LUND UNIVERSITY

Essays on Financial Market Volatility

HOU, Ai Jun

2011

Link to publication

Citation for published version (APA):
HOU, A. J. (2011). Essays on Financial Market Volatility. [Doctoral Thesis (monograph), Department of
Economics].

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/bdc76b65-bb26-4ef6-962c-c1964182258c

Fssays on Financial Market
Volatility

Ai Jun Hou

Lund Economic Studies Number 163



Distributed by the Department of Economics
Lund University

P.O. Box 7082

S-22007 Lunp

SWEDEN

Telephone: +46 (0)46 222 0000

Fax: +46 (0)46 222 4118

www.nek.lu.se

ISSN 0460-0029

Printed in Sweden by
Wallin & Dalholm Digital AB, Lund, 2011

Copyright (© Ai Jun Hou, 2011



To Anna and Andy






Acknowledgements

It seems that every PhD candidate admits that the thesis is not the work of a single
person. I, too, could not have completed this thesis without the help and support from
my family and friends. I therefore would like to take this opportunity to express my
gratitude to the people who have made this thesis a reality.

First, I would like to give the biggest thanks to my main supervisor, Hossein Asghar-
ian, and my cosupervisor Bjorn Hansson. Hossein Asgharian is full of creative research
ideas. He is always easy to speak to and spend time with. Most importantly, he is full
of sympathetic compassion and understanding. His comments and corrections have sig-
nificantly improved my thesis. Besides the thesis, he has also helped guide other aspects
of my life, such as my career developments. I would like to thank Hossein for being my
supervisor and I appreciate all his contributions of times, ideas to make my PhD expe-
rience productive and stimulating. I thank Hossein also for letting me join him in one
paper. Although that paper is not included in my thesis due to the time constraints, I
have learned how to do real critical problem solving.

My second supervisor, Bjorn Hansson, is a very versatile person. He has a broad
knowledge and can basically discuss nearly any topic intelligently. I was shocked in one
conversation that he knows and can even pronounce the names of some small towns in
China. He has inspired and motivated me in a very natural way. Many times I came
to his office with many problems and questions (not only academic issues) and feeling
very upset and came out with several solution alternatives and with a glad and relaxed
feeling. He can make people’s negative emotions disappear. Thank you for making my
PhD journey much more pleasant and more fun.

Sandy Suardi also deserves special thanks. We have written two joint papers. One
paper was completed during his visit in Lund and is included in my thesis. Sandy has
provided a great deal of guidance and help in my academic writing. As a good friend
would, he always provides me useful suggestions and advice regarding all issues in the
publication process and in my career plan.

This thesis has benefitted substantially from the suggestions and recommendations
of the participants at the Friday afternoon seminars. Besides Bjorn and Hossein, spe-
cial thanks go to David Edgerton, Hans Bystrom, Birger Nilsson, Karl Larsson, Fredrik
Lundtofte, Anders Vilhelmsson, Marcus Nossman, Lu Liu, Yin Xia Guo, Patrik Karlsson,
Emanuel Alfranseder. I have also personally benefitted from conversations with Hans
Bystrom about research grant applications and also from his advice about my career.



vi

Birger Nilsson has helped me understand the probability measure and regime-switching
theories. Fredrik Lundtofte has also provided me valuable recommendations and sugges-
tions on my thesis. I would also like to express my gratitude to Charlotte Christiansen,
who served as an opponent in my final seminar and provided me many invaluable sug-
gestions and comments.

During my PhD journey, I have had the opportunity to share an office with Marcus
Nossman, Bjorn Shack, Ida Johansson, Lu Liu, and Bujar Huskaj. Specially, I shared an
office with Bujar for the last two years. I thank Bujar for letting me occupy the whole
room for most of the time. Although he mostly works at home, we have had many nice
conversations and interesting discussions when he comes to the office. Lu Liu, Yin Xia
Guo, and Gui Yun Cheng deserve a separate mention. We are the four female Chinese
PhD students in the finance group at our department. I have enjoyed many discussions
and conversations in Chinese with them. I am especially thankful for Yin Xia’s home-
made cookies and for Lu Liu for advices on the many issues we have discussed together.
Additionally, Farrukh Javed from the statistics department has joined Hossein and me
for one paper; I should thank him for the nice team cooperation and also for making the
final part of my PhD journey more joyful.

I appreciate also the courtesy and help from the administrative staff at my depart-
ment, including Karen Wardér, Peter Schiiller, Paul Linge, Anton Mariana, and Stenbeck
Nathalie. Karen is always so patient towards me and she helps me with many practical
issues regarding my maternity leave and my conference reimbursements. Thank you for
all your help.

All my colleagues at the department besides the above mentioned deserve thanks. You
all have made the department a nice place to go. Especially, I have enjoyed many small
talks with Tommy Anderson, Fredrik Andersson, Jens Dietrichson, Daniel Ekeblom, Lina
Maria Ellegard, Thomas Eriksson, Albin Erlanson, Sofie Gustafsson , Walfgang Hess, Per
Hjertstrand, Peter Jochumzen, Peter Karpestam, Gustav Kjellsson, Therese Nilsson. I
thank you for sharing this happy time with me.

Last but not least, I would like to thank my dear husband, and my soul mate, Neng
Liu. Without your endless support and encouragement, this PhD journey would never
have been made. I owe you too many happy times that we should have spent together that
have been used up on my research; I promise I will make it up for you in the near future.
I would also like to thank my two lovely angels, Anna and Andy. Without you, the world
would never have been so shining for me. Thank you for coming into my life and being
my impulses and making me never feel tried and bored in this difficult journey. Special
thanks must also go to my dear sister, Ai Xia, and my brother-in-law, Joakim Grahn. My
parents-in-law, Chun Lian Liu, and Xian Jun Deng also deserve special thanks. Thank
you all for the endless support!

Ai Jun Hou
Lund, April 2011



Contents

1 Introduction and Summary 1
1.1 The volatility models . . . . . . . . . ... oo 1
1.1.1 The parametricmodels . . . . . .. ... .. ... ... ....... 1
1.1.2  The nonparametric models . . . . . . . .. ... ... ... ... 3
1.2 The estimation methods . . . . . . . . ... .. oo 4
1.2.1 Bayesian-based Markov chain Monte Carlo method . . . . . . . .. 4
1.2.2  The additive semiparametric regression . . . . . . . . . . ... ... )
1.3 Summary of thesis . . . . . . . . . . .. )
1.3.1 Summary of paper 1 . . . . . . .. ... 6
1.3.2 Summary of paper 2 . . . . .. ..o 6
1.3.3 Summary of paper 3 . . . . .. ..o 7
2 Asymmetry Effects in Chinese Stock Market Volatility: A Generalized

Additive Nonparametric Approach 11
2.1 Introduction . . . . . . . . .. 11
2.2 Modeling time-varying volatility . . . . . . . . . .. ..o 0oL 13
2.2.1 Parametric GARCH-family models . . . . . .. ... ... .. ... 14
2.2.2  The generalized additive nonparametric model . . . . . ... ... 15
2.2.3 Estimation algorithm . . . . . . .. .. ... oo 16
2.3 Monte Carlo simulation . . . . . ... .. ... 0oL 16
2.4 Chinese stock market volatility . . . . .. .. ... ... ... ... 19
241 Thedata . ... . .. . . 19
2.4.2 The in-sample estimation results from various models . . . . . .. 21

2.4.3 The out-of-sample forecast improvements of the nonparametric mod-
els . .o 23
2.4.4 Analyzing asymmetry via the news impact curve . . . . ... . .. 25
2.5 Conclusion . . . . . .. 27

3 Modeling and Forecasting Short-Term Interest Rate Volatility: A Semi-

parametric Approach 45
3.1 Imtroduction . . . . . . . . .. 45
3.2 The short-rate models and the semiparametric approach . . . . . . . . .. 48

3.2.1 The short-rate models . . . . . .. .. ... oL 48

vil



viii

CONTENTS

3.2.2 The generalized additive semiparametric GARCH model . . . . . . ol

3.3 Monte Carlostudy . . . . ... .. ... 52

3.3.1 Experimental design . . . . .. ... ... oL 02

3.3.2  Simulation results . . . . . ... ... 53

3.4 Empirical application . . . . . . . ... o o 25

3.4.1 Data description . . . . . ... 95

3.4.2 Empirical results . . . ... Lo o8

3.4.3 Implications for pricing interest-rate derivatives . . . . . . . . . .. 62

3.5 Conclusion . . . . . . . . . e 64
EMU Equity Markets’ Return Variance and Spillover Effects from Short-

Term Interest Rates 91

4.1 Introduction . . . . . . . . .. 91

4.2 Themodel . . . . . . . . . . e 95

4.2.1 The Markov-switching GJR GARCH-M model . . . .. ... ... 95

4.2.2 The extended Markov-switching GJR GARCH-M model with the

interest-rate effect . . . . . . ... L L oo 97

4.3 Model Estimation . . . . . .. ... Lo 98

4.3.1 Markov chain Monte Carlo estimation method . . . . . . ... ... 98

4.3.2 Monte Carlo Simulation . . . . ... ... ... ... .. ...... 101

4.4 Data and Empirical Results . . . . . . ... ... ... 0oL 101

4.4.1 Data . . . . . . 102

4.4.2 Empirical results . . . .. ..o o oo 102

4.5

Conclusion . . . . . . . . 111



Chapter 1

Introduction and Summary

This thesis examines financial market volatility and volatility spill-over between financial
markets. It consists of three papers and focuses on adapting and proposing models for
the estimation and forecasting of financial market volatility. Different applications of the
estimated and forecasted volatility are demonstrated in each paper. The next sections
give a brief introduction to the parametric and nonparametric volatility models, as well
as the estimation methods used in this thesis. A short summary of each paper follows.

1.1 The volatility models

Volatility is defined as the degree to which the price of an equity or other financial assets
tends to move or fluctuate over a period of time. It plays a central role in the valuation
of such financial derivatives as options and futures and can, in fact, have a large effect on
portfolio selection and risk management. Therefore, volatility modeling and forecasting
is central to finance; it has been one of the most active areas of research in empirical
finance and time series econometrics during the past two decades.

Most researchers agree that volatility is predictable in many asset markets (see, e.g.,
Bollerslev et al., 1992), although they differ on how it should be modeled. The evidence
from the contemporary finance literature for predictability has led to a variety of ap-
proaches. The initial developments were tightly parametric, but the recent literature has
moved in less parametric, and even fully nonparametric, directions. The common empir-
ical observation is that financial market volatility is time varying and persistent, shows
clustering, responds asymimetrically to shocks, and is different across assets, asset classes,
and countries. (see, e.g., Bollerslev et al., 1992)

1.1.1 The parametric models

In financial time series, one often observes that big shocks tend to be followed by big
shocks in either direction, and small shocks tend to follow small shocks. This is referred
to as volatility clustering. In order to model such patterns, the ARCH model (Engle,
1982) and the GARCH model (Bollerslev, 1986) allow the variance to depend upon
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its history. Since those models were introduced, the financial econometrics literature has
focused considerable attention on time-varying volatility and development of new tools for
volatility measurement, modeling, and forecasting based on the ARCH and the GARCH
model. One of the most interesting extensions of the ARCH and GARCH models are the
“asymmetric” volatility models that consider the asymmetric response to shocks.

Volatility’s asymmetric phenomenon, where it increases more after a negative than
after a positive shock of the same magnitude, is another common empirically observed
characteristic of financial markets. This implies a negative correlation between return
innovations and future expected conditional variances. Two economic theories explain
asymmetric volatility: the leverage effect and time-varying risk premia (volatility feed-
back). The leverage effect (see, e.g., Black, 1976 Christie, 1982) indicates that an increase
in financial leverage leads to an increased volatility level. Volatility rises when stock prices
go down and decreases when stock prices go up. As an alternative explanation of the
larger increase in volatility after a negative shock, many researchers (see, e.g., French
et al., 1987 Campbell and Hentschel, 1992 Wu, 2001) state that news that volatility will
be higher in the future will induce risk-adverse investors to sell positions today until
expected return rises to compensate for the risk, necessitating an immediate stock-price
decline to allow for higher future return. Hence, the leverage hypothesis claims return
shocks lead to changes in conditional volatility, whereas the time-varying risk premium
theory contends that return shocks are caused by changes in conditional volatility.

The GJR-GARCH model of Glosten et al. (1993) is specifically designed to accommo-
date such asymmetries. Within this model, the asymmetry is identified and determined
by a dummy that depends on the sign (negative and positive) of the corresponding re-
turn innovations in the conditional variance equation. A similar motivation underlies the
EGARCH model in Nelson (1991). Although the log-transform complicates the calcula-
tion of conditional variance forecasts, it conveniently avoids having to impose nonnega-
tivity on the parameters of the variance equation.

Alternatively, as discussed above, the asymmetries in the return—volatility relation-
ship may also be attributed to volatility feedback. This feature is captured by the
ARCH/GARCH-in-Mean type formulation (Engle et al., 1987), in which the functional
form of the conditional mean depends explicitly on the conditional variance. A number of
papers have employed this framework to capture the empirically observed asymmetry in
equity-return volatility (see, e.g., Campbell and Hentschel, 1992 Bekaert and Wu, 2000).

Another important empirical finding is the strong volatility persistence showing in
most daily and weekly financial returns. To capture this, Engle and Bollerslev’s (1986)
IGARCH model directly imposes unity on the sum of the return-innovation coefficients
and the lagged variance. However, the imposition of a unit-root in the conditional variance
arguably exaggerates the true dynamic dependencies. Several alternative long-memory, or
fractionally integrated ARCH-type formulations have also been estimated and analyzed
more formally in the literature (see, e.g., Baillie et al., 1996 Ding et al., 1993 Zumbach,
2004). Possible explanations for the apparent long-memory dependencies based on the
aggregation of volatility components have been explored by many researchers (see, e.g.,
Andersen and Bollerslev, 1997 Engle and Lee, 1999 Liu, 2000).
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Meanwhile many researchers argue that the high persistence in volatility and lower
accuracy in the volatility forecast are due to structural breaks (see, e.g., Engle and
Bollerslev, 1986 Diebold and Inoue, 2001). Lamoreux and Lastrapes (1990) show that
the model with switched parameter values, such as Hamilton’s (1989) Markov switching
model, may provide a more accurate tool for modeling volatility. Hamilton and Susmel
(1994) indicate also that a Markov switching process can provide a better statistical fit
to the data than the traditional GARCH model.

1.1.2 The nonparametric models

The term nonparametric (Li and Racine, 2007) refers to statistical techniques that do not
require a researcher to specify a functional form for the estimated object. Rather than
assuming the functional form of an object is known up to a few unknown parameters, the
nonparametric model substitutes less-restrictive assumptions, such as differentiability and
moment restrictions, on the estimated object. Since nonparametric techniques make fewer
assumptions about the estimated object than do parametric techniques, nonparametric
estimators tend to be slower to converge to the objects being studied than correctly
specified parametric estimators. In addition, unlike their parametric counterparts, the
convergence rate is typically inversely related to the number of variables involved, which
is sometimes referred to as the “curse of dimensionality.” However, it is often the case that,
even for moderately sized data sets, nonparametric approaches can reveal structure in the
data that might be missed when using parametric functional specifications. Therefore,
nonparametric methods are more appropriate when i) we know very little about the
functional form or the distributions of the object being estimated, ii) the number of
variables is not too large, and iii) we have reasonably large data set.

Further, semiparametric refers to statistical techniques that do not require a re-
searcher to specify a parametric functional form for some part of the estimated object
but do require parametric assumptions for other parts.

Nonparametric and semiparametric methods have attracted great interests from statis-
ticians in the past few decades (see, e.g., Silverman, 1986 Héardle, 1990 Scott, 1992 Wand
and Jones, 1995 Fan and Gijbels, 1996 Hérdle et al., 2004 Fan and Yao, 2005). The para-
metric procedures for volatility modeling rely on explicit functional-form assumptions
regarding the expected volatility. The nonparametric procedures are generally free from
such functional-form assumptions and afford estimates of volatility that are flexible yet
consistent (Andersen et al., 2005). The advantages of the nonparametric model include,
for example, disregarding the functional form of the volatility and the strong assumptions
of the distribution of the residuals in the conditional mean equation. Biilman and McNeil
(2002) introduce a nonparametric GARCH model in which the latent volatility process
is a nonparametric function of the lagged return residuals and the lagged volatility.

In this thesis, we apply Biilman and McNeil’s (2002) nonparametric GARCH model
to volatility estimating and forecasting. As mentioned above, the curse of dimensionality
is a common problem in nonparametric smoothing. The additive semiparametric model
is a common tool to reduce nonparametric functions’ dimension as a remedy to the
curse of dimensionality. Therefore, we use additive regression to decompose the whole
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nonparametric function of Biilman and McNeil’s (2002) nonparametric GARCH model
into several additive structured nonparametric functions.

1.2 The estimation methods

In this section, we introduce the estimation methods used for the volatility estimation
and forecasting in this thesis.

1.2.1 Bayesian-based Markov chain Monte Carlo method

The maximum likelihood method is commonly used for parametric estimation. With this
method, a model is estimated by maximizing the likelihood function of the data, and
the statistical inference is made based on the fitted models. However, some complicated
models, such as the Markov switching model, are a mixture over all possible state config-
urations. This makes model estimation infeasible with the maximum likelihood method.
With the advances in the computing facilities, the Bayesian-based Markov chain Monte
Carlo (MCMC) method has been widely used in financial econometrics and financial mod-
eling nowadays. We use the MCMC method for the estimation of the regime-switching
model used in the third paper (see Chapter 4 in details).

The conditional distribution and the prior distribution play essential roles in the
MCMC method. For example, consider an inference problem with parameter vector ¢ of
an unknown model and with the data set, X. The distribution f(6 | X) of parameters
given the data is called the posterior distribution, and it is proportional to the product
of the likelihood function f(X | ) and the prior distribution p(6). In practice, because
the posterior is often either unknown or complicated to access directly, one draws the
parameters from the prior distributions, which is highly dependent on the researcher’s
knowledge about the parameters of the model.

For a univariate posterior draw, if the prior and posterior distributions belong to the
same family of distributions, the prior distribution is called a conjugate prior distribution,
and it can dramatically simplify the MCMC drawn. Some well-known conjugate priors
can be found in the Bayesian statistics of DeGroot (1990).

For a joint posterior drawn, German and German’s (1984) Gibbs Sampling (or Gibbs
Sampler) is the most common method when the likelihood function is hard to obtain. For
example, if one needs to randomly drawn from the joint distribution of f(61,62 | X), and
the individual conditional distributions (f1(6; | 62, X) and fa(03 | 61, X)) are available.
One can first draw a random number from each of the conditional distributions, 8 o and
02,0, and set it as iteration 0. Then iteration 1 is based on continuously drawn information,
obtaining 611 = f1(01 | 020, X) and 021 = f2(02 | 61,1, X). Next, the researcher uses the
new parameters as starting values and repeats the draw to obtain 6 5 and 62 2. Repeating
the iterations for m times yields a sequence of (01.1,021),...,(01,m,02m,m). Under some
regularity conditions, (61, 62,,) converges to the targeted joint draw of f(61,62 | X).

Besides the above method, in this thesis, we have also used a special type of Gibbs
Sampler to draw the model parameters in the third paper: Tanner’s (1996) Griddy Gibbs
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sampler. This method is very applicable when the posterior distribution is univariate. The
main idea is to form a simple approximation of the inverse CDF of the posterior density,
then draw a uniform random number and transfer the observation via the approximated
inverse CDF to obtain a random draw for the parameters (see details in Chapter 4).

1.2.2 The additive semiparametric regression

We use the additive approach to reduce the dimension of the nonparametric function for
the first two papers in the thesis. The method is from Hastie and Tibshirani (1990). We

consider a estimation of s, si(+),...,sp(-) in the additive structure,
P
B(Y | ) =s0+ Y s;(X;), (1.1)
j=1

where E's;(X;) = 0 for every j. If we assume that the model, Y = sy + Z§:1 5(Xj) +¢
is in fact correct, and assume also that we know sg,s1(-),...,55-1(-),8j41(:), .-, sp(*),
and further define the partial residual as

Rj :Y—So—zsk(Xk), (1.2)
k]

then E(R; | X;) = sj(X;) and minimizes E(Y — so — Y v_; $k(Xx))?. As we do not
know si(-)s, we can find a way to estimate §;(-) given the estimates {3;(-),7 # j}. The
resulting iterative procedure is the backfitting algorithm.

For example, assume we need to estimate three nonparametric functions, E[Y | X] =
S0 + s1(X1) + s2(X2), where X7 and Xo are the explanatory variables. We first set the
initialization iteration and let s = E(Y), s¢ = s9(-) = 0. The initial nonparametric
functions will be (88,0, 0). We then nonparametrically regress Y — 88 on X; to get the
functions s} and regress Y —sJ—s1(X1) on Xz to get s3. The same procedure is applied to
get sp. The nonparametric functions are now (sj, s1, s3). We then calculate RSS = E(Y —
sg—s1(X1) —s3(X32))2. We go to the next iteration and repeat the same procedure to get
the nonparametric functions (3(2), 52, s3), repeating this procedure to iteration m to get the
nonparametric functions (sJ, s, s5*) such that RSS = E(Y — sJ' — s1(X1)™ — s5*(X2))?

fails to increase, yielding the final smoothed functions.

1.3 Summary of thesis

There are three papers in this thesis. They examine the volatility in the equity and short-
term interest-rate markets, and the spillover from the short term interest rate market to
the equity market.
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1.3.1 Summary of paper 1

The first paper, titled "Asymmetry effects in Chinese stock market volatility: A gener-
alized additive nonparametric approach" examines Chinese stock market volatility and
return volatility asymmetry.

Given the unique characteristics of the Chinese markets and the fact that the typical
Chinese investor is more prone to speculation and less sophisticated than those from more
mature markets (Tan et al., 2008), the Chinese stock volatility behaves differently from
that of other markets. Therefore, the conventional volatility models, such as the GARCH-
family approaches, that rely heavily on volatility specification and known distributions of
the returns, might insufficiently characterize the volatility of the Chinese markets. This
paper therefore applies Biilman and McNeil’s (2002) nonparametric smoothing technique
to examine the volatility of the Chinese stock markets. Further, we develop a new tech-
nique that applies the iterative estimation algorithm of Biilman and McNeil’s (2002) NP
model to Hastie and Tibshirani’s (1990) Generalized Additive Model. The motivation of
this adjustment is to avoid the curse of dimensionality, to provide a more accurate volatil-
ity forecast than the parametric models, and to become more computationally efficient
than the original nonparametric model.

The results from this paper suggest that the leverage effect exists in the Chinese
stock markets: Bad news does affect the return volatility more than good news. How-
ever, as implied by the news impact curve from the GAM NP model, a limited amount
of good news is needed to keep the market calm. Further, compared with the supe-
rior performance of the nonparametric model in the in-sample volatility estimation and
out-of-sample forecast, the GJR and EGARCH models tend to overestimate the volatil-
ity process in turbulent periods and yield larger estimation errors. Our results suggest
that the nonparametric model is a more appropriate tool to use in estimating the Chi-
nese stock-return volatility than the parametric GARCH models, such as the GJR and
EGARCH models. We recommend the use of the nonparametric model in estimating and
investigating the return volatility in the Chinese stock markets and other emerging stock
markets that have features similar to those of the Chinese stock markets.

1.3.2 Summary of paper 2

The second paper, titled “Modeling and forecasting short-term interest rate volatility: A
semiparametric approach,” proposes semiparametric procedures to estimate the short-
term interest-rate volatility. This paper is coauthored with Sandy Suardi.

This paper proposes a semiparametric procedure to estimate the volatility of the
weekly three-month U.S. Treasury bills. The new approach accommodates asymmetry,
levels effect and serial dependence in the conditional variance, and is based on the Biilman
and McNeil’s (2002) nonparametric procedure. The potential usefulness of the semipara-
metric approach for estimating short-rate volatility is examined by comparing its forecast
performance with a variety of one-factor short-rate diffusion models. Results from our
Monte Carlo simulation illustrate the robustness of the semiparametric approach when
estimating short-rate volatility with misspecification in the short-rate drift function and
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the underlying innovation distribution. Moreover, the in-sample forecast performance of
the semiparametric approach is superior to the parametric models considered. The empir-
ical application to three-month U.S. Treasury bill yields suggests that the semiparametric
estimation procedure provides superior in-sample and out-of-sample volatility forecasts
compared to the widely used diffusion volatility models of Brenner et al. (1996), which fea-
ture asymmetric and level-dependent conditional variance. Although the semiparametric
approach does not specify asymmetry in the volatility process, this procedure improves
upon the fit and the predictive power of the volatility estimates. We do not find any
evidence of nonlinearities in short-rate drift and conditional skewness in the short-rate
change distribution. Finally, we demonstrate that the semiparametric approach, which
yields a greater degree of accuracy in modeling short-rate change volatility, has pertinent
implications for pricing long-dated and path-dependent interest-rate derivatives. Using
the simulation method, we show that the semiparametric modeling approach gives rise
to significantly different probability distributions of future interest-rate levels compared
with parametric short-rate models. The confidence intervals of future interest-rate levels
are narrower than for any of the parametric models considered, thereby leading to less
price variability in interest-rate derivatives.

1.3.3 Summary of paper 3

The third paper, titled “The return variance of the EMU equity markets and spillover
effects from short-term interest rates,” examines equity-return volatility and the spillover
effects from short-term interest rates in the EMU area.

The empirical study is carried out by estimating an extended Markov switching
GJR-in-mean (EMS GJR-M) model with a Bayesian-based Markov chain Monte Carlo
methodology. Our results suggest that two regimes exist in the EURO area stock markets,
a high-mean low-variance (bull) market and a low-mean high-volatility (bear) market.
Most of the Euro countries have the same regime-switching status between the bull and
bear markets. The correlation between the first two moments of returns is not stable
over time, but varies between the bull and the bear markets. Our results also suggest
that bad news from unexpected stock returns (negative residuals from returns) has an
asymmetrically larger effect on the returns and the volatility than good news has. Such
an impact is larger in the bear market than in the bull market. Surprisingly, as implied
in the news-impact surface, we find that changes in short-term interest rates only signifi-
cantly affect stock market volatility in the bear period in most of the EMU countries. In
particular, the effect of an increase in interest rates is asymmetrically larger than that of
a decrease in interest rates. Portfolio performance, based on the out-of-sample forecast
results of various models, indicates that the EMS GJR-M model outperforms the MS
GJR-M (Markov switching GJR-in-mean ), the single switching GJR-M (GJR-in-mean),
and the GJR models. Further, the models with regime switching yield better portfolio
performance than those without it, emphasizing the importance of the interest-rate im-
pact and the regime specification when modeling volatility. Ignoring such state-dependent
asymumetric effects from short-term interest rates on stock returns and their volatility will
lead to invalid inferences, biased volatility forecasts.
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Chapter 2

Asymmetry Effects in Chinese Stock
Market Volatility: A Generalized
Additive Nonparametric Approach

2.1 Introduction

The Chinese stock markets have grown rapidly since the establishment of the Shanghai
Stock Exchange (SSE) in December 1989 and the Shenzhen Stock Exchange (SZSE) in
April 1991. Specially, with the recent boom in China’s economy, China’s stock markets
have been attracting an enormous amount of attention from policy makers, investors, and
academics. Chinese stock markets are interesting and deserve attention also because they
exemplify many unique characteristics that differ from well-developed Western financial
markets. One of the unique characteristics is that the Chinese stock markets are the only
equity markets covered by the International Finance Corporation that have completely
segmented trading between domestic and foreign investors (see Chui and Kwok, 1998
Yang, 2003). The A-share market is only open to Chinese domestic investors while the
B-share market was only open to foreign investors before February 2001." Many stud-
ies (see Chui and Kwok, 1998 Yang, 2003) also address the fact that the Chinese stock
markets are tightly controlled by the government: The markets are at most partially
privatized, and the state maintains state shares in varying amounts. The presence of
market segmentation and heavy government regulations give rise to mispricing and in-
formation asymmetry, making the market clearly imperfect and incomplete (Chan et al.,
2007). Further, stock trading is still new to most domestic participants. The A shares are
dominated by domestic individual investors who typically lack sufficient knowledge and

'Tn order to increase the mobility of B shares and to strengthen foreign fund investment on the capital
market, with a view of paving the way towards China accession to the WTO, the Chinese government
lifted the restriction of people in the territory of China investing in B shares on February 19, 2001.
However, even after the rule changes, B shares cannot exceed 25% of a company’s total shares to ensure
that Chinese stock markets are not overly influenced by foreign investment, and domestic investors can
trade and own B shares only if they have foreign currency.

11
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experience in investments (China Securities and Futures Statistical Yearbook, 2004).

Given the unique characteristics of the markets and given that the typical Chinese
investor is more prone to speculation and less sophisticated than those from more mature
markets (Tan et al., 2008), Chinese stock volatility behaves very differently from that
of other markets. Therefore, conventional volatility models, such as the GARCH-family
approaches, that rely heavily on volatility specification and known distributions of re-
turns, might insufficiently characterize the volatility of the Chinese market. Biilman and
McNeil (2002) propose a nonparametric GARCH model (hereafter NP model), in which
the hidden volatility process is a function of the lagged volatility and lagged value of the
innovations from returns and is estimated by an iterative nonparametric algorithm. This
model is more attractive than the parametric GARCH-family models because it requires
neither a specification of the functional form of the hidden volatility process nor that of
the distribution of the innovations.

In this paper, we investigate the Chinese stock return volatility and the asymmetric
effect of shocks on return volatility? by applying the NP model. Moreover, we contribute
methodologically to the literature by suggesting a generalized additive model with the
nonparametric approach (hereafter GAM NP model) that applies the iterative estimation
algorithm of the NP model to the generalized additive model of Hastie and Tibshirani
(1990). The motivation for such an adjustment is that the GAM NP model can avoid the
curse of dimensionality, which is a common problem for the nonparametric estimation of
a multidimensional regression.® Further, as will be shown in the Monte Carlo simulation
and the empirical investigation, this newly proposed GAM NP model can deliver a more
accurate volatility estimate than the parametric GARCH-family models and becomes
computationally more efficient than the NP model. Also novel in our approach is that we
extend the news impact curve from Engle and Ng (1993) to the nonparametric context
and use it to measure and examine the asymmetric effect of shocks on volatility.

