001) (0.0001)

α1 0.1055∗ 0.3031∗ 0.2157∗ 0.1181∗ 0.2415∗ 0.2643∗ 0.1825∗ 0.2016∗ 0.2389∗
(0.0252) (0.0695) (0.0757) (0.0258) (0.0455) (0.0478) (0.0731) (0.068) (0.0412)

α2 0.8915∗ 0.6719∗ 0.6643∗ 0.8815∗ 0.7110∗ 0.7054∗ 0.8107∗ 0.7589∗ 0.7182∗
(0.0252) (0.1069) (0.1857) (0.0258) (0.0575) (0.0518) (0.0359) (0.1205) (0.1033)

α3 � � 0.0337∗ � � 0.0082∗ � � 0.0028∗
(0.0137) (0.0011) (0.001)

β � 0.0076∗ 0.0006∗ � 0.0010∗ 0.0005∗ � 0.0012∗ 0.0003∗
(0.0014) (0.0001) (0.0003) (0.0001) (0.0004) (0.0001)

δ � 0.4417∗ 0.5231∗ � 2.6622∗ 3.14407∗ � 2.3817∗ 2.9637∗
(0.0861) (0.1494) (0.331) (0.7811) (0.493) (0.5182)

υ � � � 5.2401∗ 4.4148∗ 4.4212∗ 4.9613∗ 4.1945∗ 4.3182∗
(0.4109) (0.4034) (1.5303) (0.3153) (0.5738) (0.5016)

η � � � � � −0.0005 −0.0001 −0.0002

(0.0015) (0.0021) (0.0014)LL 2810.19 2868.07 2871.29 2841.77 2912.65 2946.31 2135.35 2139.57 2146.18Q(εt/σt) 194.8024 168.6053 170.8604 189.8495 170.431 172.7072 153.6514 161.4817 169.2258

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]Q(ε2
t

/σ2
t

) 22.1335 11.0381 11.5038 20.394 11.728 12.002 21.3148 10.3564 10.0106

[0.0361] [0.5256] [0.4863] [0.0599] [0.4614] [0.4455] [0.0459] [0.5848] [0.6151]
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(b) Nonlinear drift spe
i�
ationNormal Student's t Hansen's Skewed tModels GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX GARCH GARCHX AGARCHX
µ 0.0513∗∗∗ 0.036 0.0356 0.0158 0.0034 0.0018 0.0103 0.0023∗∗ 0.0214

(0.0269 (0.0247) (0.0236) (0.0247) (0.0031) (0.0024) (0.0256) (0.0011) (0.0668)

λ1 −0.0009 0.0047∗∗ 0.0044∗∗ −0.0019 0.0011 0.0016∗ 0.0015 0.0013 0.0006

(0.0007) (0.0017) (0.0021) (0.0026) (0.0007) (0.0004) (0.0037) (0.0035) (0.0014)

λ2 −0.0003 0.0000 0.0000 0.0000 −0.0001 −0.0002 0.0007 −0.0000 −0.0004

(0.0005) (0.0005) (0.0005) (0.0006) (0.0002) (0.0006) (0.0005) (0.0001) (0.0003)

λ3 −0.0004 −0.0002 −0.0002 −0.0001 −0.0002 −0.0001 −0.0002 −0.0001 −0.0002

(0.0291) (0.0181) (0.0195) (0.0171) (0.0042) (0.0035) (0.0725) (0.0395) (0.0497)

α0 0.0001 0.0004∗∗ 0.0005∗ 0.00014∗∗ 0.0003∗ 0.0002∗∗ 0.0002∗∗ 0.0003∗ 0.0001∗

(0.0003) (0.0002) (0.0002) (0.00006) (0.0001) (0.0001) (0.0001) (0.0001) 0.0000

α1 0.1645∗ 0.3180∗ 0.2157∗ 0.1657∗ 0.2643∗ 0.2583∗ 0.1367∗ 0.1714∗ 0.2010∗

(0.0082) (0.0514) (0.0757) (0.0337) (0.0478) (0.0507) (0.0413) (0.0385) (0.0294)

α2 0.8255∗ 0.6619∗ 0.6726∗ 0.8213∗ 0.7054∗ 0.7217∗ 0.8415∗ 0.8107∗ 0.7718∗

(0.1088) (0.1311) (0.1342) (0.0415) (0.0518) (0.0507) (0.2106) (0.1359) (0.1547)

α3 � � 0.0298∗ � � 0.0147∗ � � 0.0108∗

(0.0107) (0.0035) (0.003)

β � 0.0593∗ 0.0009∗ � 0.0006∗ 0.0069∗ � 0.0018∗∗ 0.0035∗

(0.0065) (0.0001) (0.0001) (0.0012) (0.0009) (0.0009)

δ � 0.0540∗ 3.236∗ � 4.5966∗ 0.3979∗ � 4.2613∗ 0.2859∗

(0.0059) (0.3405) (0.743) (0.0671) (0.918) (0.0101)

ν � � � 4.9327∗ 4.4043∗ 4.3314∗ 4.2138∗ 4.1017∗ 4.0981∗

(0.3879) (0.3871) (0.4398) (0.131) (0.6133) (0.5819)

η � � � � � � −0.0008 −0.0003 −0.0005

(0.0561) (0.0318) (0.1036)LL 2443.13 2474.76 2491.27 2334.8 2355.82 2369.91 1753.42 1814.79 1830.25

Q(εt/σt) 165.1314 128.3772 131.0561 141.2809 137.175 148.9106 123.5912 146.2058 151.8333

[0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000] [0.0000]

Q(ε2t/σ2
t ) 21.0615 17.9813 18.021 19.5918 15.3428 14.7311 20.1113 12.4285 12.0091

[0.0495] [0.1163] [0.1151] [0.0752] [0.2233] [0.2565] [0.0650] [0.4119] [0.4449]Note: The GARCHX (AGARCHX) model refers to the symmetri
 (asymmetri
) GARCH model with additive level e�e
ts given by equation 3.4 (3.5). LLdenotes the log-likelihood value, Q(εt/σt) and Q(ε2t/σ2
t ) are the Ljung�Box test statisti
s for serial 
orrelation in the standardized and squared-standardizedresiduals up to order 12, respe
tively. *, ** and *** denote signi�
an
e at 1%, 5% and 10% signi�
an
e levels.
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Table 3.4: The Goodness of Fit of In-Sample Volatility Estimates of Paramet-ri
 and Semiparametri
 Models of U.S. Short Rates over the Period February9, 1973�June 8, 2007 (a) Volatility Ben
hmark |rt − rt−1|Normal Student's tLinear drift MSE MAE AIC R2

vol MSE MAE AIC R2
volGARCH 0.0441 0.1632−465.2797 0.3539 0.0444 0.1645−451.8839 0.3564Iteration 1 0.041 0.1599−584.3063 0.3982 0.0411 0.1601−583.19 0.3989Iteration 2 0.0413 0.1595−572.9455 0.3941 0.0415 0.1601−564.1346 0.3937Iteration 3 0.0409 0.1583−589.5497 0.3929 0.041 0.1584−586.7339 0.3926Iteration 4 0.0408 0.1578−593.7955 0.3913 0.0408 0.1579−592.4436 0.391Iteration 5 0.0408 0.1576−593.4775 0.3901 0.0409 0.1577−589.1935 0.389Iteration 6 0.0407 0.1571−598.9764 0.3903 0.0407 0.1572−596.3312 0.3893Iteration 7 0.0407 0.1571−599.0108 0.3906 0.0408 0.1573−593.5321 0.3892Iteration 8 0.0406 0.1567−603.5222 0.3909 0.0406 0.1568−601.1995 0.3901Final smoothed 0.0406 0.1569−601.8026 0.3908 0.0407 0.1572−601.9206 0.3899AGARCHX 0.0433 0.1609−468.8008 0.3545 0.0421 0.1584−498.5179 0.3573GARCHX 0.0439 0.1617−459.0652 0.3540 0.0428 0.1596−486.4507 0.3566Nonlinear drift MSE MAE AIC R2

vol MSE MAE AIC R2
volGARCH 0.0441 0.1633−463.5183 0.3534 0.0444 0.1645−453.066 0.3567Iteration 1 0.0411 0.1602−581.6097 0.3981 0.0411 0.1601−583.1312 0.3989Iteration 2 0.0414 0.1597−571.1824 0.3943 0.0415 0.1601−563.9604 0.3942Iteration 3 0.0409 0.1584−588.7446 0.3932 0.041 0.1584−586.7507 0.3928Iteration 4 0.0408 0.158 −593.2638 0.3919 0.0408 0.1579−592.6804 0.3911Iteration 5 0.0409 0.1578−590.8762 0.3901 0.0409 0.1577−589.8344 0.3893Iteration 6 0.0407 0.1573−597.7895 0.3905 0.0408 0.1574−594.9734 0.3897Iteration 7 0.0407 0.1573−597.6123 0.3905 0.0408 0.1573−593.8119 0.3896Iteration 8 0.0406 0.157 −601.9312 0.3914 0.0406 0.1569−600.9026 0.3903Final smoothed 0.0407 0.1572−600.0607 0.3907 0.0407 0.1572−600.0972 0.3901
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(b) Volatility Ben
hmark σ̂2

GKNormal Student's tLinear drift MSE MAE AIC R2
vol MSE MAE AIC R2

volGARCH 0.0263 0.1366 −1325.280 0.4139 0.027 0.1387 −1281.644 0.4128Iteration 1 0.0249 0.1340 −1417.338 0.4309 0.0251 0.1344 −1409.191 0.4307Iteration 2 0.0245 0.1321 −1448.451 0.4322 0.0248 0.1328 −1428.123 0.4312Iteration 3 0.0242 0.1311 −1464.101 0.4284 0.0244 0.1313 −1455.203 0.427Iteration 4 0.0243 0.1308 −1462.552 0.4259 0.0244 0.1311 −1452.146 0.4245Iteration 5 0.0243 0.1307 −1462.171 0.4264 0.0244 0.1308 −1454.157 0.4246Iteration 6 0.0241 0.1303 −1470.949 0.4251 0.0243 0.1304 −1462.523 0.4223Iteration 7 0.0242 0.1303 −1469.129 0.4257 0.0243 0.1306 −1459.599 0.4241Iteration 8 0.0241 0.1299 −1475.989 0.4262 0.0242 0.1302 −1466.137 0.4242Final smoothed 0.0241 0.1301 −1474.438 0.4263 0.0242 0.1304 −1464.826 0.4240AGARCHX 0.0268 0.134 −1293.64 0.4189 0.0261 0.1335 −1334.653 0.4219GARCHX 0.0266 0.1342 −1302.411 0.4167 0.0258 0.1327 −1352.352 0.4225Nonlinear drift MSE MAE AIC R2
vol MSE MAE AIC R2

volGARCH 0.0266 0.1369 −1310.771 0.4129 0.027 0.1387 −1283.112 0.4129Iteration 1 0.025 0.1343 −1411.852 0.4313 0.025 0.1344 −1409.544 0.4307Iteration 2 0.0245 0.1323 −1444.576 0.4325 0.0248 0.1329 −1427.342 0.432Iteration 3 0.0243 0.1313 −1460.787 0.4287 0.0244 0.1314 −1455.954 0.4275Iteration 4 0.0243 0.131 −1459.072 0.4265 0.0244 0.1311 −1453.408 0.4249Iteration 5 0.0243 0.1309 −1458.577 0.427 0.0244 0.1308 −1455.779 0.4251Iteration 6 0.0242 0.1305 −1469.125 0.4258 0.0243 0.1305 −1461.697 0.4234Iteration 7 0.0242 0.1304 −1468.508 0.4263 0.0243 0.1307 −1459.126 0.4244Iteration 8 0.0242 0.1303 −1469.766 0.4268 0.0242 0.1303 −1466.36 0.4247Final smoothed 0.0241 0.1303 −1470.881 0.4257 0.0242 0.1304 −1464.585 0.4240Note: The rows labeled as iterations and �nal smoothed are the results for the semiparametri
 approa
h. Thepre�x �A� denotes asymmetri
 while the su�x �X� denotes level e�e
ts.
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Table 3.5: The Out-of-Sample Volatility-Fore
ast Performan
e of Parametri
and Semiparametri
 Models of U.S. Short Rates over the Period June 15,2007�May 8, 2009 a. Volatility Ben
hmark |rt − rt−1|GARCH Final Smoothed AGARCHX-T GARCHX-T AGARCHX-N GARCHX-NMSE 0.0349 0.0318 0.0339 0.0344 0.03499 0.0352MAE 0.1431 0.1225 0.1295 0.1319 0.1346 0.1359b. Volatility Ben
hmark σ̂2

GKGARCH Final Smoothed AGARCHX-T GARCHX-T AGARCHX-N GARCHX-NMSE 0.0498 0.0395 0.0458 0.0466 0.0477 0.0486MAE 0.1744 0.1402 0.1581 0.1643 0.1666 0.1678Note: See note to Table 3.4. �T� and �N� denote Student's t and normal distributions, respe
tively.
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Figure 3.1: (a) Volatility Estimates of Various Models for Simulated Data with Linear Drift
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Note: The dotted line represents simulated true volatility, while the solid line represents the estimated volatility derived from estimating a modelwith a linear drift. For the semiparametri
 approa
h, the �nal smoothed volatility is presented. N, T and ST denote normal, Student's t, andskewed t distributions, respe
tively.
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Figure 3.1: (b) Volatility Estimates of Various Models for Simulated Data with Nonlinear Drift
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Note: The dotted line represents simulated true volatility, while the solid line represents the estimated volatility derived from estimating a modelwith a nonlinear drift. For the semiparametri
 approa
h, the �nal smoothed volatility is presented. N, T and ST denote normal, Student's t andskewed t distributions, respe
tively.
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Figure 3.2: The U.S. Short Rates: Levels and First Di�eren
es

Note: This �gure plots the level and the �rst di�eren
e of the three-month Treasury bill rates. The �rst plot is the level, and the se
ond is the �rstdi�eren
e.



FIGURES 83Figure 3.3: Plots of MSE, MAE, AIC and R2
vol for the In-Sample Volatility-Fore
asting Performan
e of the Parametri
 and Semiparametri
 U.S. Short-Rate Models

(a) Volatility Ben
hmark |rt − rt−1|
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(b) Volatility Ben
hmark σ̂2
GKNote: The shaded bars represent the metri
 value for the parametri
 models in the following order:AGARCHX-T, AGARCHX-N, GARCHX-T, GARCHX-N. The 1 to 10 marks on the x-axis are to be interpretedin the following way. The �rst mark represents the metri
 value for the parametri
 GARCH model. The se
ondto ninth marks represent the metri
 values for the eight iterations that are performed in the semiparametri
pro
edure, while the tenth mark denotes the metri
 value for the �nal smoothing stage. R2 denotes R2

vol . Theresults are for the sample period February 9, 1973�June 8, 2007.



FIGURES 85Figure 3.4: Plots of In-Sample Volatility Estimates for the U.S. Short Ratesover the Sample Period January 1, 1997�January 1, 2000

(a) Semiparametri
 approa
h

(b) AGARCHX-T model
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(d) AGARCHX-T modelNote: The dotted line in (a) and (b) is the true volatility proxied by |rt − rt−1|. The dotted line in (
) and (d) isthe true volatility proxied by σ̂2
GK. The line marked in bold is the volatility estimate σ̂t.



FIGURES 87
Figure 3.5: Plots of Out-of-Sample Volatility Fore
asts for the U.S. ShortRates over the Sample Period June 15, 2007�May 8, 2009

(a) Semiparametri
 approa
h

(b) AGARCHX-T model
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GK . The line marked in bold is the volatility estimate σ̂t .
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Figure 3.6: Con�den
e Intervals for Simulated Interest Rates from BHK andSemiparametri
 Models

Note: The solid lines (reading from the outermost to the innermost lines) are 
on�den
e intervals for simulatedinterest rates from the AGARCHX-T, GARCHX-T, AGARCHX-N and GARCHX-N models. The dotted linesare 
on�den
e intervals for the semiparametri
 model.
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Chapter 4EMU Equity Markets' ReturnVarian
e and Spillover E�e
ts fromShort-Term Interest Rates4.1 Introdu
tionThe last de
ades have witnessed poli
ymakers using the sto
k market as the intermediate
hannel to stabilize in�ation and output. However, mu
h of the e�e
t of monetary poli
y
omes through the in�uen
e of short-term interest rates on other asset pri
es in
ludingbond and sto
k pri
es that, in turn, signi�
antly in�uen
e real e
onomi
 a
tivities. Sin
ethe Monetary Poli
y Committees in the UK started to use short-term interest rates asthe tool for a
hieving its in�ationary target in 1997, there is an in
reasing trend of usingthe short-term interest rate rather than the money supply as intermediate targets formonetary poli
y in the world. Re
ently, the unexpe
ted sho
ks from the money market,su
h as the Russian debt 
risis in 1998 and the subprime mortgage 
risis of 2007, haveshown how the domino e�e
t of short-term interest-rate sho
ks 
an a�e
t the �nan
ialmarket globally. Henry (2009) argues that with huge �u
tuations in the short-term moneymarket, �rms seeking funding in the short-term rate, and lending in long-term relativelyilliquid se
urities, be
ome insolvent simply be
ause they 
annot a

ess su�
ient 
ash to�nan
e their short-term a
tivities and not be
ause they are unviable in the medium tolong term. Therefore, it is important for poli
ymakers and analysts to understand howshort-term interest-rate 
hanges a�e
t sto
k pri
es and for them to pay 
lose attentionin pursuit of their �nal obje
tives.Many resear
hers have examined the impa
t of interest rates on sto
k pri
es, but therelationship between the short-term interest rate and sto
k pri
es is still 
ontroversial.Earlier studies employed Treasury bill rates as a proxy for the expe
ted in�ation to exam-ine the relationship between interest rates and sto
k returns (see, e.g., Nelson, 1976 Famaand S
hwert, 1977 Fama, 1981 Shanken, 1990). These studies �nd a negative relationshipbetween sto
k returns and Treasury bill rates. Domian et al. (1996) mainly use yields onone-month Treasury bills to examine the relationship between sto
k returns and interest-91



92 Chapter 4rate 
hanges. The results from this study show asymmetri
 relations; that is, drops ininterest rates are followed by large positive sto
k returns while in
reases in interest rateshave little e�e
t. By present-value models, the negative relation between interest ratesand sto
k pri
es stems from the fa
t that an interest-rate in
rease (de
rease) 
auses anin
rease (de
rease) in expe
ted future dis
ount rates whi
h should 
ause sto
k pri
es tofall (rise) and long-term interest rates to rise (fall). However, 
ertain empiri
al attemptshave provided eviden
e in favor of a positive relationship between interest rates and sto
kpri
es (see, e.g., Asprem, 1989 Shiller and Beltratti, 1992 Barsky, 1989). Barsky (1989)explains the positive relationship in terms of a 
hanging risk premium. For instan
e, adrop in interest rates 
ould be the result of in
reased risk or pre
autionary saving asinvestors substitute away from risky assets � e.g., sto
ks � into less risky assets � e.g.,bonds. Shiller and Beltratti (1992) argue in favor of su
h a positive relationship on thegrounds that 
hanges in interest rates 
ould 
arry information about 
ertain 
hanges infuture fundamentals.Meanwhile, sin
e the seminal Bernanke and Blinder (1992), the impa
t of 
hangesin di�erent interest-rate instruments used as the proxy for monetary poli
y on the sto
kmarket has been examined in the �nan
ial literature (see, e.g., Thorbe
ke, 1997 Bom-�m, 2003 Rigobon and Sa
k, 2002 Bernanke and Knutter, 2005 Davig and Gerla
h, 2006Basistha and Kurov, 2008 Henry, 2009). In parti
ular, using the three-month Eurodollarrate as a proxy of monetary poli
y, Rigobon and Sa
k (2002) show that in
reases inthe short-term interest rate negatively impa
t sto
k pri
es and signi�
antly positivelyimpa
t market interest rates, with the largest e�e
t on rates with shorter maturities.1Another important issue 
onsidered in the interest-rate literature is that the e�e
t ofinterest rates is di�erent in bull and bear markets. As de�ned in Maheu and M
Curdy(2000) and Perez-Quiros and Timmermann (2000), bull markets display high returns 
ou-pled with low volatility (a stable regime), and bear markets have a low return and highvolatility (a volatile regime). Some empiri
al studies have established that the e�e
t ofinterest rates on 
onditional returns is larger in a volatile regime than in a stable regime.For example, using a Markov-swit
hing model, Chen (2007) investigates how monetarypoli
y, measured by interest-rate instruments, a�e
ts sto
k returns, 
on
luding that su
han impa
t is asymmetri
ally large in the bear periods. Henry (2009) uses a Markov-swit
hing EGARCH model to examine the impa
t of short-term interest-rate surpriseson the volatility of returns in the UK sto
k market. Using a Markov-swit
hing model,Perez-Quiros and Timmermann (2000) study the relationship between 
hanging 
reditmarket 
onditions, in
luding short-term interest rates, and sto
k market. They all �nda similar asymmetri
 e�e
t of interest rates on sto
k returns in the bear market. Mean-while, a di�erent 
on
lusion is found in the Markov-swit
hing framework. In 
ontrast tothe previous work suggesting interest rates signi�
antly impa
t sto
k markets, Ang andBekaert (2002) 
on�rm that the eviden
e to support the e�e
t of interest rates on returnsdoes not exist, even if the regime-swit
hing 
hara
teristi
s are added into the empiri
al1Ellingsen and Söderström (2001) have also used 
hanges in the three-month interest rate as a measureof poli
y innovations for estimating the term stru
ture's response. Favero et al. (1999) examine thetransmission of monetary poli
y in Europe, using the three-month Euro rate as a proxy for that poli
y.



4.1. INTRODUCTION 93model.This paper investigates the spillover e�e
t of interest rate impa
ts on sto
k returnsand the volatility of returns in the Euro area in di�erent regimes. We extend the 
urrentliterature in several aspe
ts. First, departing from most previous work, whi
h primarilyexamines the e�e
t of interest rates on sto
k pri
es and returns, we analyze the potentialimpa
t of 
hanges in short-term interest rate on both sto
k returns and the volatil-ity of returns. Be
ause the 
onditional varian
e is 
onsidered to be a proxy for risk inthe �nan
ial and e
onomi
 �elds, it has important in�uen
e on monetary poli
ymaking,asset-allo
ation de
isions, and risk management. Merton (1980) suggests that one shoulduse a

urate varian
e estimates in a

ounting for the risk level when estimating expe
tedreturns. Optimal inferen
e about the 
onditional mean of asset returns requires that the
onditional varian
e be 
orre
tly spe
i�ed. The investigation of interest rates' impa
ton both sto
k returns and the volatility of returns is of importan
e to �nan
ial-marketparti
ipants making e�e
tive portfolio sele
tion and formulating risk-management strate-gies.Se
ond, we 
ontribute to the 
urrent literature by investigating the asymmetri
 e�e
tof the in
reased interest rates on returns and the volatility of returns in bull and bearmarkets in the E
onomi
 and Monetary Union (EMU) sto
k markets. Although there issubstantial eviden
e for the asymmetri
al e�e
t of interest rates on sto
k returns in bearand bull markets, no resear
h has been done to examine whether in
reases and de
reasesin interest rates have the same e�e
t in di�erent market states. Further, reviewing Sellin's(2001) survey, it is 
lear that most of the studies fo
us mainly on the e�e
t of interest rateson U.S. �nan
ial markets. In 
ontrast, the impa
t of short-term interest-rate movementson sto
k markets in the EMU area has re
eived surprisingly little attention in the re
entliterature. We examine the impa
t of the interest rates on the sto
k markets in the EMU
ountries.Third, our empiri
al work updates the 
urrent literature by investigating the spillovere�e
t of the money market on sto
k returns and the volatility of sto
k returns by extend-ing the Markov-swit
hing GJR GARCH in Mean model (MS GJR-M). We extend theMS GJR-M model by adding interest-rate movements dire
tly to the varian
e pro
essof the MS GJR-M model, and formulate the Extended Markov-swit
hing GJR GARCH-M model (EMS GJR-M). We use the 
hanges (not the level) of the short-term interestrate be
ause we want to examine how the �u
tuations in the short-term interest ratesa�e
t the EMU equity market, meanwhile the �rst di�eren
e square is a 
ommonly usedproxy for the short-term interest-rate varian
e. By setting the �rst-di�eren
e squaresto the 
onditional varian
e of the equity return, we 
an investigate the spillover e�e
tof the short-term interest-rate market on the EMU equity market. There are severaladvantages of the proposed model in this paper. First, a regime swit
hing model 
an
apture stru
tural breaks in the volatility in terms of bull and bear markets.2 Se
ond,given the widespread eviden
e of the asymmetri
al e�e
t of unexpe
ted sho
ks on sto
k2Lamoureux and Lastrapes (1990), Hamilton and Susmel (1994) and Cai (1994) argue that ignoringthese stru
tural shifts in the volatility pro
ess 
auses GARCH models to overestimate the persisten
e ofvolatility.