Currently, GARCH-family models are the most common in the investigation of the
Chinese stock-return volatility and the asymmetric effect of market news on volatility.
For example, Yeh and Lee (2000) use the GJR model proposed by Glosten et al. (1993)
to examine Chinese stock market volatility from May 22, 1992, to August 27, 1996.
They find that investors in China chase after good news indicating that the impact of
good news (positive unexpected returns) on future volatility is greater than that of bad
news (negative unexpected returns). By estimating both the GJR and the EGARCH
model, Friedmann and Sanddorf-K6hle (2002) report that bad news increases volatility
more than good news in A-share and composite indices, whereas good news increases
volatility more than bad news in B-share indices based on a sample beginning on May 22,
1992, and ending on September 16, 1999. The good-news-chasing-investor phenomenon
in China makes the Shanghai and Shenzhen stock markets relatively unique and different
from many other stock markets in the world. Lee et al. (2001) provide the same result

2The asymmetric effect often refers to the volatility increasing more after a negative shock than after
a positive shock of the same magnitude (see Black, 1976 Christie, 1982).

3Under the curse of dimensionality, the optimal rate of convergence of a nonparametric estimation
of a multidimensional regression decreases with increasing dimensionality (Linton and Mammen, 2005).
For the multidimensional smoothing, efforts must be made to alleviate the problem (Hardle et al., 2004).
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as Friedmann and Sanddorf-Kohle (2002) with the EGARCH model and daily return
data from December 12, 1990, to December 31, 1992. Zhang and Li (2008) investigates
the asymmetry effect of bad news on Chinese stock volatility with a partial adjustment
process. They find that the asymmetry effect begins to appear in May 1996. Dividing the
total sample into two periods, Huang and Zhu (2004) produce results from the EGARCH
and GJR models showing that the asymmetry effect only exists in the period between
February 2001 and September 2003.

In view of the different findings from past research regarding the leverage effect of
Chinese stock-return volatility, we examine Chinese stock market volatility and the asym-
metric effect of market news on the volatility using data from January 2, 1997, to August
31, 2007. Several questions will be addressed in the investigations: Do Chinese stock mar-
ket volatilities react asymmetrically to shocks as in most mature stock markets in the
world? Are investors in the Chinese stock markets still chasing after good news? Do
volatilities in the Shanghai and in the Shenzhen stock markets react similarly to the
market news? The answers to these questions have important implications for market
practitioners forecasting stock returns and volatility, and for risk managers formulating
optimal strategies for portfolio selection and risk management.

The results from this paper suggest that the leverage effect exists in the Chinese stock
markets: Bad news does affect return volatility more than good news. However, as implied
by the news impact curve (NIC) from the GAM NP model, a small amount of good news
is needed to keep the market calm. Further, compared with the superior performance
of the GAM NP in the in-sample estimation and the out-of-sample forecast, the GJR
and EGARCH models tend to overestimate the volatility process in turbulent periods
and yield larger estimation errors. Our results suggest that the nonparametric smoothing
approach is a more appropriate tool for estimating Chinese stock-return volatility than
the parametric GARCH models.

The rest of the paper is organized as follows. In section 2.2, we present the non-
parametric models and the model estimation algorithm. Section 2.3 performs the Monte
Carlo simulation to evaluate the performance of the parametric and nonparametric mod-
els. Section 2.4 compares the performance of the nonparametric models with various
GARCH-family models and examines the asymmetric effects of shocks on the volatility.
Section 2.5 concludes.

2.2 Modeling time-varying volatility

In this section, we introduce the NP and GAM NP models and the model-estimation
algorithm used to estimate Chinese stock market volatility. As we will evaluate and
compare the performance of the nonparametric models with the parametric models, we
first introduce the parametric GARCH-family models.
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2.2.1 Parametric GARCH-family models

Bollerslev (1986)’s GARCH model has been the most widely used model for the volatility
estimation since it was first proposed. As pointed out by Bera and Higgins (1993), most of
the applied financial works show that GARCH (1,1) provides a flexible and parsimonious
approximation to the conditional variance dynamics and is capable of representing the
majority of financial series. The GARCH (1,1) model is written as

Ri=p+ Xy, Xy=owz, 2z ~N(01),
o} =w+ a1 X7 + Piop_y, (2.1)

where w > 0, a1, 81 >0, (a1 + 1) < 1, and X;_; may be treated as a collective measure
of news about equity returns arriving to the market over the previous periods.

In the simple GARCH (1,1) approach, good news and bad news—positive and neg-
ative shocks—have the same impact on the conditional variance. Many studies have
found evidence of asymmetry in stock-price behavior: Negative surprises seem to increase
volatility more than positive surprises do. To allow asymmetric effects in the volatility,
Glosten et al. (1993) add an additional term in the conditional variance and formulate
the so-called GJR model. The GJR (1,1) is specified as

Ry =p+ Xy, Xy=o0z, 2z~ N(0,1),
of =w+ P07y + (a1 + 1) X7y, (2.2)

where w > 0, (aq +7) > a1 >0, 81 > 0, (aq + 0.5y + B1) < 1. I is an indicator for
negative X;_1. That is, I = 1 for X;_1 < 0, and I = 0 for X;_; > 0. The structure of this
model indicates that a positive X;_1 contributes ale_l to oy, whereas a negative X;_;
has a larger impact of (ay +7)X? | with 7 > 0. Therefore, if parameter - is significantly
positive, then negative innovations generate more volatility than positive innovations of
equal magnitude.

Another volatility model that accounts for asymmetric impacts on the conditional
variance is Nelson’s (1991) exponential GARCH model (EGARCH). The EGARCH(1,1)
is specified as

Ri=p+ Xy, Xi=o0z, z~N(0,1),

X, _ X, _ X, _
Xl |l |1, X
03—1 \/03—1 03—1

Here the coefficient v signifies the leverage effect of shocks on the volatility. The key
advantage of the EGARCH model is that the positive restrictions need not be imposed
on the variance coefficients. v must be negative for evidence of asymmetric effects.

In this paper, we leave the functional form of the variance process unspecified and
attempt to estimate it as a nonparametric mean. We show that the nonparametric model
can capture the asymmetry effect from the unexpected news and outperforms the more

logo? =w+ Bilogo? | +ay (2.3)



2.2. MODELING TIME-VARYING VOLATILITY 15

common parametric GARCH-family models.

2.2.2 The generalized additive nonparametric model

Compared with the parametric models, a nonparametric model enjoys advantages of
relaxing the specification of the variance process and the error-distribution assumptions.
One example is the NP model from Biilman and McNeil (2002):

Ry =p+ Xy, Xp=o0uz,
of = f(Xt_l,...,Xt_p,af_l,...,af_q), (2.4)

where the stationary stochastic process {Xy; t € Z} is adapted to the filtration {F}; t €
Z} with Fy = 0({Xs; s <t}). {z; t € Z} is an i.i.d. innovation with zero mean and unit
variance and a finite fourth moment. z; is also assumed to be independent of {Xg; s < t}.
f R xRy — Ry is a strictly positive valued function. o, is the time-varying volatility
and o7 is the conditional variance of var[X; | Fi_;], where {1 < k < max(p,q)}. Biilman
and McNeil (2002) have shown that the nonparametric function f can be estimated by
regressing X7 on the lagged variables X; ; and o7 ; using a nonparametric smoothing
technique.

However, the proposed model cannot avoid the common problem of a multidimen-
sional nonparametric smoothing, the curse of dimensionality. In order to overcome this
difficulty, Hastie and Tibshirani (1990) propose the generalized additive model, which
enables the dependent variable to depend on an additive predictor through a nonlinear
function. We apply Hastie and Tibshirani’s (1990) generalized additive procedure to the
NP model which gives rise to the GAM NP model:

Ri=p+ Xy, Xy=o0u2,
o7 = p+ f(Xe1) + g(o7 ), (2.5)

where f: R —— R, is a positive-valued function satisfying f(z) = f(—x)—i.e., f(x) =
alz|, 0 < a < 1—and g : Ry —— R, is a positive nondecreasing function satisfying
g(c?) = B0, 0< B < 1.

We observe that the model in equation (2.5) can be written with the following trans-
formation.

X? = p+ f(Xim1) + glofy) + V4,
Vi=(p+ f(Xi1) +9(o7 1))z — 1) (2.6)

Clearly, V; is a martingale difference series with E[V; | Fi_1] = 0 and cov[Vs, Vi | Fi—1] =0
for s < t.
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From equation (2.6), it follows that

EX} | Fa]l = p+ f(Xie1) + g (07-1)
var[V2 | Fra] = (u+ f(Xi1) + g (021)) (B[] - 1), (2.7)

This suggests that we can estimate the conditional variance with a nonparametric
regression of a generalized additive model. The regression is performed according to the
additive structure of o7 using the back-fitting algorithm, which was first introduced by
Friedman and Stuetzle (1981) and generalized by Hastie and Tibshirani (1990). This tool
is now widely used for nonparametric estimation in iterative procedures. We estimate the
conditional variance by the generalized additive model according to the following formula.

62 = i+ f(Xio1) + §(621) (2.8)

2.2.3 Estimation algorithm
Assume we have a data sample {X? : 1 <t < n} satisfying the process of (2.5).

1. In the first step, we set m = 1 (the current iteration) and calculate a first estimate
of volatility {620: 1 <t < n} as the initial estimation by fitting the data with the
GARCH (1,1) model with a maximum-likelihood estimate.

2. We regress {th : 2 <t < n} on the lagged returns, {X;—1 : 2 < t < n} and
{67 1m_1,2 < t < n}, through a nonparametric smoothing procedure with the
back-fitting algorithm to obtain estimates fm and G,

3. In the third step, we calculate {62,, = fim + fn(Xi—1.m—1) + G (67 1 1) 1 2 <
t <n} as specified in (2.8).

4. We proceed to increment the iteration m and return to the second step until m =
M, where M is the prespecified total number of iterations.

5. Finally, we average the last k£ of such estimates to obtain the final smoothed volatil-
ity, 0¢ final, and perform the final nonparametric regression with the back-fitting
algorithm by regressing {X? : 2 <t < n} against {X;_1:2 <t <n} and 6?_17ﬁna1
to get the final estimates fAﬁnalA and gana- The final estimated volatility can be
calculated by 67 .1 = fifinal + feinal(Xe—1) + Gfinal (571 fna))-

2.3 Monte Carlo simulation

We use Monte Carlo simulation to estimate and examine a standard GARCH model and
a GARCH model with an asymmetry effect. The purpose of the Monte Carlo simulation is
to show that with a significantly large asymmetric effect, the GAM NP model can offer

“Readers interested in the justifications and proofs of this algorithm are referred to Biilman and
McNeil (2002)
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better estimates of the unobserved volatility than can the parametric GARCH-family
models and can perform as well as the NP model (performing even better in many cases).
We generate n = 1000 observations and 50 realizations for each random process. For the
nonparametric models, the number of iterations is set to M = 8, and a final smoothing is
performed by averaging the previous four iterations (K = 5) according to the algorithm
presented in the previous section. The performance of each model is evaluated using
the mean of the Mean Squared Error (MSE) and the mean of the Mean Absolute Error
(MAE) from each iteration. The MSE and the MAE are calculated according to the
formulas

. 1
MSE(65,m,) — Z(O‘mm o¢)? and
t=21
1 n
MAE(64.,,) = 5 m — T4l 2.9
(Gsm) = 5 t;21|0t, ot (2.9)

where 6y, is the estimated volatility at time ¢ from each iteration m and oy is the true
volatility at time ¢. The first 20 values are excluded from the calculation because the
volatility estimates at the first few points may be unreliable.

The data are simulated from the variance process, which follows GARCH and Thresh-
old GARCH (TGARCH) models specified as follows.

02 =7+0.102 ; +0.66X7 ,, (2.10)
o7 =74 0.107 1 + (0.661 x~0y + 0-2I;x<0}) X7 1 (2.11)

In the variance process of equation (2.11), the asymmetry effect between the positive
and negative shocks is built into the ARCH effect, along the lines of models suggested
by Glosten et al. (1993) and Fornari and Mele (1997). We simulate the process given by
equation (2.11) with ¢-distributed residuals with four degrees of freedom and estimate it
with both Gaussian and t-distributed errors. Figure 2.1 plots the true volatility surfaces of
the processes specified in equations (2.10) and (2.11). It can be easily seen from Figure 2.1
that if the true volatility is under the GARCH specification of process given by equation
(2.10) (the left plot), the volatility surface is very smooth. However, with the asymmetry
effect of the process given by equation (2.11), there is a significant discontinuity in the
volatility surface. In this case, we show that the nonparametric model can smooth the
segmented volatility surface quite well and therefore outperforms the parametric models.
For the purpose of comparison, we fit the simulated process given by equation (2.11)
with the EGARCH, GJR and NP models, and compare their fit with that of the GAM
NP and NP models.

- Figure 2.1 about here -

In Figure 2.2, we plot the estimated volatility surfaces of the eight iterations and
the final smoothing of the GAM NP model from one randomly chosen iteration. We
can clearly observe that the smoothing has been well performed already after the first
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iteration and the surface has been perfectly smoothed at the final stage of smoothing.
This indicates that the estimation algorithm is recovering the essential features of the
volatility surface and demonstrates the convergence of the smoothing method.

- Figure 2.2 about here -

Table 2.1 compares the performance of the GARCH, EGARCH, GJR, GAM NP
and NP models. Table 2.2 presents the goodness-of-fit simulation results from the non-
parametric models. It is evident from these two tables that the MSE and MAE of the
nonparametric models are much lower than those of the parametric GARCH models.
For example, it can be seen from Table 2.2 that the MSE and the MAE are 0.555 and
0.615 for the GARCH model with Gaussian errors before smoothing. The MAE and the
MAE start to decrease in each iteration and reach 0.221 (0.261) and 0.339 (0.405) at
the final stage of smoothing for the GAM NP (NP) model. Although the EGARCH and
GJR (TGARCH) models capture the asymmetric effects partially, they cannot match
the nonparametric models’ goodness of fit. For example, it can be seen from Table 2.1
that the MSE and the MAE of the EGARCH model with Gaussian errors are 0.3 and
0.43, respectively, while those of the GJR model are 0.39 and 0.507, respectively. More
interestingly, the goodness of fit of the GAM NP model indicates that it performs even
better than the NP model: The MSE (MAE) of the GAM NP model (with normal fit)
is 15.4% (16.4%) lower than that of the NP model. We also notice that the choice of the
distribution for the parametric GARCH models clearly matters. There is evidence that
the EGARCH and GJR models with ¢-distributed innovations perform better than the
ones with Gaussian innovations, but this is not the case for nonparametric estimations.
The NP and GAM NP models provide nearly identical results with both Gaussian and ¢
errors. Figure 2.3 plots the estimated volatility process compared with the true volatility,
which is an arbitrary selection of 100 observations from a simulated realization of the
process given by equation (2.11). The left-hand plot shows the true volatility (solid line)
compared with parametric GARCH (1,1) estimates with ¢ innovations (dotted line) and
the right-hand plot shows the true volatility (solid line) with the GAM NP estimate ob-
tained after a final smooth (dotted line). It is clearly shown in the figure that the GAM
NP model yields volatility estimates that match the true volatility movements better
than those of the GARCH model. In particular, the sharp spikes observed at the 40th
and 90th observations of the true volatility are well captured by the GAM NP model but
not by the GARCH model.

- Tables 2.1, 2.2 and Figure 2.3 about here -

From the Monte Carlo simulation, we conclude that the GAM NP model provides
more accurate volatility estimation and captures more of the asymmetric effect of shocks
compared with the parametric GARCH models and the NP model.
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2.4 Chinese stock market volatility

The Chinese stock market is relatively young, yet it is developing quickly. By the end of
2007, there were 860 listed companies in the SSE with the total market value of RMB
29.09 trillion, of which A shares represented RMB 26.85 trillion and B share represented
RMB 1.3 trillion. In the SZSE, there were 670 listed companies with a total market
capitalization of RMB 5.73 trillion, of which A shares represented RMB 5.61 trillion and
B shares represented RMB 0.12 trillion.

As discussed by many reports, the Chinese stock market is highly controlled by the
government. The Chinese Securities Regulatory Commission (CSRC), as a ministry-rank
unit of the State Council, performs almost all supervisory, regulatory, and enforcement
function over the security market. Chinese firms need the approval from CSRC to be
listed and sell their equity. The approval process is affected by many nonmarket factors,
and it is not unusual for a company to wait several years to receive listing permission.
Furthermore, many of the listed companies are former state-owned enterprises (SOEs).
When the SOEs go public, no less than 50% of the shares will be kept by the state.’
In addition, most companies will also hold retained shares for legal persons and internal
employees of the companies. The state-retained shares, legal-person shares, and employee
shares account for 60%—-70% of equity and only the other shares are publicly tradable.
Another characteristic of the Chinese stock markets is the market segmentation. The
Chinese equity markets have two classes of ownership-restricted shares: A shares, which
can be owned and traded by Chinese citizens, and B shares, which can be owned and
traded by foreigners and, after February 2001, local Chinese residents who hold foreign
currencies.® Despite their identical payoffs and voting rights, A shares are much more
liquid than B shares.” The unique characteristics of the Chinese markets make them
clearly imperfect and incomplete (Chan et al., 2007).

Some reports have given comprehensive reviews of the Chinese stock markets. For
those interested in learning more about this emerging market, Wang et al. (2004), Chan
et al. (2007) and Green (2004) are three very good references.

2.4.1 The data

The data used in this paper include the daily closing prices of the two primary Chinese
indices, the Shanghai Stock Exchange Composite Index (SHCI) and the Shenzhen Stock
Exchange Component Index (SZCI) from January 2, 1997, to August 31, 2007. The SHCI

Shares classified as A shares are designated for domestic investors and B, H and N shares are
designated for overseas investors. A shares are further divided into state shares, legal-person shares,
tradable A shares, and employee shares. State shares are those owned by the central government and
local governments. Legal-person shares are those held by domestic legal entities and institutions such as
other stock companies, state—private mixed enterprises, and nonbank financial institutions. Both state
shares and legal-person shares are not tradable on the stock exchanges.

5The B-share market is the result of Chinese regulation. Generally, companies allowed to list shares
have to fulfill a greater number of restrictions when issuing B shares than when listing A shares.

TA shares traded on average for 420% more than the corresponding B shares. In addition, A shares
turned over at a much higher rate—500% versus 100% per year for B shares (see Mei et al., 2009).
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has been published since 1991 and includes all Shanghai-listed companies weighted by
capital stocks. The SZCI has been published since 1995 and is a value-weighted index
of 40 stocks listed on the Shenzhen Stock Exchange. As key market regulations, such
as the raising/down limit, were not well established until the end of 1996, we chose to
analyze the data starting from January 1, 1997. The daily prices are downloaded from
http://www.sohu.com.

All data are converted to their daily log returns, and multiplied by 100 as follows,

r = 100(log(P;) — log(P—1)). (2.12)

In order to assess and compare the predictive performance of the nonparametric
models with various parametric models, the data is further divided into an in-sample
group (from January 1, 1997, to August 31, 2006) and an out-of-sample group (from
September 1, 2006, to August 31, 2007). The whole sample has 2,573 observations and
the last 243 are used for the out-of-sample forecasts. We use the expanding window for the
out-of-sample forecasts. We first do the in-sample estimation using the data from January
1, 1997, to August 31, 2006, and use the parameters from the in-sample estimation to
forecast the overnight volatility for the next day. Then we add one more data from the
second day (September 1, 2006) and redo the estimation, using the parameters from this
estimation to forecast the volatility for the following day. We repeat this estimation-and-
forecast procedure until the end of the out-of-sample forecast period.

Further, we calculate the realized volatility as the proxy for the true volatility for
the out-of-sample forecast. The realized volatility is calculated using the high-frequency
(5-minute) data as®

RV, =) 1}, (2.13)
=1

where n is the total number of high-frequency intervals (i) in day ¢. This method is used
extensively in the literature (see, e.g., French et al., 1987 Day and Lewis, 1992 Pagan and
Schwert, 1990 Andersen et al., 2001, 2000) The high-frequency data are obtained from
http://www.wstock.net.”

Table 2.3 provides the statistical summary of the returns of both indices. Clearly, the
mean of both series is close to zero, exhibits high kurtosis and is negatively skewed. In
particular, the skewness in the Shanghai stock market is much higher than that in the
Shenzhen stock market. The Jarque-Bera test further confirms that the return distribu-
tions are not normal. The augmented Dickey—Fuller test suggests that they are stationary
time series. The two series are highly positively correlated at 0.926.

Figure 2.4 plots the index price and returns of the SHCI and the SZCI. The returns
largely mirror each other and look very volatile. Both series also display strong volatility

8Due to the data availability, we use the realized volatility as a proxy for the true volatility only for
the out-of-sample forecasts.

9This is the website of a Chinese investment company named Huasheng and is only available in
Chinese. However, the site can be well translated into English by Google’s translation system.
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clustering. These are typical characteristics of financial time series. Further, there are
several peaks and troughs in the return series. The first peak occurred on May 12, 1997,
where the SHCI/SZCI hit a record high 6103.62/1500 points. After going through a stable
two-year period, it experienced a sharp decline before rising and reaching its second peak
on July 1, 1999. Thereafter the stock indices began to increase in a relatively stable
fashion, reaching its third peak in 2000-2001. It then declined again until the first half
of 2005. However, after that the stock market began to rise rapidly and continued to
accelerate upwards until it reached another historical high on August 31, 2007. It can be
seen, therefore, that the period 2005 to 2007 is the most volatile period in the SHCI and
SZCI.
- Table 2.3 and Figure 2.4 about here -

2.4.2 The in-sample estimation results from various models

We first fit the series from January 1, 1997, to August 31, 2006, with the standard
GARCH(1,1) model. Considering the existence of the asymmetry effects of shocks on the
return volatility in the Chinese stock markets, we also fit the data with the EGARCH
and GJR models. For all these models, the innovations are assumed to be both Gaussian
and Student-t distributed. The estimated parameters and Ljung-Box Q-statistics tests
of the standardized residuals are presented in Table 2.4. Note that all parameters of the
conditional volatility are significant at the 5% level. The coefficient of lagged variance
B shows very high volatility persistence. The sum of & and § from the GARCH model
is close to 1, offering evidence of volatility clustering. The p-values of the Ljung-Box
Q-statistic test at the lag 20 of the standardized residual series from all models fail to
suggest the autocorrelation at a 5% significance level. Thus, all models appear to be
adequate in describing the linear dependence in the return and volatility series.

In the Shanghai stock market, the estimated leverage parameters v of the EGARCH
and GJR models with Gaussian () distributed innovations are —0.036 (—0.063) and 0.06
(0.095), respectively. In the Shenzhen stock market, the values of «y for these two models
of Gaussian (¢) innovation are 0.028 (—0.035) and 0.036 (0.055). All these parameters
are significant at the 5% level with the exception of the v from the EGARCH model
with Gaussian errors in the Shenzhen market. The significance of the parameters indi-
cates the existence of the asymmetry effect in the Chinese stock markets. That is, bad
news (negative shocks) has a larger impact on return volatility than good news (positive
shocks). Notably, the asymmetric effect is higher in the SHCI than in the SZCI. It is also
worth noting that the leverage effect estimated from models fitted with ¢-distributed in-
novations is higher than that with normally distributed innovations. The existence of the
asymmetry effect as in other mature stock markets in the world may be a positive sign
for market efficiency and completeness. It also suggests that the Chinese stock market is
integrating with other world stock markets.

- Table 2.4 about here -

Next we use the NP and the GAM NP approaches to smooth the Chinese stock
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volatility surface based on the volatility and innovations obtained from the GARCH(1,1)
model. We evaluate the performance of various models by calculating four loss functions
and comparing the results from the GAM NP model with the parametric models. For
reference, we also estimate the NP model from Biilman and McNeil (2002) and compare
its result with the newly proposed GAM NP model. The goodness-of-fit measures are,

1. MSE1: MSE1 is calculated as 2 "7 | (X7 — 67)2, which is the mean squared error
between the squared innovation X7 and the squared estimated volatility 67. As
X? = 02 +V,, where V; is the martingale series with zero mean, the mean squared
error between both can be a good indicator to illustrate the goodness of fit.

2. MAE1: MAE1 is calculated as £ Y"1 | | X? — 67|, which is the Mean Absolute Error
between the squared innovation X? and the squared estimated volatility 7.

3. MSE2: MSE?2 is calculated as 1 3°7(6, — 0y)%, which is the Mean Squared Error

between the estimated volatility, 6;, and the true volatility proxy, o; = \/yZ, where
Yt is the daily return at time t.

4. MAE2: MAE? is calculated as £ Y°1' | |6, — o], which is the Mean Absolute Error

between the estimated volatility, 4;, and the proxy for the true volatility, oy = /47,
where ¥, is the daily return at time t.

Besides checking the goodness of fit of the models, we also use the DM test suggested by
Diebold and Mariano (1995) to check the significance of the improved predictability of
the nonparametric models,

E(dy)
var(dy)

DM = ~ N(0,1), (2.14)

where dy = (eat — eB7t)2 and ey and ep; are prediction errors of two rival models, A
and B, respectively. E(d;) and var(d;) are the mean and variance of the time series of d,
respectively.

The goodness-of-fit results of various models are presented in Table 2.5. It is clear
that the GARCH model performs the worst according to all goodness-of-fit measures.
Compared with the GARCH model, the EGARCH model improves the volatility esti-
mation by capturing the leverage effects. For the GJR model, it slightly improves the
result from the GARCH estimation in the Shanghai Stock Exchange (SSE), while in the
Shenzhen Stock exchange (SZSE), it is even worse off than the GARCH model. This is
perhaps not surprising because the asymmetric effect is not as strong in the Shenzhen
stock market as it is in the Shanghai stock market. However, this may indicate that the
EGARCH model can capture more leverage effect than the GJR model can in the Chi-
nese stock markets. When looking at the nonparametric models, we first find that the
distributions of errors do not matter in the estimation, because all loss functions from
the GAM NP and the NP model with ¢ distributions do not differ from the ones with
Gaussian distributions. We observe also that the GAM NP model outperforms all the
parametric models and the NP model. The NP model outperforms the GARCH and the
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GJR models, but not the EGARCH model with t-distributed errors according to all of
the goodness-of-fit measures except the MSFE1.

We then perform the DM test to investigate the significance of the improvement
of the nonparametric model. The DM test is performed under the null hypothesis that
the improvement of the model in the column (the GAM NP and the NP model) upon
the model in the row (the parametric models) is not significant. The DM test results
reported in Table 2.6 show that both the GAM NP model and the NP model significantly
outperform the GARCH and GJR models at the 5% significance level according to almost
all of the selected goodness-of-fit measures. The improvement of the GAM NP model
upon the EGARCH model with ¢-distributed errors is only marginal. Further, we find
that the NP model significantly underperforms the EGARCH with t-distributed errors
in the SSE, but this underperformance is nearly insignificant in the SZSE. Although the
improvement upon the EGARCH model with ¢-distributed errors is at the marginal level,
with the advantages of no need to assume the functional form of the variance process and
the distribution of errors, the GAM NP can still be an appropriate tool for examining the
return volatility in the Chinese equity markets. Specially, in order to show the forecast
ability of these models, we need to examine their out-of-sample performances.

- Table 2.5 and Table 2.6 about here -

2.4.3 The out-of-sample forecast improvements of the nonparametric
models

The out-of-sample period is from September 1, 2006, to August 31, 2007. Besides the
true volatility proxy of, \/E , used the in in-sample estimation, the realized volatility,
calculated from the 5-minute high-frequency data, is also used as the true volatility proxy.
Further, to demonstrate the importance of our results and the application of the GAM
NP model in practice, we calculate the 90%-forecasted return intervals which are based
on the one-day ahead out-of-sample forecasts.

The performance of the out-of-sample volatility forecasts of various models are sum-
marized in Table 2.7. We find from this table that the nonparametric models perform
much better than the parametric models in delivering a lower forecast error. For example,
in the Shanghai stock market, the MSE (MAE) of the GAM NP model (with normal
fit) is 10% (7%), for the |y¢| volatility proxy, and 13% (9%), for the implied volatility
proxy, lower than the one from the GARCH model. Similarly, in the SZSE, there is an
approximately 5% reduction in the MSE and MAE for both volatility proxies. Compared
with the GJR model, the EGARCH model appears to be a better parametric model in
capturing the asymmetric effect of market news in the out-of-sample forecast. We notice
that the GJR model in many cases performs even worse than the GARCH model. The
poor performance of the GJR model in the out-of-sample volatility forecast has also been
reported by Wei (2002). The author shows that the GJR model has higher forecast errors
than a random-walk model when examining the Chinese stock markets’ return volatility.

- Table 2.7 about here -
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As in the in-sample estimation section, we do the DM test to investigate the signifi-
cance of the nonparametric model’s improvement. Table 2.8 shows the results of the DM
test under the null hypothesis that the improvement of the model in the column (the
GAM NP and the NP model) upon the model in the row (the parametric models) is not
significant. This table shows that the nonparametric models significantly outperform the
GARCH, GJR and EGARCH models in the Shanghai stock market according to almost
all of the measures. However, in the Shenzhen market, compared with the EGARCH
model, the improvements of the nonparametric model are almost significant at the 5%
level when the volatility proxy is squared returns and are only at the marginal level when
volatility proxy is the realized volatility. One of the reasons can be that the asymmetry
effect in SZSE is not as high as in the SSE. The performance of the GAM NP model is
nearly as good as the NP model. However, during the estimation, we experienced a signif-
icant reduction of computing time when estimating the GAM NP model compared to the
NP model. Further, with the advantage of avoiding the curse of dimensionality, the GAM
NP model can be an attractive tool for multidimensional nonparametric smoothing.