94 Chapter 4volatility(see, e.g., Glosten et al., 1993 Engle and Ng, 1993), the MS GJR-M model hassu�
ient �exibility to 
hara
terize the persistent and asymmetri
al response (leveragee�e
t) of the volatility to sho
ks. Meanwhile the time varying risk premia theory (see,e.g., Fren
h et al., 1987 Campbell and Hents
hel, 1992) states that the volatility asym-metry is due to the volatility feedba
k; that is, if volatility is in
reased, so is the riskpremium in 
ase of a positive trade-o� between risk and return. Hen
e, the dis
ountrate is also in
reased, whi
h in turn, for an un
hanged dividend yield, lowers the sto
kpri
e. Therefore, the MS GJR-M model 
aptures the volatility feedba
k via a GARCH inMean (GARCH-M) pro
ess from Engle et al. (1987). Finally, adding interest-rate move-ments and distinguishing in
reases in interest rates enable us to investigate three typesof asymmetri
 e�e
ts in the varian
e pro
ess, i.e., the asymmetri
 e�e
t of unexpe
tedsho
ks (negative/positive news) from the sto
k market, the asymmetri
 e�e
t of unex-pe
ted sho
ks (interest rate in
reases/de
reases) from the interest-rate market, and theasymmetri
 e�e
t of unexpe
ted sho
ks in di�erent market states. We investigate theseasymmetri
 e�e
ts by modifying the news impa
t 
urve (NIC) as suggested by Engleand Ng (1993) to the news impa
t surfa
e, in whi
h the varian
e pro
ess depends on thesho
ks from sto
k returns and from interest-rate 
hanges in di�erent market states. Weestimate the MS GJR-M and EMS GJR-M models with the Markov Chain Monte Carlo(MCMC) method instead of the traditional maximum-likelihood method. Be
ause of thestru
ture of the proposed model, the 
onditional varian
e depends on all past history ofthe state variables. The evaluation of the likelihood fun
tion for a sample path of length
T and k states requires the integration over all kT possible paths, rendering the maxi-mum likelihood estimation infeasible. To the best of our knowledge, this is the �rst timethat a MS GJR-M model has been estimated in the literature.Our results suggest that two regimes exist in the EURO area sto
k markets, a high-mean low-varian
e (bull) market and a low-mean high-varian
e (bear) market. Most ofthe Euro 
ountries have the same regime swit
hing status between the bull and bearmarkets. The 
orrelation between the �rst two moments of returns is not stable overtime, but varies between the bull and the bear markets. Our results suggest also thatbad news from unexpe
ted sto
k returns (negative residuals from returns) has an asym-metri
ally larger e�e
t on the returns and the volatility than good news. Su
h an impa
tis larger in the bear market than in the bull market. Surprisingly, as implied in the newsimpa
t surfa
e, we �nd that the 
hange in short-term interest rates only signi�
antlya�e
ts the sto
k market volatility in the bear period in most of the EMU 
ountries. Inparti
ular, the e�e
t of an in
rease in interest rates is asymmetri
ally larger than that ofa de
rease in interest rates. Portfolio performan
e, based on the out-of-sample fore
astresults of various models, indi
ates that the EMS GJR-M model outperforms other mod-els, in
luding the MS GJR-M model and a single swit
hing GJR-M model. The modelswith regime swit
hing yield better portfolio performan
e than the ones without it, em-phasizing the importan
e of the interest-rate impa
t and the regime spe
i�
ation whenmodeling volatility. Ignoring su
h state-dependent asymmetri
 e�e
ts from short-terminterest rates on sto
k returns and their volatility will lead to invalid inferen
es, biasedfore
asts and 
onsequently ine�
ient portfolio sele
tion and risk management due to the



4.2. THE MODEL 95biased volatility estimates.This paper pro
eeds as follows. Se
tion 4.2 presents the extended Markov-swit
hingGJR GARCH-M model. Se
tion 4.3 demonstrates the model-estimation algorithm. Se
-tion 4.4 des
ribes the data used and reports the empiri
al results. Se
tion 4.4 also per-forms the asset allo
ation based on the out-of-sample fore
asts result from various models.Se
tion 4.5 
on
ludes.4.2 The modelIn this se
tion, we present the model used and proposed in this paper.4.2.1 The Markov-swit
hing GJR GARCH-M modelThere is a substantial literature des
ribing the volatility of sto
k returns. Sin
e Engle(1982) introdu
ed the ARCH (autoregressive 
onditional heteroskedasti
ity) model andBollerslev (1986) introdu
ed the GARCH (generalized autoregressive 
onditional het-eroskedasti
ity) model, these types of volatility modeling te
hniques have been extendedand applied extensively to 
hara
terize the volatility of sto
k returns. One 
ommon ob-served 
hara
teristi
 of the volatility is the volatility asymmetry, where the volatilityin
reases more after a negative sho
k than after a positive sho
k of the same magnitude.Two e
onomi
 theories explain the asymmetri
 volatility pattern: The leverage e�e
tand the volatility feedba
k. The volatility feedba
k (see Campbell and Hents
hel, 1992)indi
ates that the news that future volatility will be higher will indu
e the risk-averseinvestors to sell their positions today until the expe
ted return rises up to 
ompensate forthe risk. This feature 
an be 
aptured by the GARCH in Mean (GARCH-M) type formu-lation (see Engle et al., 1987),3 in whi
h the 
onditional mean depends expli
itly on the
onditional varian
e. The GARCH-M model also allows us to explore the intertemporalrelation between risk and return. Another extension of the standard GARCH model, theEGARCH (Nelson, 1991) and the GJR GARCH (Glosten et al., 1993), 
apture asym-metry in the 
onditional varian
e by the so 
alled leverage e�e
t (Bla
k, 1976). Theleverage e�e
t indi
ates that the in
reases in the �nan
ial leverage lead to an in
reasedvolatility level. We 
hoose to use both the GARCH-M and the GJR model to 
apturethe asymmetry in the volatility.A standard GARCH model with the GJR spe
i�
ation and the GARCH-M e�e
t,whi
h we refer to as the GJR-M(p, q) model, has the following form,
rt = β

√
ht + ǫt, ǫt =

√
htzt, zt ∼ N(0, 1),

ht = αo +

p∑

i=1

(αi + γidi)ǫ
2
t−i +

q∑

j=1

βjht−j , (4.1)3The GARCH-M was primarily motivated by Merton's (1973) Intertemporal Capital Asset Pri
ingModel (ICAPM)



96 Chapter 4where ǫt may be treated as a 
olle
tive measure of news about equity pri
es arriving tothe market over the last period, and αo > 0, αi ≥ 0, βj ≥ 0, αi + βj + 0.5γi < 1. di is anindi
ator for negative ǫt−i:
di =

{
1 if ǫt−i < 0,
0 if ǫt−i ≥ 0.It 
an be seen from the model that a positive ǫt−i 
ontributes αiǫ

2
t−i to σi, whereas anegative ǫt−i has a larger impa
t (αi + γi)ǫ

2
t−i. Therefore, if parameter γi is signi�
antlypositive, then negative innovations generate more volatility than positive innovations ofequal magnitude.While estimating �nan
ial and ma
roe
onomi
 series, some e
onomists �nd that bothARCH and GARCH models may en
ounter high persisten
e in volatility and lower a

u-ra
y in predi
ting performan
e. Diebold and Inoue (2001) argues that the high persisten
eis 
aused by stru
tural breaks in the volatility pro
ess during the estimation period. Lam-oureux and Lastrapes (1990) point out that models with swit
hed parameter values, su
has the Markov-swit
hing model of Hamilton (1989), may provide a more appropriate toolfor modeling volatility. Hamilton and Susmel (1994) propose a model with sudden dis
rete
hanges in the volatility-governing pro
ess. They found that a Markov-swit
hing pro
essprovides a better statisti
al �t to the data than a GARCH model without swit
hing.Therefore, this paper employs a two-state MS GJR-M model to 
apture the GARCH-M e�e
t (volatility feedba
k) in the 
onditional mean, the leverage e�e
t and stru
turalbreaks in the 
onditional varian
e. The MS GJR-M (1,1) model is de�ned as follows.

rt = βi
√

hi,t + ǫi,t, ǫi,t =
√

hit zt, zt ∼ N(0, 1),

hi,t = αio + αi1ht−1 + αi2ǫ
2
t−1 + αi3diǫ

2
t−1, (4.2)where zt ∼ N(0, 1), i = 1, 2 represents the state and αio > 0, αi1 ≥ 0, (αi2 + αi3) ≥ 0,

(αio + αi2 + 0.5αi3) < 1. di is an indi
ator for negative news from the last period and indi�erent state i. Following Hamilton (1989, 1990), we assume that the state ve
tor, St,follows a �rst-order Markov pro
ess with the hidden transition probabilities matrix,
Π =

(
π11 π12
π21 π22

)
,where,

π11 = P (St = 1|St−1 = 1) = 1− e1,

π12 = P (St = 2|St−1 = 1) = e1,

π21 = P (St = 1|St−1 = 2) = e2,

π22 = P (St = 2|St−1 = 2) = 1− e2, (4.3)where 0 < ei < 1, for i = 1, 2. A small ei means that the return series has a tenden
y tostay in the ith state with the expe
ted duration.For the model in 4.2 to be identi�able, we assume that β2 > β1 so that State 2 is
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iated with higher 
onditional returns. If α1j = α2j for all j, the model be
omes asimple GJR in Mean model. If βi√ht is repla
ed by βi, then the model in 4.2 redu
es toa Markov-swit
hing GJR model.Parameter β is the risk premium. A positive β indi
ates that the return is positivelyrelated to the volatility. Parameters in the GARCH 
omponents satisfy 
onditions sim-ilar to those of GARCH models. If the parameters have signi�
ant di�eren
es betweenregimes, then there exists a bull market and a bear market in sto
k returns.4.2.2 The extended Markov-swit
hing GJR GARCH-M model withthe interest-rate e�e
tHolding the transition probability matrix 
onstant, we measure the impa
t of the interest-rate di�erential on the sto
k market by extending the MS GJR-M model to the EMSGJR-M model. This model is formulated by adding the interest-rate 
hanges to thevarian
e pro
ess:
rt = βi

√
hi,t + ǫi,t, ǫi,t =

√
hi,tzt, zt ∼ N(0, 1),

hi,t = αio + αi1ht−1 + αi2ǫ
2
t−1 + αi3diǫ

2
t−1 + αi4χ

2
t−1 + αi5fiχ

2
t−1, (4.4)where parameters in the varian
e pro
ess satisfy 
onditions similar to those in the MSGJR-M model. The interest-rate di�erential, χt = (It/It−1), 
aptures 
hanges in short-term interest rates, where It is the interest-rate level at time t. The indi
ator for positive
hanges, in
reases, in interest rates satis�es

fi =

{
1 if χt−1 > 0,
0 if χt−1 ≤ 0.For this model to be well de�ned, we use the squared �rst di�eren
e of interestrates to examine their impa
t on the 
onditional varian
e. As we are estimating the
onditional varian
e, whi
h is the squared 
onditional volatility in the GJR model, weuse the squared di�eren
es of interest rates in order to keep the interest-rate di�erentialsand the estimated volatility at the same s
ale. Meanwhile the �rst di�eren
e square isa 
ommonly used proxy for the short-term interest-rate varian
e. By setting the �rst-di�eren
e squares to the 
onditional varian
e of the equity return, we 
an investigate thespillover e�e
t of the short-term interest-rate market on the EMU equity market. Further,in this spe
i�
ation, we 
an examine di�erent asymmetri
al e�e
ts on the volatility ofsto
k returns. Besides the asymmetri
 e�e
ts from market news, we 
an also examineif an in
rease in interest rates asymmetri
ally a�e
ts the sto
k market in the bear andbull markets. Hen
e, a negative χt−1 (drops in interest rates) 
ontributes αi4 χ

2
t−1 to σi,whereas a positive χt−1 (in
reases in interest rates) has a impa
t (αi4 + αi5)χ
2
t−1 if αi5is signi�
antly di�erent from zero. The 
oe�
ients α1 4 and α1 5 measure the e�e
t ofmovements in the interest rate on the 
onditional varian
e in the bear market, while α2 4and α2 5 measure the impa
t of interest-rate �u
tuations on volatility in the bull market.One alternative study of interest rate's impa
t 
an be done by allowing the trans-



98 Chapter 4mission matrix to be time varying. However, it is still an open question whether thespe
i�
ation of a time-varying transition probability is suitable for all �nan
ial data.Some studies report that the regime-swit
hing model with the time-varying transitionprobability performs worse 
ompared with the regime-swit
hing model with a �xed tran-sition probability.4 Therefore, we 
hoose to analyze the MS GJR-M and EMS GJR-Mmodels with a �xed transition probability.4.3 Model EstimationIn this se
tion, we des
ribe the estimation algorithm for a MCMC method. This estima-tion algorithm will be tested with a Monte Carlo simulation.4.3.1 Markov 
hain Monte Carlo estimation methodThe evaluations of the likelihood fun
tion of Models 4.2 and 4.4 are 
ompli
ated as theyare a mixture over all possible state 
on�gurations. This may lead to 
omputational di�-
ulties with the maximum likelihood estimation. We estimate the model with a Bayesian-based MCMC method. A Bayesian statisti
al model 
onsists of a parametri
 statisti
almodel, f(x|θ), and a prior distribution on the parameters, p(θ). The optimal Bayes esti-mator under quadrati
 loss is simply the posterior mean: θ̂ = E[θ|Y = y] =
∫
θp(θ|y)dθ.Therefore, we need to 
ompute the posterior density of our model parameters. The pos-terior density is determined by the prior density and the likelihood.

p(θ|y) =
f(y, θ)

f(y)

=
f(y|θ)p(θ)∫
f(y|θ)p(θ)dθ) .That is,

p(θ|y) ∝ f(y|θ)p(θ), (4.5)where f(y|θ) in equation 4.5 is the likelihood fun
tion and p(θ) is the prior distribution.The parameter ve
tor of the model MS GJR-M (1,1), for i = 1, 2, spe
i�ed in 4.2 is givenby,
Θi = {βi,θi,πi,S},
θi = (αio, αi1, αi2, αi3),

πi = (πi1, πi2),S = (S1, S2, . . . , ST ). (4.6)4For example, Perez-Quiros and Timmermann (2001) demonstrate that the regime-swit
hing modelwith a time-varying transition probability is not appli
able for large �rms. Chang (2009) �nds that theregime-swit
hing model with the time-varying transition probability performs worse in out-of-samplefore
asting than the model with �xed transition probability.



4.3. MODEL ESTIMATION 99To obtain the Bayesian estimators, Θ̂, we 
ompute the mean from the sample of thestationary distribution of the simulated Θi. We need the following 
onditional posteriordistributions: f(β|R,S,H,θ1,θ2), f(θi|R,S,H,θj 6=i), p(S|H,R,θ1,θ2), f(ei|S), i =
1, 2, where R is the observed returns and H is the 
onditional volatility ve
tor and 
anbe 
omputed re
ursively. Following Tsay (2005), we use 
onjugate prior distributions todraw βi and ei (see DeGroot, 1990, for a proof).Sampling βiAssume βi ∼ N(βi0, σ

2
io), the posterior distribution of βi depends only on State i. De�ne,

rit =





rt√
(ht)

if st = i;

0 otherwise.Then we have,
rit = βi + ǫi, for st = i. (4.7)Let ri =

(∑
st=i rit

)
/ni where ni is the total number of data points in state i, and

rit ∼ N(βi, σ
2). Then the 
onditional posterior distribution of βi is normal with mean β∗

iand varian
e σ2∗
i :

β∗
i =

σ2βio + niσ
2
iori

σ2 + niσ2
io

and σ2∗
i =

σ2σio
σ2 + niσ2

io

. (4.8)Sampling eiThe 
onditional posterior distribution of ei only involves S. Assume ei ∼ Beta(ϕi1, ϕi2)and let∑n
t=1 l1t be the number of swit
hes from State 1 to State 2,∑n

t=1 l2t be the numberof swit
hes from State 2 to State 1, and ni be the number of the data observations instate i. lit are Bernoulli distributed with parameter ei; then the posterior distribution of
ei is beta as,

ei ∼ Beta

(
ϕi1 +

n∑

t=1

lit, ϕi2 + ni −
n∑

t=1

lit

)
. (4.9)Sampling αijWe draw αij with a modi�ed Griddy Gibbs sampler. The Griddy Gibbs was �rst intro-du
ed by Tanner (1996). This method is widely appli
able when the 
onditional posteriordistribution is univariate. The main idea is to form a simple approximation to the inverse
umulative distribution fun
tion (CDF) based on the evaluation of the 
onditional poste-rior distribution on a grid of points. In our model, the 
onditional posterior distributionfun
tion of αij does not 
orrespond to a well-known distribution; however, as ht 
ontains
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αij , it 
an be evaluated easily:

g(αij |·) ∝
n∑

t=1

{
−1

2

[
ln(ht) +

(rt − βi
√
ht)

2

ht

]}
, if st = i,

f(αij|·) ∝ exp(g(αij)). (4.10)In order to avoid the problem of the fast 
onvergen
e of the exponential distribution,we modify the Griddy Gibbs by adding a s
ale fa
tor u = max(g(αij)) to the evaluatedfun
tion:
f(αij|·) ∝ exp(g(αij)− u). (4.11)The Griddy Gibbs pro
eeds in the following steps:1. Evaluate f(αij|·) at a grid of points from a properly sele
ted interval of αij�forexample, 0 ≤ αi1 < 1 − αi2 − αi3�to obtain ωk = f(αk

ij |·) for k = 1, . . . ,m. We
hoose m = 200.2. Use {ωm
k=1} = ω1, ω2, . . . , ωk to obtain an approximation to the inverse CDF of

f(αij|·), whi
h is a dis
rete distribution for {αk
ij}mk=1 with probability p(αij) =

ωk/
∑m

v=1 ωv.3. Draw a uniform (0, 1) random number and transform the observation via the ap-proximate inverse CDF to obtain a random draw for αij .Sampling SFollowing Henneke et al. (2006), we draw the states St by the �Single Move� pro
edure.At ea
h step, we sample from the full 
onditional posterior density of St given by,
P (St = i|R,θ−s, S−t), (4.12)where θ−s is the parameter ve
tor in equation 4.6 ex
luding S and S−t is the regimepath ex
luding the regime at time t. In order to save spa
e, we omit the notation of theexpli
it 
ondition on θ. Applying the rules of 
onditional probability to 4.12, we get,

P (St=i|R,S−t) =
P (Si, R|S−t)

P (R|S−t)
=

P (R|St=i, S−t).P (St=i|S−t)

P (R|S−t)
. (4.13)The �rst term in the numerator, P (R|St=i, S−t), is simply the model's likelihood L(St =

i) evaluated at a given regime path, in whi
h St = i, and
L(St = i) =

n∏

t=j

f(ǫt|H) ∝ exp(fji),

fji =

n∑

t=1

{
−1

2

[
ln(ht) +

(rt − βi
√
ht)

2

ht

]} for i = 1, 2 and t ≥ j. (4.14)
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an 
ompute ht re
ursively. The denominator, P (R|S−t), is the sum ofthe two probability-weighted 
onditional distributions,
P (R|S−t) =

s=2∑

i=1

P (R|St = i, S−t).P (St=i|S−t), (4.15)due to the Markov property of the 
hain. P (St = i|S−t) is only dependent on St−1 and
St+1,

P (St=i|S−t) = P (St = i|St−1, St+1) =
πl,i.πi,k∑s=2

i=1 πl,i, .πi,k (4.16)Let St−1 = l, St+1 = k and πij be the respe
tive transition probabilities from thetransition probability matrix. Finally, substitute equation 4.15 and equation 4.16 intoequation 4.13; we 
ompute the 
onditional posterior probability as
P (St=i|R,S−t) =

L(St = i).πl,iπi,k∑s=2
j=1 L(St = j).πl,jπj,k . (4.17)The state St 
an be drawn using a uniform distribution in the interval [0, 1].4.3.2 Monte Carlo SimulationIn order to show that our algorithm works well, we perform a Monte Carlo simulationexperiment. We simulate 10 data sets of 1,000 points from Model 4.2 with the sametrue parameter values for ea
h data set and 5,000 iterations, of whi
h the �rst 400 ofthe sample are dis
arded as burn in. In Table 4.1, we present the estimation resultsfrom the randomly 
hosen 1000 simulated data points. We �nd that the means of ourestimated parameters are quite 
lose to the true parameters and the square roots of themean squared errors are quite small. Figure 4.1 shows the plots of the true and estimatedvolatility pro
ess, as well as the plot of the true and estimated probability of Regime 1.The estimated probability of Regime 1 is very 
lose to the true probability. Therefore,we 
an be 
on�dent that our algorithm performs very well and is reliable.4.4 Data and Empiri
al ResultsIn this se
tion, we present the data used in this paper, perform the empiri
al study andreport the results.



102 Chapter 44.4.1 DataThe data used in this study 
onsist of the weekly sto
k index 
losing pri
e of ten 
ountriesthat joined the EMU's third stage on January 1, 1999.5 Spe
i�
ally, they in
lude Ger-many's DAX, Fran
e's CAC40, Italy's FTSEMIB, Spain's IBEX35, Finland's HEX25,the Netherlands' AEX, Ireland's ISEQ, Austria's ATX, Belgium's BEL20 and Portugal'sPSI20. Furthermore, the one-month Euro Interbank O�ered Rate (EURIBOR) is theben
hmark money market rate for the Euro area. Interest rates with shorter maturitiesare negle
ted, and EURIBORs with maturities longer than one month may not be sensi-tive enough to represent short-term interest rates (see, e.g., Kleimeier and Sander, 2006Bohl et al., 2008).The sample period is from January 1, 1999, to Mar
h 12, 2010. That is, it beginswhen the European Central Bank (ECB) repla
ed the national 
entral banks of EMUmembers and assumed responsibility for the 
ondu
t of uni�ed monetary poli
y. Thedata is further divided into in-sample and out-of-sample periods. The in-sample periodstarts on January 1, 1999, and ends on July 17, 2009, and the out-of-sample period isfrom July 24, 2009, to Mar
h 12, 2010. The total sample size is 589. All the data areobtained from Thomson Finan
ial Datastream.We 
al
ulate the weekly returns as log(yt/yt−1) and then annualize them by mul-tiplying by the square root of 52. Table 4.2 presents the statisti
al des
ription of theEMU sto
k market indexes' returns. It 
an be seen from this table that the means ofthese returns are around zero. The standard deviations range from 0.1815% (Portugal)to 0.256% (Finland). The kurtosis statisti
s are far greater than the 3 asso
iated with anormal distribution. The negative skewness 
oe�
ients are also signi�
antly less than thevalue (zero) expe
ted for a symmetri
 normal distribution. The p values of the Jarque�Bera test show that the null hypothesis of normality is 
learly reje
ted for every series.However, the test statisti
s from the Augmented Di
ky�Fuller test are mu
h less thanthe 
riti
al value, therefore, the null hypothesis of a unit root is reje
ted at the 5% signif-i
an
e level for all the return series. The p values of the 10-lag Ljung�Box Q-test indi
atethat there are no serial 
orrelations in the series.4.4.2 Empiri
al resultsValidation of model estimationsBefore the analysis, we examine the validity of the MS GJR-M model in di�erent ways.First, a 20-lag Ljung�Box Q-test is 
arried out to 
he
k the serial 
orrelation in stan-dardized residuals. The p-values of the tests presented in the last 
olumn in Table 4.3suggest that the null hypothesis of no serial 
orrelation 
annot be reje
ted. Therefore,the MS GJR-M model �ts the data properly.We then ben
hmark the proposed MS GJR-M with a standard GARCH model, a GJRmodel and a single swit
hing GJR-M model des
ribed in equation 4.2. We use √(rt)25The Luxembourg sto
k market is the only EMU market whi
h is not 
onsidered in this study dueto a la
k of the sto
k index pri
e data.