- Table 2.8 about here -

After obtaining the out-of-sample forecasted volatility, we use the forecasted values
to build up the 90% return interval. The return intervals are calculated according to
7 = [i & /&, where g, is the percentage of the quantile of normally distributed errors
and /1 and & are the forecasted conditional mean and volatility. It is worth noting that the
lower bound of the interval is appraoximately the 5% daily value-at-risk (VaR) measure
when the initial value of the investment is 1 Yuan.

Figure 2.5 plots the 90% intervals of the forecasted returns based on the forecasted
conditional mean and the volatility from the EGARCH, GJR and GAM NP models for
the SHCI and the SZCI. Interestingly, the intervals built upon the forecasted conditional
mean and variance from various models do not differ that much when the market is
relatively stable. When extreme events occur in the market, however, both the EGARCH
and the GJR model provide a much wider return interval than the GAM NP model does.
The most obvious example is the sudden drops in the SHCI and SZCT indices on February
27, 2007,'° where the return from the EGARCH and GJR models is overestimated in the
upper bound and underestimated in the lower bound. As mentioned earlier, the lower
bound of the interval is the 5% daily VaR measure when the initial value of the investment
is 1 Yuan. Hence, when the market becomes extremely volatile, the 5% VaR based on
the parametric model is overestimated in both Shanghai and Shenzhen stock markets.

- Figure 2.5 about here -

This result is generally in line with Engle and Ng’s (1993), Yeh and Lee’s (2000),
and Friedmann and Sanddorf-Kéhle’s (2002) studies. In particular, Engle and Ng (1993)

19Tn the absence of any sign of circumstances, this “Black Tuesday” came and dumped the SSE and
the SZSE. The SHCI and the SZCI declined by 8.84% and 9.29%, and hit the record of the biggest daily
drop within the last ten years.
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provide evidence that the volatility predicted by the EGARCH model is much higher than
that predicted by the other models. Yeh and Lee (2000) argue that the application of the
GJR model to daily Chinese returns leads to overshooting in the estimated conditional
variance in periods of high volatility. Friedmann and Sanddorf-Kohle (2002) examine
asymmetry by extending the news impact curve of Engle and Ng (1993) to the conditional
news impact curve and argue that the overshooting of the volatility predictions from the
GJR model is due to an acceleration of the news impact in the periods of high volatility.
They also found that the EGARCH can overestimate volatility in a manner similar to
the GJR model.

In summary, the GAM NP and the NP models perform much better than the para-
metric model in describing the volatility characteristics and capturing the rise and fall
of the volatility in the Chinese stock markets. Because the EGARCH and GJR models
tend to overestimate the volatility in turbulent periods and therefore yield larger esti-
mation errors in general, they are less appropriate tools for estimating the Chinese stock
volatility than the nonparametric models.

2.4.4 Analyzing asymmetry via the news impact curve

In the previous section, the estimation results from the EGARCH and GJR models
have shown that the asymmetry effect of unexpected news exists in the Chinese stock
markets. We now further examine the asymmetry effects from the perspective of the
nonparametric model. We use the news impact curve (NIC) proposed by Engle and Ng
(1993) to demonstrate the asymmetry of shocks estimated from the GAM NP model.
The NIC relates today’s returns to tomorrow’s volatility and works as a major tool for
measuring how new information is incorporated in volatility estimates. Holding constant
the information dated ¢ — 2 and earlier, it displays the implied impact of the functional
relationship between conditional variance at time ¢ and the shock term (error term) at
time ¢ — 1. Engle and Ng (1993) define the NIC as the expected conditional variance of
the next period conditional on the current shocks, ¢;.

E(ofiy | ), (2.15)

For the NIC of the GAM NP model, we extend the original news impact curve to the
nonparametric context:

o2 = f(Xi—1) + g(o?), (2.16)

where o is the conditional volatility, X;_; are the shocks from news, and f and g are the
estimated nonparametric functions from the GAM NP model. The relationship between
the shocks and the conditional volatility is therefore described in the nonparametric
functions of f.

- Figure 2.6 about here -

The news impact curves of the EGARCH, GJR, and GAM NP models in the Shang-
hai and Shenzhen markets are plotted in Figure 2.6. The parameter values used for
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constructing the NIC of the EGARCH and GJR models are from Table 2.4. f and g are
the estimated nonparametric functions from the in-sample estimation. It is obvious that
all models suggest the existence of asymmetric effects in stock returns because the NICs
of all models are not symmetric about zero. Typically, negative news drives volatility up
more than good news. In these models, any news today drives up volatility tomorrow. For
example, in the SHCI, the asymmetric effect is clearly shown with all curves displaying
an approximately 20° slope for “good news” and a 40° slope for “bad news.” We observe
less asymmetric effect of bad news relative to good news in the Shenzhen stock market.

The NIC of the EGARCH and GJR models have their minimum shocks at X; = 0
implyingnNo news is good news. In contrast to the parametric models, the NIC of the
GAM NP model has its minimum larger than zero, 0.5 in the SSE and 1.5 in the
SZSE. In this model, the NIC is a right-shifted asymmetric parabola. This phenomenon
is consistent with the TGARCH model NIC from Engle and Ng (1993) and Christian
(2007). This may suggest that, in the Chinese stock markets, a minimum amount of
good news is required for the markets to remain as calm as possible. In this case, no
news implies a higher volatility than in the tranquil market period. This further suggests
that although the model implies the existence of a leverage effect, the typical good-news-
chasing behavior of the Chinese stock investors found by Yeh and Lee (2000) has not
changed. One of the reasons for Chinese investors’ good-news-chasing behavior explained
by Yeh and Lee (2000) is that due to the lack of institutional investors, the trading values
of the Shanghai and Shenzhen stock markets are completely generated by individual
investors who have no access to inside information and irrationally act on noise as if
it were information that would give them an edge. This typically reflects the investors
behavior in Shenzhen.!! The fast-growing stock market and its development produce
more noise, making the investors more likely to speculatively and impetuously chase
“good news.”

Given the fact that GAM NP better explains the volatility of the Chinese stock mar-
kets, we can see from the NIC that both the EGARCH and the GJR model overestimate
the volatility reaction to the shocks between 2 and —2. However, the parametric models
underestimate the volatility reaction to the extremely large shocks (the GAM NP has
the highest variance in both directions when news is larger than 2 and smaller than —2).
Further, the GAM NP model has the best performance in capturing more asymmetric
effects of shocks because the slopes of the two sides of the GAM NP model’s NIC are
both steeper than the EGARCH and the GJR models.

As a result, compared with the EGARCH and the GJR model, the GAM NP model
can provide us with better volatility estimates which capture the asymmetric effects of
market news. The GAM NP model is more flexible in reflecting the actual market’s
conditions as implied by the news impact curve. The findings from this paper have
important implications for portfolio selection, asset pricing, and risk management. For

Y'Within the last 20 years, owing to China’s economic liberalization under the policies of reformist
leader Deng Xiaoping, Shenzhen became China’s first, and arguably one of the most successful Special
Economic Zones, moving from a small village to a major financial center and China’s second busiest
port.
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instance, as implied by the news impact curves, there are significant differences in the
predicted volatility incorporated with asymmetric effects of market news in the GAM NP
model and other models. This may lead to a significant difference in current option price,
portfolio selection, and dynamic hedging strategies. Only the most appropriate model
can provide us with the best estimate of return volatility.

2.5 Conclusion

Using more recent data, this paper updates previous studies on Chinese stock-return
volatility by examining the return volatility and the asymmetric effect of market news
on the volatility in the Chinese stock markets using a nonparametric approach. Further,
in order to avoid the curse of dimensionality, the back-fitting algorithm from the gener-
alized additive model of Hastie and Tibshirani (1990) is applied to the nonparametric
smoothing technique from Biilman and McNeil (2002). Compared with the parametric
GARCH models commonly used for capturing volatility asymmetry, the nonparametric
models perform much better in capturing the asymmetry effect and in describing the
characteristics of Chinese stock-return volatility.

With respect to the predicted return volatility’s asymmetric reaction to good news
and bad news, we find that the return volatility responds more strongly to bad news in
the Chinese stock markets in our sample period. We extend the news impact curve to
the nonparametric setting to further examine the asymmetry effect implied by the GAM
NP model. Interestingly, the evidence based on the news impact curve of the GAM NP
model suggests that the good-news-chasing behavior of the Chinese domestic investor
continued. Additionally, the markets behave such that they require a certain amount of
good news in order to remain as calm as possible.

When all the models are employed to obtain the overnight out-of-sample forecast,
the nonparametric models yield the lowest forecast errors and outperform the paramet-
ric models by capturing the observed spikes in the volatility of returns. In contrast, the
EGARCH and the GJR models tend to overestimate the volatility and returns in the
high-volatility periods. The forecasted returns are therefore more accurate from the non-
parametric model especially when the market is very volatile. There are many emerging
stock markets attracting investors from all over the world. These markets may be as im-
perfect and incomplete as the Chinese stock markets have been. We recommend the use
of the GAM NP and the NP model in estimating and investigating the return volatility
in the Chinese stock markets and other emerging stock markets with features similar to
those of the Chinese stock markets.
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Tables

Table 2.1: Simulation results from the parametric and nonparametric models

Normal Student-t
Model MSE MAE MSE MAE
GARCH 0.5554 (0.0466) 0.6154 (0.0201) 0.5553 (0.0464)  0.6155 (0.0201)
GJR 0.3901 (0.0424) 0.5070 (0.0272) 0.3896 (0.0420) 0.5066 (0.0270)
EGARCH 0.3004 (0.0445) 0.4295 (0.0296) 0.2976 (0.0378)  0.4273 (0.0230)
NP 0.2614 (0.0477)  0.4051 (0.0373) 0.2614 (0.0477)  0.4051 (0.0373)
GAM NP 0.2215 (0.0581)  0.3387 (0.0459) 0.2215 (0.0582)  0.3387 (0.0459)

Note: This table shows the estimated mean of the Mean Squared Errors (MSE) and the mean of the
Mean Absolute Errors (MAE) for the estimated samples of n = 1000 and 50 realizations for the GARCH,
GJR, EGARCH, and nonparametric models. In the case of the t distributed errors, there are four degrees
of freedom. The standard errors of the MSE and the MAE are in parentheses.
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Table 2.2: Simulation results from the GAM NP and the NP model

Normal Student-t
NP model GAM NP model NP model GAM NP model
Model MSE MAE MSE MAE MSE MAE MSE MAE
GARCH 0.555 (0.047)  0.615 (0.020) 0.555 (0.047) 0.615 (0.020) 0.555 (0.046) 0.616 (0.020) 0.555 (0.046) 0.616 (0.020)
Iteration 1  0.347 (0.043)  0.460 (0.027) 0.286 (0.048) 0.393 (0.031) 0.347 (0.043) 0.460 (0.027) 0.286 (0.048) 0.393 (0.031)
Iteration 2 0.281 (0.045) 0.414 (0.032) 0.237 (0.053) 0.349 (0.041) 0.281 (0.045) 0.414 (0.032) 0.237 (0.053) 0.349 (0.041)
Iteration 3  0.267 (0.045) 0.406 (0.034) 0.225 (0.056) 0.339 (0.044) 0.267 (0.045) 0.406 (0.034) 0.225 (0.056) 0.339 (0.043)
Iteration 4  0.262 (0.044)  0.405 (0.033)  0.221 (0.055) 0.338 (0.044) 0.262 (0.044) 0.405 (0.033)  0.221 (0.055) 0.338 (0.044)
Iteration 5 0.264 (0.046) 0.406 (0.035) 0.221 (0.058) 0.337 (0.045) 0.264 (0.046) 0.406 (0.035) 0.221 (0.057) 0.337 (0.045)
Iteration 6  0.263 (0.047)  0.406 (0.037) 0.222 (0.058) 0.339 (0.045) 0.263 (0.047) 0.406 (0.037) 0.222 (0.058) 0.339 (0.045)
Iteration 7 0.262 (0.048)  0.405 (0.037)  0.224 (0.061) 0.341 (0.049) 0.262 (0.048) 0.405 (0.037)  0.224 (0.061) 0.341 (0.049)
Iteration 8  0.263 (0.048)  0.406 (0.037) 0.224 (0.060) 0.340 (0.047) 0.263 (0.048)  0.406 (0.037) 0.224 (0.060) 0.340 (0.047)
Final 0.261 (0.048)  0.405 (0.037)  0.221 (0.058) 0.339 (0.046) 0.261 (0.048) 0.405 (0.037) 0.221 (0.058) 0.339 (0.046)

Note: This table shows the estimated mean of the Mean Squared Errors (MSE) and the mean of the Mean Absolute Errors (MAE) at each iteration
for the simulated sample of n = 1000 and 50 realizations for the GAM NP and NP models. The first iteration of the nonparametric models is based
on the result of the GARCH model. In the case of the ¢ distributed errors, there are four degrees of freedom. The standard errors of the MSE and
the MAE are in parentheses.
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Table 2.3: Data description

33

Shanghai Composite Index (SHCI)  Shenzhen Component Index (SZCT)

Size
Mean
Median
Min

Max

Std. Dev.
Skewness
Kurtosis
JB test
ADF test
Correlation

2573
0.068
0.070

—9.334
9.401
1.576

—0.203
8.331

3064.2

—50.972

(0.001)
(0.001)

2573

0.067

0.048

~9.935

9.530

1.738

—0.090

7.524
2198.0 (0.001)
—49.107 (0.001)

0.926

Note: This table reports summary statistics for the Shanghai Composite Index (SHCI) and the Shenzhen
Component Index (SZCI) return series from January 1997 to August 2007. The JB test is the Jarque—-
Bera test for normality and the ADF test is the augmented Dickey—Fuller test for stationarity. The p
values for the Jarque—Bera test and the augmented Dickey—Fuller test are reported in parentheses.
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Table 2.4: In-sample estimations of the GARCH, EGARCH, and GJR models
Shanghai Composite Index

Shenzhen Component Index

GARCH EGARCH GJR GARCH EGARCH GJR

Normal Student-t Normal Student-t Normal Student-t Normal Student-t Normal Student-t Normal Student-t
n 0.000 0.014 —0.011 0.009 —0.018 0.004 —0.021 —0.029 0.040 —0.034 —0.034 —0.037
(0.021)  (0.023)  (0.024)  (0.023)  (0.025)  (0.023)  (0.026)  (0.026)  (0.029)  (0.025)  (0.028)  (0.026)
w 0.095 0.093 0.038 0.027 0.082 0.090 0.067 0.097 0.080 0.027 0.062 0.093
(0.013)  (0.023)  (0.005)  (0.009)  (0.012)  (0.022)  (0.010)  (0.024)  (0.010)  (0.009)  (0.010)  (0.024)
ay 0.139 0.117 0.242 0.239 0.098 0.077 0.100 0.102 0.276 0.216 0.082 0.080
(0.011)  (0.018)  (0.018)  (0.029)  (0.011)  (0.018)  (0.007)  (0.016)  (0.018)  (0.027)  (0.008)  (0.016)
51 0.829 0.848 0.964 0.957 0.845 0.844 0.879 0.865 0.932 0.967 0.882 0.863
(0.013)  (0.021)  (0.006)  (0.010)  (0.012)  (0.021)  (0.007)  (0.019)  (0.009)  (0.009)  (0.007)  (0.019)
~ —0.036 —0.063 0.060 0.095 0.028 —0.035 0.036 0.055
(0.008)  (0.016)  (0.014)  (0.028) (0.010)  (0.014)  (0.011)  (0.024)
DoF 4.638 4.87 4.725 4.848 4.952 4.882
(0.455) (0.486) (0.458) (0.517) (0.539) (0.518)

Q(20) 24.32 24.43 24.91 25.48 25.12 25.53 27.29 27.17 26.10 27.55 28.28 28.97

Note: This table shows the estimated coefficients of the parametric GARCH, GJR and EGARCH models for the Shanghai Composite Index and
the Shenzhen Component Index return series. The sample period is from January 1997 to August 2006. The data are on a daily basis and have
2,330 observations. All returns are scaled by 100. The GARCH, GJR and EGARCH models are estimated according to equations 2.1, 2.2 and 2.3.
The standard errors are reported in parentheses. The last row reports the test statistics of the Ljung—Box Q-test for residual autocorrelation of all
models at lag 20. The critical value for 20 lags at the 5% significance level is 31.4104.
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Table 2.5: Goodness of fit for in-sample forecasts
SHCI SZCI

Model Distribution MSE1 MAE1 MSE2 MAE?2 MSE1 MAE1 MSE2 MAE2
GARCH Normal 39.123 2.677  1.310 0.879 48.509  3.081 1472  0.934
Student-t 38.908 2.655 1.297 0.878 48.380  3.062 1.461 0.934
EGARCH Normal 38.037 2.576 1.246  0.859 48.232 3.061 1.462 0.944
Student-t 37.883 2.564 1.240 0.858 47.956 3.013 1.431 0.926
GIR Normal 38.884  2.663 1.299 0.875 48.564  3.082 1471  0.933
Student-t 38.787 2.652 1.293 0.873 48.457 3.068 1.462 0.934
NP Normal 37.846 2.595 1.261 0.870 47.734  3.037 1439  0.930
Student-t 37.851 2.596  1.261 0.870 47.735 3.037  1.438  0.929
GAM NP Normal 37.700 2.553 1.236  0.857 47.858 3.015 1.429 0.924
Student-t 37.708 2.553 1.238 0.856 47.874 3.012 1.429 0.924

Note: This table shows the goodness of fit of all models for the in-sample forecast for the Shanghai
Composite index (SHCI) and the Shenzhen Component Index (SZCI) using four different measures.
MSE1 = % Zle(Xf - &3)2 is the mean squared error between the squared innovation, X7, and the
— 67| is the mean absolute error between the
squared innovation, X7, and the squared estimated volatility, 67. MSE2 = 7—1L >r(6e — a't)2 is the mean
squared error between the estimated volatility and the true volatility proxy, o+ = |y:|, where y; is the
daily return at time t. MAE2 = £ 371" | |6¢.m — o¢| is the mean absolute error between the estimated
volatility and the true volatility proxy, o+ = |y¢|, where y; is the daily return at time t. n is the total
observations in the in-sample estimation.

squared estimated volatility, 67. MAE1 = £ 37 | [X7
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Table 2.6: The DM test results for the in-sample forecasts

GAM NP NP
Model Distribution MSE1 MAE1 MSE2 MAE2 MSE1 MAE1 MSE2 MAE2
GARCH Normal 3.209 5.504  4.512 4.231 2.389 3.710 2,977 2.003
Student-t 2.874 4.905 4.022 4.024 2.224 3.000 2.399  1.889
N 1 1.0464 1. 1.02 . . —1.443 —1.472 —3.882
SHCIEGARCH orma 046 653 026 0.378 0.550 3 7 3.88
Student-t 0.796 0.859  0.506 0.168 0.118 —=2.710 —2.353 —4.99
GIR Normal 2.856 5.51 4.389  3.820 1.954 3.379 2,545  1.209
Student-t 2.562 5.329  4.294 3.812 1.700 2.888 2.212  0.832
GARCH Normal 2.373 4.988  4.648 3.199 2.165 3.268  3.566  1.468
Student-t 2.271 4187  3.940 3.613 2.000 2.281  2.805  2.140
SZCI EGARCH Normal 0.897 2.701 2,759  4.860 1.049 1.324  1.864  3.593
Student-t 0.445 0.125  0.266 0.565 0.883 —2.171 —0.963 —1.269
GIR Normal 2.419 5.506  5.029 3.347 2.160 3.476  3.589  1.332
Student-t 2.223 5.155  4.681 3.910 1.865 2.638 2.828  1.975

Note: This table shows the DM test results of various models for the in-sample forecasts of the Shanghai
Composite Index (SHCI) and the Shenzhen Component Index (SZCI). The reported values are the test
statistics of the DM test under the null hypothesis that the improvement of the model in the column
(the GAM NP and the NP model) upon the model in the row (the parametric models) is not significant.
The nonparametric models in the columns are the benchmark models. The significance level is 5%.
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Table 2.7: The Goodness of fit for the out-of-sample forecasts

Shanghai Composite Index Shenzhen Component Index
Benchmark I Benchmark II Benchmark I Benchmark II
Model Distribution MSE MAE MSE MAE MSE MAE MSE MAE

Normal 2.13 1.129  0.596  0.578 2.602  1.257  0.731 0.653
GARCH

Student-t 2.088 1.114  0.587  0.575 2.559  1.241  0.709 0.642

Normal 2.026  1.087 0.573  0.546 2.531 1.228  0.696 0.644
EGARCH

Student-t 1.983  1.064  0.577  0.542 2.49 1.218  0.693 0.62
GIR Normal 2138 1123 0.639  0.587  2.607 1.256  0.724  0.643

Student-t 2.12 1.109  0.625 0.581 2.563 1.238 0.744  0.655
NP Normal 1.905 1.047  0.515 0.526 2411 1.195  0.686 0.614

Student-t 1.903 1.045 0.517  0.525 2.403  1.192  0.689 0.614

Normal 1.909 1.056 0.516  0.526 2.468  1.205  0.690 0.620
GAM NP

Student-t 1.908 1.055 0.517  0.525 2442 1.207 0.689  0.619

Note: This table shows the goodness of fit for various models for the out-of-sample forecast in the
Shanghai and Shenzhen markets. The out-of-sample period is from September 2006 to August 2007.
Benchmark I uses 6+ = /(y+)? as the true volatility proxy. Benchmark II uses the realized volatility,
G =1/> rf,t, as the true volatility proxy, where n is the total number of high frequency intervals, 7,
in day ¢
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Table 2.8: The DM test results for out-of-sample forecasts

Volatility Shanghai Composite Index Shenzhen Component Index
proxy GAM NP NP GAM NP NP
Benchmark  Model Distribution MSE MAE MSE MAE MSE MAE MSE MAE
Normal 447 5.04 4.50 5.50 3.32  4.57 4.00 4.77
GARCH
Student-t 3.73 4.44 3.96 5.07 2.97 3.82 3.87 4.16
I Normal 2.28 2.46 2.92  3.57 1.98 2.02 222 221
EGARCH

Student-t 219 1.89 2,51 201 1.87 1.99 211 1.99

GIR Normal 4.53 4.55 4.68 5.28 3.70 4.79 4.14 454
Student-t 4.32  3.87 4.45 4.55 3.74 4.08 4.10 3.78
Normal 249 3.24 2.78 3.44 3.98 3.12 4.36  3.85
GARCH
Student-t 2.20 3.03 2.59 3.31 3.41 2.61 3.88  3.25
I Normal 2.05 2.27 2.26 2.26 0.32 1.68 0.65 1.95
EGARCH
Student-t 3.17 214 3.15 213 0.22  0.80 0.35 1.06
Normal 3.35  3.77 3.68 4.16 2,77 3.56 4.61 3.98
GJR

Student-t 3.76  4.14 4.00 4.49 2.30 3.23 4.17 3.39

Note : This table shows the DM test results for the goodness of fit for various models for the out-of-
sample forecast in Shanghai and Shenzhen markets. The reported values are the test statistics from the
DM test under the null hypothesis that the improvement of the model in the column upon the model in
the row is not significant. The Benchmark I uses 6: = /(y:)? as the true volatility proxy. The Benchmark

IT uses the realized volatility RV, = (/> 7" | r?, as the true volatility proxy.
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Volatility surfaces from simulated processes
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This figure plots the volatility surface of the GAM NP model at each iteration of a randomly

chosen realization. The last plot is the final smoothed volatility surface. In each plot, the z

Note

smoothed volatility from each iteration. The z-axis is the lagged return, X;_;. The y-axis is the lagged

smoothed sigma, 6;—1, from the previous iteration.
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Figure 2.3: Estimated and the true volatility
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Note: This figure plots the true volatility and the estimated volatility from the GARCH and the GAM
NP model for a randomly chosen iteration of 100 points. The solid line is the true volatility and the

dotted line is the estimated volatility. The left plot is the true and estimated volatility from the GARCH
model. The right plot is the true and estimated volatility from the GAM NP model.
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Figure 2.4: Price and return for Shanghai Composite Index and the Shenzhen Compo-
nent Index
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Note: This figure plots the price and the return series of the Shanghai Composite Index (SHCI) and
the Shenzhen Component Index (SZCI) for the entire sample period from January 1997 to August 2007.
The first two plots are the price and return series of the SHCI and the last two plots are the price and
the return series of the SZCI.
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Figure 2.5: The 90 % conditional prediction interval
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Note: This figure plot the 90% conditional prediction interval for the return of the Shanghai Composite
Index and the Shenzhen Component Index. The returns intervals are calculated based on the out-of-
sample forecast results for these two series. The out-of-sample forecast starts on September 01, 2006 and

ends on August 31, 2007.
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Figure 2.6: News impact curves

News Impact Curve — SHCI
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Note: This figure plot the news impact curve from the GAM NP, EGARCH and GARCH models. The
x-axis represents the lagged market news, and the y-axis represents the volatility calculated based on
equation 15 (for parametric models) and equation 16 (for the GAM NP model).



Chapter 3

Modeling and Forecasting
Short-Term Interest Rate Volatility:
A Semiparametric Approach

3.1 Introduction

There is an extensive literature on the modeling of the short-term interest rate as this
rate is fundamental to the pricing of fixed-income securities. The short-term rate is
also a necessary input, for example, for the optimal portfolio choice, hedging strategies,
and other investment decisions. Further, the short rate influences the macro economy;
therefore, it is a target instrument for monetary policy makers. One of the earliest papers
that formally compares a number of single-factor models is Chan et al. (1992) (we refer
the proposed model from this paper as CKLS hereafter). Based on U.S. data, their study
controversially rejects the commonly adopted square root diffusion model of Cox et al.
(1985), whereby the volatility of short-rate changes is proportional to the square root
of the interest-rate levels. Instead, their model shows that volatility is more sensitive to
interest-rate levels, specifying an exponent for the commonly known level effect in the
region of 1.5. A more recent study by Brenner et al. (1996) (we refer the proposed model
from this paper as BHK hereafter) shows that models that parameterize volatility as a
function of only interest-rate levels tend to over emphasize the sensitivity of volatility to
levels and do not take into consideration the serial correlation in conditional variances.
They propose a new class of models which allows volatility to depend on both interest-
rate levels and information shocks. There is by now a general consensus in the literature
that short-rate models that account for both the levels effect and serial correlation in the
volatility processes perform better than models that parameterize only the levels effect
or the serial dependence in the conditional variances (Bali, 2000).

Unlike for the diffusion process, analysis of short-rate models provides mixed empirical
evidence of mean reversion and it remains highly controversial about whether the possible
mean reversion is linear or nonlinear. While a large proportion of research reports a linear
drift (see, e.g., CKLS and the models nested by it), others argue to the contrary (Ait-

45
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Sahalia, 1996b,a Conley et al., 1997 Jones, 2003), finding nonlinear mean reversion. Using
a semi-nonparametric approach, Ait-Sahalia (1996b,a) constructs a general specification
test of a short-rate model and rejects a linear drift in favor of models that imply no mean
reversion for levels of the short rate between certain threshold levels and strong mean
reversion for extreme levels of the short rate. Stanton (1997) and Jiang (1998) estimate
a model of the short rate nonparametrically using different data sets from Ait-Sahalia
(19960) and find evidence in support of nonlinearities in the drift function. Arapis and
Gao (2006) also use nonparametric methods to show that the short-rate drift is nonlinear.
Bali and Wu (2006) document evidence that the speeds of mean reversion for short-
term interest rates at extremely high interest rates such as in the Volcker (1979-1982)
regime are different than at normal times. They attribute the nonlinearity in short-
rate drift to the differences in the degree of mean reversion at different interest-rate
levels. Christiansen (2010) allows for extreme value mean reversion by including the
smallest short rate during the previous year in the mean equation and finds that the US
short rates exhibit extreme value mean reversion. Be that as it may, the robustness of
the nonlinear drift function in short-rate models has been questioned by some authors.
Pritsker (1998) examines the finite-sample properties of Ait-Sahalia’s nonparametric test,
showing that upon adjusting for the high persistence in interest rates, the nonlinearity
in the drift function becomes statistically insignificant. Chapman and Pearson (2000)
perform simulation exercises and show that the evidence supporting the nonlinear drift
function could be an artifact of the nonparametric estimation procedure rather than a
true feature of the data-generating process. Using Bayesian estimation methods, Jones
(2003) shows that the determination of short-rate drift specification is dependent on the
assumption of the prior distribution. In particular, under the assumption of a flat prior
distribution and the imposition of stationarity in interest-rate dynamics, he identifies a
nonlinear drift. However, when he implements an approximate Jeffrey’s prior, there is
no mean-reverting evidence. Durham (2004) finds that the significance of nonlinearity in
the drift function depends on the specification of the diffusion process, a finding which
agrees with Bali (2007). Takamizawa (2008) uses cross-sectional relations to estimate Ait-
Sahalia’s (1996a) model, but he finds that there is generally no nonlinear mean reversion.

This paper considers an alternative method for modeling short-rate volatility. We ap-
ply a semiparametric smoothing technique to the generalized autoregressive conditional
heteroskedasticity (GARCH) model of short-rate volatility. This involves estimating a
parametric form of the short-rate drift function followed by estimating the hidden volatil-
ity process nonparametrically. Because the literature is divided on the appropriate drift
specification, we estimate both linear and nonlinear drift functions of the short rate. The
estimation of a parametric drift specification qualifies this approach as a semiparametric
method (Jiang and Knight, 1997). To estimate the latent volatility process, we use the al-
gorithm developed by Biilman and McNeil (2002) and apply it to Hastie and Tibshirani’s
(1990) generalized additive model. Biilman and McNeil (2002) argue that estimating the
volatility process with the nonparametric approach is less sensitive to model misspec-
ification and does not require a prior: knowledge of the innovation distribution. This
feature makes the application of the nonparametric method attractive for estimating a
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short-rate diffusion process given that short rates are known to possess distributions that
depart from normality. We specify the latent volatility process as a general additive func-
tion of the lagged value of the conditional variance, innovations, and interest-rate levels.
This specification is consistent with a class of single-factor short-rate diffusion models
where the volatility of short-rate changes is serially dependent on past volatility, squared
innovations, and interest-rate levels. In addition, the additive structure of the hidden
volatility facilitates the use of a backfitting algorithm to estimate the diffusion process.