4.4. DATA AND EMPIRICAL RESULTS 103as a proxy for true volatility. The mean squared errors (MSE), the mean absolute errors(MAE) and Akaike's information 
riterion (AIC) are used as adequate model-sele
tion
riteria. The MSE, the MAE and the AIC are 
al
ulated a

ording to the followingformulas.
MSE =

1

N

N∑

t=1

(σ̂t − σt)
2,

MAE =
1

N

N∑

t=1

|σ̂t − σt|,

AIC = 2K +N

[
log

(
2π.RSS

N

)
+ 1

]
, (4.18)where σ̂t is the estimated volatility, σt is the proxy of true volatility, RSS =

∑N
t=1(σ̂t −

σt)
2, where N is the total sample size and K is the total number of parameters in themodel.The results of the model-sele
tion 
riteria are shown in the �rst four 
olumns of Table4.4, where we present the goodness of �t from various models. The results of the MSE,MAE and AIC all indi
ate that the MS GJR-M model performs the best 
ompared withthe GARCH, GJR and single-regime GJR-M models. We noti
e that by allowing the
onditional varian
e to enter into the 
onditional mean equation, the standard GJR-Mmodel improves the 
onditional varian
e in most of the EMU 
ountries. For example, inGermany, the MSE is redu
ed from 0.028 (GARCH model) and 0.027 (GJR model) to0.025 by the GJR-Mmode; the MAE de
lines from 0.125 to 0.117 from the GARCHmodelto the GJR-M model; and the AIC is also redu
ed by roughly 3.2% from the GARCHmodel to the GJR-M model. By allowing for a Markov-swit
hing e�e
t, the MS GJR-Mmodel further signi�
antly improves the estimated volatility. This is parti
ularity truein the medium and large 
ountries. For example in the Italian market (FTSEMIB), theMSE, MAE and AIC from the MS GJR-M model are 8%, 3% and 2% lower than the onesfrom the single-regime GJR-M model. This 
on�rms that the GARCH in mean and theMarkov swit
hing are all ne
essary to 
hara
terize the return-varian
e dynami
s. Hen
e,the MS GJR-M model provides a better 
hara
terization of the EMU sto
k returns andthe volatility 
ompared with other GARCH family models, e.g., a GJR model or a singleregime GJR-M model.The time varying relationship between risk and returnTable 4.3 presents the estimated parameters of all indi
es from the MS GJR-M modeldes
ribed in equation (4.2). The �rst two 
olumns of Table 4.3 are the estimated pa-rameters β1 and β2, whi
h are the GARCH in mean 
oe�
ients in the 
onditional meanin Regimes 1 and 2, respe
tively. The β1 parameters are negative in all 
ountries andthe β2 parameters are positive in all 
ountries. A negative/positive beta shows that themean of returns has a negative/positive 
orrelation with the 
onditional varian
e. It is



104 Chapter 4obvious that in Regime 1, returns are negatively 
orrelated with the volatility, while inRegime 2, returns are positively 
orrelated with the volatility. This means that in Regime1, a higher risk usually leads to a higher loss in the investment, but in Regime 2, an in-
reased volatility often leads to a higher pro�tability. Many empiri
al studies examinethe relationship between the 
onditional mean and the 
onditional varian
e. However,the �nding of the relationship between risk and return is still 
ontroversially.6 We �nda time-varying relationship between risk and return that is in line with su
h studies asHarvey (1989, 2001), Kandel and Stambaugh (1990) and Whitelaw (1994). In parti
ular,Harvey (2001) argues that the spe
i�
ation of the 
onditional varian
e in�uen
es the re-lation between the 
onditional mean and the 
onditional varian
e and provides empiri
aleviden
e suggesting that there may be some time variation in the relationship betweenrisk and return. Whitelaw (1994) reports also that the 
ontemporaneous 
orrelation be-tween the �rst two movements of the return varies from large positive to large negativevalues. The negative relationship between the 
onditional mean and the 
onditional vari-an
e in the bear market is intuitive. In the bear market, investors are more risk averse.When investors are s
ared, they look for safety. They adjust their portfolios to in
ludemore safe assets and fewer risky assets. This kind of ��ight to quality� leads investors tostay away from risky assets (sto
ks) whi
h 
auses sto
k pri
es to de
line (Barsky, 1989).Bull and bear markets in the EMU sto
k marketsBy looking at α1 0 and α2 0 in Table 4.3, the inter
ept of the volatility equation in Regimes1 and 2, respe
tively, we 
an see that the values of α1 0 vary from 0.01 to 0.077, while thevalues of α2 0 are all almost zero. This implies that the annualized volatility in
reases if themarket swit
hes from Regime 2 to Regime 1 and vi
e versa. These distin
t 
hara
teristi
sof the two regimes are typi
al representations of the high-returns stable and the low-returns volatile states in sto
k returns, whi
h are 
onventionally labeled bull marketsand bear markets in Maheu and M
Curdy (2000) and Perez-Quiros and Timmermann(2000). Obviously, the EMU sto
k markets have well-identi�ed bear (Regime 1) and bullmarkets (Regime 2). This is similar to Chen's (2007) �nding in the S&P 500 index andHenry's (2009) in the UK equity market.The volatility persisten
e parameters, α1 1 and α2 1, are quite signi�
ant in nearly allof the EMU sto
k markets. Interestingly, in most 
ountries, α2 1 > α1 1. This implies thatthe volatility is less persistent during the bear period. This result is similar to reports fromFriedman and Laibson (1989) and Daal et al. (2007). Friedman and Laibson (1989) applya modi�ed ARCH and a GARCH model that allow for jumps and divide their sample intoordinary- and unusual-returns periods. They �nd that the volatility of ordinary returnsdisplays persisten
e, but the volatility of the unusual pri
e movements are less persistent.Daal et al. (2007) �nd the same pattern with a GARCH model allowing for jumps andasymmetry.6Some papers (e.g., Fren
h et al., 1987 Campbell and Hents
hel, 1992 Li, 2003 Guo and Neely, 2006)report a positive relationship and others (e.g., Glosten et al., 1993 Pagan and Hong, 1991 Li et al., 2005Guedhami and Sy, 2005) indi
ate a negative relationship, while others (e.g., Bodurtha and Mark, 1992Baillie and DeGennaro, 1990 Shin, 2005) �nd no signi�
ant relationship at all.



4.4. DATA AND EMPIRICAL RESULTS 105Furthermore, we noti
e that 
oe�
ients α1 2 are insigni�
ant in all of the EMU 
oun-tries, and α2 2 are insigni�
ant at the 5% signi�
an
e level in the majority of the EMU
ountries. However, this does not mean that the one-week lagged error term has no e�e
ton 
urrent volatility at all. On the 
ontrary, it in�uen
es volatility through the 
hannelof leverage e�e
t: When bad news arrives (when the residual is negative), the marketdisplays a remarkably di�erent response to news. Parameters α1 3 and α1 3 show thisadditional sharp response of volatility to bad news in most of the EMU 
ountries. Thisis generally 
onsistent with the well-do
umented predi
ative asymmetri
al e�e
t in sto
kmarkets (see, e.g., Campbell and Hents
hel, 1992 Engle and Ng, 1993). Further, in allEMU 
ountries, α1 3 > α2 3, implying that the asymmetry of the volatility response tobad news during volatile periods is greater than during stable periods. For example, thevolatility asymmetry 
oe�
ient of DAX is 0.3858 in the bear market, whi
h is about2.1 times that of the bull market. This 
an be explained by noting that during the bearmarket, the 
on�den
e of investors is greatly damaged and market pra
titioners be
omemore spe
ulatively oriented and more sensitive to any market news, espe
ially to badnews.In Figure 4.2, we present the smoothed probability of all of the indi
es of Regime 1(the bear period). The solid line is the probability of the bear regime, and the dot is thereturn. We 
an see that nearly all of the 
ountries entered into the bear period during2000 and 2001, during the half burst of the dot-
om bubble. Among them, the 
entralEuropean 
ountries most resisted the swit
h to the bear period, for example, Germany,the Netherlands and Belgium started their bear period in the beginning of 2001. TheIrish sto
k market behaved remarkably di�erently and remained in the bull period untillate 2001. This was due to its outstanding e
onomi
 performan
e during that period.From year 1995 to 2000, Ireland's GDP growth was around 10%, while that of mostother EMU 
ountries were merely around 3%. A review from the IMF in August 2000attributed su
h performan
e to the roles played by �sound and 
onsistent ma
roe
onomi
poli
ies, a generally �exible labor market, a favorable tax regime and the long standingoutward orientation of Ireland's trade and industrial poli
ies�, and regarded the Irishe
onomy as �well pla
ed to 
ontinue to perform strongly in the future�. The Irish sto
kmarket remained in the bull period until late in 2001, when its GDP growth rate droppedby half.By the end of 2002 and the beginning of 2003, when key 
entral banks desperatelydropped their target rate to a histori
ally low level with the ECB o�ering a deposit rateof merely 1.5%, most of the EMU sto
k markets started to see the light at the end of thetunnel and started to reenter the bull period, though the e
onomy of most 
ountries wasstill sluggish. The ex
eption here is the Austria market. Being the gate from Western toEastern Europe, Austria enjoyed strong growth in exports and inward investment from2000 to 2005, whi
h made it the �rst EMU 
ountry to leave the bear period as early asthe beginning of 2002.In most of the EMU 
ountries, the bull period lasted for about 4 years, until thebeginning of 2007, when the housing bubble burst and the subprime 
risis sparked. TheEMU 
ountries then dove into the bear market at the same time again with the ex
eption



106 Chapter 4of Finland, Germany and Portugal, whi
h delayed a few months. The reason 
ould bethat at the beginning of the subprime 
risis, the market underestimated its damage,believing that some European 
ountries�whi
h had better e
onomi
 performan
e, betterrisk 
ontrol and less spe
ulation in the subprime mortgage market�
ould avoid the 
risis.Germany was a typi
al example.Finally, the di�eren
e between all parameters in both regimes and their respe
tivestandard deviations are shown in Table 4.5. Besides the parameters representing theresponse of the market to market news, the di�eren
es between parameters are all sta-tisti
ally signi�
ant at the 1% signi�
an
e level. This 
on�rms that the bear and thebull markets exist in the EMU sto
k markets. The estimated persisten
e for the regime
i is 1/ǫi for i = 1, 2. Regime 1 has a averaged persisten
e of 22 weeks, while Regime 2has a averaged persisten
e of 33 weeks. This is 
onsistent with �ndings from Napolitano(2006) and Chen (2007) whi
h report that both bull markets and bear markets displaypersisten
e but the bear market is less persistent.The impa
t of short-term interest rates on the EMU sto
k marketsWe examine the impa
t of short-term interest rates by estimating the EMS GJR-M modelas spe
i�ed in equation (4.4). We are parti
ularly interested in studying if an in
rease ininterest rates has an additional e�e
t on sto
k returns and their volatility and whetherthe e�e
t varies in the bull and bear markets.The full results of the interest-rate impa
t on the EMU sto
k markets are presented inTable 4.6. The estimated parameters from the EMS GJR-M model are not very di�erentfrom the ones estimated from the MS GJR-M model, and the 
hara
teristi
s of bothregimes are maintained. We �nd that the relationship between returns and the volatilityremains largely un
hanged in the EMU 
ountries. The negative and signi�
ant parameter
β1 in most of the EMU sto
k markets implies that returns are negatively 
orrelated withvolatility in Regime 1. The 
oe�
ient β2 is positive and signi�
ant in most of the EMU
ountries, implying a positive relationship between returns and volatility in Regime 2.The inter
ept of the volatility equation in Regimes 1 and 2 (α1 0 and α2 0) indi
ates thatthe volatility is higher in Regime 1 than in Regime 2. Therefore, the results providestrong eviden
e in favor of two states in the EMU sto
k markets, a high-mean low-volatility state (bull market) and a low-mean high-volatility state (bear market). The
oe�
ients α1 1 and α2 1 indi
ate that the volatility is more persistent in the bull marketthan in the bear market. However, the innovation parameter in both regimes (α1 2 and
α2 2) is insigni�
antly di�erent from zero. This does not mean that market news hasno e�e
t on 
urrent volatility. If we look at the parameters α1 3 and α2 3, we 
an �ndthat market news in�uen
es the volatility through the leverage e�e
t. The 
oe�
ient α2 3is signi�
ant in most of the EMU 
ountries (besides Finland, Spain and Austria). Theparameter α1 3 is signi�
ant in half of the EMU 
ountries. Moreover, α1 3 > α2 3 impliesthat the leverage e�e
t of the bad news is mu
h stronger in bear markets than in bullmarkets. For example, in Belgium, this additional e�e
t is about 8 times larger in Regime1 than in Regime 2.Holding the transition probability 
onstant, the interest-rate �u
tuations a�e
t the



4.4. DATA AND EMPIRICAL RESULTS 107equity returns via 
hanges in the volatility. The parameters αi4 and αi5, for i = 1, 2,indi
ate the interest rates' impa
t on the EMU sto
k market volatility in bull and bearmarkets, respe
tively. If the parameters αi4 are signi�
antly di�erent from zero, then
hanges in EURIBOR rates a�e
t the 
onditional varian
e. Meanwhile, if the parameters
αi5 are signi�
antly di�erent from zero, then an in
rease in interest rates 
auses anadditional e�e
t on the volatility by an amount of αi5χ

2
t−1. It 
an be seen from Table 4.6that the parameter α2 4 is small in value and is insigni�
ant at the 5% level in most of theEMU 
ountries. The parameter α1 4 is signi�
ant in most of the EMU 
ountries (besidesBelgium). This indi
ates that 
hanges in interest rates have a mu
h stronger e�e
t onvolatility in the bear market (the low-mean, high-volatility state) than in the bull market(the high-mean, low-varian
e state). We �nd also that α1 5 is signi�
ant at the 5% levelin all 
ountries (in Germany, Italy, Spain and Netherlands, it is even signi�
ant at the1% level) and that α2 5 is only weakly signi�
ant in three 
ountries (Finland, Belgiumand Portugal). This indi
ates that an in
rease in interest rates has an additional e�e
ton 
urrent volatility and this e�e
t is also mu
h stronger in the bear market than inthe bull market in most of the EMU sto
k markets. This result is in 
ontrast to the�nding from Domian et al. (1996) that drops in interest rates are followed by largepositive sto
k returns while in
reases in interest rates have little e�e
ts. Our �nding isgenerally 
onsistent with the results from Perez-Quiros and Timmermann (2000, 2001),Basistha and Kurov (2008), Chen (2007) and Henry (2009). For example, Perez-Quirosand Timmermann (2000) �nd that the interest rate 
an a�e
t the 
onditional varian
eonly in the low-mean high-volatility regime for large �rms. Henry (2009) also reports thatthe relationship between short-term interest-rate 
hanges and equity volatility in the UKsto
k market is regime dependent, the e�e
t of interest rates is higher in bear marketsthan in bull markets. Basistha and Kurov (2008) show that the sto
k returns' response tomonetary sho
ks is more than twi
e as large in re
essions and tight 
redit 
onditions as ingood e
onomi
 times. The reason of this phenomenon may be that during the bull periodthe market 
on�den
e is high and more investors believe in the market itself rather thanthe information, espe
ially the information from other markets. This makes the marketrelu
tant to respond to 
hanges in short-term interest rates. During the bear period, themarket be
omes nervous and more volatile, and the volatility be
omes more sensitiveto information from both the sto
k market and other markets, and therefore the sto
kmarket responds to 
hanges in interest rates. Theoreti
ally, a

ording to re
ent modelswith agen
y 
osts of �nan
ial intermediation (�nan
e 
onstraint), people show that whenthere is information asymmetry in �nan
ial markets, agents may behave as if they are
onstrained �nan
ially. Moreover, the �nan
ial 
onstraint is more likely to bind in bearmarkets (see, e.g., Gertler, 1988 Bernanke and Gertler, 1989 Kiyotaki and Moore, 1997Gar
ia and S
haller, 2002). Therefore, a 
hange in short-term interest rates may havegreater e�e
t in bear markets than in bull markets.Further, in an in�uential study, Gerla
h and Smets (1995) 
on
lude that the e�e
tsof monetary poli
y sho
ks are somewhat larger in Germany than in Fran
e or Italy.Clements et al. (2001) have also argued that output in Germany and Fran
e is morea�e
ted by monetary sho
ks than in either Spain or Italy. Contrary to results from these



108 Chapter 4studies, the result from our study suggests that monetary poli
y is equally transmitteda
ross the EMU sto
k markets. This may stem from the laun
hing of Euro, whi
h hasmade the EMU sto
k markets more integrated than ever.Finally, we 
he
k the goodness of �t of the EMS GJR-M model. As 
an be seen in thelast 
olumn of Table 4.4, the goodness-of-�t indi
ators (MSE, MAE and AIC) suggestthat obtaining the interest-rate impa
t information improves the EMS GJR-M modelperforman
e and the fundamental results of the MS GJR-M model in most EMU sto
kmarkets.Asymmetri
 e�e
ts of bad news and rate in
reases: The news impa
t surfa
eIn this se
tion, we investigate the asymmetri
 news e�e
ts (returns residuals) and theasymmetri
 e�e
t of 
hanges in short-term interest rates on volatility by extending theNIC, introdu
ed by Pagan and S
hwert (1990) and 
hristened by Engle and Ng (1993),whi
h shows the implied relationship between the lagged sho
k from returns and thevolatility. We extend the NIC into the news impa
t surfa
e, in whi
h the 
onditionalvarian
e is evaluated at the level of un
onditional varian
e of sto
k returns, the sho
kfrom 
onditional returns, and the 
hange in interest rates. The news impa
t surfa
e of theEMS GJR-M model illustrates the asymmetri
 e�e
t of sto
k market news and 
hangesin interest rates on the volatility pro
ess:
ht = A+ αi2ǫ

2
t−1 + αi4χ

2
t−1, for ǫt−1 > 0 and χt−1 < 0,

ht = A+ (αi2 + αi3)ǫ
2
t−1 + (αi4 + αi5)χ

2
t−1, for ǫt−1 < 0 and χt−1 > 0,

ht = A+ αi2ǫ
2
t−1 + (αi4 + αi5)χ

2
t−1, for ǫt−1 > 0 and χt−1 > 0,

ht = A+ (αi2 + αi3)ǫ
2
t−1 + αi4χ

2
t−1, for ǫt−1 < 0 and χt−1 < 0. (4.19)where A = αi0 + αi1σ

2, σ2 is the un
onditional return varian
e, αij (i = 1, 2, j =
1, 2, . . . , 5) is the parameter from the estimated EMS GJR-M model , ǫt−1 is the unpre-di
table return at time t− 1, and χt−1 is the 
hange in interest rates. The original NICof the GJR model from Engle and Ng (1993) does not demonstrate sho
ks from interestrates and does not distinguish sho
ks in the bull and the bear markets.Figure 4.3 plots the news impa
t surfa
e of the German sto
k market. Values onthe X axis indi
ate 
hanges in interest rates, values on the Y axis indi
ate sho
ks from
onditional returns, and values on the Z axis indi
ate the level of the volatility. The leftplot is the news impa
t surfa
e of German sto
k market in the bear market, and the rightone plots the news impa
t surfa
e of German sto
k market in the bull market. If we holdthe value on the X axis 
onstant, then the 
hange in values on the Z axis with respe
tto the 
hange in values on the Y axis shows how the 
onditional volatility 
hanges withrespe
t to 
hanges in market news. We �nd that the volatility in
reases as the value onthe Y axis be
omes more negative, and this is more obvious in the left plot than in theright one. This is 
onsistent with our result in the previous se
tion that negative newshas an asymmetri
 e�e
t on volatility in both bear markets and bull markets; however,this e�e
t is greater in bear markets than in bull markets in the German sto
k market.



4.4. DATA AND EMPIRICAL RESULTS 109If we hold values on the Y axis 
onstant, then the 
hange in values on the Z axis withrespe
t to 
hanges in values on the X axis shows how the 
onditional volatility 
hangeswith respe
t to interest rates. We �nd that volatility in
reases as the value on the Xaxis be
omes more positive, and this situation is only evident in the left plot (the bearmarket). This is 
onsistent with our result that a rise in interest rates in
reases thevolatility more than a fall in interest rates. The e�e
t is mu
h stronger in bear marketsthan in bull markets in the German sto
k market.We show the asymmetri
 e�e
t of sho
ks from unexpe
ted returns and from 
hangesin interest rates on the volatility of all EMU sto
k markets in Figure 4.4, where we 
ontourplot the news impa
t surfa
e of ea
h EMU sto
k market. Values on the X axis indi
ate
hanges in interest rates and values on the Y axis indi
ate sho
ks from 
onditional returns.The 
olor indi
ates the level of the volatility, the higher the volatility, the brighter its
olor. The �rst and third 
olumns plot the NIC 
ontours in the bear market, while these
ond and fourth 
olumns are 
ontour plots of the news impa
t surfa
e in the bullmarket. By looking at the Y axis in the bear market in ea
h EMU 
ountry, we �nd thatthe slope of the negative side (the left bottom 
orner) is mu
h sharper and the 
oloris mu
h brighter than that of the positive side (the left top 
orner). However, in thebull market, the slope of the negative side of the Y axis (the left bottom 
orner) is onlyslightly sharper than that of the positive side (the left top 
orner). This is 
onsistentwith our result that the e�e
t of bad news on the volatility is larger than that of goodnews in most of the EMU sto
k markets, and su
h an impa
t is also larger in the bearmarket than in the bull market. On the other hand, by looking at the X axis in the bearmarket in ea
h EMU sto
k market, we 
an see that the news impa
t surfa
e 
aptures theasymmetri
al e�e
t of 
hanges in interest rates on the volatility be
ause it has a steeperslope and brighter 
olor at the positive side (the right bottom 
orner where the interestrate moves upward) than the negative side (the left bottom 
orner where the interestrate follows downward market movements). However, we 
an only observe this situationin the bear market be
ause in the bull market, the volatility is symmetri
ally 
entered atzero on the X axis in nearly all of the EMU sto
k markets (ex
ept Portugal). This also
on�rms our result that an in
rease in short-term interest rates has a 
onsiderably largerimpa
t on sto
k volatility than a de
rease in short-term interest rates, and the impa
t ismu
h stronger during bear periods than during bull periods in most of the EMU markets.Impli
ations of interest-rate impa
ts on sto
k marketsTo explain why the interest rate 
an a�e
t the equity market, we resort to the dis
ounted
ash �ow (DCF) model pioneered by Williams (1938). The DCF model views the intrinsi
value of 
ommon sto
k as the present value of its expe
ted future 
ash �ow. The expe
tedfuture 
ash �ow is often represented by the �expe
ted dividend�, whi
h is known as a DDMmodel (dividend distribution model). When interest rates 
hange, �rst, the expe
tedreturn must be dis
ounted at a di�erent rate; se
ond, the �rms' future 
osts to 
ondu
tbusiness are 
hanged. These will ultimately a�e
t the �rms' expe
ted pro�tability andadjust market expe
tations of the �rms' abilities to pay a dividend. Furthermore, by
hanging the value of expe
ted future 
ash �ows, interest-rate movements 
hange the



110 Chapter 4level of real a
tivity in the e
onomy in the medium and long term. Campbell and Ammer(1993) de
ompose the varian
e of unexpe
ted ex
ess returns implied by the DDM intothree fa
tors, news about future dividends, news about future interest rates, and newsabout future ex
ess returns, and predi
t that �u
tuations in interest rates should 
auseequity pri
es to move and may also result in 
hanges in the varian
e of equity returns.However, the result from Henry (2009) suggests that events in the money market haveno dire
t in�uen
e on the 
onditional mean of returns in the UK sto
k market. Ourresults suggest that the interest-rate market's in�uen
e on the 
onditional mean of sto
kreturns is via the 
onditional varian
e be
ause the 
onditional return and the volatilityare negatively related in the bear market and positively related in the bull market.Therefore, the �ndings of interest rates' impa
ts from the proposed EMS GJR-M modelin our paper support the 
on
lusion that interest rates signi�
antly a�e
t sto
k returnsand volatility and 
on�rm the impli
ations of the DCF model.The empiri
al results from our paper have important impli
ations for portfolio sele
-tion, asset pri
ing and risk management. For instan
e, as implied by the news impa
tsurfa
e, there are signi�
ant asymmetri
 e�e
ts of the news and 
hanges in interest rateson the EMU sto
k market, after a major impa
t from the money market, the predi
tablemarket volatilities given by the EMS GJR-M model and other models su
h as a standardGJR model or a GJR-M model are very di�erent, this may lead to a signi�
ant di�eren
ein 
urrent option pri
e, portfolio sele
tion, and dynami
 hedging strategies.To further demonstrate the importan
e of the interest rates' impa
t when modelingthe volatility dynami
s, we apply various models to a portfolio 
hoi
e problem under twos
enarios: portfolio 
hoi
es without and with short-selling 
onstraints.7 We assume thatan investor holds a portfolio 
onsisting of two sto
ks of German DAX and Fran
e CAC40(risky assets) and that the investor tries to maximize the expe
ted utility fun
tion withinthe mean�varian
e framework from Best and Grauer (1990),
max

{
λw′µ− 1

2
w′Vw |w′I = 1

}
, (4.20)where w is the ve
tor of weights invested in risky assets, V is the varian
e�
ovarian
ematrix of the asset returns, µ is the ve
tor of the asset returns, and λ is the risk toleran
e
oe�
ient. The purpose is to �nd the optimum weights of the assets in the portfolio thatmaximize the utility fun
tion. It has been 
on�rmed that investment weights are verysensitive to the �rst two 
onditional movements of the risky-asset returns (see, e.g., Bestand Grauer, 1990, 1991 Fleming et al., 2001). So the model that 
an better fore
astthe 
onditional mean and varian
e 
an provide better performan
e. Further, as the risk-toleran
e 
oe�
ient also a�e
ts the weight of risky assets, we examine the portfolioperforman
e with di�erent risk-toleran
e 
oe�
ients. The robustness of the empiri
al�ndings in the investment performan
e 
an be 
on�rmed if similar results 
an be obtainedunder di�erent risk toleran
e 
oe�
ients. Finally, we 
ompute the optimum weights basedon the out-of-sample fore
asted 
onditional mean and varian
e of the German DAX and7In the 
ase that the short-selling strategy is not allowed, the investment weight is between 0 and 1