The potential usefulness of the proposed semiparametric approach for estimating
short-rate volatility is examined by comparing its forecast performance with a variety of
one-factor short-rate diffusion models. Results from our Monte Carlo simulation illustrate
the robustness of the semiparametric approach when estimating the short-rate changes’
sensitivity to misspecification in the short-rate drift function and the underlying innova-
tion distribution. Moreover, the forecast performance of the semiparametric approach is
superior to that of the parametric models considered in the simulated data. The empirical
application to three-month U.S. Treasury bill yields suggests that the semiparametric es-
timation procedure provides in-sample and out-of-sample volatility forecasts superior to
the short-rate volatility models of BHK, which feature asymmetric and level-dependent
conditional variance. Although the semiparametric approach does not specify the asym-
metric feature of the volatility process, this procedure improves upon the fit and the
predictive power of the volatility estimates. We do not find any evidence of nonlinear-
ities in short-rate drift or conditional skewness in the short-rate-change distribution.
Finally, we demonstrate that the semiparametric approach, which yields a greater degree
of accuracy in modeling short-rate-change volatility, has pertinent implications for pric-
ing long-dated and path-dependent interest-rate derivatives.! Using simulation methods,
we show that the semiparametric modeling approach gives rise to significantly different
probability distributions of future interest-rate levels compared with parametric short-
rate models. The confidence intervals of future interest-rate levels are narrower than for
any of the parametric models considered, thereby leading to a less price variability for
interest-rate derivatives.

The rest of the paper is organized as follows. Section 3.2 describes the short-rate
models and the semiparametric smoothing technique. Section 3.3 outlines the design of
the Monte Carlo experiment to examine the in-sample predictive power of the semi-
parametric approach and its forecast property when subject to possible misspecifications
in the drift function and the innovation distribution. This section also reports the re-
sults of the simulation study. Section 3.4 applies the semiparametric technique to the
U.S. short-term interest rates to evaluate its in-sample and out-of-sample forecast per-
formance relative to other short-rate models. Implications of this forecast improvement
on pricing interest-rate derivatives are also discussed. Section 3.5 concludes.

!These interest-rate derivatives include index amortizing rate swaps, CMO swaps, swaptions, mort-
gages, and adjustable-rate preferred securities.



48 CHAPTER 3

3.2 The short-rate models and the semiparametric approach

3.2.1 The short-rate models

The generalized continuous-time short-rate specification of CKLS is,
dr = (p+ Ar) dt + ¢rodWw, (3.1)

where r denotes the level of the short-term interest rate, W is a Brownian motion, and
1, A, and § are parameters. The drift component of short-term interest rates is captured
by p + Ar while the variance of unexpected changes in interest rates equals ¢>r2°. The
parameter ¢ is a scale factor and § controls the degree to which the interest-rate level
influences the volatility of short-term interest-rate changes. The CKLS model nests many
of the existing interest-rate models. For example, when § = 0 then (3.1) reduces to
Vasicek’s (1977) model, while § = 1/2 yields the Cox et al. (1985) model, see CKLS
wnter alia for further details. There is a dearth of literature focusing on the univariate
CKLS model. Czellar et al. (2007) study different estimation techniques for the CKLS
short-rate model. Bali and Wu (2006) investigate extensions of the mean specification of
the CKLS model. On the other hand, Nowman and Sorwar (2005) use the CKLS model
to price bonds and contingent claims.

It is common to consider the Euler—-Maruyama discrete time-approximation to (3.1):

ATt = U+ )\Tt—l + &¢. (32)

Let Q;—1 represent the information set available at time ¢t — 1, and let E(g; | Q4—1) = 0.
Suppose h; represent the conditional variance of the short-term interest-rate changes;
then F(e? | Q_1) = hy = ¢*r?°,. It can be seen that the only source of conditional
heteroskedasticity in (3.2) is through the level of the interest rate. BHK relaxes the
assumption of a constant ¢? by allowing it to vary according to the information arrival
process. One common approach to capturing the effect of unanticipated news is the
GARCH(1,1) model:

hy = ag + 04163_1 + ashs_q. (33)

The innovation &; denotes a change in the information set from time ¢t —1 to ¢ and can be
treated as a collective measure of unanticipated news. In (3.3), only the magnitude of the
innovation is important in determining hy. BHK extends (3.2) to allow information from
unanticipated news and the one-period lagged interest-rate levels to govern the dynamics
of short-rate volatility in the following way.

Ary = p+Arg1 + e,
et = ez, 2z ~t(v) and
hy = o+ Oé1€§_1 + aghi_1 + brffl (3.4)

Equation (3.4) is known as the GARCH-X process. Under the restriction o = a1 =
as = 0, (3.4) collapses to (3.2) where b = ¢? and volatility depends on interest-rate levels
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alone. Furthermore, when b = 0, there is no levels effect. The GARCH-X model does
not permit short-rate volatility to respond asymmetrically to interest-rate innovations
of different signs. BHK relaxes the assumption of a symmetric GARCH-X process by
modeling the conditional variance specification as

hy = ag + 04163_1 + aghi_1 + brffl + agéf_l, (3.5)

where &_1 = min(0,&;_1). BHK refers to this model as the AsyGARCH-X. For simplic-
ity, we refer to the symmetric (asymmetric) GARCH-X as the GARCHX (AGARCHX)
model. For the purpose of this paper, we only consider the additive levels effect as the
(A)GARCHX model is consistent with the generalized additive nonparametric GARCH
model discussed in the next subsection.? In practice, when estimating the (A)GARCHX
model, it is common to scale the interest-rate-level term in the variance equation with a
factor (1/10) such that the levels dependence in the conditional variance is captured by
b(r¢_1/10)?° (see Brenner et al., 1996).

The linear drift in equation (3.2) implies that the strength of mean reversion is the
same for all levels of the short rate. Even though there is no a prior: economic intuition
that would suggest the existence of a nonlinear drift, empirical research has shown that
there is evidence of nonlinear drift in short-term interest rates. That is, mean reversion
is stronger for extreme low or high levels of short rates. Ait-Sahalia (1996b6) advocates
the use of a flexible functional form to approximate the true unknown shapes of the
short-rate process. He estimates a short-rate model,

A
dr; = (,u + Ay + )\27}2 + 7‘_3)dt + \/ﬁo + Bire + ,BQTESth, (3.6)
t

and finds that the test rejects a linear drift in favor of models that imply no mean
reversion for levels of the short rate between 4% and 22% and strong mean reversion for
levels outside that range. Conley et al. (1997) adopt the same drift parameterizations as
Afit-Sahalia but keeps the constant elasticity variance diffusion used by CKLS:

A
dry = (4 M7 4 dor? + T—g)dt + or] dW;. (3.7)
t

They find that the drift function displays mean reversion only for rates below 3% or
above 11%. Bali (2007) also estimates ATt-Sahalia’s (1996 ) nonlinear drift specification in
(3.6) but with a diffusion process that follows a GARCH(1,1) model and is dependent on
interest-rate levels. Bali and Wu (2006) estimate a variant of the drift specification in (3.6)
which includes a fifth-order polynomial. Because of the extensive research that adopts
Ait-Sahalia’s (1996 ) nonlinear drift specification and the possible influence this nonlinear
drift might exert on the conditional volatility of interest-rate changes, we also estimate

?BHK also considers the multiplicative levels effect in which ¢2 in B (sf | Qtfl) =ht = (;527}251 follows
a GARCH(1,1) process.
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a discrete-time approximation of Ait-Sahalia’s (1996b) nonlinear drift specification,

Ary=p+ Mreq + )\27’3_1 + 7:—31 + &4, (3.8)
and the conditional variance of the short-term interest-rate changes that follows equation
(3.5).

Empirical studies on short-term interest rates have shown that the standardized
residuals obtained from the GARCH models exhibit leptokurtosis. The assumption of
normality is easily rejected by the Jarque-Bera test when applied to short-rate data.
Consequently, the Student’s ¢ distribution is commonly employed to capture the thicker
tails in the empirical distribution of short rates. There are, however, other nonnormal
distributions that have been used to characterize the distribution of short-rate changes.
In particular, much attention has been paid in modeling the skewness of the distribu-
tion. Bali (2007) adopts the skewed generalized error distribution of Theodossiou (1998)
as well as Hansen’s (1994) skewed ¢ distribution to capture the skewness in the empir-
ical distribution of the three-month U.S. Treasury bill yield. Following Bali (2007), we
employ both the Student’s t and Hansen’s skewed t distributions in the Monte Carlo ex-
periment and empirical application. For the skewed ¢ distribution, we define the residuals
in equation (3.4) as

et = \/hizi, z ~ Hansen’s t(v, 7). (3.9)

The parameters 17 and v control the direction of asymmetry and kurtosis of the distribu-
tion. Hansen’s skewed ¢ distribution is defined by

v4+1

2\ 2
bc<1+v—i2(”fi—+;)> if 2 < — 2
f(zt; @,U,T]) - v+1 (310)

2\ 2
be <1+U12 () > if 2 > —¢,

where z; = \f—;L—t, O is the set of parameters associated with the drift and diffusion speci-

fications of the short-rate model, and the constants a,b and c are given by
+1
L)
Vv —2)T (%)
For n = 0, Hansen’s distribution reduces to the traditional standardized ¢ distribution,

while for n = 0 and v = oo, it reduces to a normal density. The density (3.10) is defined
for2<wv<ooand -1 <n <1

-2
a:4nc<v >, V=143 —-d% c=
v—1
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3.2.2 The generalized additive semiparametric GARCH model

Consider the short-rate model,

Xt = O'tZt (311)
o = f[ilXi1) + fa(of ) + f3(riz), (3.12)

where {{Z;;t € Z} is an i.i.d innovation with zero mean, unit variance, and finite fourth
moment; X; = Ary — (u+ Ary—1) for a linear drift; and X; = Ary — (u+ A1 +Aor? | +
23_) for a nonlinear drift. Let f1 : R — R4, fo: Ry — R4, and f3 : Ry — R be strictly

Tt—1
positive-valued functions. The conditional variance and volatility are denoted by o7 and
oy, respectively. Further, assume that X; and r; are stationary stochastic processes and
{X; : t € Z} is adapted to the o-filtration {F};t € Z} with F; = o ({Xs;s <t}). The
assumption of stationarity in ry is empirically verified by performing Seo’s (1999) unit
root test on the three-month U.S. Treasury bill rate. To ensure comparability with the
CKLS and BHK short-rate models, we first estimate the linear drift function specified
in equation (3.2). However, given the vast literature on short-rate models with nonlin-
ear drift functions, we also investigate Ait-Sahalia’s (19960) nonlinear-drift specification
given by equation (3.8). The exact form of the functions fi, f2, and f3 in (3.12) is left
unspecified, but it can be estimated by a nonparametric method in which X? is regressed
on the lagged variables X; 1, af_l, and r;_1. To show that this procedure is applicable
for estimating the unobserved variable o7, we rewrite the model (3.11 and 3.12) as

X = fi(Xio1) + folory) + fa(rie) + W (3.13)
Vi = [fi(Xec1) + falo? ) + fa(reo1)] (27 — 1),

where V; is a martingale difference series with E(V;) = E(V; | F;—1) = 0 and cov(Vs, V;) =
cov(Vs, Vi | F;_1) = 0 for s < t. Taking the conditional expectations of X? in (3.13) yields

E(X? | Fi1) = fi(Xi—1) + fa(oiq) + f3(re-1), (3.14)

and its conditional variance can be shown to be

var(X? | Fio) = [f1(Xe1) + fo(o7y) + falrimn)]* [E(ZH) - 1] (3.15)

To estimate the latent variable o7 in (3.12), we adopt the estimation algorithm of
Biilman and McNeil (2002). For a given data sample, we first calculate the volatility esti-
mate, 0y, by estimating the linear drift specification (3.2) and the conditional variance
(3.3) using the method of maximum likelihood. Further, we verify that the semiparamet-
ric approach is robust to possible nonlinear drift by calculating the volatility estimate
01,0 with a nonlinear drift specification. Note that &9 is used as the initial volatility
estimate. In the first iteration, we regress {th; 2<t< n} against {X;_1;2 <t <n},
{63—1,03 2<t< n}, and {r;_1;2 <t < n} using a nonparametric smoothing procedure
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with a backfitting algorithm to obtain an estimate fi,l of f; for i = 1,2 and 3.3 The
regression is performed with regression weights {&; 02; 2<t< n} as this yields improved
estimates of o7 (Biilman and McNeil, 2002). Having estimated f;1, we then calculate
6’21 = fi1(Xe—1) + f271(6f_1,0) + f3.1(r¢—1). In the next iteration, we perform another
regression to obtain fi’g and 632 which yields improved estimates of the conditional vari-
ance 622. This iterative process is performed for a prespecified number of iterations, m.
As shown by Biilman and McNeil (2002) and according to our estimation experience,
which is documented in the simulation results, the improvement over the parametric
GARCH estimation of volatility can be attained in a small number of iterations, usually

the first four iterations. The algorithm can be improved by averaging over the final K
estimates:

1 M
bip =7 > bim. (3.16)
m=M—-K+1

Note that we average over the volatility rather than the conditional variance since 6y is
our proxy for volatility. In the final smoothing, we regress X? against X; 1, 6}2_17*, and
ry_1 to obtain f, and 67 = fl(Xt_l) -+ fg(&f_L*) + fg(?‘t_l). In our empirical application
and simulation experiments, we obtain the final smoothing based on K = 4 for eight
iterations (m = 8).

3.3 Monte Carlo study

3.3.1 Experimental design

The purpose of the simulation experiment is to illustrate the superior volatility-forecast
performance of the semiparametric procedure compared with parametric short-rate mod-
els. In addition, we show that the semiparametric method yields volatility forecasts that
are invariant to the underlying distribution of the short rate and its drift specification.
The data generating process (DGP) for interest rates with a linear drift follows the
AGARCHX model (3.2) and (3.5). Specifically, the DGP with a linear drift is

Ary = 0.06 —0.008r;_1 + &,
Et = Oz, 2t ™~ t (4), (317)
o7 = 0.24+0.1026e7_; + 0.5595¢7 ; + 0.328207_; + 0.015(r_1/10),
where &1 = min(0,&4_1). The use of Student’s t distribution for the interest-rate inno-

vation is consistent with the widely observed nonnormal short-term interest-rate distri-
bution. Moreover, for the purpose of examining the effects of nonlinear drift functions on

3For a discussion of the backfitting algorithm, refer to Friedman and Stuetzle (1981) and Hastie and
Tibshirani (1986).
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forecasts generated by the semiparametric approach, we consider the DGP,

Ary = 0.06 +0.0087;_1 — 0.0177 | + 0.0002/7;_1 + &4,
Et = Oz, 2t ™~ t (4), (318)
ol = 0.24+0.1026¢7_; + 0.5595¢7 | + 0.328207_; + 0.015(r;_1/10),

where &_1 = min(0,e;—1). The parameter values used in the DGPs are typical of short-
rate empirical research. We discard the initial 50 observations to mitigate the effect of
start-up values yielding samples of 1000 observations, drawn with 50 replications. The
small number of replications does not bias the results in any way. In fact, this is consis-
tent with the number of replications performed in the simulation experiment conducted
by Biilman and McNeil (2002). Upon generating the data, we estimate the parametric
models of short-term interest rates with linear and nonlinear drifts, with symmetric and
asymmetric GARCHX models, and with three different innovation distributions, namely
normal, Student’s ¢, and Hansen’s (1994) skewed ¢ distributions. In addition, we estimate
the latent volatility using the method of the generalized additive semiparametric GARCH
model discussed in the previous section. For both DGPs, we fit linear and nonlinear drift
specifications before applying the nonparametric smoothing technique to the volatility
estimates. The parametric models are estimated by maximizing the log-likelihood func-
tion using the Broyden, Fletcher, Goldfarb, and Shanno algorithm with the Bollerslev
and Wooldridge (1992) robust standard error.

To compare the goodness of fit of the in-sample volatility estimates for the different
models, we compute the mean of the Mean Absolute Error (MAE) and the mean of the
Mean Squared Error (MSE) of each realization. The MSE and the MAE are calculated
as:

A 1 1000 ) A 1 1000 A ,
MAE(O'7m) = m Z ‘Utm?, — O't’ and MSE(O’7m) = m Z (Ut,m_at) s
t=r+1 t=r+1

(3.19)

where r = 50 because the semiparametric estimate of volatility at the first fifty time
points are omitted as these estimates may be unreliable, and m applies only to the
semiparametric approach and refers to the specific number of iterations. These measures
are computed at each iteration of the semiparametric procedure to show the degree of
improvement in the goodness of fit of the volatility estimates. For the 50 independent
realizations, we average our volatility estimation error statistics to provide an estimate
of mean of the MSE and the mean of the MAE, as well as the standard errors for the

MSE and MAE estimates.

3.3.2 Simulation results

Figures 3.1(a) and (b) plot volatility estimates from the DGP with linear and nonlinear
drifts, respectively. Column three of Figures 3.1(a) and (b) shows volatility plots of the
semiparametric method while columns one and two show volatility plots of the paramet-
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ric GARCHX and AGARCHX models. Both the true and estimated volatility are plotted
together to provide a visual impression of the fit. To conserve space, we only report an ar-
bitrarily selected sample of 100 observations from one of the replication results. The plot
of the volatility estimates produced by the semiparametric method is based on the final
smoothed o, estimate. A cursory look at Figures 3.1(a) and (b) suggests that the semi-
parametric approach yields volatility estimates that match the true simulated volatility
better than the parametric models’ estimates. This result is robust to the innovation-
distribution assumption. The GARCHX and AGARCHX models fail to produce volatility
estimates that can adequately capture the variation in the true volatility even though
in some instances they capture the spikes relatively well. Another interesting observa-
tion shows in Figures 3.1(a) and (b) is that the parametric volatility estimates tend to
be higher than the actual volatility level. This is not the case with the semiparametric
estimates; they trace the level of the true volatility well. When comparing the volatility
estimates produced by the GARCHX and the AGARCHX models, we find that a model
with asymmetric conditional variance produces estimates that better depict the actual
volatility. This result may not be surprising as the DGP possesses this asymmetric fea-
ture in the conditional variance. There are some indications that the volatility estimates
generated by the same parametric model but with different innovation-distribution as-
sumptions are distinct. This distinction is less noticeable with estimates produced by the
semiparametric approach.

- Figures 3.1(a) and (b) about here -

Tables 3.1(a) and (b) show the estimation error results for the in-sample volatility
estimates of various short-rate models for DGPs with linear and nonlinear drifts, respec-
tively. For both DGPs, there is evidence that the standard GARCH model yields the
largest MSE and MAE. This result is robust to the innovation-distribution assumption
and the drift specification that is estimated. On the other hand, amongst the different
parametric GARCH models, the AGARCHX model produces the lowest MSE and MAE.
There is evidence that fitting the correct conditional variance specification and using
the appropriate innovation distribution give rise to significant improvement in the MSE
and MAE. In the case of the linear-drift DGP with a linear drift fit, the improvement
in the MSE between the GARCH and AGARCHX models is about 16% for the normal
distribution, 26% for the Student’s ¢ distribution, and 16% for the skewed ¢ distribution.
On the other hand, for a nonlinear drift DGP with a linear fit, the improvement in the
MSE between the GARCH and AGARCHX models is about 12% for the normal distri-
bution, 14% for the Student’s t distribution, and 9% for the Skewed ¢ distribution. We
also observe that fitting an erroneous drift specification tends to increase the MSE and
MAE of the in-sample fit.

-Tables 3.1(a) and (b) about here -

The estimation error of the semiparametric approach for both DGPs indicates that
the MSE and MAE are substantially smaller than for the parametric models. For the



3.4. EMPIRICAL APPLICATION 5%)

linear drift DGP, between the best-fitting AGARCHX model with linear drift and the
semiparametric approach with linear drift, the improvement in the MSE (MAE) is about
21% (6%) for both normal and skewed ¢ distributions, and 20% (6%) for the Student’s ¢
distribution. Similarly, for the nonlinear drift DGP with a nonlinear fit, the improvement
is about 9% (4%) for normal distribution, 7% (4%) for Student’s ¢, and 12% (3%) for
skewed t distribution. It can be inferred, therefore, that while there is gain to be made
from using a semiparametric approach over parametric GARCH models in estimating
latent volatility, the benefit is more substantial for the case of a short-rate model with a
linear drift. An interesting observation about the semiparametric approach, which con-
trasts the parametric models, is that the MSE and MAE produced by the final smoothed
semiparametric approach tend to be very close to each other for the three different inno-
vation distributions, as well as the different drift specifications. This result is interesting
as it suggests that the semiparametric approach yields volatility estimates that are robust
to the innovation-distribution assumption and possible misspecification of the short-rate
drift function—a feature that is lacking in the parametric models.

Last but not least, according to Biilman and McNeil (2002), the apparent improve-
ment in the volatility estimates produced by the semiparametric technique should show
up in the first four iterations of the smoothing procedure. Indeed we observe that the
reduction in the estimation error (relative to a GARCH model) is largest at the first
iteration of the procedure. However, this reduction is more substantial in the case of the
linear-drift model than the nonlinear-drift model.

3.4 Empirical application

3.4.1 Data description

The empirical investigation is based on 1,892 weekly observations on the 3-month U.S.
Treasury bill rate, sampled from February 9, 1973 to May 8, 2009. The data are obtained
from the Federal Reserve Bank of St. Louis (FRED) database. This period includes a shift
from historically high interest rates in the late 1970s to early 1980s during the Volcker
monetary regime to low interest-rate levels in the latter part of the sample period. The
interest-rate data and the first differenced series are presented in Figure 3.2. Summary
statistics for the data set are provided in Table 3.2.

- Figure 3.2 about here -

From Figure 3.2 it is clear that there is indeed a tendency for the volatility in the
interest-rate series to be positively correlated with current interest-rate levels. At the
start of the sample period, the association between the interest rate and its volatility is
visible. This feature becomes more apparent for the 1979-1983 period during which both
the level and volatility of the rate are high. The level effect is not as obvious after the
Volcker monetary regime. These empirical features tally with those reported in Brenner
et al. (1996). The time-varying nature of the volatility in the sample is indicative that
unexpected “news” might be equally important in explaining the volatility of interest
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rates, in addition to the level effect.
- Table 3.2 about here -

The time-varying nature of the volatility that is evident in Figure 3.2 is associated,
in turn, with an empirical distribution for the first-differenced data that exhibits excess
kurtosis. The relevant kurtosis statistic reported in Table 3.2 is significantly greater than
the value of 3 associated with the normal distribution. The negative skewness coeflicient
is also significantly less than the value of zero associated with the symmetric normal
distribution. This is reflective of a “leverage” effect of sorts, whereby interest-rate falls
are associated with higher volatility than increases of the same magnitude. The first-
differenced data exhibits strong correlation as shown by the Ljung—Box test statistic
which overwhelmingly rejects the null hypothesis of no serial correlation at the 10th
lag orders. The interest-rate series clearly possesses conditional heteroskedasticity as
indicated by application of a formal 10th-order LM test for ARCH to the residuals from
an AR(10) regression of the interest-rate data. The Jarque-Bera test strongly rejects the
null of normality in the interest-rate series.

The stationarity property of the interest-rate data is less clear cut. There is a lot of
controversy in the literature surrounding the unit root property of interest rates. Short-
rate diffusion models estimated by Marsh and Rosenfeld (1983), Chan et al. (1992),
and Aquila et al. (2003) inter alia based on U.S. data document evidence that short-
term interest rates behave like a random-walk process. In contrast, Brenner et al. (1996)
and Ball and Torous (1999) amongst others show supporting evidence that the U.S.
short-rate means revert. As is widely known, the standard Dickey—Fuller test is subject
to typically moderate-size distortion in the presence of a neglected GARCH effect in
the series (see Kim and Schmidt, 1993 Haldrup, 1994). To circumvent the problem of
neglected GARCH effects in unit-root testing, Seo (1999) suggests the unit-root test
equation and the GARCH process should be estimated jointly when the series examined
exhibits GARCH effects. We pursue this testing approach to ensure that the unit-root
test result is robust to the presence of GARCH effects. As is evident from Table 3.2, the
mean level of interest rate is 5.8252. This suggests that the unit-root tests should include
an intercept in the mean equation.

Seo (1999) augments the standard Dickey-Fuller testing equations as follows.

Ay = a+By1+e
op = ¢o+digiy + daoiy (3.20)
& = OVt , U~ N(O, 1)

The mean equation in (3.20) differs slightly from Seo’s (1999) approach in which the
intercept is excluded. Seo (1999) considers the use of a preliminary regression to demean
or detrend the series prior to testing the series for a unit root. Cook (2008), however,
presents an approach where the deterministic terms are explicitly included in the testing
equation such as in (3.20). Moreover, he simulates a new set of critical values involving
different ¢g, ¢1, and ¢o parameter values that are more typical in empirical research.
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The unit-root hypothesis is examined via the maximum likelihood t-ratio for 3, which is
denoted as tg. Seo (1999) shows that the asymptotic distribution of ¢g is a mixture of the
nonstandard Dickey—Fuller distribution and the standard normal. The extent to which
the distribution moves towards the standard normal from the Dickey—Fuller depends
upon the strength of the GARCH effect which is determined by a nuisance parameter,
p- The null hypothesis of a unit root is rejected if t5 is less than the critical value at the
conventional significance levels.

In addition to applying the Seo (1999) test, we also perform the augmented Dickey—
Fuller (ADF) test and the higher powered GLS-based Dickey-Fuller test (Elliott et al.,
1996). The optimal lag length, or degree of augmentation, of the testing equation is
determined using the modified Akaike Information Criterion (MAIC) proposed by Ng
and Perron (2001) following initial consideration of a maximum lag length given by
int[12(7/100)]%25, where T is the total sample size. Hayashi (2000) provides a justifi-
cation of this upper bound. The appropriate degree of augmentation for both tests is
found to be 25. The results obtained from the application of these tests, denoted as
7, and TELS, are given in Table 3.2. Using the 5% critical values obtained from Fuller
(1996) and Pantula et al. (1994), the derived test statistics, respectively, show the unit-
root null hypothesis is not rejected by either of the tests. However, the interest-rate
series clearly possesses conditional heteroskedasticity as indicated by the application of
a formal 10th order LM test for ARCH to the residuals from the ADF test. Given the
presence of conditional heteroskedasticity, Seo’s (1999) approach outlined above is fol-
lowed to test the unit-root hypothesis. Accordingly, an ADF testing equation with 18
lags is estimated jointly with a GARCH(1,1) process using maximum likelihood estima-
tion and the Bernt—Hall-Hall-Hausman algorithm. The test statistic using Bollerslev and
Wooldridge’s (1992) standard errors is denoted as tg(BW).* We simulate the 5% critical
value for the estimated GARCH parameters of {le,ngg} = {0.14,0.85} along with the
effective sample size of 1,892 observations since neither Seo’s (1999) nor Cook’s (2008)
studies provide critical values that can be applied to our results.® The simulated critical
value at the 5% level of significance is —1.9073 for the nonrobust standard errors and
-1.8891 for the Bollerslev-Wooldridge robust standard errors. The calculated test statistic
for tg and tg(BW) are —2.4301 and —2.5147, respectively. These results imply that the
unit-root hypothesis can be rejected comfortably in both cases. On the basis that Seo’s
(1999) test incorporates the GARCH effects into the testing framework, we are more
inclined to believe in its robust inference. That is, the weekly 3-month U.S. Treasury bill
interest rates are stationary.

“Cook (2008) shows that the maximum likelihood estimation of the Seo (1999) unit-root test equations
could employ Bollerslev and Wooldridge’s (1992) robust standard errors. The t-test statistic for the slope
coefficient 8 with robust standard error is given by ¢g(BW).

*The appendix provides details of the simulation to obtain 1%, 5%, and 10% critical values for ¢4
and t3(BW).
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3.4.2 Empirical results

The data-description statistics indicate that an appropriate model of short-rate volatil-
ity should account for its time-varying nature, its asymmetric response to shocks of
different signs and its dependence on interest-rate levels. For this reason, we estimate the
GARCHX and AGARCHX models for the diffusion process. As for the drift specification,
we estimate both linear and nonlinear drifts to determine the presence of nonlinearities.
Given the evidence of unconditional skewness in short-rate changes, we also estimate
the models with three different distribution assumptions, namely normal, Student’s ¢
and skewed ¢. All the models are estimated with Bollerslev and Wooldridge’s (1992)
quasi-maximum likelihood method, which gives robust standard errors. The in-sample
and out-of-sample volatility forecasts of these parametric models are then compared
with those of the semiparametric model. To produce the one-period-ahead out-of-sample
volatility forecasts, we exclude the last 100 observations from our sample and estimate
the parametric and semiparametric models recursively over the remainder of the data.
In other words, each time we produce a one-period-ahead volatility forecast, we estimate
the model using all the data up until the period prior to that forecast. The estimation
results for the parametric models with linear and nonlinear drifts are reported in Tables
3.3(a) and (b), respectively.

- Tables 3.3(a) and (b) about here -

It can be seen in Table 3.3(a) that the coefficients of the linear drift function are
only statistically significant at the 5% significance level for the models fitted with a
Student’s t distribution. The estimate for the coefficient A, which captures the degree
of mean reversion, is very small, implying that the degree of mean reversion is weak.
The estimates of the interest-rate-level sensitivity parameters (b and ), the coefficients
of last period’s unexpected news (ay), the last period’s volatility (ag), and the coeffi-
cient of the asymmetric response of current volatility to last period’s bad news (as), are
found to be highly significant. Taken together, these results suggest that there is over-
whelming evidence of GARCH, levels, and asymmetric GARCH effects in the diffusion
process. In terms of maximized log-likelihood values, the AGARCHX with Student’s ¢
distribution performs better than the other models. There is evidence that, independent
of the underlying distribution, models that account for both asymmetric GARCH and
levels effects perform better than models that do not account for asymmetric GARCH
effects. The simple GARCH model performs the worst in terms of the log-likelihood val-
ues. This model fails to capture the asymmetry and level dependence in the short-rate
volatility process. Moreover, the Ljung—Box test of the 12th-order serial correlation in
the squared standardized residuals rejects the null of no serial correlation, implying that
the GARCH model does not adequately characterize the volatility dynamic of short-rate
changes. The skewness parameter, 1, of the skewed t distribution turns out to be sta-
tistically insignificant at all conventional significance levels. Furthermore, the 7 estimate
for the three short-rate models is virtually zero, implying that a Student’s ¢ distribution
is adequate to characterize the short-rate distribution. Our finding supporting the use of
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the Student’s ¢ instead of skewed ¢ distribution is consistent with Bali’s (2007) results.