4.5. CONCLUSION 111the Fren
h CAC40. The average returns of the portfolio and the Sharpe Ratio will bealso 
al
ulated a

ording to di�erent risk-toleran
e 
oe�
ients and are used to measurethe fore
asted portfolio performan
e.Table 4.7 presents results of the portfolio performan
e. Panel 1 shows those fromthe unrestri
ted strategy, and Panel 2 shows those from the restri
ted strategy. Clearly,among the models, the EMS GJR-M model provides the best investment performan
ein terms of the averaged returns and sharp ratios. This is not surprising be
ause theEMS GJR-M model yields a more a

urate volatility fore
ast than other models in theout-of-sample fore
ast. This is 
lear in Figure 4.5, whi
h plots the true volatility proxyand the out-of-sample fore
asted volatility of various models in the German DAX andthe Fren
h CAC40. The solid lines are the estimated volatility from various models, andthe dashed lines are the true volatility whi
h is proxied by the absolute values of thereturns. We 
an observe that the volatility estimated from the EMS GJR-M model is
loser to the true volatility proxy and 
an better des
ribe the dynami
s of the DAX andthe CAC40 return varian
e 
ompared with the MS GJR-M, the GJR-M and the GJRmodels.On the other hand, it is worth noting that the sharp ratio of the non�regime-swit
hingmodels de
lines 
onsiderably 
ompared to the regime-swit
hing models. Among the non�regime-swit
hing models, the GJR-M model does not perform better than the GJR modelin the unrestri
ted s
enario. This may be be
ause of the potential statisti
al problemwith the GARCH-M spe
i�
ation. As pointed out by Christensen et al. (2010) thatwithout the regime swit
hing, the long memory property of the 
onditional varian
emay not balan
e well when entering the short memory property of the 
onditional meanregression. As shown in many studies (see Diebold and Inoue, 2001), the long memory(high persisten
e) will disappear after in
orporating the stru
ture break in the volatility,e.g., a regime swit
hing spe
i�
ation. These results provide 
redible eviden
es that theshort-term interest-rate e�e
t, the regime swit
hing play important roles in modeling thedynami
s of the EMU sto
k markets' returns and varian
e. Only models in
orporatingthese e�e
ts 
an o�er more a

urate results of the 
onditional mean and varian
e. We 
anobserve that the portfolio volatility of the GJR-M and the GJR models are mu
h lowerdue to ignoring short-term interest rates and regime swit
hing, and 
onsequently resultin poor out-of-sample predi
tive portfolio performan
e. The poorly fore
asted portfolioperforman
e from su
h models will de�nitely a�e
t the investor's portfolio 
hoi
e andrisk-management strategy.4.5 Con
lusionThe DCF model provides the theoreti
al ba
kground for the possible impa
t of interest-rate 
hanges on equity pri
es. With the in
reased use of short-term interest rates ratherthan measures of money supply as intermediate targets for monetary poli
y, many studieshave examined the impa
t of the interest-rate market on the sto
k market. Unfortunately,most of the studies examine interest rates' impa
t on the U.S. sto
k market and heavily
onsider the e�e
t of 
hanges in interest rates on sto
k pri
es and returns. This paper



112 Chapter 4investigates the spillover e�e
t of interest-rate movements on sto
k markets in the Euroarea, whi
h has re
eived surprisingly little attention. Departing from most previous worksexamining the e�e
t of interest rates only on sto
k returns, we analyze the potentialimpa
t of short-term interest-rate surprises on both sto
k returns and the volatility ofsto
k returns. We pay parti
ularly more attention to the asymmetri
 e�e
t of an in
reasein interest rates on the EMU sto
k markets in di�erent market regimes, bull and bearmarkets. The empiri
al study is 
arried out by estimating the EMS GJR-M and MSGJR-M models with a MCMC method, whi
h enjoys several advantages 
ompared withthe traditional maximum likelihood method.Empiri
al results suggest that two signi�
ant regimes exist in the EMU sto
k mar-kets, a high-mean low-varian
e regime (bull market) and a low-mean high-varian
e regime(bear market). The relationship between the 
onditional mean and varian
e is time vary-ing. They are positively 
orrelated during bull periods and negatively 
orrelated duringbear periods. Furthermore, the negative sho
k (bad news) from the sto
k market hasa larger e�e
t than the positive sho
k (good news). Short-term interest rates a�e
t thesto
k returns and volatility in the EMU 
ountries; this e�e
t is 
onsiderably strongerin the bear market than in the bull market in most of the EMU 
ountries, and an in-
rease in interest rates has a larger e�e
t on the EMU sto
k returns and volatility thana similar drop. It is also 
on�rmed in the out-of-sample fore
asted portfolio performan
ethat the EMS GJR-M model 
an better des
ribe volatility dynami
s and provide morepowerful portfolio performan
e predi
tion than the models without interest rates' im-pa
t and regime swit
hing. Our results are of importan
e not only to the poli
ymakeranti
ipating the market response to announ
ed and implemented poli
ies, but also to�nan
ial-market parti
ipants making e�e
tive investment de
isions and formulating ap-propriate risk-management strategies.
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Tables
Table 4.1: Estimated Parameters from the Monte Carlo Simulation

β1 β2 α1 0 α2 0 α1 1 α2 1 α1 2 α2 2 α1 3 α2 3 e1 e2True 0.2000 0.6000 0.1000 0.2000 0.4000 0.5000 0.2000 0.2500 0.1000 0.1500 0.0200 0.0100Mean 0.2106 0.5678 0.1103 0.1859 0.4104 0.5139 0.2124 0.2445 0.0941 0.1531 0.0149 0.0119RMSE 0.0169 0.0173 0.0132 0.0122 0.0130 0.0302 0.0338 0.0115 0.0092 0.0030 0.0038 0.0047Notes: The RMSE is the square root of the mean squared errors between the true and estimatedparameters from all data sets.
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120 CHAPTER 4Table 4.2: Des
riptive Statisti
s for Weekly Returns in the EMU Sto
kMarkets from January 1, 1999, to July 17, 2009, (Weekly Observations)Mean STD Skewness Kurtosis ADF test JB testDAX −0.0044 0.2522 −0.6426 8.0147 −24.0798 0.0010CAC40 −0.0035 0.2131 −0.8192 8.0416 −24.2817 0.0010FTSEMIB −0.0085 0.2310 −1.1698 12.9241 −23.5707 0.0010IBEX35 −0.0003 0.2177 −1.1080 10.6583 −25.5623 0.0010HEX25 0.0005 0.2556 −0.7829 6.3504 −23.2265 0.0010ISEQ −0.0086 0.2417 −1.9024 18.4048 −24.6172 0.0010AEX −0.0093 0.2432 −1.2709 12.6130 −23.4344 0.0010ATX 0.0079 0.2394 −2.2525 24.8953 −23.5760 0.0010BEL20 −0.0067 0.2163 −1.4305 13.9584 −23.0917 0.0010PSI20 −0.0063 0.1815 −1.3557 12.2722 −22.6216 0.0010

Notes: This table reports summary statisti
s for the index return of the EMU 
ountries.The ADF test is the augmented Di
ky Fuller test and the test statisti
s are reported.The JB test is the normality Jarque�Bera test and the p-values are reported. Weeklyreturns are 
al
ulated as the �rst di�eren
e of the natural logarithm of pri
es andthen annualized with a square root of 52.



TABLES 121Table 4.3: Estimated Parameters from the MS GJR-M ModelVolatility equationResponse to Additional response Transition LBTestIndex Return equation Inter
ept Persisten
e news to bad news probability Q(20)
β1 β2 α1 0 α2 0 α1 1 α2 1 α1 2 α2 2 α1 3 α2 3 e1 e2DAX −0.2746 0.0461 0.0769 0.0042 0.2630 0.7150 0.1260 0.0686 0.3858 0.1829 0.0358 0.0106 0.5613

(0.1289)(0.0226)(0.0153)(0.0018) (0.1573)(0.0645) (0.1287)(0.0384) (0.0582) (0.0652) (0.0094)(0.0053)** ** *** ** * *** * *** *** *** **CAC40 −0.0789 0.2632 0.0121 0.0006 0.5676 0.7838 0.0326 0.0832 0.3409 0.0917 0.0122 0.0199 0.9045
(0.0533)(0.0834)(0.0010)(0.0004) (0.0364)(0.0641) (0.0317)(0.0569) (0.0581) (0.0571) (0.0056)(0.0062)*** *** * *** *** *** ** ***FTSEMIB −0.1396 0.1193 0.0236 0.0006 0.1842 0.7984 0.1064 0.1221 0.6018 0.0612 0.0132 0.0110 0.6084
(0.0577)(0.0616)(0.0047)(0.0002) (0.0961)(0.0390) (0.0804)(0.0369) (0.1313) (0.0326) (0.0070)(0.0063)** * *** *** * *** *** *** * * *IBEX35 −0.1735 0.2439 0.0133 0.0005 0.7177 0.8429 0.0265 0.0470 0.1413 0.0768 0.0432 0.0400 0.2582
(0.0687)(0.0781)(0.0035)(0.0002) (0.0653)(0.0538) (0.0238)(0.0377) (0.0613) (0.0391) (0.0199)(0.0224)** *** *** *** *** *** ** ** ** *HEX25 −0.2312 0.2089 0.0536 0.0017 0.3843 0.7839 0.0587 0.1437 0.3002 0.0265 0.0442 0.0238 0.3058
(0.0906)(0.0672)(0.0232)(0.0009) (0.1771)(0.0488) (0.0578)(0.0399) (0.1532) (0.0240) (0.0181)(0.0085)** *** ** * ** *** *** * ** ***AEX −0.1129 0.0648 0.0078 0.0028 0.7060 0.6847 0.0350 0.1042 0.2231 0.1938 0.0349 0.0344 0.7190
(0.0606)(0.0644)(0.0033)(0.0017) (0.0900)(0.1056) (0.0347)(0.0834) (0.0833) (0.0931) (0.0088)(0.0089)* ** * *** *** *** ** *** ***ISEQ −0.2346 0.1328 0.0175 0.0005 0.4750 0.8903 0.0608 0.0521 0.3724 0.0365 0.0613 0.0353 0.7050
(0.0970)(0.0575)(0.0044)(0.0001) (0.0639)(0.0332) (0.0654)(0.0321) (0.1106) (0.0233) (0.0184)(0.0149)** ** *** *** *** *** *** *** **ATX −0.1497 0.2552 0.0101 0.0017 0.5150 0.7361 0.0739 0.2151 0.3604 0.0272 0.0423 0.0368 0.8360
(0.0902)(0.0767)(0.0047)(0.0008) (0.1137)(0.0710) (0.0616)(0.0838) (0.1265) (0.0301) (0.0068)(0.0079)* *** ** ** *** *** ** *** *** ***BEL20 −0.1777 0.2108 0.0151 0.0004 0.4611 0.8551 0.0421 0.0765 0.4434 0.0343 0.0345 0.0333 0.7282
(0.0652)(0.0701)(0.0070)(0.0001) (0.1559)(0.0417) (0.0385)(0.0415) (0.1335) (0.0277) (0.0086)(0.0087)*** *** ** *** *** *** * *** *** ***PSI20 −0.3229 0.2492 0.0155 0.0004 0.1858 0.8522 0.0929 0.1132 0.6177 0.0151 0.0372 0.0310 0.1463
(0.0891)(0.0749)(0.0035)(0.0001) (0.1326)(0.0316) (0.0853)(0.0322) (0.1516) (0.0144) (0.0085)(0.0093)*** *** *** ** *** *** *** *** ***Notes: This table shows the estimated parameters of the MS GJR-M model, without the interest-rate impa
t,and spe
i�ed in equation (4.2). Values in parentheses under the estimates indi
ate standard errors. ***, **, and* denote signi�
an
e at 1%, 5%, and 10% levels, respe
tively. The sample period is from January 1, 1999, to July17, 2009, (557 weekly observations). Q(20) is the Ljung�Box test statisti
 of the standard residuals of order 20(p-values are reported)



122 CHAPTER 4Table 4.4: The Goodness of Fit of Various ModelsMSE MSGJR-MIndex GARCH GJR GJR-M MSGJR-M with interest impa
tDAX 0.0279 0.0266 0.0247 0.0241 0.0237CAC40 0.0240 0.02261 0.0226 0.0212 0.0207FTSEMIB 0.0275 0.0261 0.0252 0.0232 0.0216IBEX35 0.0228 0.0226 0.0216 0.0195 0.0191HEX25 0.0310 0.0311 0.0307 0.0293 0.0277AEX 0.0297 0.0320 0.0320 0.0263 0.0261ISEQ 0.0319 0.0295 0.0274 0.0290 0.0295ATX 0.0332 0.0300 0.0338 0.0315 0.0300BEL20 0.0269 0.2671 0.0241 0.0224 0.0230PSI20 0.0190 0.0187 0.0179 0.0160 0.0161MAE MSGJR-MIndex GARCH GJR GJR-M MSGJR-M with interest impa
tDAX 0.1248 0.1206 0.1171 0.1144 0.1157CAC40 0.1177 0.1126 0.1128 0.1091 0.1077FTSEMIB 0.1158 0.1134 0.1096 0.1060 0.1035IBEX35 0.1126 0.1110 0.1097 0.1030 0.1032HEX25 0.1328 0.1327 0.1298 0.1275 0.1268AEX 0.1200 0.1229 0.1206 0.1101 0.1103ISEQ 0.1240 0.1151 0.1112 0.1177 0.1184ATX 0.1211 0.1194 0.1195 0.1143 0.1106BEL20 0.1173 0.1141 0.1076 0.1060 0.1096PSI20 0.0975 0.1016 0.0982 0.0933 0.0930AIC MSGJR-MIndex GARCH GJR GJR-M MSGJR-M with interest impa
tDAX −1978.8 −2005.5 −2043.1 −2046.7 −2050.2CAC40 −2062.5 −2095.1 −2092.5 −2119.0 −2124.8FTSEMIB −1986.7 −2016.03 −2033.0 −2068.5 −2101.5IBEX35 −2091.0 −2095.1 −2119.5 −2166.3 −2171.5HEX25 −1919.5 −1917.0 −1923.8 −1939.4 −1965.1AEX −1943.2 −1902.4 −1900.3 −1998.5 −2002.5ISEQ −1903.5 −1948.23 −1985.6 −1945.4 −1936.2ATX −1881.4 −1854.5 −1870.4 −1898.2 −1919.5BEL20 −1997.7 −2002.49 −2056.8 −2088.1 −2067.7PSI20 −2191.1 −2200.34 −2229.0 −2273.4 −2265.5Notes: This table reports the three goodness-of-�t measures in terms of the MSE, the MAE, andthe AIC for various models in the EMU 
ountries. These measures are 
al
ulated a

ording toequation (4.18). The models are the GARCH, GJR, GJR in Mean, MS GJR in Mean, and theMS GJR in Mean with the interest-rate impa
t.



TABLES 123Table 4.5: Parameter Di�eren
es Between Bull and Bear MarketsAdditionalResponse to response toIndex Return Inter
ept Persisten
e news bad news
β α0 α1 α2 α3DAX −0.3208 0.0727 −0.4520 0.0575 0.2029

(0.1374) (0.0154) (0.1700) (0.1343) (0.0874)** *** *** **CAC40 −0.3421 0.0114 −0.2162 −0.0506 0.2492
(0.0990) (0.0011) (0.0737) (0.0651) (0.0815)*** *** *** ***FTSEMIB −0.2588 0.0230 −0.6141 −0.0157 0.5405
(0.0844) (0.0047) (0.1037) (0.0885) (0.1353)*** *** *** ***IBEX35 −0.4173 0.0127 −0.1253 −0.0205 0.0646
(0.1040) (0.0035) (0.0846) (0.0446) (0.0727)*** ***HEX25 −0.4402 0.0519 −0.3996 −0.0850 0.2737
(0.1128) (0.0232) (0.1837) (0.0703) (0.1551)*** ** ** *AEX −0.1777 0.0050 0.0213 −0.0692 0.0293
(0.0884) (0.0037) (0.1387) (0.0903) (0.1249)**ISEQ −0.3675 0.0170 −0.4153 0.0087 0.3360
(0.1127) (0.0044) (0.0720) (0.0729) (0.1130)*** *** *** ***ATX 0.4048 0.0084 0.2210 0.1412 0.3333
(0.1184) (0.0048) (0.1340) (0.1040) (0.1301)*** * * **BEL20 0.3885 0.0147 0.3940 0.0344 0.4092
(0.0957) (0.0070) (0.1614) (0.0566) (0.1364)*** ** ** ***PSI20 0.5721 0.0151 0.6664 0.0203 0.6026
(0.1164) (0.0035) (0.1364) (0.0912) (0.1523)*** *** *** ***Notes: This table shows the parameter di�eren
es (the parameter value in bearmarkets minus the parameter value in bull markets). All parameters are estimatedfrom the MS GJR-M model. Values in parentheses under the estimates indi
atestandard errors. ***, **, and * denote signi�
an
e at the level of 1%, 5%, and10%, respe
tively.
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Table 4.6: Estimated Parameters from the MS GJR-M Model with the Interest Rate Impa
tVolatility equationAdditional Additional responseResponse to response to Response to to in
reased TransitionIndex Return equation Inter
ept Persisten
e News bad news interest rates interest rates probability
β1 β2 α1 0 α2 0 α1 1 α2 1 α1 2 α2 2 α1 3 α2 3 α1 4 α2 4 α1 5 α2 5 e1 e2DAX −0.1573 0.0995 0.0309 0.0041 0.3387 0.6449 0.0710 0.0540 0.4021 0.2360 0.1747 0.0331 0.2085 0.0346 0.0379 0.0288

(0.0793) (0.0821) (0.0134)(0.0021) (0.1908)(0.1076) (0.0757)(0.0486) (0.1860)(0.0839) (0.0804)(0.0224) (0.0698) (0.0258) (0.0082)(0.0091)** ** * * *** ** *** ** *** *** ***CAC40 −0.2080 0.2254 0.0247 0.0007 0.2288 0.7398 0.0425 0.0706 0.4727 0.1450 0.1470 0.0290 0.1854 0.0388 0.0424 0.0389
(0.0751) (0.0775) (0.0076)(0.0005) (0.1658)(0.0625) (0.0413)(0.0566) (0.1678)(0.0686) (0.0792)(0.0216) (0.0825) (0.0241) (0.0063)(0.0078)*** *** *** *** *** ** * ** *** ***FTSEMIB −0.1074 0.0746 0.0246 0.0005 0.2463 0.8343 0.1145 0.0569 0.4565 0.0835 0.1361 0.0220 0.1387 0.0183 0.0623 0.0312
(0.0516) (0.0489) (0.0088)(0.0004) (0.1591)(0.0524) (0.1115)(0.0394) (0.1896)(0.0519) (0.0485)(0.0129) (0.0484) (0.0128) (0.0184)(0.0111)** *** *** ** *** * *** *** ***IBEX35 −0.2165 0.1838 0.0207 0.0008 0.4118 0.8059 0.0623 0.0522 0.2186 0.1125 0.2082 0.0174 0.2297 0.0279 0.0419 0.0317
(0.0855) (0.0621) (0.0090)(0.0007) (0.1811)(0.0690) (0.0592)(0.0357) (0.1378)(0.0704) (0.0684)(0.0146) (0.0605) (0.0224) (0.0064)(0.0089)** *** ** ** *** *** *** *** ***HEX25 −0.2642 0.1589 0.0580 0.0026 0.4295 0.7456 0.0538 0.1071 0.1472 0.0700 0.1758 0.0367 0.1871 0.0501 0.0401 0.0219
(0.0956) (0.0597) (0.0377)(0.0014) (0.2823)(0.0711) (0.0568)(0.0496) (0.1388)(0.0520) (0.0826)(0.0250) (0.0810) (0.0280) (0.0070)(0.0080)*** *** * *** ** ** ** * *** ***AEX −0.1149 0.1306 0.0154 0.0012 0.5605 0.7656 0.0791 0.0350 0.2777 0.1556 0.1045 0.0221 0.1432 0.0192 0.0545 0.0446
(0.0613) (0.0611) (0.0079)(0.0007) (0.1393)(0.0619) (0.0748)(0.0295) (0.1306)(0.0624) (0.0569)(0.0125) (0.0455) (0.0136) (0.0202)(0.0152)* ** * *** *** ** ** * * *** *** ***ISEQ −0.2543 0.1041 0.0298 0.0015 0.4203 0.7666 0.0794 0.0418 0.3359 0.1496 0.1750 0.0236 0.2208 0.0201 0.0413 0.0289
(0.1039) (0.0703) (0.0148)(0.0012) (0.1584)(0.0733) (0.0740)(0.0352) (0.1515)(0.0651) (0.0810)(0.0155) (0.0660) (0.0172) (0.0068)(0.0092)** ** *** *** ** ** ** *** *** ***ATX −0.1899 0.2072 0.0247 0.0061 0.3674 0.5517 0.1792 0.0695 0.2909 0.1832 0.1806 0.0209 0.1818 0.0190 0.0403 0.0252
(0.1031) (0.0660) (0.0194)(0.0030) (0.1529)(0.1569) (0.1377)(0.0592) (0.1935)(0.0954) (0.0638)(0.0191) (0.0653) (0.0209) (0.0063)(0.0086)* *** ** ** *** * *** *** *** ***BEL20 −0.1075 0.1446 0.0209 0.0005 0.3488 0.8220 0.0486 0.0651 0.4825 0.0571 0.0810 0.0203 0.1108 0.0235 0.0675 0.0447
(0.0673) (0.0662) (0.0091)(0.0003) (0.2004)(0.0528) (0.0514)(0.0418) (0.1870)(0.0427) (0.0574)(0.0131) (0.0560) (0.0138) (0.0174)(0.0135)** ** * *** *** ** * *** ***PSI20 −0.3200 0.2053 0.0161 0.0003 0.1629 0.8978 0.0765 0.0347 0.5371 0.0148 0.1712 0.0103 0.1915 0.0516 0.0332 0.0239
(0.0942) (0.0609) (0.0033)(0.0000) (0.1034)(0.0287) (0.0672)(0.0316) (0.1722)(0.0138) (0.0863)(0.0085) (0.0763) (0.0207) (0.0094)(0.0085)*** *** *** *** *** *** ** ** ** *** ***Notes: This table shows the estimated parameters from the MS GJR-M model with the short-term interest-rate impa
t spe
i�ed in equation 4.4 in the EMUarea. ***, **, and * denote signi�
an
e at 1%, 5%, and 10% levels, respe
tively. Values in parentheses under the estimates indi
ate standard errors.



TABLES 125Table 4.7: Asset Allo
ation Performan
e Results
λ = 20 λ = 10 λ = 5 λ = 1Panel 1: Unrestri
ted strategy(A) MeanMS GJR-M with interest 0.7661 0.4036 0.2224 0.0774MS GJR-M 0.0792 0.0602 0.0508 0.0432GJR-M −0.0086 0.0134 0.0244 0.0332GJR −0.0123 0.0091 0.0197 0.0283(B) VolatilityMS GJR-M with interest 4.9519 2.5311 1.3307 0.4113MS GJR-M 5.2041 2.6536 1.3889 0.4184GJR-M 0.5074 0.3210 0.2520 0.2258GJR 0.2412 0.2272 0.2225 0.2204(C) Sharp ratioMS GJR-M with interest 0.0391 0.0395 0.0397 0.0356MS GJR-M 0.0118 0.0157 0.0210 0.0307GJR-M −0.0119 0.0012 0.0100 0.0181GJR −0.0011 0.0056 0.0106 0.0157Panel 2: Restri
ted strategy(A) MeanMS GJR-M with interest 0.0562 0.0558 0.0549 0.0565MS GJR-M 0.0419 0.0419 0.0419 0.0419GJR-M 0.0229 0.0278 0.0341 0.0353GJR 0.0194 0.0218 0.0234 0.0305(B) VolatilityMS GJR-M with interest 0.2401 0.2405 0.2410 0.2410MS GJR-M 0.2289 0.2289 0.2289 0.2289GJR-M 0.2152 0.2144 0.2151 0.2205GJR 0.2509 0.2504 0.2486 0.2322(C) Sharp ratioMS GJR-M with interest 0.0318 0.0315 0.0306 0.321MS GJR-M 0.0261 0.261 0.0261 0.0261GJR-M 0.0130 0.0156 0.0200 0.0205GJR 0.0082 0.0105 0.0124 0.0169Notes: This table shows the mean of the portfolio returns, the mean ofthe portfolio varian
es, and the mean of the Sharp Ratio of Portfolio overthe out-of-sample fore
ast periods for various models and with respe
t todi�erent risk toleran
e 
oe�
ients. Panel 1 is the results for the unrestri
tedstrategy, short selling is allowed. The panel 2 reports the asset allo
ationresults for the restri
ted results, short selling is not allowed. λ is the risktoleran
e 
oe�
ient.



Figures
Figure 4.1: Estimated results for simulated data
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Note: This �gure plots the estimation results of the randomly 
hosen simulated 1,000 data points.The �rst and se
ond plots are the true and estimated volatility, and the last plot is the true andestimated probability of regime 1.
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FIGURES 127Figure 4.2: Bear regime probability
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Netherlands AEX
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Note: This �gure plots the estimated probability of the bear regime of the EMU equity markets.The solid line is the estimated probability, and the red dots are the returns. The s
ale of thereturn 
an be found on the y-axis on the right hand side.
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Figure 4.3: DAX news impa
t surfa
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Figure 4.4: News impa
t surfa
e 
ontour plots
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asted and true volatility
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