In Table 3.3(b), we show the estimation results for nonlinear-drift short-rate models.
Regardless of the error-distribution assumption, the coefficients Ay and A3, which govern
the nonlinear dynamics in the drift function, are statistically insignificant. Our results,
which support the lack of evidence of nonlinearity in the 3-month T-bill data, concur with
Bali’s (2007) earlier findings showing that the incorporation of the GARCH effects into
the volatility process gives rise to no evidence of nonlinearity in the drift specification.
The skewness parameter, 7, of the skewed ¢ distribution again turns out to be statistically
insignificant for all models, suggesting there is no evidence for skewness asymmetry in the
short-rate-change distribution. Comparing models with linear and nonlinear drifts across
similar distribution assumptions indicates a substantial reduction in the log-likelihood
value, thereby suggesting that a short-rate model with linear drift is the preferred specifi-
cation. Based on this result, we do not consider the in-sample and out-of-sample forecast
performance of short-rate models with nonlinear drift and a skewed ¢ distribution.

We use four different metrics to evaluate the in-sample and out-of-sample volatility-
forecast performance of the semiparametric approach compared to its parametric coun-
terparts. In addition to the MAE and MSE measures given in equation (3.19), we also
use the Akaike Information Criterion (AIC), which is a penalized negative log-likelihood
criterion adjusted for the degree of parameters that are estimated, and Bali’s (2007)
R301 measure. For the four metrics, we proxy the unobserved true volatility, o, with
|ry — r4—1]. The AIC is computed as

AIC =2K +T [m (@) + 1] , (3.21)

where K is the number of estimated parameters, T is the sample size, and RSS =
Z;[:l(at — 6¢)?, where oy is the true volatility proxy, ; is the model estimated volatility.
The R%Ol measure essentially computes the total variation in the true volatility proxied
by |ry —ry—1| that can be explained by the estimated conditional volatilities. This is

obtained from the coefficient of determination of an OLS regression of the form
o = ag + ala,{ + ey, (3.22)

where o; and 0{ are the volatility proxy of |r; — r;—1| and the forecasted volatility,
respectively. It should be highlighted that the R%Ol measure is a crude measure and
is subject to the following caveat. As pointed out by Andersen and Bollerslev (1998),
the idiosyncratic component of daily interest-rate changes is large, thus the use of re-
alized interest-rate changes may not fully capture day-by-day movements in volatility.
To circumvent this problem, we use a range-based volatility proxy by adopting the Gar-
man and Klass’s (1980) extreme-value estimator to construct a minimum-variance un-
biased estimator that utilizes the opening, closing, high, and low prices. Due to the
paucity of high-frequency data, the use of the GK extreme-value estimator is deemed as
a compromise to the preferred realized-volatility measure derived from high-frequency
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data (see Andersen et al., 2001).5 Our choice of the GK estimator is also motivated
by the findings of Bali and Weinbaum (2005), who perform a horse race among all
the extreme-value estimators featured in the literature. They show that, in practice,
the GK estimator is the least biased and most efficient estimator compared with other
extreme-value estimators. The GK minimum variance and unbiased estimator is EéK =

2 2
1 H C H.L H, Ly C
1 Et:1{0.511 (n 52)” — 0.019 | (G ) (%5¢) — 210 (%) m ()| - 0383 m (&) } n >
1, where Oy, Cy, Hy, and L; denote, respectively, the opening, closing, high and low

prices on day ¢t and n is the number of days in the sample. The IRX (the value of the
13-week Treasury Index) index data are obtained from the Yahoo/finance web site.”

- Tables 3.4(a) and (b) about here -

Tables 3.4(a) and (b) report the results of the four metrics for evaluating the in-sample
forecast performance of the models using the volatility benchmarks |ry — r4—;| and dgk,
respectively. Focusing on the results with volatility proxy |r; — r4—1|, we find that the
AGARCHX model with the Student’s t distribution performs the best compared with
other parametric models. Not only does it deliver the lowest MSE and MAE, it also gives
the lowest AIC and highest R? ;. The GARCH model, which does not take into account
the level dependence and asymmetric response in the conditional variance of short-rate
changes, performs the worst. However, there is evidence that the semiparametric model
yields a superior in-sample volatility forecast as judged by the four metrics. When com-
pared with the best-fitting AGARCHX Student’s ¢ model, the reduction in the MSE and
MAE based on the final smoothed semiparametric method is about 3% and 1%, respec-
tively. The AIC shows a marked improvement in the fit, falling from —498.52 to —601.92,
while the R?,Ol increases by about 10%. Looking at the four metrics, we also find that in
each iteration of the semiparametric smoothing procedure there is a significant improve-
ment in the volatility forecast performance compared with the AGARCHX Student’s ¢
model. Interestingly, we find that for the semiparametric approach, fitting a nonlinear
drift function erroneously to obtain an initial volatility estimate does not give rise to an
inferior forecast performance. The difference in forecast performance results for the linear
and nonlinear drifts with the semiparametric approach is negligible, implying that the
choice of the drift function is immaterial to the forecast performance of the semipara-
metric approach. This result corroborates the simulation results in which we find that
neglecting to fit the correct drift function in the semiparametric approach does not bear
any influence on its volatility-forecast performance. Another important finding is that
the choice of the innovation distribution, whether it is normal, Student’s ¢, or skewed
t, does not have a considerable impact on the forecast performance of the semipara-

SImplied volatility can be obtained from the value of the 13-week Treasury index (IRX), which is
based on the discount rate of the most recently auctioned 13-week U.S. T-bill. However, high-frequency
IRX data are only available from November 3, 1997. Our sample period, on the other hand, commences
from February 9, 1973.

"The URL for the IRX data is http://finance.yahoo.com/q/hp?s—%5EIRX +Historical +Prices. We
thank the anonymous referee for directing us to this data source.



3.4. EMPIRICAL APPLICATION 61

metric approach.® Taken together, these results highlight the robust forecast property
of the semiparametric approach to possible misspecifications of the drift function and
the innovation distribution. In Table 3.4(b), we show that these results are qualitatively
unchanged even with the use of a more accurate volatility benchmark (i.e. 8%;}() to assess
the forecast performance of the semiparametric approach relative to parametric models.

- Figure 3.3(a) and (b) about here -

Given the extensive results reported in Tables 3.4(a) and (b), we summarize these find-
ings by presenting them in Figures 3.3(a) and (b). To interpret the plot, the four shaded
bars represent the metric value of the parametric models: AGARCHX-T, AGARCHX-
N, GARCHX-T, and GARCHX-N in that order. The line plotted across the x-axis is a
locus of the metric value for the GARCH model (represented by the first mark on the
x-axis), the metric value for the eight iterations of the semiparametric approach (rep-
resented by the second to ninth marks on the x-axis), and the final smoothed stage of
the semiparametric approach (represented by the tenth mark on the x-axis). It is evident
from the plot that the semiparametric approach yields the best results based on all four
forecast-performance measures. The results are consistent whether we use the crude or
more accurate volatility benchmark. To visually illustrate the superior performance of
the semiparametric approach compared with the AGARCHX Student’s ¢ model, we plot
in Figures 3.4(a) to (d) the in-sample volatility estimates of the two models for an arbi-
trarily selected period January 1, 1997-January 1, 2000. Figures 3.4(a) and (b) employ
|re —r4—1| as the true volatility proxy while Figures 3.4(c) and (d) are based on the more
accurate volatility proxy given by G-

- Figures 3.4(a), (b), (c) and (d) about here -

By comparing the plots of the volatility estimates between the best-fitting parametric
AGARCHX Student’s t model and the semiparametric model, we can see that the latter
model is capable of capturing movements of the short-rate volatility process better than
the former model. The AGARCHX Student’s £ model tends to yield an overly smoothed
volatility estimate of the true volatility process proxied by |r, — ry—1| (G4x) in Figure
3.4(b) (Figure 3.4(d)). There are two important features about the way the volatility
estimates obtained from the semiparametric approach improve upon the estimates of the
AGARCHX Student’s ¢ model. First, there are peaks or spikes in the volatility of the
short-rate changes that are well captured by the semiparametric model, but not by the
AGARCHX Student’s t model. For example, the peak observed on January 1, 1998 is
clearly captured by the semiparametric approach, but not by the AGARCHX Student’s
t model. Second, the volatility estimates produced by the semiparametric approach tend
to match the rise and fall in interest rates better than the AGARCHX Student’s ¢ model.
The most obvious of this point is the drop in interest rates between the two peaks
that happened prior to January 1, 1999 (see Figure 3.4(a)). While the semiparametric

8To conserve space, we do not report the results for the semiparametric approach with a skewed ¢
distribution. These results are available from the authors upon request.
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approach does not fully capture the drop in rates, it does a better job at capturing the
fall in interest rates than the AGARCHX Student’s ¢ model.

- Tables 3.5(a) and (b) about here -
- Figures 3.5(a), (b), (¢) and (d) about here -

Turning to the out-of-sample volatility-forecast performance of the semiparametric
model, we find that the volatility estimates obtained from the final smoothed stage
have better predictive power than those produced by the parametric models. Using the
volatility benchmark 0% (see Table 3.5(b)), the improvement in the volatility-forecast
estimation error measured by the MSE and the MAE is 14% and 11%, respectively,
between the final smoothed semiparametric approach and the AGARCHX Student’s ¢
model. On the other hand, the reduction in the forecast estimation error based on the
crude volatility proxy |r; —r;—1| is more conservative: The MSE and MAE fall by 6% and
5%, respectively (see Table 3.5(a)). Figures 3.5(a) to (d) provide plots of the volatility-
forecast estimates of the two contending models. Unlike the in-sample volatility estimates,
we fail to find that the semiparametric approach is capable of capturing the observed
peaks in interest-rate volatility, particularly with the volatility benchmark ’a\éK and the
sharp spike at the start of the forecast horizon (see Figure 3.5(c)). However, this does
not diminish the out-of-sample forecast performance of the semiparametric approach
compared with the AGARCHX Student’s ¢ model. The latter model continues to provide
an overly smoothed out-of-sample volatility forecast of interest rates. In contrast, the
semiparametric approach yields volatility forecasts that better capture fluctuations in
the short rate, thus leading to a smaller estimation error than the AGARCHX Student’s
t model.

3.4.3 Implications for pricing interest-rate derivatives

Given that the volatility processes of the semiparametric and parametric models are dis-
tinct, it is very likely that the two classes of models will generate different probability
distributions of future interest-rate levels. Predictions of future interest rates are essential
for pricing long-dated, path-dependent interest-rate derivatives such as the index amor-
tizing rate (IAR) and swaps, amongst others. For the purpose of illustration, we consider
the TAR swaps. The notional value of the IAR swaps is reduced over time according to
an amortization schedule based on the level of a reference interest rate on a particular
fixed date in the future (usually every three or six months). The value of this swap is
contingent on the probability distribution of the reference rate on each reset date. Since
the amount of principal that remains on any reset date depends on past interest-rate
levels, the IAR swaps are considered “path-dependent” securities. In other words, fluctu-
ations in interest rates and hence the accuracy in modeling short-rate volatility matters
for the pricing of the IAR swaps. For a detailed discussion of the IAR swaps refer to
Galaif (1993).

To examine how an improvement in the estimation accuracy of short-rate volatility
could affect the pricing of interest-rate derivatives, we follow BHK and perform the
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following experiment. We simulate the semiparametric model and the parametric models
5,000 times using the 3-month U.S. Treasury bill rate estimation results with June 8§,
2007, as the starting date. The interest-rate level is 4.67% on this date. Following BHK,
we focus on the volatility process and employ the mean equation ry — ;1 = —0.0015
given that the average weekly change in the interest rate over the estimated sample period
is —0.0015.7 Figure 3.6 graphs the 5th, 25th, 50th, 75th and 95th percentiles of the 5,000
simulated paths for each horizon up to 100 weeks for the different short-rate models.
The solid lines represent the confidence intervals for simulated interest rates based on
the parametric models. The ordering from the outermost to innermost lines represents
the resulting interest-rate distributions for the AGARCHX-T, GARCHX-T, AGARCHX-
N and GARCHX-N models. The dotted lines denote the short-rate distribution of the
semiparametric model.
- Figure 3.6 about here -

Visual inspection of Figure 3.6 suggests that there are several interesting results.
First, the distribution assumption in the parametric models does not seem to matter for
derivative prices. The interest-rate distributions are very similar when comparing between
the same type of model with different distribution assumptions. Second, like BHK, we find
that whether we model asymmetries in the parametric models or not is immaterial for the
paths of future interest rates; therefore, this will not greatly affect interest-rate derivative
prices. Third, amongst the different models considered, the confidence intervals of future
short-rate levels generated by the semiparametric model are narrower, particularly at
the 5% and 95% levels. In other words, the semiparametric model predicts a narrower
confidence band of extreme interest-rate movements than the parametric models. For
other confidence levels considered, we find that the future levels of short-term interest
rates are comparable with the parametric models.

Based on these results, what can be said about the pricing of certain path-dependent
interest-rate derivative such as the IAR swaps mentioned above, mortgages and collat-
eralized mortgage obligations? Given that parametric models produce larger upper tails,
the average predicted amortization will be less for such models than the semiparamet-
ric model. In other words, the predicted lives of these securities and their cash flows
will increase. Accordingly, these securities would be overpriced by the parametric models
relative to the semiparametric model. On the other hand, the larger lower tails of the
parametric models would imply that these securities would be underpriced compared to
the semiparametric model. Our results for the parametric models are consistent with
those of BHK who find that the conditional-variance model specification does not in-
fluence the pricing of interest-rate derivatives. In particular, they show that whether a
model specifies an asymmetric conditional variance or an additive or multiplicative levels
effect in the variance specification does not yield significant differences in the pricing of
interest-rate derivatives. Likewise, we demonstrate that the asymmetric specification of
the diffusion process and the distribution assumption for parametric models do not af-
fect the pricing of interest-rate derivatives. More importantly, we find that the narrower

?Although the mean-reverting slope coefficient is significant, the coefficient estimate is very close to
zero. Therefore, ignoring the mean-reverting dynamics in the simulation is a reasonable simplification.



64 CHAPTER 3

confidence intervals of future interest-rate levels produced by the semiparametric model
relative to any of the parametric models suggests that our method would yield less price
variation for long-dated and path-dependent interest-rate derivatives.

Although the semiparametric model does not give rise to a simple analytical solution
for the pricing of derivatives, the estimation process sets up naturally for Monte Carlo
evaluation. Thus, like the BHK models, the semiparametric model can be easily applied to
the valuation of securities that already require Monte Carlo evaluation. These securities
include those interest-rate derivatives discussed above.

3.5 Conclusion

In this paper an application of a semiparametric GARCH approach to modeling short-
term interest-rate volatility has been proposed. The semiparametric smoothing technique
uses a general additive function of lagged innovations, volatilities, and past interest-
rate levels with a backfitting algorithm to estimate the unobserved diffusion process.
While the volatility model is estimated semiparametrically, it resembles the widely used
short-rate volatility models of BHK, which feature interest-rate-level dependence and
an asymmetrical dynamic in the conditional variance. Consequently, we compare the
performance of the semiparametric approach with this class of single-factor short-rate
diffusion models in terms of its ability to characterize short-rate volatility. Our simulation
study shows that the semiparametric model provides a superior fit of the in-sample
volatility estimates to a GARCH model that exhibits asymmetry and the levels effect. The
volatility forecast performance of the semiparametric procedure, unlike the parametric
GARCH models, is also robust to potential misspecification in the short-rate drift and
the innovation distribution. The empirical application to weekly 3-month U.S. Treasury
bill rates between 1973 and 2009 further illustrates improvement in the in-sample and
out-of-sample predictive power of the semiparametric model over BHK’s models. Finally,
we show that the greater degree of accuracy in modeling short-rate volatility offered
by the semiparametric model is important for pricing long-dated and path-dependent
interest-rate derivatives.

For future research, we intend to apply this technique to Black et al.’s (1990) two-
factor model of with stochastic volatility, which was developed and estimated by Bali
(2003). The two factors of the model are the short-term interest rate and the volatility
of interest-rate changes. This would involve performing a nonparametric estimation on
both the drift and diffusion of the short-rate process. The application of this technique to
the two-factor arbitrage-free model could be used to assess the importance of modeling
short-rate-change volatility accurately and its implications on default-free bond pricing.
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To simulate the critical values for the Seo (1999) test, the following DGP is employed.

Y = Y14e, t=1,...,T
of = ¢o+ ety + da0i (3.23)
Et = OtU¢, Vg ~ N(O, 1)

We set the parameters ¢; = 0.14, ¢ = 0.85, and ¢g = 1 — ¢1 — ¢2. These values are
taken from estimates of our ADF testing equation with 18 lags which is estimated jointly
with a GARCH(1,1) process. T is set to 1,892 to match our sample size. Once the data
are simulated, we perform Seo’s (1999) test by estimating

Ay, = a+Byi—1+e
0132 = ¢+ ¢1€f_1 + ¢2Uf_1 (3.24)

&t = O, UtNN(071)7

with the maximum likelihood method using the Bernt-Hall-Hall-Hausman algorithm.
The resulting ¢-test for the null hypothesis of a unit-root process in y; (i.e., 5 = 0), which
is denoted as tg, is computed. In addition, we compute the robust t-test, t{g(BW), using
Bollerslev and Wooldridge’s (1992) robust standard error. The experiment is repeated
25,000 times and each time the test statistic values for ¢z and tg(BW) are saved. The
resulting series of {5 and #3(BW) are sorted and the 1%, 5%, and 10% critical values
are obtained accordingly. The critical values at the 1%, 5%, and 10% significance levels
for tg are —2.4280, —1.9073, and —1.6701, and for tg(BW) are —2.4196, —1.8891, and
—1.6454, respectively.
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Table 3.1: Estimates of Mean Squared and Mean Absolute Volatility Estimation Error for Simulated Data
(a) DGP - linear drift

SHTAVL

Normal Student’s ¢ Skewed ¢

Models MSE Std. err. MAE Std. err. | MSE  Std. err.  MAE  Std. err. | MSE ~ Std. err.  MAE  Std. err.
Estimated with a linear drift function
GARCH 0.3262 0.1210 0.3794 0.0638 | 0.3558 0.1357 0.4044 0.0716 | 0.3229 0.1193 0.3772  0.0559
Iteration 1 0.2316 0.1065 0.3561 0.0664 | 0.2310 0.0968 0.3561 0.0638 | 0.2308 0.0962 0.3558 0.0635
Iteration 2 0.2036 0.0861 0.3336  0.0617 | 0.2028 0.0944 0.3337 0.0629 | 0.2027 0.0951 0.3333 0.0631
Iteration 3 0.2065 0.0886 0.3359 0.0598 | 0.2030 0.0839 0.3336 0.0595 | 0.2033 0.0847 0.3336  0.0595
Iteration 4 0.2126 0.0961 0.3411 0.0627 | 0.2038 0.0855 0.3349 0.0607 | 0.2057 0.0845 0.3370 0.0593
Iteration 5 0.2085 0.0855 0.3402 0.0603 | 0.2057 0.0876  0.3371  0.0597 | 0.2062 0.0881 0.3379  0.0602
Iteration 6 0.2095 0.0846 0.3408 0.0605 | 0.208 0.0864 0.3389  0.0607 | 0.2083 0.0876  0.3392 0.0624
Iteration 7 0.2155 0.0934 0.3445 0.0628 | 0.2094 0.0864 0.3398 0.0602 | 0.2098 0.0868 0.3399  0.0604
Iteration 8 0.2137 0.0906 0.3426 0.0623 | 0.2117 0.0916 0.3404 0.062 0.2119 0.0918 0.3401  0.0619
Final smoothing | 0.2158 0.0929 0.3442 0.0617 | 0.2123 0.0909 0.3415 0.0611 | 0.2125 0.0911 0.3417 0.0614
AGARCHX 0.2738 0.1193 0.3674 0.0693 | 0.265 0.1011  0.3631 0.0652 | 0.2705 0.1052 0.3640 0.0511
GARCHX 0.3194 0.1234 0.3789 0.0711 | 0.2945 0.1217 0.3704 0.0686 | 0.3116 0.1143  0.3755 0.0532
Estimated with a nonlinear drift function
GARCH 0.3286 0.1234 0.3785 0.065 0.3552  0.1352 0.4025 0.0717 | 0.3224 0.1324 0.3826  0.06
Iteration 1 0.231 0.1071  0.3552 0.0677 | 0.2306 0.0972 0.3551 0.0644 | 0.2378 0.0984 0.3638 0.0661
Iteration 2 0.2038 0.0871 0.3331 0.0623 | 0.2039 0.0951 0.3343 0.0644 | 0.213 0.0961 0.3436  0.0642
Iteration 3 0.2081 0.0897 0.3368 0.0611 | 0.2031 0.0835 0.3335 0.0597 | 0.2154 0.0888 0.3454 0.0626
Iteration 4 0.2147 0.0996 0.3413 0.0639 | 0.2053 0.0856 0.3362 0.0611 | 0.2143 0.086 0.346 0.0613
Iteration 5 0.2082 0.0857 0.3397 0.0613 | 0.2069 0.0892 0.3374 0.0604 | 0.2176 0.0918 0.3484 0.0636
Iteration 6 0.2117 0.0852 0.3423 0.0618 | 0.2098 0.086 0.3397  0.0605 | 0.2192 0.0884 0.3499 0.0628
Iteration 7 0.2143 0.0907 0.3438 0.0632 | 0.2095 0.0864 0.3392 0.0599 | 0.2211 0.0901 0.3502 0.0629
Iteration 8 0.2173  0.0958 0.345 0.0641 | 0.2135 0.0921 0.3414 0.0621 | 0.2233 0.0942 0.3512 0.0644
Final smoothing | 0.2167 0.0927 0.3449 0.0629 | 0.2134 0.0909 0.3418 0.0613 | 0.2239 0.094 0.3522  0.0639
AGARCHX 0.2846 0.1237 0.3689 0.0714 | 0.2739 0.1223 0.3672 0.0692 | 0.2814 0.1248 0.3681  0.0663
GARCHX 0.3205 0.1260 0.3813 0.0725 | 0.3131 0.1255 0.3811 0.0710 | 0.3207 0.1269 0.3859  0.0701

1L



(b) DGP - Nonlinear drift

Normal Student’s ¢ Skewed ¢t

Models MSE Std. err.  MAE  Std. err. | MSE ~ Std. err.  MAE  Std. err. | MSE  Std. err.  MAE  Std. err.
Estimated with a linear drift function
GARCH 0.1094 0.0708 0.1893 0.0741 | 0.1077 0.072 0.1877  0.067 0.1042 0.0714 0.1907 0.0667
Iteration 1 0.0808 0.0651 0.1791 0.0501 | 0.0809 0.0649 0.1791 0.0500 | 0.0805 0.0637 0.1788  0.0497
Iteration 2 0.0704 0.0532 0.1669 0.0461 | 0.0685 0.0524 0.1651 0.0449 | 0.0692 0.0529 0.1649 0.0443
Iteration 3 0.0756  0.0568 0.1747 0.0498 | 0.0780 0.0758 0.1739 0.0522 | 0.0764 0.0722 0.1735 0.0509
Iteration 4 0.0710 0.0517 0.1693 0.0431 | 0.0729 0.0581 0.1703 0.0415 | 0.0716 0.055 0.1695 0.0439
Iteration 5 0.0772 0.0605 0.1740 0.0473 | 0.0739 0.0558 0.1725 0.0460 | 0.0770 0.0596 0.1746  0.0523
Iteration 6 0.0782 0.0680 0.1748 0.0533 | 0.0700 0.0521 0.1684 0.0427 | 0.0721 0.0569 0.1691  0.0448
Iteration 7 0.0755 0.0568 0.1746  0.0467 | 0.0756 0.0614 0.1724 0.0466 | 0.0750 0.0583 0.1721  0.0458
Iteration 8 0.0782 0.0623 0.1750 0.0471 | 0.0754 0.0577 0.1752 0.0486 | 0.0742 0.0577 0.1732 0.0467
Final smoothing | 0.0772 0.0603 0.1750 0.0472 | 0.0756 0.0591 0.1734 0.0464 | 0.0753 0.0595 0.1725  0.0462
AGARCHX 0.0967 0.0695 0.1851 0.0652 | 0.093 0.0645 0.1825 0.0607 | 0.0944 0.0673 0.1838 0.0625
GARCHX 0.0991 0.0705 0.1872 0.0643 | 0.0956 0.0671 0.186 0.0618 | 0.0968 0.068 0.1867  0.0632
Estimated with a nonlinear drift function
GARCH 0.0998 0.1057 0.1865 0.0724 | 0.0843 0.0646 0.1823 0.0647 | 0.0963 0.0693 0.1909 0.0653
Iteration 1 0.0917 0.0961 0.1816 0.0591 | 0.0846 0.0782 0.1786 0.0518 | 0.083 0.0564 0.1843  0.0502
Iteration 2 0.0856  0.0948 0.1727 0.0602 | 0.0688 0.0519 0.163 0.0422 | 0.0719 0.0572 0.1686  0.048
Iteration 3 0.0888  0.097 0.1772  0.0591 | 0.0754 0.0555 0.1716 0.0478 | 0.0726 0.0528 0.1721  0.0469
Iteration 4 0.0852 0.0907 0.1751 0.0559 | 0.0709 0.0501 0.1682 0.0432 | 0.0751 0.0579 0.1739  0.0494
Iteration 5 0.0844 0.0899 0.1738 0.0527 | 0.0779 0.0597 0.1733 0.0481 | 0.0798 0.0628 0.1778 0.0499
Iteration 6 0.0841 0.0907 0.176 0.0551 | 0.074 0.0538 0.1721  0.0462 | 0.0777 0.0603 0.1764 0.049
Iteration 7 0.0839 0.0884 0.1766 0.0543 | 0.0737 0.0557 0.1713 0.0454 | 0.0768 0.0597 0.1751  0.0476
Iteration 8 0.0869 0.0906 0.1783  0.055 0.0747 0.0542 0.1732 0.0458 | 0.0789 0.0532 0.1769  0.0492
Final smoothing | 0.0862 0.0907 0.1766 0.0535 | 0.0747 0.055 0.1731  0.0463 | 0.079 0.0551  0.177 0.0493
AGARCHX 0.0945 0.1022 0.1846 0.0619 | 0.0806 0.0612 0.1804 0.0521 | 0.0901 0.0635 0.1825 0.0534
GARCHX 0.0977 0.1025 0.1852 0.0637 | 0.0838 0.0637 0.1817 0.058 0.0942 0.0668 0.1843 0.0599

Note: The results are for simulated data from the DGP in equation (3.17) for the linear drift and equation (3.18) for the nonlinear drift with the conditional
variance following equation (16). The sample size is 1,000 and the number of replications is 50. The rows labeled as iterations and final smoothing are the
results for the semiparametric approach.
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TABLES 73

Table 3.2: Summary Statistics for the U.S. Short Rates

Variable Mean SD Skewness Kurtosis JB test — Q(10)
T 5.8252 3.0448 0.7665 1.0476 271.82 18017.36
0.00]  [0.00]
Ary —0.0028 0.2319 —0.6466 17.9637  25557.59 185.53
0.00]  [0.00]
Variable ARCH(10) T g e 5 75(BW)
Tt 35,5992  —1.4902 —1.5440 —2.4301 —2.5147
[0.00]

Note: The JB test represents the Jarque—Bera test of normality. Q(10) is the Ljung—Box test of serial correlation
of order 10. ARCH(10) is the test for ARCH effect up to order 10 for the resulting residual of an AR(10)
regression on the short rate. 7, and TELS are the ADF and the GLS-based Dickey-Fuller test statistics and their
5% critical values are —2.8629 and —1.95, respectively. 73 and 74(BW) are the test statistics for Seo’s (1999)
test with the latter using Bollerslev and Wooldridge’s (1992) robust standard errors. The simulated critical
values of 7, and TELS are —1.9073 and —1.8891 at the 5% significance level.



Table 3.3: Short-Term Interest-Rate Model Estimates (February 2, 1973—June 8, 2007)

(a) Linear drift specification

Normal Student’s ¢ Hansen’s Skewed ¢

Models | GARCH GARCHX AGARCHX | GARCH GARCHX AGARCHX | GARCH GARCHX AGARCHX
I 0.0042  0.0039 0.0033 0.0037  0.0018 0.0014 0.0026  0.0041 0.0015
(0.0063)  (0.003) (0.0031) (0.0039)  (0.0024) (0.0026) (0.0019)  (0.0058) (0.0045)

A —0.0014 —0.0002  —0.0004xx | —0.0002% —0.0003%%  —0.0003) —0.0007+ —0.0004  —0.0006
(0.0016)  (0.0008) (0.0002) (0.0001)  (0.0001) (0.0001) (0.0003)  (0.0008) (0.0008)

ao 0.0001  0.0001 0.0003+ 0.0000  0.00002 0.00002 0.0002  0.0003% 0.0000
(0.0003)  (0.0002) (0.0001) (0.00001) (0.00002)  (0.00004) |  (0.0005) (0.0001) (0.0001)
ay 0.1055%  0.3031% 0.2157+ 0.1181x  0.2415% 0.2643x 0.1825%  0.2016% 0.2389x
(0.0252)  (0.0695) (0.0757) (0.0258)  (0.0455) (0.0478) (0.0731)  (0.068) (0.0412)
s 0.8915%  0.6719% 0.6643+ 0.8815%  0.7110% 0.7054 0.8107«  0.7589% 0.7182+
(0.0252) (0.1069) (0.1857) (0.0258)  (0.0575) (0.0518) (0.0359)  (0.1205) (0.1033)
as 0.0337x 0.0082+ 0.0028+
B B (0.0137) B B (0.0011) B B (0.001)
B 0.0076+% 0.0006+% 0.0010x 0.00055 0.0012+ 0.0003
B (0.0014) (0.0001) B (0.0003) (0.0001) B (0.0004) (0.0001)
5 0.4417+ 0.5231% 2.6622+ 3.14407+ 2.3817+ 2.9637
B (0.0861) (0.1494) B (0.331) (0.7811) B (0.493) (0.5182)
v 5.2401%  4.4148+ 4.4212x 4.9613+  4.1945% 4.3182x
B B B (0.4109) (0.4034) (1.5303) (0.3153) (0.5738) (0.5016)

n —0.0005 —0.0001 —0.0002
B B B B B (0.0015)  (0.0021) (0.0014)

LL 2810.19 2868.07 2871.29 2841.77 2912.65 2946.31 2135.35 2139.57 2146.18
Qlec/oy) | 194.8024 168.6053  170.8604 189.8495 170.431 172.7072 153.6514 161.4817  169.2258
[0.0000] ~ [0.0000] [0.0000] (0.0000]  [0.0000] [0.0000] [0.0000]  [0.0000] 0.0000]

Q(e2/02) | 221335 11.0381 11.5038 20.394  11.728 12.002 21.3148  10.3564 10.0106
(0.0361]  [0.5256] [0.4863] 0.0599]  [0.4614] [0.4455] [0.0459]  [0.5848] 0.6151]
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(b) Nonlinear drift specification

Normal Student’s ¢ Hansen’s Skewed ¢
Models | GARCH GARCHX AGARCHX | GARCH GARCHX AGARCHX | GARCH GARCHX AGARCHX
1 0.0513++ 0.036 0.0356 0.0158  0.0034 0.0018 0.0103 _ 0.0023% _ 0.0214
(0.0269  (0.0247) (0.0236) (0.0247)  (0.0031) (0.0024) (0.0256)  (0.0011) (0.0668)
A —0.0009  0.0047+x  0.0044%x | —0.0019  0.0011 0.0016% 0.0015  0.0013 0.0006
(0.0007)  (0.0017) (0.0021) (0.0026)  (0.0007) (0.0004) (0.0037)  (0.0035) (0.0014)
A2 —0.0003  0.0000 0.0000 0.0000 —0.0001 —0.0002 0.0007 —0.0000 —0.0004
(0.0005)  (0.0005) (0.0005) (0.0006)  (0.0002) (0.0006) (0.0005)  (0.0001) (0.0003)
A3 ~0.0004 —0.0002 —0.0002 —0.0001 —0.0002 —0.0001 —0.0002 —0.0001 —0.0002
(0.0291)  (0.0181) (0.0195) (0.0171)  (0.0042) (0.0035) (0.0725)  (0.0395) (0.0497)
a0 0.0001  0.0004%+  0.0005% 0.00014#% 0.0003% 0.0002+ 0.0002+%  0.0003% 0.0001+
(0.0003)  (0.0002) (0.0002) (0.00006) (0.0001) (0.0001) (0.0001)  (0.0001) 0.0000
a 0.1645+  0.3180% 0.2157x 0.1657+  0.2643% 0.2583% 0.1367+  0.1714x 0.2010+
(0.0082)  (0.0514) (0.0757) (0.0337)  (0.0478) (0.0507) (0.0413)  (0.0385) (0.0294)
s 0.8255%  0.6619% 0.6726+% 0.8213%  0.7054% 0.7217% 0.8415%  0.8107x 0.7718+
(0.1088)  (0.1311) (0.1342) (0.0415)  (0.0518) (0.0507) (0.2106)  (0.1359) (0.1547)
as 0.0298+ 0.0147+ 0.0108x
B B (0.0107) B B (0.0035) B B (0.003)
B 0.0593+ 0.0009+% 0.0006 0.0069+ 0.0018%%  0.0035%
o (0.0065) (0.0001) o (0.0001) (0.0012) o (0.0009) (0.0009)
5 0.0540% 3.236% 4.5966+ 0.3979+ 4.2613+ 0.2859+
o (0.0059) (0.3405) o (0.743) (0.0671) o (0.918) (0.0101)
v 4.9327%  4.4043% 4.3314% 42138«  4.1017* 4.0981x
B B B (0.3879)  (0.3871) (0.4398) (0.131)  (0.6133) (0.5819)
n —0.0008 —0.0003 —0.0005
o o o o o o (0.0561)  (0.0318) (0.1036)
LL 244313 2474.76 2491.27 23348 2355.82 2369.91 1753.42  1814.79 1830.25
Q(ee/or) | 165.1314 128.3772  131.0561 141.2809 137.175 148.9106 123.5912 146.2058  151.8333
(0.0000]  [0.0000] (0.0000] (0.0000]  [0.0000] 0.0000] (0.0000]  [0.0000] (0.0000]
Q(2/o?) | 21.0615 17.9813 18.021 19.5918  15.3428 14.7311 20,1113 12.4285 12.0091
(0.0495]  [0.1163] (0.1151] (0.0752]  [0.2233] [0.2565] (0.0650]  [0.4119)] [0.4449]

Note: The GARCHX (AGARCHX) model refers to the symmetric (asymmetric) GARCH model with additive level effects given by equation 3.4 (3.5). LL
denotes the log-likelihood value, Q(e¢/0¢) and Q(e7/0?) are the Ljung-Box test statistics for serial correlation in the standardized and squared-standardized
residuals up to order 12, respectively. *, ** and *** denote significance at 1%, 5% and 10% significance levels.
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Table 3.4: The Goodness of Fit of In-Sample Volatility Estimates of Paramet-
ric and Semiparametric Models of U.S. Short Rates over the Period February
9, 1973—June 8, 2007

(a) Volatility Benchmark |r¢ — r¢—1]

Normal Student’s ¢

Linear drift | MSE MAE  AIC R?2, | MSE MAE AIC R?
GARCH 0.0441 0.1632—465.2797 0.3539 | 0.0444 0.1645—451.8839 0.3564
Iteration 1 0.041  0.1599—584.3063 0.3982 | 0.0411 0.1601—583.19  0.3989
Iteration 2 0.0413 0.1595—572.9455 0.3941 | 0.0415 0.1601 —564.1346 0.3937
Iteration 3 0.0409 0.1583—589.5497 0.3929 | 0.041 0.1584—586.7339 0.3926
Iteration 4 0.0408 0.1578—593.7955 0.3913 | 0.0408 0.1579—592.4436 0.391
Iteration 5 0.0408 0.1576—593.4775 0.3901 | 0.0409 0.1577—589.1935 0.389
Iteration 6 0.0407 0.1571—598.9764 0.3903 | 0.0407 0.1572—596.3312 0.3893
Iteration 7 0.0407 0.1571—599.0108 0.3906 | 0.0408 0.1573—593.5321 0.3892
Iteration 8 0.0406 0.1567—603.5222 0.3909 | 0.0406 0.1568 —601.1995 0.3901
Final smoothed | 0.0406 0.1569—601.8026 0.3908 | 0.0407 0.1572—601.9206 0.3899
AGARCHX 0.0433 0.1609—468.8008 0.3545 | 0.0421 0.1584—498.5179 0.3573
GARCHX 0.0439 0.1617—459.0652 0.3540 | 0.0428 0.1596—486.4507 0.3566
Nonlinear drift | MSE ~ MAE  AIC R2, | MSE MAE AIC R%,
GARCH 0.0441 0.1633—463.5183 0.3534 | 0.0444 0.1645—453.066 0.3567
Iteration 1 0.0411 0.1602—581.6097 0.3981 | 0.0411 0.1601—583.1312 0.3989
Iteration 2 0.0414 0.1597—571.1824 0.3943 | 0.0415 0.1601 —563.9604 0.3942
Iteration 3 0.0409 0.1584—588.7446 0.3932 | 0.041 0.1584—586.7507 0.3928
Iteration 4 0.0408 0.158 —593.2638 0.3919 | 0.0408 0.1579—592.6804 0.3911
Iteration 5 0.0409 0.1578—590.8762 0.3901 | 0.0409 0.1577—589.8344 0.3893
Iteration 6 0.0407 0.1573—597.7895 0.3905 | 0.0408 0.1574—594.9734 0.3897
Iteration 7 0.0407 0.1573—597.6123 0.3905 | 0.0408 0.1573—593.8119 0.3896
Iteration 8 0.0406 0.157 —601.9312 0.3914 | 0.0406 0.1569—600.9026 0.3903
Final smoothed | 0.0407 0.1572—600.0607 0.3907 | 0.0407 0.1572—600.0972 0.3901




TABLES 7
(b) Volatility Benchmark 62y
Normal Student’s ¢

Linear drift MSE MAE AIC R2, MSE MAE AIC RZ,
GARCH 0.0263  0.1366 —1325.280 0.4139 0.027 0.1387 —1281.644 0.4128
Iteration 1 0.0249 0.1340 —1417.338 0.4309 0.0251 0.1344 —1409.191 0.4307
Iteration 2 0.0245 0.1321 —1448.451 0.4322 0.0248 0.1328 —1428.123 0.4312
Iteration 3 0.0242 0.1311 —1464.101 0.4284 0.0244  0.1313 —1455.203 0.427
Iteration 4 0.0243 0.1308 —1462.552 0.4259 0.0244  0.1311 —1452.146 0.4245
Iteration 5 0.0243 0.1307 —1462.171 0.4264 0.0244  0.1308 —1454.157 0.4246
Iteration 6 0.0241 0.1303 —1470.949 0.4251 0.0243 0.1304 —1462.523 0.4223
Iteration 7 0.0242 0.1303 —1469.129 0.4257 0.0243 0.1306 —1459.599 0.4241
Iteration 8 0.0241 0.1299 —1475.989 0.4262 0.0242 0.1302 —1466.137 0.4242
Final smoothed 0.0241 0.1301 —1474.438 0.4263 0.0242 0.1304 —1464.826 0.4240
AGARCHX 0.0268 0.134 —1293.64 0.4189 0.0261 0.1335 —1334.653 0.4219
GARCHX 0.0266 0.1342 —1302.411 0.4167 0.0258 0.1327 —1352.352 0.4225
Nonlinear drift MSE MAE AIC R2, MSE MAE AIC RZ,
GARCH 0.0266 0.1369 —1310.771 0.4129 0.027 0.1387 —1283.112 0.4129
Iteration 1 0.025 0.1343 —1411.852 0.4313 0.025 0.1344 —1409.544 0.4307
Iteration 2 0.0245 0.1323 —1444.576 0.4325 0.0248 0.1329 —1427.342 0.432
Iteration 3 0.0243 0.1313 —1460.787 0.4287 0.0244  0.1314 —1455.954 0.4275
Iteration 4 0.0243 0.131 —1459.072 0.4265 0.0244  0.1311 —1453.408 0.4249
Iteration 5 0.0243 0.1309 —1458.577 0.427 0.0244  0.1308 —1455.779 0.4251
Iteration 6 0.0242 0.1305 —1469.125 0.4258 0.0243 0.1305 —1461.697 0.4234
Iteration 7 0.0242 0.1304 —1468.508 0.4263 0.0243 0.1307 —1459.126 0.4244
Iteration 8 0.0242  0.1303 —1469.766 0.4268 0.0242  0.1303 —1466.36 0.4247
Final smoothed 0.0241 0.1303 —1470.881 0.4257 0.0242 0.1304 —1464.585 0.4240

Note: The rows labeled as iterations and final smoothed are the results for the semiparametric approach. The

prefix “A” denotes asymmetric while the suffix “X” denotes level effects.
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Table 3.5: The Out-of-Sample Volatility-Forecast Performance of Parametric

and Semiparametric Models of U.S. Short Rates over the Period June 15,
2007-May 8, 2009

a. Volatility Benchmark |ry — r4_1]|
GARCH Final Smoothed AGARCHX-T GARCHX-T AGARCHX-N GARCHX-N

MSE 0.0349 0.0318 0.0339 0.0344 0.03499 0.0352
MAE | 0.1431 0.1225 0.1295 0.1319 0.1346 0.1359

b. Volatility Benchmark 62
GARCH Final Smoothed AGARCHX-T GARCHX-T AGARCHX-N GARCHX-N

MSE 0.0498 0.0395 0.0458 0.0466 0.0477 0.0486
MAE | 0.1744 0.1402 0.1581 0.1643 0.1666 0.1678

Note: See note to Table 3.4. “I” and “N” denote Student’s ¢t and normal distributions, respectively.
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Figure 3.1: (a) Volatility Estimates of Various Models for Simulated Data with Linear Drift

GARCHX-N AGARCHX-N Semiparametric-N

GARCHX-T AGARCHX-T

GARCHX-ST AGARCHX-ST

Note: The dotted line represents simulated true volatility, while the solid line represents the estimated volatility derived from estimating a model
with a linear drift. For the semiparametric approach, the final smoothed volatility is presented. N, T and ST denote normal, Student’s ¢, and
skewed ¢ distributions, respectively.
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Figure 3.1: (b) Volatility Estimates of Various Models for Simulated Data with Nonlinear Drift

GARCHX-N AGARCHX-N Semiparametric-N
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Note: The dotted line represents simulated true volatility, while the solid line represents the estimated volatility derived from estimating a model
with a nonlinear drift. For the semiparametric approach, the final smoothed volatility is presented. N, T and ST denote normal, Student’s ¢ and
skewed ¢ distributions, respectively.
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Figure 3.2: The U.S. Short Rates: Levels and First Differences

3-month Treasury Bill Rates
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Note: This figure plots the level and the first difference of the three-month Treasury bill rates. The first plot is the level, and the second is the first

difference.
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FIGURES 83

Figure 3.3: Plots of MSE, MAE, AIC and R? , for the In-Sample Volatility-

vol
Forecasting Performance of the Parametric and Semiparametric U.S. Short-

Rate Models
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(b) Volatility Benchmark 635

AGARCHX-T, AGARCHX-N, GARCHX-T, GARCHX-N. The 1 to 10 marks on the x-axis are to be interpreted
in the following way. The first mark represents the metric value for the parametric GARCH model. The second
to ninth marks represent the metric values for the eight iterations that are performed in the semiparametric
procedure, while the tenth mark denotes the metric value for the final smoothing stage. R? denotes R301 . The
results are for the sample period February 9, 1973—-June 8, 2007.
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Figure 3.4: Plots of In-Sample Volatility Estimates for the U.S. Short Rates
over the Sample Period January 1, 1997-January 1, 2000
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Figure 3.5: Plots of Out-of-Sample Volatility Forecasts for the U.S. Short
Rates over the Sample Period June 15, 2007-May 8, 2009
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Note: The dotted lines in (a) and (b) are the true volatility proxied by |ry — r¢—1| . The dotted line in (c) and
(d) is the true volatility proxied by &éK . The line marked in bold is the volatility estimate 6¢ .
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Figure 3.6: Confidence Intervals for Simulated Interest Rates from BHK and
Semiparametric Models
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are confidence intervals for the semiparametric model.
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Chapter 4

EMU Equity Markets’ Return
Variance and Spillover Effects from
Short-Term Interest Rates

4.1 Introduction

The last decades have witnessed policymakers using the stock market as the intermediate
channel to stabilize inflation and output. However, much of the effect of monetary policy
comes through the influence of short-term interest rates on other asset prices including
bond and stock prices that, in turn, significantly influence real economic activities. Since
the Monetary Policy Committees in the UK started to use short-term interest rates as
the tool for achieving its inflationary target in 1997, there is an increasing trend of using
the short-term interest rate rather than the money supply as intermediate targets for
monetary policy in the world. Recently, the unexpected shocks from the money market,
such as the Russian debt crisis in 1998 and the subprime mortgage crisis of 2007, have
shown how the domino effect of short-term interest-rate shocks can affect the financial
market globally. Henry (2009) argues that with huge fluctuations in the short-term money
market, firms seeking funding in the short-term rate, and lending in long-term relatively
illiquid securities, become insolvent simply because they cannot access sufficient cash to
finance their short-term activities and not because they are unviable in the medium to
long term. Therefore, it is important for policymakers and analysts to understand how
short-term interest-rate changes affect stock prices and for them to pay close attention
in pursuit of their final objectives.

Many researchers have examined the impact of interest rates on stock prices, but the
relationship between the short-term interest rate and stock prices is still controversial.
Earlier studies employed Treasury bill rates as a proxy for the expected inflation to exam-
ine the relationship between interest rates and stock returns (see, e.g., Nelson, 1976 Fama
and Schwert, 1977 Fama, 1981 Shanken, 1990). These studies find a negative relationship
between stock returns and Treasury bill rates. Domian et al. (1996) mainly use yields on
one-month Treasury bills to examine the relationship between stock returns and interest-
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rate changes. The results from this study show asymmetric relations; that is, drops in
interest rates are followed by large positive stock returns while increases in interest rates
have little effect. By present-value models, the negative relation between interest rates
and stock prices stems from the fact that an interest-rate increase (decrease) causes an
increase (decrease) in expected future discount rates which should cause stock prices to
fall (rise) and long-term interest rates to rise (fall). However, certain empirical attempts
have provided evidence in favor of a positive relationship between interest rates and stock
prices (see, e.g., Asprem, 1989 Shiller and Beltratti, 1992 Barsky, 1989). Barsky (1989)
explains the positive relationship in terms of a changing risk premium. For instance, a
drop in interest rates could be the result of increased risk or precautionary saving as
investors substitute away from risky assets — e.g., stocks — into less risky assets — e.g.,
bonds. Shiller and Beltratti (1992) argue in favor of such a positive relationship on the
grounds that changes in interest rates could carry information about certain changes in
future fundamentals.

Meanwhile, since the seminal Bernanke and Blinder (1992), the impact of changes
in different interest-rate instruments used as the proxy for monetary policy on the stock
market has been examined in the financial literature (see, e.g., Thorbecke, 1997 Bom-
fim, 2003 Rigobon and Sack, 2002 Bernanke and Knutter, 2005 Davig and Gerlach, 2006
Basistha and Kurov, 2008 Henry, 2009). In particular, using the three-month Eurodollar
rate as a proxy of monetary policy, Rigobon and Sack (2002) show that increases in
the short-term interest rate negatively impact stock prices and significantly positively
impact market interest rates, with the largest effect on rates with shorter maturities.!
Another important issue considered in the interest-rate literature is that the effect of
interest rates is different in bull and bear markets. As defined in Maheu and McCurdy
(2000) and Perez-Quiros and Timmermann (2000), bull markets display high returns cou-
pled with low volatility (a stable regime), and bear markets have a low return and high
volatility (a volatile regime). Some empirical studies have established that the effect of
interest rates on conditional returns is larger in a volatile regime than in a stable regime.
For example, using a Markov-switching model, Chen (2007) investigates how monetary
policy, measured by interest-rate instruments, affects stock returns, concluding that such
an impact is asymmetrically large in the bear periods. Henry (2009) uses a Markov-
switching EGARCH model to examine the impact of short-term interest-rate surprises
on the volatility of returns in the UK stock market. Using a Markov-switching model,
Perez-Quiros and Timmermann (2000) study the relationship between changing credit
market conditions, including short-term interest rates, and stock market. They all find
a similar asymmetric effect of interest rates on stock returns in the bear market. Mean-
while, a different conclusion is found in the Markov-switching framework. In contrast to
the previous work suggesting interest rates significantly impact stock markets, Ang and
Bekaert (2002) confirm that the evidence to support the effect of interest rates on returns
does not exist, even if the regime-switching characteristics are added into the empirical

'Ellingsen and Séderstrom (2001) have also used changes in the three-month interest rate as a measure
of policy innovations for estimating the term structure’s response. Favero et al. (1999) examine the
transmission of monetary policy in Europe, using the three-month Euro rate as a proxy for that policy.
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model.

This paper investigates the spillover effect of interest rate impacts on stock returns
and the volatility of returns in the Euro area in different regimes. We extend the current
literature in several aspects. First, departing from most previous work, which primarily
examines the effect of interest rates on stock prices and returns, we analyze the potential
impact of changes in short-term interest rate on both stock returns and the volatil-
ity of returns. Because the conditional variance is considered to be a proxy for risk in
the financial and economic fields, it has important influence on monetary policymaking,
asset-allocation decisions, and risk management. Merton (1980) suggests that one should
use accurate variance estimates in accounting for the risk level when estimating expected
returns. Optimal inference about the conditional mean of asset returns requires that the
conditional variance be correctly specified. The investigation of interest rates’ impact
on both stock returns and the volatility of returns is of importance to financial-market
participants making effective portfolio selection and formulating risk-management strate-
gies.

Second, we contribute to the current literature by investigating the asymmetric effect
of the increased interest rates on returns and the volatility of returns in bull and bear
markets in the Economic and Monetary Union (EMU) stock markets. Although there is
substantial evidence for the asymmetrical effect of interest rates on stock returns in bear
and bull markets, no research has been done to examine whether increases and decreases
in interest rates have the same effect in different market states. Further, reviewing Sellin’s
(2001) survey, it is clear that most of the studies focus mainly on the effect of interest rates
on U.S. financial markets. In contrast, the impact of short-term interest-rate movements
on stock markets in the EMU area has received surprisingly little attention in the recent
literature. We examine the impact of the interest rates on the stock markets in the EMU
countries.

Third, our empirical work updates the current literature by investigating the spillover
effect of the money market on stock returns and the volatility of stock returns by extend-
ing the Markov-switching GJR GARCH in Mean model (MS GJR-M). We extend the
MS GJR-M model by adding interest-rate movements directly to the variance process
of the MS GJR-M model, and formulate the Extended Markov-switching GJR GARCH-
M model (EMS GJR-M). We use the changes (not the level) of the short-term interest
rate because we want to examine how the fluctuations in the short-term interest rates
affect the EMU equity market, meanwhile the first difference square is a commonly used
proxy for the short-term interest-rate variance. By setting the first-difference squares
to the conditional variance of the equity return, we can investigate the spillover effect
of the short-term interest-rate market on the EMU equity market. There are several
advantages of the proposed model in this paper. First, a regime switching model can
capture structural breaks in the volatility in terms of bull and bear markets.? Second,
given the widespread evidence of the asymmetrical effect of unexpected shocks on stock

?Lamoureux and Lastrapes (1990), Hamilton and Susmel (1994) and Cai (1994) argue that ignoring
these structural shifts in the volatility process causes GARCH models to overestimate the persistence of
volatility.
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volatility (see, e.g., Glosten et al., 1993 Engle and Ng, 1993), the MS GJR-M model has
sufficient flexibility to characterize the persistent and asymmetrical response (leverage
effect) of the volatility to shocks. Meanwhile the time varying risk premia theory (see,
e.g., French et al., 1987 Campbell and Hentschel, 1992) states that the volatility asym-
metry is due to the volatility feedback; that is, if volatility is increased, so is the risk
premium in case of a positive trade-off between risk and return. Hence, the discount
rate is also increased, which in turn, for an unchanged dividend yield, lowers the stock
price. Therefore, the MS GJR-M model captures the volatility feedback via a GARCH in
Mean (GARCH-M) process from Engle et al. (1987). Finally, adding interest-rate move-
ments and distinguishing increases in interest rates enable us to investigate three types
of asymmetric effects in the variance process, i.e., the asymmetric effect of unexpected
shocks (negative/positive news) from the stock market, the asymmetric effect of unex-
pected shocks (interest rate increases/decreases) from the interest-rate market, and the
asymmetric effect of unexpected shocks in different market states. We investigate these
asymmetric effects by modifying the news impact curve (NIC) as suggested by Engle
and Ng (1993) to the news impact surface, in which the variance process depends on the
shocks from stock returns and from interest-rate changes in different market states. We
estimate the MS GJR-M and EMS GJR-M models with the Markov Chain Monte Carlo
(MCMC) method instead of the traditional maximum-likelihood method. Because of the
structure of the proposed model, the conditional variance depends on all past history of
the state variables. The evaluation of the likelihood function for a sample path of length
T and k states requires the integration over all kT possible paths, rendering the maxi-
mum likelihood estimation infeasible. To the best of our knowledge, this is the first time
that a MS GJR-M model has been estimated in the literature.

Our results suggest that two regimes exist in the EURO area stock markets, a high-
mean low-variance (bull) market and a low-mean high-variance (bear) market. Most of
the Euro countries have the same regime switching status between the bull and bear
markets. The correlation between the first two moments of returns is not stable over
time, but varies between the bull and the bear markets. Our results suggest also that
bad news from unexpected stock returns (negative residuals from returns) has an asym-
metrically larger effect on the returns and the volatility than good news. Such an impact
is larger in the bear market than in the bull market. Surprisingly, as implied in the news
impact surface, we find that the change in short-term interest rates only significantly
affects the stock market volatility in the bear period in most of the EMU countries. In
particular, the effect of an increase in interest rates is asymmetrically larger than that of
a decrease in interest rates. Portfolio performance, based on the out-of-sample forecast
results of various models, indicates that the EMS GJR-M model outperforms other mod-
els, including the MS GJR-M model and a single switching GJR-M model. The models
with regime switching yield better portfolio performance than the ones without it, em-
phasizing the importance of the interest-rate impact and the regime specification when
modeling volatility. Ignoring such state-dependent asymmetric effects from short-term
interest rates on stock returns and their volatility will lead to invalid inferences, biased
forecasts and consequently inefficient portfolio selection and risk management due to the
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biased volatility estimates.

This paper proceeds as follows. Section 4.2 presents the extended Markov-switching
GJR GARCH-M model. Section 4.3 demonstrates the model-estimation algorithm. Sec-
tion 4.4 describes the data used and reports the empirical results. Section 4.4 also per-
forms the asset allocation based on the out-of-sample forecasts result from various models.
Section 4.5 concludes.

4.2 The model

In this section, we present the model used and proposed in this paper.

4.2.1 The Markov-switching GJR GARCH-M model

There is a substantial literature describing the volatility of stock returns. Since Engle
(1982) introduced the ARCH (autoregressive conditional heteroskedasticity) model and
Bollerslev (1986) introduced the GARCH (generalized autoregressive conditional het-
eroskedasticity) model, these types of volatility modeling techniques have been extended
and applied extensively to characterize the volatility of stock returns. One common ob-
served characteristic of the volatility is the volatility asymmetry, where the volatility
increases more after a negative shock than after a positive shock of the same magnitude.
Two economic theories explain the asymmetric volatility pattern: The leverage effect
and the volatility feedback. The volatility feedback (see Campbell and Hentschel, 1992)
indicates that the news that future volatility will be higher will induce the risk-averse
investors to sell their positions today until the expected return rises up to compensate for
the risk. This feature can be captured by the GARCH in Mean (GARCH-M) type formu-
lation (see Engle et al., 1987),% in which the conditional mean depends explicitly on the
conditional variance. The GARCH-M model also allows us to explore the intertemporal
relation between risk and return. Another extension of the standard GARCH model, the
EGARCH (Nelson, 1991) and the GJR GARCH (Glosten et al., 1993), capture asym-
metry in the conditional variance by the so called leverage effect (Black, 1976). The
leverage effect indicates that the increases in the financial leverage lead to an increased
volatility level. We choose to use both the GARCH-M and the GJR model to capture
the asymmetry in the volatility.

A standard GARCH model with the GJR specification and the GARCH-M effect,
which we refer to as the GJR-M(p, ¢) model, has the following form,

re=BvVhi +€, €= mzt, 2z ~ N(0,1),
p

q
he=ao+ > (i +vdi)e;;+ Y Bihij, (4.1)

i=1 Jj=1

3The GARCH-M was primarily motivated by Merton’s (1973) Intertemporal Capital Asset Pricing
Model (ICAPM)
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where ¢; may be treated as a collective measure of news about equity prices arriving to
the market over the last period, and o, > 0,05 > 0,5; > 0,05 + 8 +0.57; < 1. d; is an
indicator for negative €;_;:
1 ifeg; <O,
di _ { t—1

0 ifey>0.

It can be seen from the model that a positive ¢;_; contributes aie?_i to o;, whereas a
negative €;_; has a larger impact (a; +;)€>_,. Therefore, if parameter ~; is significantly
positive, then negative innovations generate more volatility than positive innovations of
equal magnitude.

While estimating financial and macroeconomic series, some economists find that both
ARCH and GARCH models may encounter high persistence in volatility and lower accu-
racy in predicting performance. Diebold and Inoue (2001) argues that the high persistence
is caused by structural breaks in the volatility process during the estimation period. Lam-
oureux and Lastrapes (1990) point out that models with switched parameter values, such
as the Markov-switching model of Hamilton (1989), may provide a more appropriate tool
for modeling volatility. Hamilton and Susmel (1994) propose a model with sudden discrete
changes in the volatility-governing process. They found that a Markov-switching process
provides a better statistical fit to the data than a GARCH model without switching.

Therefore, this paper employs a two-state MS GJR-M model to capture the GARCH-
M effect (volatility feedback) in the conditional mean, the leverage effect and structural
breaks in the conditional variance. The MS GJR-M (1,1) model is defined as follows.

re = Binhiv + €ty €1 =hi 2, 2z~ N(0,1),
hit = o + ithy_1 + auner_y + cizdies_q, (4.2)

where z; ~ N(0,1), i = 1,2 represents the state and a;, > 0, ;1 > 0, (a2 + a;3) > 0,
(io + a2 + 0.5043) < 1. d; is an indicator for negative news from the last period and in
different state i. Following Hamilton (1989, 1990), we assume that the state vector, S,
follows a first-order Markov process with the hidden transition probabilities matrix,

™ ™
I = 11 12 ’
21 T22

where,
T = P(St = 1‘St_1 = 1) =1- €1,
T2 = P(S; =2[S;-1 = 1) = e,
o1 = P(St = 1|St_1 = 2) = €9,
T2 = P(St = 2|St_1 = 2) =1- €9, (4.3)

where 0 < e; < 1, for i = 1,2. A small e; means that the return series has a tendency to
stay in the ith state with the expected duration.
For the model in 4.2 to be identifiable, we assume that Sy > (31 so that State 2 is
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associated with higher conditional returns. If a; = aw; for all j, the model becomes a
simple GJR in Mean model. If 8;1/h; is replaced by f3;, then the model in 4.2 reduces to
a Markov-switching GJR model.

Parameter 3 is the risk premium. A positive [ indicates that the return is positively
related to the volatility. Parameters in the GARCH components satisfy conditions sim-
ilar to those of GARCH models. If the parameters have significant differences between
regimes, then there exists a bull market and a bear market in stock returns.

4.2.2 The extended Markov-switching GJR GARCH-M model with
the interest-rate effect

Holding the transition probability matrix constant, we measure the impact of the interest-
rate differential on the stock market by extending the MS GJR-M model to the EMS
GJR-M model. This model is formulated by adding the interest-rate changes to the
variance process:

re = Binhiy + €4, €4 =~higz, 2z~ N(0,1),

hit = Qo + ithy_1 + aunerq + qizdier_q + iaXi_y + qus fixi, (4.4)

where parameters in the variance process satisfy conditions similar to those in the MS
GJR-M model. The interest-rate differential, x; = (I;/I;—1), captures changes in short-
term interest rates, where I; is the interest-rate level at time t. The indicator for positive
changes, increases, in interest rates satisfies

1 if 41 >0,
fi= .
0 if xq1 <0.

For this model to be well defined, we use the squared first difference of interest
rates to examine their impact on the conditional variance. As we are estimating the
conditional variance, which is the squared conditional volatility in the GJR model, we
use the squared differences of interest rates in order to keep the interest-rate differentials
and the estimated volatility at the same scale. Meanwhile the first difference square is
a commonly used proxy for the short-term interest-rate variance. By setting the first-
difference squares to the conditional variance of the equity return, we can investigate the
spillover effect of the short-term interest-rate market on the EMU equity market. Further,
in this specification, we can examine different asymmetrical effects on the volatility of
stock returns. Besides the asymmetric effects from market news, we can also examine
if an increase in interest rates asymmetrically affects the stock market in the bear and
bull markets. Hence, a negative x;—1 (drops in interest rates) contributes c;y X%—1 to oy,
whereas a positive x;_1 (increases in interest rates) has a impact (g + is)x?_; if s
is significantly different from zero. The coefficients a4 and aj5 measure the effect of
movements in the interest rate on the conditional variance in the bear market, while ao4
and as 5 measure the impact of interest-rate fluctuations on volatility in the bull market.

One alternative study of interest rate’s impact can be done by allowing the trans-
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mission matrix to be time varying. However, it is still an open question whether the
specification of a time-varying transition probability is suitable for all financial data.
Some studies report that the regime-switching model with the time-varying transition
probability performs worse compared with the regime-switching model with a fixed tran-
sition probability.* Therefore, we choose to analyze the MS GJR-M and EMS GJR-M
models with a fixed transition probability.

4.3 Model Estimation

In this section, we describe the estimation algorithm for a MCMC method. This estima-
tion algorithm will be tested with a Monte Carlo simulation.

4.3.1 Markov chain Monte Carlo estimation method

The evaluations of the likelihood function of Models 4.2 and 4.4 are complicated as they
are a mixture over all possible state configurations. This may lead to computational diffi-
culties with the maximum likelihood estimation. We estimate the model with a Bayesian-
based MCMC method. A Bayesian statistical model consists of a parametric statistical
model, f(z|#), and a prior distribution on the parameters, p(6). The optimal Bayes esti-
mator under quadratic loss is simply the posterior mean: 6 = E[0|Y = y] = [ 0p()y)de.
Therefore, we need to compute the posterior density of our model parameters. The pos-
terior density is determined by the prior density and the likelihood.

[0
__ JWlo)p(®)
[ F(yl0)p(6)ds)
That is,
p(Oly) o< f(yl0)p(0), (4.5)

where f(y|f) in equation 4.5 is the likelihood function and p(#) is the prior distribution.
The parameter vector of the model MS GJR-M (1,1), for i = 1,2, specified in 4.2 is given

by,

®i = {Biaei)ﬂ-i) S}a
0; = (o, i1, 2, 43),
;= (mi1, mi2),

S = (51, 5%,...,57). (4.6)

*For example, Perez-Quiros and Timmermann (2001) demonstrate that the regime-switching model
with a time-varying transition probability is not applicable for large firms. Chang (2009) finds that the
regime-switching model with the time-varying transition probability performs worse in out-of-sample
forecasting than the model with fixed transition probability.
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To obtain the Bayesian estimators, é), we compute the mean from the sample of the
stationary distribution of the simulated ®;. We need the following conditional posterior
distributions: f(ﬁ’R, S,H,0, 92), f(GZ\R, S H, 9]'752'), p(S’H, R,0q, 92), f(e,\S), 1 =
1,2, where R is the observed returns and H is the conditional volatility vector and can
be computed recursively. Following Tsay (2005), we use conjugate prior distributions to
draw (; and e; (see DeGroot, 1990, for a proof).

Sampling ;
Assume S; ~ N(f;o, 0220), the posterior distribution of 3; depends only on State ¢. Define,

" s =i
t =1
ri =4 /()
0 otherwise.
Then we have,
i = B; + ¢€;, for s = 1. (4.7)
Let 7, = (ZSFZ- rit) /n; where n; is the total number of data points in state i, and

it ~ N(B;,0%). Then the conditional posterior distribution of 3; is normal with mean 3}

and variance aiz* :

. 02Bio+nio2 T
= Tt 0l

o2 +no;,

2
2k 0" 0o
7

and o 5 (4.8)

0%+ no;,

Sampling e;

The conditional posterior distribution of e; only involves S. Assume e; ~ Beta(p;1, pi2)
and let Z?:l l1; be the number of switches from State 1 to State 2, Z?:l l9¢ be the number
of switches from State 2 to State 1, and n; be the number of the data observations in
state 7. [;; are Bernoulli distributed with parameter e;; then the posterior distribution of

e; is beta as,
n n
e; ~ Beta (%’1 + > i it ni— Y lz‘t) : (4.9)

t=1 t=1

Sampling «;;

We draw «;; with a modified Griddy Gibbs sampler. The Griddy Gibbs was first intro-
duced by Tanner (1996). This method is widely applicable when the conditional posterior
distribution is univariate. The main idea is to form a simple approximation to the inverse
cumulative distribution function (CDF') based on the evaluation of the conditional poste-
rior distribution on a grid of points. In our model, the conditional posterior distribution
function of a;; does not correspond to a well-known distribution; however, as h; contains
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«ij, it can be evaluated easily:

glaw]) o zn: {—1 [m(ht) + M} } it s =i,

=1 he
f(aj|) o< exp(g(ay))- (4.10)

In order to avoid the problem of the fast convergence of the exponential distribution,
we modify the Griddy Gibbs by adding a scale factor v = max(g(c;)) to the evaluated
function:

flej)) o< exp(g(aij) — w). (4.11)
The Griddy Gibbs proceeds in the following steps:
1. Evaluate f(a j|-) at a grid of points from a properly selected interval of o;;—for

example, 0 < ;1 < 1 — a0 — a;3—to obtain wy = f(afj ) for k=1,...,m. We
choose m = 200.

2. Use {w]”,} = wi,wy,...,w, to obtain an approximation to the inverse CDF of
f(cj|-), which is a discrete distribution for {a%}?zl with probability p(a;j) =
W/ Dy Wo-

3. Draw a uniform (0,1) random number and transform the observation via the ap-
proximate inverse CDF to obtain a random draw for a;;.

Sampling S

Following Henneke et al. (2006), we draw the states Sy by the “Single Move” procedure.
At each step, we sample from the full conditional posterior density of S given by,

P(S, = i|R,0_,,5_,), (4.12)

where 0_; is the parameter vector in equation 4.6 excluding S and S_; is the regime
path excluding the regime at time ¢. In order to save space, we omit the notation of the
explicit condition on 0. Applying the rules of conditional probability to 4.12, we get,

P(Si,RIS_;)  P(R|Si=i,S_1)-P(Si=|S_)
P(R[S—¢) P(R[S_¢) '

P(Si=i| R, S—) = (4.13)

The first term in the numerator, P(R|S¢=;, S_¢), is simply the model’s likelihood L(S; =
i) evaluated at a given regime path, in which S; = 4, and

L(s, = i) = [] £l ) o< cap( £y,

=Y {—% [m(ht) 4 M} } fori=1,2 and ¢ > j. (4.14)

h
=1 t
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Given t > j, one can compute h; recursively. The denominator, P(R|S_;), is the sum of
the two probability-weighted conditional distributions,

s=2
P(R|S_¢) = ) P(R|S, = i,5-1).P(Si=i|S-0), (4.15)

i=1

due to the Markov property of the chain. P(S; = i|S_;) is only dependent on S;_; and

St+17
P(Si=ilS_1) = P(Sy = i|S_1, Si41) = st 0k (4.16)
Zizl Tl T,k
Let S;—1 = [, S¢41 = k and m;; be the respective transition probabilities from the

transition probability matrix. Finally, substitute equation 4.15 and equation 4.16 into
equation 4.13; we compute the conditional posterior probability as

L(St = i)-ﬂl,ﬂz‘,k
Zjﬁ L(Sy = j).m jmjk

P(Si=i|R, S—¢) = (4.17)

The state S; can be drawn using a uniform distribution in the interval [0, 1].

4.3.2 Monte Carlo Simulation

In order to show that our algorithm works well, we perform a Monte Carlo simulation
experiment. We simulate 10 data sets of 1,000 points from Model 4.2 with the same
true parameter values for each data set and 5,000 iterations, of which the first 400 of
the sample are discarded as burn in. In Table 4.1, we present the estimation results
from the randomly chosen 1000 simulated data points. We find that the means of our
estimated parameters are quite close to the true parameters and the square roots of the
mean squared errors are quite small. Figure 4.1 shows the plots of the true and estimated
volatility process, as well as the plot of the true and estimated probability of Regime 1.
The estimated probability of Regime 1 is very close to the true probability. Therefore,
we can be confident that our algorithm performs very well and is reliable.

4.4 Data and Empirical Results

In this section, we present the data used in this paper, perform the empirical study and
report the results.
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4.4.1 Data

The data used in this study consist of the weekly stock index closing price of ten countries
that joined the EMU’s third stage on January 1, 1999.% Specifically, they include Ger-
many’s DAX, France’s CAC40, Italy’s FTSEMIB, Spain’s IBEX35, Finland’s HEX25,
the Netherlands’ AEX, Ireland’s ISEQ, Austria’s ATX, Belgium’s BEL20 and Portugal’s
PSI20. Furthermore, the one-month Euro Interbank Offered Rate (EURIBOR) is the
benchmark money market rate for the Euro area. Interest rates with shorter maturities
are neglected, and EURIBORs with maturities longer than one month may not be sensi-
tive enough to represent short-term interest rates (see, e.g., Kleimeier and Sander, 2006
Bohl et al., 2008).

The sample period is from January 1, 1999, to March 12, 2010. That is, it begins
when the European Central Bank (ECB) replaced the national central banks of EMU
members and assumed responsibility for the conduct of unified monetary policy. The
data is further divided into in-sample and out-of-sample periods. The in-sample period
starts on January 1, 1999, and ends on July 17, 2009, and the out-of-sample period is
from July 24, 2009, to March 12, 2010. The total sample size is 589. All the data are
obtained from Thomson Financial Datastream.

We calculate the weekly returns as log(y:/y:—1) and then annualize them by mul-
tiplying by the square root of 52. Table 4.2 presents the statistical description of the
EMU stock market indexes’ returns. It can be seen from this table that the means of
these returns are around zero. The standard deviations range from 0.1815% (Portugal)
to 0.256% (Finland). The kurtosis statistics are far greater than the 3 associated with a
normal distribution. The negative skewness coefficients are also significantly less than the
value (zero) expected for a symmetric normal distribution. The p values of the Jarque—
Bera test show that the null hypothesis of normality is clearly rejected for every series.
However, the test statistics from the Augmented Dicky—Fuller test are much less than
the critical value, therefore, the null hypothesis of a unit root is rejected at the 5% signif-
icance level for all the return series. The p values of the 10-lag Ljung-Box @Q-test indicate
that there are no serial correlations in the series.

4.4.2 Empirical results
Validation of model estimations

Before the analysis, we examine the validity of the MS GJR-M model in different ways.
First, a 20-lag Ljung-Box @-test is carried out to check the serial correlation in stan-
dardized residuals. The p-values of the tests presented in the last column in Table 4.3
suggest that the null hypothesis of no serial correlation cannot be rejected. Therefore,
the MS GJR-M model fits the data properly.

We then benchmark the proposed MS GJR-M with a standard GARCH model, a GJR
model and a single switching GJR-M model described in equation 4.2. We use \/(r)?

®The Luxembourg stock market is the only EMU market which is not considered in this study due
to a lack of the stock index price data.
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as a proxy for true volatility. The mean squared errors (MSE), the mean absolute errors
(MAE) and Akaike’s information criterion (AIC) are used as adequate model-selection
criteria. The MSE, the MAE and the AIC are calculated according to the following
formulas.

N
1 .
MSE = + > (61— 0ov)?,

t=1

1 N
MAE = N;b}—oﬂ,

AIC =2K + N [log <%> + 1] , (4.18)

where gy is the estimated volatility, oy is the proxy of true volatility, RSS = Zi\il(cft —
0¢)?, where N is the total sample size and K is the total number of parameters in the
model.

The results of the model-selection criteria are shown in the first four columns of Table
4.4, where we present the goodness of fit from various models. The results of the MSE,
MAE and AIC all indicate that the MS GJR-M model performs the best compared with
the GARCH, GJR and single-regime GJR-M models. We notice that by allowing the
conditional variance to enter into the conditional mean equation, the standard GJR-M
model improves the conditional variance in most of the EMU countries. For example, in
Germany, the MSE is reduced from 0.028 (GARCH model) and 0.027 (GJR model) to
0.025 by the GJR-M mode; the MAE declines from 0.125 to 0.117 from the GARCH model
to the GJR-M model; and the AIC is also reduced by roughly 3.2% from the GARCH
model to the GJR-M model. By allowing for a Markov-switching effect, the MS GJR-M
model further significantly improves the estimated volatility. This is particularity true
in the medium and large countries. For example in the Italian market (FTSEMIB), the
MSE, MAE and AIC from the MS GJR-M model are 8%, 3% and 2% lower than the ones
from the single-regime GJR-M model. This confirms that the GARCH in mean and the
Markov switching are all necessary to characterize the return-variance dynamics. Hence,
the MS GJR-M model provides a better characterization of the EMU stock returns and
the volatility compared with other GARCH family models, e.g., a GJR model or a single
regime GJR-M model.

The time varying relationship between risk and return

Table 4.3 presents the estimated parameters of all indices from the MS GJR-M model
described in equation (4.2). The first two columns of Table 4.3 are the estimated pa-
rameters 81 and (2, which are the GARCH in mean coefficients in the conditional mean
in Regimes 1 and 2, respectively. The g parameters are negative in all countries and
the fo parameters are positive in all countries. A negative/positive beta shows that the
mean of returns has a negative/positive correlation with the conditional variance. It is
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obvious that in Regime 1, returns are negatively correlated with the volatility, while in
Regime 2, returns are positively correlated with the volatility. This means that in Regime
1, a higher risk usually leads to a higher loss in the investment, but in Regime 2, an in-
creased volatility often leads to a higher profitability. Many empirical studies examine
the relationship between the conditional mean and the conditional variance. However,
the finding of the relationship between risk and return is still controversially.® We find
a time-varying relationship between risk and return that is in line with such studies as
Harvey (1989, 2001), Kandel and Stambaugh (1990) and Whitelaw (1994). In particular,
Harvey (2001) argues that the specification of the conditional variance influences the re-
lation between the conditional mean and the conditional variance and provides empirical
evidence suggesting that there may be some time variation in the relationship between
risk and return. Whitelaw (1994) reports also that the contemporaneous correlation be-
tween the first two movements of the return varies from large positive to large negative
values. The negative relationship between the conditional mean and the conditional vari-
ance in the bear market is intuitive. In the bear market, investors are more risk averse.
When investors are scared, they look for safety. They adjust their portfolios to include
more safe assets and fewer risky assets. This kind of “fight to quality” leads investors to
stay away from risky assets (stocks) which causes stock prices to decline (Barsky, 1989).

Bull and bear markets in the EMU stock markets

By looking at a; ¢ and aip in Table 4.3, the intercept of the volatility equation in Regimes
1 and 2, respectively, we can see that the values of a ¢ vary from 0.01 to 0.077, while the
values of ag g are all almost zero. This implies that the annualized volatility increases if the
market switches from Regime 2 to Regime 1 and vice versa. These distinct characteristics
of the two regimes are typical representations of the high-returns stable and the low-
returns volatile states in stock returns, which are conventionally labeled bull markets
and bear markets in Maheu and McCurdy (2000) and Perez-Quiros and Timmermann
(2000). Obviously, the EMU stock markets have well-identified bear (Regime 1) and bull
markets (Regime 2). This is similar to Chen’s (2007) finding in the S&P 500 index and
Henry’s (2009) in the UK equity market.

The volatility persistence parameters, a1 and g1, are quite significant in nearly all
of the EMU stock markets. Interestingly, in most countries, ag1 > 1. This implies that
the volatility is less persistent during the bear period. This result is similar to reports from
Friedman and Laibson (1989) and Daal et al. (2007). Friedman and Laibson (1989) apply
a modified ARCH and a GARCH model that allow for jumps and divide their sample into
ordinary- and unusual-returns periods. They find that the volatility of ordinary returns
displays persistence, but the volatility of the unusual price movements are less persistent.
Daal et al. (2007) find the same pattern with a GARCH model allowing for jumps and
asymmetry.

5Some papers (e.g., French et al., 1987 Campbell and Hentschel, 1992 Li, 2003 Guo and Neely, 2006)
report a positive relationship and others (e.g., Glosten et al., 1993 Pagan and Hong, 1991 Li et al., 2005
Guedhami and Sy, 2005) indicate a negative relationship, while others (e.g., Bodurtha and Mark, 1992
Baillie and DeGennaro, 1990 Shin, 2005) find no significant relationship at all.



4.4. DATA AND EMPIRICAL RESULTS 105

Furthermore, we notice that coefficients a2 are insignificant in all of the EMU coun-
tries, and g9 are insignificant at the 5% significance level in the majority of the EMU
countries. However, this does not mean that the one-week lagged error term has no effect
on current volatility at all. On the contrary, it influences volatility through the channel
of leverage effect: When bad news arrives (when the residual is negative), the market
displays a remarkably different response to news. Parameters a3 and «j3 show this
additional sharp response of volatility to bad news in most of the EMU countries. This
is generally consistent with the well-documented predicative asymmetrical effect in stock
markets (see, e.g., Campbell and Hentschel, 1992 Engle and Ng, 1993). Further, in all
EMU countries, ai3 > as3, implying that the asymmetry of the volatility response to
bad news during volatile periods is greater than during stable periods. For example, the
volatility asymmetry coefficient of DAX is 0.3858 in the bear market, which is about
2.1 times that of the bull market. This can be explained by noting that during the bear
market, the confidence of investors is greatly damaged and market practitioners become
more speculatively oriented and more sensitive to any market news, especially to bad
news.

In Figure 4.2, we present the smoothed probability of all of the indices of Regime 1
(the bear period). The solid line is the probability of the bear regime, and the dot is the
return. We can see that nearly all of the countries entered into the bear period during
2000 and 2001, during the half burst of the dot-com bubble. Among them, the central
European countries most resisted the switch to the bear period, for example, Germany,
the Netherlands and Belgium started their bear period in the beginning of 2001. The
Irish stock market behaved remarkably differently and remained in the bull period until
late 2001. This was due to its outstanding economic performance during that period.
From year 1995 to 2000, Ireland’s GDP growth was around 10%, while that of most
other EMU countries were merely around 3%. A review from the IMF in August 2000
attributed such performance to the roles played by “sound and consistent macroeconomic
policies, a generally flexible labor market, a favorable tax regime and the long standing
outward orientation of Ireland’s trade and industrial policies”, and regarded the Irish
economy as “well placed to continue to perform strongly in the future”. The Irish stock
market remained in the bull period until late in 2001, when its GDP growth rate dropped
by half.

By the end of 2002 and the beginning of 2003, when key central banks desperately
dropped their target rate to a historically low level with the ECB offering a deposit rate
of merely 1.5%, most of the EMU stock markets started to see the light at the end of the
tunnel and started to reenter the bull period, though the economy of most countries was
still sluggish. The exception here is the Austria market. Being the gate from Western to
Eastern Europe, Austria enjoyed strong growth in exports and inward investment from
2000 to 2005, which made it the first EMU country to leave the bear period as early as
the beginning of 2002.

In most of the EMU countries, the bull period lasted for about 4 years, until the
beginning of 2007, when the housing bubble burst and the subprime crisis sparked. The
EMU countries then dove into the bear market at the same time again with the exception
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of Finland, Germany and Portugal, which delayed a few months. The reason could be
that at the beginning of the subprime crisis, the market underestimated its damage,
believing that some European countries—which had better economic performance, better
risk control and less speculation in the subprime mortgage market—could avoid the crisis.
Germany was a typical example.

Finally, the difference between all parameters in both regimes and their respective
standard deviations are shown in Table 4.5. Besides the parameters representing the
response of the market to market news, the differences between parameters are all sta-
tistically significant at the 1% significance level. This confirms that the bear and the
bull markets exist in the EMU stock markets. The estimated persistence for the regime
iis 1/¢; for i = 1,2. Regime 1 has a averaged persistence of 22 weeks, while Regime 2
has a averaged persistence of 33 weeks. This is consistent with findings from Napolitano
(2006) and Chen (2007) which report that both bull markets and bear markets display
persistence but the bear market is less persistent.

The impact of short-term interest rates on the EMU stock markets

We examine the impact of short-term interest rates by estimating the EMS GJR-M model
as specified in equation (4.4). We are particularly interested in studying if an increase in
interest rates has an additional effect on stock returns and their volatility and whether
the effect varies in the bull and bear markets.

The full results of the interest-rate impact on the EMU stock markets are presented in
Table 4.6. The estimated parameters from the EMS GJR-M model are not very different
from the ones estimated from the MS GJR-M model, and the characteristics of both
regimes are maintained. We find that the relationship between returns and the volatility
remains largely unchanged in the EMU countries. The negative and significant parameter
B1 in most of the EMU stock markets implies that returns are negatively correlated with
volatility in Regime 1. The coefficient (5 is positive and significant in most of the EMU
countries, implying a positive relationship between returns and volatility in Regime 2.
The intercept of the volatility equation in Regimes 1 and 2 (¢ and «agg) indicates that
the volatility is higher in Regime 1 than in Regime 2. Therefore, the results provide
strong evidence in favor of two states in the EMU stock markets, a high-mean low-
volatility state (bull market) and a low-mean high-volatility state (bear market). The
coefficients 11 and a9 indicate that the volatility is more persistent in the bull market
than in the bear market. However, the innovation parameter in both regimes (a2 and
aig9) is insignificantly different from zero. This does not mean that market news has
no effect on current volatility. If we look at the parameters ;3 and as3, we can find
that market news influences the volatility through the leverage effect. The coefficient a3
is significant in most of the EMU countries (besides Finland, Spain and Austria). The
parameter o3 is significant in half of the EMU countries. Moreover, a3 > ao3g implies
that the leverage effect of the bad news is much stronger in bear markets than in bull
markets. For example, in Belgium, this additional effect is about 8 times larger in Regime
1 than in Regime 2.

Holding the transition probability constant, the interest-rate fluctuations affect the
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equity returns via changes in the volatility. The parameters ;4 and a5, for ¢ = 1,2,
indicate the interest rates’ impact on the EMU stock market volatility in bull and bear
markets, respectively. If the parameters «;4 are significantly different from zero, then
changes in EURIBOR rates affect the conditional variance. Meanwhile, if the parameters
a5 are significantly different from zero, then an increase in interest rates causes an
additional effect on the volatility by an amount of a;5x? ;. It can be seen from Table 4.6
that the parameter as4 is small in value and is insignificant at the 5% level in most of the
EMU countries. The parameter a4 is significant in most of the EMU countries (besides
Belgium). This indicates that changes in interest rates have a much stronger effect on
volatility in the bear market (the low-mean, high-volatility state) than in the bull market
(the high-mean, low-variance state). We find also that aq 5 is significant at the 5% level
in all countries (in Germany, Italy, Spain and Netherlands, it is even significant at the
1% level) and that ags is only weakly significant in three countries (Finland, Belgium
and Portugal). This indicates that an increase in interest rates has an additional effect
on current volatility and this effect is also much stronger in the bear market than in
the bull market in most of the EMU stock markets. This result is in contrast to the
finding from Domian et al. (1996) that drops in interest rates are followed by large
positive stock returns while increases in interest rates have little effects. Our finding is
generally consistent with the results from Perez-Quiros and Timmermann (2000, 2001),
Basistha and Kurov (2008), Chen (2007) and Henry (2009). For example, Perez-Quiros
and Timmermann (2000) find that the interest rate can affect the conditional variance
only in the low-mean high-volatility regime for large firms. Henry (2009) also reports that
the relationship between short-term interest-rate changes and equity volatility in the UK
stock market is regime dependent, the effect of interest rates is higher in bear markets
than in bull markets. Basistha and Kurov (2008) show that the stock returns’ response to
monetary shocks is more than twice as large in recessions and tight credit conditions as in
good economic times. The reason of this phenomenon may be that during the bull period
the market confidence is high and more investors believe in the market itself rather than
the information, especially the information from other markets. This makes the market
reluctant to respond to changes in short-term interest rates. During the bear period, the
market becomes nervous and more volatile, and the volatility becomes more sensitive
to information from both the stock market and other markets, and therefore the stock
market responds to changes in interest rates. Theoretically, according to recent models
with agency costs of financial intermediation (finance constraint), people show that when
there is information asymmetry in financial markets, agents may behave as if they are
constrained financially. Moreover, the financial constraint is more likely to bind in bear
markets (see, e.g., Gertler, 1988 Bernanke and Gertler, 1989 Kiyotaki and Moore, 1997
Garcia and Schaller, 2002). Therefore, a change in short-term interest rates may have
greater effect in bear markets than in bull markets.

Further, in an influential study, Gerlach and Smets (1995) conclude that the effects
of monetary policy shocks are somewhat larger in Germany than in France or Italy.
Clements et al. (2001) have also argued that output in Germany and France is more
affected by monetary shocks than in either Spain or Italy. Contrary to results from these
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studies, the result from our study suggests that monetary policy is equally transmitted
across the EMU stock markets. This may stem from the launching of Euro, which has
made the EMU stock markets more integrated than ever.

Finally, we check the goodness of fit of the EMS GJR-M model. As can be seen in the
last column of Table 4.4, the goodness-of-fit indicators (MSE, MAE and AIC) suggest
that obtaining the interest-rate impact information improves the EMS GJR-M model
performance and the fundamental results of the MS GJR-M model in most EMU stock
markets.

Asymmetric effects of bad news and rate increases: The news impact surface

In this section, we investigate the asymmetric news effects (returns residuals) and the
asymmetric effect of changes in short-term interest rates on volatility by extending the
NIC, introduced by Pagan and Schwert (1990) and christened by Engle and Ng (1993),
which shows the implied relationship between the lagged shock from returns and the
volatility. We extend the NIC into the news impact surface, in which the conditional
variance is evaluated at the level of unconditional variance of stock returns, the shock
from conditional returns, and the change in interest rates. The news impact surface of the
EMS GJR-M model illustrates the asymmetric effect of stock market news and changes
in interest rates on the volatility process:

hy = A+ aigef_l + ai4xf_1, for €1 > 0 and xt—1 <0,
he = A+ (a2 + aiz)eiy + (i + ais)xiq,  for e < 0 and x;—1 >0,
hy = A+ aine? | + (g + is) X7, for ¢,_1 > 0 and x;—1 > 0,
he = A+ (cio + auz)€r_ + aiax?q, for e, 1 <0and ;-1 <0.  (4.19)

where A = oo + 102, 02 is the unconditional return variance, ai; (1 =1,2,j =

1,2,...,5) is the parameter from the estimated EMS GJR-M model , ¢;_; is the unpre-
dictable return at time ¢ — 1, and x;—; is the change in interest rates. The original NIC
of the GJR model from Engle and Ng (1993) does not demonstrate shocks from interest
rates and does not distinguish shocks in the bull and the bear markets.

Figure 4.3 plots the news impact surface of the German stock market. Values on
the X axis indicate changes in interest rates, values on the Y axis indicate shocks from
conditional returns, and values on the Z axis indicate the level of the volatility. The left
plot is the news impact surface of German stock market in the bear market, and the right
one plots the news impact surface of German stock market in the bull market. If we hold
the value on the X axis constant, then the change in values on the Z axis with respect
to the change in values on the Y axis shows how the conditional volatility changes with
respect to changes in market news. We find that the volatility increases as the value on
the Y axis becomes more negative, and this is more obvious in the left plot than in the
right one. This is consistent with our result in the previous section that negative news
has an asymmetric effect on volatility in both bear markets and bull markets; however,
this effect is greater in bear markets than in bull markets in the German stock market.
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If we hold values on the Y axis constant, then the change in values on the Z axis with
respect to changes in values on the X axis shows how the conditional volatility changes
with respect to interest rates. We find that volatility increases as the value on the X
axis becomes more positive, and this situation is only evident in the left plot (the bear
market). This is consistent with our result that a rise in interest rates increases the
volatility more than a fall in interest rates. The effect is much stronger in bear markets
than in bull markets in the German stock market.

We show the asymmetric effect of shocks from unexpected returns and from changes
in interest rates on the volatility of all EMU stock markets in Figure 4.4, where we contour
plot the news impact surface of each EMU stock market. Values on the X axis indicate
changes in interest rates and values on the Y axis indicate shocks from conditional returns.
The color indicates the level of the volatility, the higher the volatility, the brighter its
color. The first and third columns plot the NIC contours in the bear market, while the
second and fourth columns are contour plots of the news impact surface in the bull
market. By looking at the Y axis in the bear market in each EMU country, we find that
the slope of the negative side (the left bottom corner) is much sharper and the color
is much brighter than that of the positive side (the left top corner). However, in the
bull market, the slope of the negative side of the Y axis (the left bottom corner) is only
slightly sharper than that of the positive side (the left top corner). This is consistent
with our result that the effect of bad news on the volatility is larger than that of good
news in most of the EMU stock markets, and such an impact is also larger in the bear
market than in the bull market. On the other hand, by looking at the X axis in the bear
market in each EMU stock market, we can see that the news impact surface captures the
asymmetrical effect of changes in interest rates on the volatility because it has a steeper
slope and brighter color at the positive side (the right bottom corner where the interest
rate moves upward) than the negative side (the left bottom corner where the interest
rate follows downward market movements). However, we can only observe this situation
in the bear market because in the bull market, the volatility is symmetrically centered at
zero on the X axis in nearly all of the EMU stock markets (except Portugal). This also
confirms our result that an increase in short-term interest rates has a considerably larger
impact on stock volatility than a decrease in short-term interest rates, and the impact is
much stronger during bear periods than during bull periods in most of the EMU markets.

Implications of interest-rate impacts on stock markets

To explain why the interest rate can affect the equity market, we resort to the discounted
cash flow (DCF) model pioneered by Williams (1938). The DCF model views the intrinsic
value of common stock as the present value of its expected future cash flow. The expected
future cash flow is often represented by the “expected dividend”, which is known as a DDM
model (dividend distribution model). When interest rates change, first, the expected
return must be discounted at a different rate; second, the firms’ future costs to conduct
business are changed. These will ultimately affect the firms’ expected profitability and
adjust market expectations of the firms’ abilities to pay a dividend. Furthermore, by
changing the value of expected future cash flows, interest-rate movements change the
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level of real activity in the economy in the medium and long term. Campbell and Ammer
(1993) decompose the variance of unexpected excess returns implied by the DDM into
three factors, news about future dividends, news about future interest rates, and news
about future excess returns, and predict that fluctuations in interest rates should cause
equity prices to move and may also result in changes in the variance of equity returns.
However, the result from Henry (2009) suggests that events in the money market have
no direct influence on the conditional mean of returns in the UK stock market. Our
results suggest that the interest-rate market’s influence on the conditional mean of stock
returns is via the conditional variance because the conditional return and the volatility
are negatively related in the bear market and positively related in the bull market.
Therefore, the findings of interest rates’ impacts from the proposed EMS GJR-M model
in our paper support the conclusion that interest rates significantly affect stock returns
and volatility and confirm the implications of the DCF model.

The empirical results from our paper have important implications for portfolio selec-
tion, asset pricing and risk management. For instance, as implied by the news impact
surface, there are significant asymmetric effects of the news and changes in interest rates
on the EMU stock market, after a major impact from the money market, the predictable
market volatilities given by the EMS GJR-M model and other models such as a standard
GJR model or a GJR-M model are very different, this may lead to a significant difference
in current option price, portfolio selection, and dynamic hedging strategies.

To further demonstrate the importance of the interest rates’ impact when modeling
the volatility dynamics, we apply various models to a portfolio choice problem under two
scenarios: portfolio choices without and with short-selling constraints.” We assume that
an investor holds a portfolio consisting of two stocks of German DAX and France CAC40
(risky assets) and that the investor tries to maximize the expected utility function within
the mean-variance framework from Best and Grauer (1990),

1
max {)\W',u — §W'VW |w'l = 1} , (4.20)

where w is the vector of weights invested in risky assets, V is the variance—covariance
matrix of the asset returns, p is the vector of the asset returns, and A is the risk tolerance
coefficient. The purpose is to find the optimum weights of the assets in the portfolio that
maximize the utility function. It has been confirmed that investment weights are very
sensitive to the first two conditional movements of the risky-asset returns (see, e.g., Best
and Grauer, 1990, 1991 Fleming et al., 2001). So the model that can better forecast
the conditional mean and variance can provide better performance. Further, as the risk-
tolerance coefficient also affects the weight of risky assets, we examine the portfolio
performance with different risk-tolerance coefficients. The robustness of the empirical
findings in the investment performance can be confirmed if similar results can be obtained
under different risk tolerance coefficients. Finally, we compute the optimum weights based
on the out-of-sample forecasted conditional mean and variance of the German DAX and

"In the case that the short-selling strategy is not allowed, the investment weight is between 0 and 1
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the French CAC40. The average returns of the portfolio and the Sharpe Ratio will be
also calculated according to different risk-tolerance coefficients and are used to measure
the forecasted portfolio performance.

Table 4.7 presents results of the portfolio performance. Panel 1 shows those from
the unrestricted strategy, and Panel 2 shows those from the restricted strategy. Clearly,
among the models, the EMS GJR-M model provides the best investment performance
in terms of the averaged returns and sharp ratios. This is not surprising because the
EMS GJR-M model yields a more accurate volatility forecast than other models in the
out-of-sample forecast. This is clear in Figure 4.5, which plots the true volatility proxy
and the out-of-sample forecasted volatility of various models in the German DAX and
the French CAC40. The solid lines are the estimated volatility from various models, and
the dashed lines are the true volatility which is proxied by the absolute values of the
returns. We can observe that the volatility estimated from the EMS GJR-M model is
closer to the true volatility proxy and can better describe the dynamics of the DAX and
the CAC40 return variance compared with the MS GJR-M, the GJR-M and the GJR
models.

On the other hand, it is worth noting that the sharp ratio of the non-regime-switching
models declines considerably compared to the regime-switching models. Among the non—
regime-switching models, the GJR-M model does not perform better than the GJR model
in the unrestricted scenario. This may be because of the potential statistical problem
with the GARCH-M specification. As pointed out by Christensen et al. (2010) that
without the regime switching, the long memory property of the conditional variance
may not balance well when entering the short memory property of the conditional mean
regression. As shown in many studies (see Diebold and Inoue, 2001), the long memory
(high persistence) will disappear after incorporating the structure break in the volatility,
e.g., a regime switching specification. These results provide credible evidences that the
short-term interest-rate effect, the regime switching play important roles in modeling the
dynamics of the EMU stock markets’ returns and variance. Only models incorporating
these effects can offer more accurate results of the conditional mean and variance. We can
observe that the portfolio volatility of the GJR-M and the GJR models are much lower
due to ignoring short-term interest rates and regime switching, and consequently result
in poor out-of-sample predictive portfolio performance. The poorly forecasted portfolio
performance from such models will definitely affect the investor’s portfolio choice and
risk-management strategy.

4.5 Conclusion

The DCF model provides the theoretical background for the possible impact of interest-
rate changes on equity prices. With the increased use of short-term interest rates rather
than measures of money supply as intermediate targets for monetary policy, many studies
have examined the impact of the interest-rate market on the stock market. Unfortunately,
most of the studies examine interest rates’ impact on the U.S. stock market and heavily
consider the effect of changes in interest rates on stock prices and returns. This paper
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investigates the spillover effect of interest-rate movements on stock markets in the Euro
area, which has received surprisingly little attention. Departing from most previous works
examining the effect of interest rates only on stock returns, we analyze the potential
impact of short-term interest-rate surprises on both stock returns and the volatility of
stock returns. We pay particularly more attention to the asymmetric effect of an increase
in interest rates on the EMU stock markets in different market regimes, bull and bear
markets. The empirical study is carried out by estimating the EMS GJR-M and MS
GJR-M models with a MCMC method, which enjoys several advantages compared with
the traditional maximum likelihood method.

Empirical results suggest that two significant regimes exist in the EMU stock mar-
kets, a high-mean low-variance regime (bull market) and a low-mean high-variance regime
(bear market). The relationship between the conditional mean and variance is time vary-
ing. They are positively correlated during bull periods and negatively correlated during
bear periods. Furthermore, the negative shock (bad news) from the stock market has
a larger effect than the positive shock (good news). Short-term interest rates affect the
stock returns and volatility in the EMU countries; this effect is considerably stronger
in the bear market than in the bull market in most of the EMU countries, and an in-
crease in interest rates has a larger effect on the EMU stock returns and volatility than
a similar drop. It is also confirmed in the out-of-sample forecasted portfolio performance
that the EMS GJR-M model can better describe volatility dynamics and provide more
powerful portfolio performance prediction than the models without interest rates’ im-
pact and regime switching. Our results are of importance not only to the policymaker
anticipating the market response to announced and implemented policies, but also to
financial-market participants making effective investment decisions and formulating ap-
propriate risk-management strategies.
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Tables

Table 4.1: Estimated Parameters from the Monte Carlo Simulation

B1 B2 ajp Qg9 Q11 Q21 Q12 Q22 Q13 Q23 el €2
True 0.2000 0.6000 0.1000 0.2000 0.4000 0.5000 0.2000 0.2500 0.1000 0.1500 0.0200 0.0100
Mean 0.2106 0.5678 0.1103 0.1859 0.4104 0.5139 0.2124 0.2445 0.0941 0.1531 0.0149 0.0119
RMSE 0.0169 0.0173 0.0132 0.0122 0.0130 0.0302 0.0338 0.0115 0.0092 0.0030 0.0038 0.0047

Notes: The RMSE is the square root of the mean squared errors between the true and estimated
parameters from all data sets.
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Table 4.2: Descriptive Statistics for Weekly Returns in the EMU Stock
Markets from January 1, 1999, to July 17, 2009, (Weekly Observations)

Mean STD Skewness  Kurtosis ADF test JB test

DAX —0.0044 0.2522  —0.6426 8.0147  —24.0798 0.0010
CAC40 —0.0035 0.2131  —0.8192 8.0416  —24.2817 0.0010
FTSEMIB —0.0085 0.2310 —1.1698 12.9241  —23.5707 0.0010
IBEX35 —0.0003 0.2177  —1.1080 10.6583  —25.5623 0.0010
HEX25 0.0005 0.2556  —0.7829 6.3504  —23.2265 0.0010
ISEQ —0.0086 0.2417  —1.9024 18.4048 —24.6172 0.0010
AEX —0.0093 0.2432  —1.2709 12.6130 —23.4344 0.0010
ATX 0.0079 0.2394  —2.2525 24.8953  —23.5760 0.0010
BEL20 —0.0067 0.2163  —1.4305 13.9584  —23.0917 0.0010
PSI20 —0.0063 0.1815  —1.3557 12.2722 —22.6216 0.0010

Notes: This table reports summary statistics for the index return of the EMU countries.
The ADF test is the augmented Dicky Fuller test and the test statistics are reported.
The JB test is the normality Jarque—Bera test and the p-values are reported. Weekly
returns are calculated as the first difference of the natural logarithm of prices and

then annualized with a square root of 52.
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Table 4.3: Estimated Parameters from the MS GJR-M Model

Volatility equation
Response to [Additional response| Transition LBTest
Index Return equation| Intercept Persistence news to bad news probability Q(20)
81 B2 a19 Qo a1 agzq a1z agg o3 @23 €1 €2
DAX —0.2746 0.0461| 0.0769 0.0042 | 0.2630 0.7150 | 0.1260 0.0686 | 0.3858 0.1829 0.0358 0.0106 | 0.5613
(0.1289)(0.0226) (0.0153)(0.0018)(0.1573) (0.0645)[(0.1287) (0.0384)|(0.0582) (0.0652) [(0.0094)(0.0053),
ok ok ok ok ok * ok ok * ok ok ok ok ok ok ok
CAC40 —0.0789 0.2632| 0.0121 0.0006 | 0.5676 0.7838 | 0.0326 0.0832 | 0.3409  0.0917 0.0122 0.0199 | 0.9045
(0.0533)(0.0834)(0.0010) (0.0004)(0.0364) (0.0641)[(0.0317) (0.0569)|(0.0581) (0.0571) [(0.0056)(0.0062)
K K K K * K K K K K K * K K K
FTSEMIB|—0.1396 0.1193| 0.0236 0.0006 [ 0.1842 0.7984 | 0.1064 0.1221| 0.6018  0.0612 0.0132 0.0110| 0.6084
(0.0577)(0.0616)(0.0047) (0.0002)(0.0961) (0.0390)[(0.0804) (0.0369)|(0.1313) (0.0326) [(0.0070)(0.0063)
* K * K K K K * K K K K K K * * *
IBEX35 |—0.1735 0.2439]| 0.0133 0.0005 | 0.7177 0.8429 | 0.0265 0.0470| 0.1413  0.0768 0.0432 0.0400 | 0.2582
(0.0687)(0.0781)(0.0035) (0.0002)(0.0653) (0.0538)[(0.0238) (0.0377)[(0.0613) (0.0391) [(0.0199)(0.0224)
ok ok ok ok ok ok ok ok ok ok ok ok ok ok *
HEX25 —0.2312 0.2089| 0.0536 0.0017 | 0.3843 0.7839 | 0.0587 0.1437 | 0.3002 0.0265 0.0442 0.0238| 0.3058
(0.0906) (0.0672) (0.0232) (0.0009)(0.1771) (0.0488)[(0.0578) (0.0399)|(0.1532) (0.0240) [(0.0181)(0.0085)|
ok ok ok ok * ok ok ok ok ok * ok ok ok
AEX —0.1129 0.0648 | 0.0078 0.0028 | 0.7060 0.6847 | 0.0350 0.1042 | 0.2231 0.1938 0.0349 0.0344 | 0.7190
(0.0606) (0.0644) (0.0033)(0.0017)|(0.0900) (0.1056)[(0.0347) (0.0834)|(0.0833) (0.0931) [(0.0088)(0.0089),
* ok * ok ok ok ok ok ok ok ok ok ok ok
ISEQ —0.2346 0.1328| 0.0175 0.0005 | 0.4750 0.8903 | 0.0608 0.0521 | 0.3724 0.0365 0.0613 0.0353| 0.7050
(0.0970)(0.0575) (0.0044) (0.0001)|(0.0639) (0.0332)[(0.0654) (0.0321)[(0.1106) (0.0233) [(0.0184)(0.0149)|
* K * K K K K K K K K K K K K K * K
ATX —0.1497 0.2552| 0.0101 0.0017 | 0.5150 0.7361| 0.0739 0.2151 | 0.3604  0.0272 0.0423 0.0368| 0.8360
(0.0902)(0.0767)(0.0047) (0.0008)(0.1137)(0.0710)[(0.0616) (0.0838)|(0.1265) (0.0301) [(0.0068)(0.0079)|
* K K * K * K K K K K * K K K K K K K
BEL20 —0.1777 0.2108 | 0.0151 0.0004 | 0.4611 0.8551 | 0.0421 0.0765 | 0.4434  0.0343 0.0345 0.0333| 0.7282
(0.0652)(0.0701)[(0.0070) (0.0001)(0.1559) (0.0417)[(0.0385) (0.0415)|(0.1335) (0.0277) [(0.0086)(0.0087)
KK K K * K K K K K K K * K K K K K K
PSI20 —0.3229 0.2492| 0.0155 0.0004 | 0.1858 0.8522| 0.0929 0.1132 | 0.6177  0.0151 0.0372 0.0310| 0.1463
(0.0891)(0.0749)(0.0035) (0.0001)|(0.1326) (0.0316)[(0.0853) (0.0322)|(0.1516) (0.0144) [(0.0085)(0.0093)
kK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Notes: This table shows the estimated parameters of the MS GJR-M model, without the interest-rate impact,
and specified in equation (4.2). Values in parentheses under the estimates indicate standard errors. ***, ** and
* denote significance at 1%, 5%, and 10% levels, respectively. The sample period is from January 1, 1999, to July
17, 2009, (557 weekly observations). Q(20) is the Ljung—Box test statistic of the standard residuals of order 20
(p-values are reported)
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Table 4.4: The Goodness of Fit of Various Models

MSE
MSGJR-M
Index GARCH GJR GJR-M  MSGJR-M  with interest impact
DAX 0.0279 0.0266 0.0247 0.0241 0.0237
CAC40 0.0240 0.02261 0.0226 0.0212 0.0207
FTSEMIB 0.0275 0.0261 0.0252 0.0232 0.0216
IBEX35 0.0228 0.0226 0.0216 0.0195 0.0191
HEX25 0.0310 0.0311  0.0307 0.0293 0.0277
AEX 0.0297 0.0320 0.0320 0.0263 0.0261
ISEQ 0.0319 0.0295 0.0274 0.0290 0.0295
ATX 0.0332 0.0300 0.0338 0.0315 0.0300
BEL20 0.0269 0.2671 0.0241 0.0224 0.0230
PSI20 0.0190 0.0187  0.0179 0.0160 0.0161
MAE
MSGJR-M
Index GARCH GJR  GJR-M MSGJR-M with interest impact
DAX 0.1248 0.1206 0.1171 0.1144 0.1157
CAC40 0.1177 0.1126 0.1128 0.1091 0.1077
FTSEMIB 0.1158 0.1134  0.1096 0.1060 0.1035
IBEX35 0.1126 0.1110 0.1097 0.1030 0.1032
HEX25 0.1328 0.1327 0.1298 0.1275 0.1268
AEX 0.1200 0.1229 0.1206 0.1101 0.1103
ISEQ 0.1240 0.1151 0.1112 0.1177 0.1184
ATX 0.1211 0.1194 0.1195 0.1143 0.1106
BEL20 0.1173 0.1141  0.1076 0.1060 0.1096
PSI20 0.0975 0.1016 0.0982 0.0933 0.0930
AIC
MSGJR-M
Index GARCH GJR  GJR-M MSGJR-M with interest impact
DAX —1978.8 —2005.5 —2043.1 —2046.7 —2050.2
CAC40 —2062.5 —2095.1 —2092.5 —2119.0 —2124.8
FTSEMIB —1986.7 —2016.03 —2033.0 —2068.5 —2101.5
IBEX35 —2091.0 —-2095.1 —-2119.5 —2166.3 —2171.5
HEX25 —1919.5 —-1917.0 —-1923.8 —1939.4 —1965.1
AEX —1943.2 —-1902.4 —1900.3 —1998.5 —2002.5
ISEQ —1903.5 —1948.23 —1985.6 ~ —1945.4 —1936.2
ATX —1881.4 —1854.5 —1870.4 —1898.2 —1919.5
BEL20 —1997.7 —2002.49 —2056.8 —2088.1 —2067.7
PSI20 —2191.1 —2200.34 —2229.0 —2273.4 —2265.5

Notes: This table reports the three goodness-of-fit measures in terms of the MSE, the MAE, and
the AIC for various models in the EMU countries. These measures are calculated according to
equation (4.18). The models are the GARCH, GJR, GJR in Mean, MS GJR in Mean, and the
MS GJR in Mean with the interest-rate impact.
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Table 4.5: Parameter Differences Between Bull and Bear Markets

Additional
Response to  response to
Index Return Intercept Persistence news bad news
B ag oy ol as
DAX —0.3208 0.0727 —0.4520 0.0575 0.2029
(0.1374) (0.0154) (0.1700) (0.1343) (0.0874)
*k K%k K%k xk
CAC40 —0.3421 0.0114 —0.2162 —0.0506 0.2492
(0.0990) (0.0011) (0.0737) (0.0651) (0.0815)
KKk KKk KKk KKk
FTSEMIB —0.2588 0.0230 —0.6141 —0.0157 0.5405
(0.0844) (0.0047) (0.1037) (0.0885) (0.1353)
*kk *kk *kk K%k
IBEX35 —0.4173 0.0127 —0.1253 —0.0205 0.0646
(0.1040) (0.0035) (0.0846) (0.0446) (0.0727)
*kk *kk
HEX25 —0.4402 0.0519 —0.3996 —0.0850 0.2737
(0.1128) (0.0232) (0.1837) (0.0703) (0.1551)
KKk *k *ok *
AEX —0.1777 0.0050 0.0213 —0.0692 0.0293
(0.0884) (0.0037) (0.1387) (0.0903) (0.1249)
*k
ISEQ —0.3675 0.0170 —0.4153 0.0087 0.3360
(0.1127) (0.0044) (0.0720) (0.0729) (0.1130)
KKk KKk KKk K%k
ATX 0.4048 0.0084 0.2210 0.1412 0.3333
(0.1184) (0.0048) (0.1340) (0.1040) (0.1301)
*kk * * xk
BEL20 0.3885 0.0147 0.3940 0.0344 0.4092
(0.0957) (0.0070) (0.1614) (0.0566) (0.1364)
KKk *k ®k K%k
PSI20 0.5721 0.0151 0.6664 0.0203 0.6026
(0.1164) (0.0035) (0.1364) (0.0912) (0.1523)
*kk *kk *kk K%k

Notes: This table shows the parameter differences (the parameter value in bear
markets minus the parameter value in bull markets). All parameters are estimated
from the MS GJR-M model. Values in parentheses under the estimates indicate
standard errors. *** ** and * denote significance at the level of 1%, 5%, and

10%, respectively.
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Table 4.6: Estimated Parameters from the MS GJR-M Model with the Interest Rate Impact

Volatility equation

Additional Additional response

Response to response to Response to to increased Transition

Index Return equation Intercept Persistence News bad news interest rates interest rates probability

B1 B2 a1 20 ail az1 Q12 a2 a13 23 Q14 Qg4 als azs el D)
DAX —0.1573  0.0995 0.0309 0.0041 | 0.3387 0.6449 | 0.0710 0.0540 | 0.4021 0.2360 | 0.1747 0.0331 | 0.2085 0.0346 0.0379 0.0288
(0.0793) (0.0821) |(0.0134)(0.0021) | (0.1908)(0.1076) | (0.0757)(0.0486) | (0.1860)(0.0839) | (0.0804)(0.0224) | (0.0698)  (0.0258) (0.0082)(0.0091)

koK Kok * * koK Kok koK koK KoKk koK koK
CAC40 —0.2080 0.2254 0.0247 0.0007 | 0.2288 0.7398 | 0.0425 0.0706 | 0.4727 0.1450 | 0.1470 0.0290 | 0.1854 0.0388 0.0424 0.0389
(0.0751) (0.0775) |(0.0076)(0.0005) | (0.1658)(0.0625) | (0.0413)(0.0566) | (0.1678)(0.0686) | (0.0792)(0.0216) | (0.0825)  (0.0241) (0.0063)(0.0078)

Kk Kk Kk Kk % Kk % Kk * K% Kk % Kk %
FTSEMIB|—0.1074 0.0746 0.0246 0.0005 | 0.2463 0.8343 | 0.1145 0.0569 | 0.4565 0.0835 | 0.1361 0.0220 | 0.1387 0.0183 0.0623 0.0312
(0.0516) (0.0489) |(0.0088)(0.0004) | (0.1591)(0.0524) | (0.1115)(0.0394) | (0.1896)(0.0519) | (0.0485)(0.0129) | (0.0484)  (0.0128) (0.0184)(0.0111)

K% Kk Kk % Kk Kk % * Kk Kk % Kk
IBEX35 |—0.2165 0.1838 0.0207 0.0008 | 0.4118 0.8059 | 0.0623 0.0522 | 0.2186 0.1125 | 0.2082 0.0174 | 0.2297 0.0279 0.0419 0.0317
(0.0855) (0.0621) |(0.0090)(0.0007) | (0.1811)(0.0690) | (0.0592)(0.0357) | (0.1378)(0.0704) | (0.0684)(0.0146) | (0.0605)  (0.0224) (0.0064)(0.0089)

koK KoKk ok koK koK koK KoKk koK koK
HEX25 —0.2642  0.1589 0.0580 0.0026 | 0.4295 0.7456 | 0.0538 0.1071 | 0.1472 0.0700 | 0.1758 0.0367 | 0.1871 0.0501 0.0401 0.0219
(0.0956) (0.0597) |(0.0377)(0.0014) | (0.2823)(0.0711) | (0.0568)(0.0496) | (0.1388)(0.0520) | (0.0826)(0.0250) | (0.0810)  (0.0280) (0.0070)(0.0080)

Kk Kk * Kk % K% K% K% * Kk % Kk %
AEX —0.1149 0.1306 0.0154 0.0012 | 0.5605 0.7656 | 0.0791 0.0350 | 0.2777 0.1556 | 0.1045 0.0221 | 0.1432 0.0192 0.0545 0.0446
(0.0613) (0.0611) |(0.0079)(0.0007) | (0.1393)(0.0619) | (0.0748)(0.0295) | (0.1306)(0.0624) | (0.0569)(0.0125) | (0.0455)  (0.0136) (0.0202)(0.0152)

* K% * Kk % Kk % Kk Kk * * Kk Kk % Kk %
ISEQ —0.2543 0.1041 0.0298 0.0015 | 0.4203 0.7666 | 0.0794 0.0418 | 0.3359 0.1496 | 0.1750 0.0236 | 0.2208 0.0201 0.0413 0.0289
(0.1039) (0.0703) |(0.0148)(0.0012) | (0.1584)(0.0733) | (0.0740)(0.0352) | (0.1515)(0.0651) | (0.0810)(0.0155) | (0.0660)  (0.0172) (0.0068)(0.0092)

ok Kok koK koK Kok Kok ok KoKk koK koK
ATX —0.1899 0.2072 0.0247 0.0061 | 0.3674 0.5517 | 0.1792 0.0695 | 0.2909 0.1832 | 0.1806 0.0209 | 0.1818 0.0190 0.0403 0.0252
(0.1031) (0.0660) |(0.0194)(0.0030) | (0.1529)(0.1569) | (0.1377)(0.0592) | (0.1935)(0.0954) | (0.0638)(0.0191) | (0.0653)  (0.0209) (0.0063)(0.0086)

* KoKk ok koK koK * koK KoKk koK koK
BEL20 —0.1075 0.1446 0.0209 0.0005 | 0.3488 0.8220 | 0.0486 0.0651 | 0.4825 0.0571 | 0.0810 0.0203 | 0.1108 0.0235 0.0675 0.0447
(0.0673) (0.0662) |(0.0091)(0.0003) | (0.2004)(0.0528) | (0.0514)(0.0418) | (0.1870)(0.0427) | (0.0574)(0.0131) | (0.0560) (0.0138) (0.0174)(0.0135)

K% Kk * Kk % Kk % K% * Kk % Kk %
PSI20 —0.3200 0.2053 0.0161 0.0003 | 0.1629 0.8978 | 0.0765 0.0347 | 0.5371 0.0148 | 0.1712 0.0103 | 0.1915 0.0516 0.0332 0.0239
(0.0942) (0.0609) |(0.0033)(0.0000) | (0.1034)(0.0287) | (0.0672)(0.0316) | (0.1722)(0.0138) | (0.0863)(0.0085) | (0.0763)  (0.0207) (0.0094)(0.0085)

KoKk KoKk KoKk KoKk koK koK ok ok Kok koK koK

Notes: This table shows the estimated parameters from the MS GJR-M model with the short-term interest-rate impact specified in equation 4.4 in the EMU

area. *** ¥ “and * denote significance at 1%, 5%, and 10% levels, respectively. Values in parentheses under the estimates indicate standard errors.
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TABLES

Table 4.7: Asset Allocation Performance Results

A=20 A=10 A=5 A=1
Panel 1: Unrestricted strategy
(A) Mean
MS GJR-M with interest 0.7661  0.4036  0.2224  0.0774
MS GJR-M 0.0792  0.0602  0.0508  0.0432
GJR-M —0.0086  0.0134  0.0244  0.0332
GJR —0.0123  0.0091  0.0197  0.0283
(B) Volatility
MS GJR-M with interest 49519 25311  1.3307  0.4113
MS GJR-M 5.2041  2.6536  1.3889  0.4184
GJR-M 0.5074  0.3210  0.2520  0.2258
GJR 0.2412  0.2272  0.2225  0.2204
(C) Sharp ratio
MS GJR-M with interest 0.0391  0.0395  0.0397  0.0356
MS GJR-M 0.0118  0.0157  0.0210  0.0307
GJR-M —0.0119  0.0012  0.0100  0.0181
GJR —0.0011  0.0056  0.0106  0.0157
Panel 2: Restricted strategy
(A) Mean
MS GJR-M with interest 0.0562  0.0558  0.0549  0.0565
MS GJR-M 0.0419  0.0419  0.0419  0.0419
GJR-M 0.0229  0.0278  0.0341  0.0353
GJR 0.0194  0.0218  0.0234  0.0305
(B) Volatility
MS GJR-M with interest 0.2401  0.2405  0.2410  0.2410
MS GJR-M 0.2289  0.2289  0.2289  0.2289
GJR-M 0.2152  0.2144  0.2151  0.2205
GJR 0.2509  0.2504 0.2486  0.2322
(C) Sharp ratio
MS GJR-M with interest 0.0318  0.0315 0.0306  0.321
MS GJR-M 0.0261  0.261 0.0261  0.0261
GJR-M 0.0130  0.0156  0.0200  0.0205
GJR 0.0082  0.0105 0.0124  0.0169

Notes: This table shows the mean of the portfolio returns, the mean of
the portfolio variances, and the mean of the Sharp Ratio of Portfolio over
the out-of-sample forecast periods for various models and with respect to
different risk tolerance coefficients. Panel 1 is the results for the unrestricted
strategy, short selling is allowed. The panel 2 reports the asset allocation
results for the restricted results, short selling is not allowed. X is the risk

tolerance coefficient.

125



Figures

Figure 4.1: Estimated results for simulated data
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Note: This figure plots the estimation results of the randomly chosen simulated 1,000 data points.
The first and second plots are the true and estimated volatility, and the last plot is the true and
estimated probability of regime 1.
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FIGURES

Figure 4.2: Bear regime probability
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Note: This figure plots the estimated probability of the bear regime of the EMU equity markets.
The solid line is the estimated probability, and the red dots are the returns. The scale of the

return can be found on the y-axis on the right hand side.
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Figure 4.3: DAX news impact surface—3D Plot
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Figure 4.4: News impact surface contour plots
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Note: This figure plots the news impact surface contour plots. The first and third columns are
the contour plots of the news impact surface of each EMU equity market in the bear regime.
The second and forth columns are the contour plots in the bull regime. The X axis represents
levels of interest rates, the Y axis represents market news. The color indicates the level of the
volatility. The higher the volatility, the brighter its color.



FIGURES 131

Figure 4.5: Plots of the out-of-sample forecasted and true volatility
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Note: This figure plots the true and the out-of-sample forecasted volatility from the GJR, GJR-
in-Mean, MS GJR-in-mean, and MS GJR-in-mean with the interest-rate impact models. The
upper plot is the volatility for Germany’s DAX index. The lower plot is the volatility of France’s
CAC40 Index. The solid line represents the volatility estimate and the dashed line is the true
volatility, where the absolute value of the returns is the true volatility proxy.
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