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A quantitative approach for calculating the noise due to the stochastic nature of multimode laser radiation in 
nonlinear-optical processes is presented. The model is applicable when it is appropriate to describe the nonlinear 
interaction with a perturbation expansion in the incoming field, and it is derived under the assumption of 
independent individual laser-mode intensities and phases. It is possible to separate noise contributions from 
mode-amplitude and -phase fluctuations, respectively, and also to identify the noise contribution from each laser 
source. For coherent anti-Stokes Raman scattering (CARS) thermometry, the model shows that with a single
mode pump laser the stochastic phases in the dye laser do not generate noise in the conventional approach and that 
amplitude fluctuations in the dye laser(s) do not (significantly) generate noise in the dual-broadband approaches. 
Thus, in the dual-broadband approaches, the spectral noise in the Stokes beam is not a lower limit for the noise in 
the CARS beam. The model seems to overestimate the noise due to phase fluctuations and to underestimate the 
noise due to amplitude fluctuations. 

1. INTRODUCTION 

There has been great interest lately in various ways in which 
laser statistics influence coherent anti-Stokes Raman scat~ 
tering (CARS) spectra.I-10 As CARS is used for tempera~ 
ture and concentration measurements, 11 it is important to 
characterize the CARS process accurately. It is generally 
assumed that the statistical fluctuations of the laser fields 
impose a fundamental limitation on the accuracy that can be 
obtained in CARS thermometry [e.g., see Refs. 2 and 12-14]. 
There has been a lively debate on whether the best accuracy 
in CARS thermometry is obtained with a multimode or a 
single-mode pump laser.4·6,8-IO,I3 Recently new approaches 
to CARS thermometry have been demonstrated.15-17 In one 
of these approaches (rotational dual-broadband CARS) the 
noise obtained in non~Raman resonant spectra was a factor 
of 2 lower than with a conventional CARS setup.17 Current~ 
ly the optimum configuration of a CARS thermometry setup 
is an open question. Comparisons of the experimental char~ 
acteristics of CARS spectra recorded using a multimode or a 
single-mode pump laser have been performed for the con
ventional CARS setup. These have demonstrated lower 
noise for non-Raman-resonant spectra recorded with a sin
gle-mode YAG laser than those recorded with a multimode 
YAG laser but significantly higher noise for a single-mode 
than for a multimode YAG laser when Raman-resonant 
spectra were recorded.4•9•14 A qualitative explanation of the 
comparatively high noise level in the Raman-resonant sin
gle-mode spectra has been proposed.9•10 However, the mod
el used there failed to explain why a single-mode laser yield
ed lower noise than a multimode laser in non-Raman-reso-
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nant spectra. We have thus developed a quantitative model 
that can be used to estimate the noise in a general nonlinear
optical process, provided that the induced polarization can 
be expressed by using a perturbation expansion in the elec
tric fields and that the generated radiation has negligible 
intensity in comparison with the intensity of the incoming 
fields. This model has been used to calculate the noise in 
different experimental approaches to broadband CARS. 

The CARS process is schematicaUy depicted in Fig. 1. 
The most common experimental setup for CARS thermome
try utilizes a Nd:YAG-pumped dye-laser system, in which 
the photons at frequencies Wa and we are taken from the 
frequency-doubled YAG laser light and the photon at fre
quency wb is provided by the dye laser. In broadband CARS 
thermometry the dye laser is operated in broadband mode 
(FWHM >100 cm-1). In this way the population differ
ences in all rotational-vibrational transitions are probed 
simultaneously. The generated anti-Stokes beam, with the 
frequency Was. is dispersed in a spectrograph and imaged 
onto a diode array. In this way the anti-Stokes spectrum of 
the investigated molecule is obtained in one single laser 
shot.18 

Considerable effort has been put into theoretical modeling 
of CARS spectra. The calculation of theoretical spectra 
involves integration over all laser frequencies.19- 23 Clearly 
this is much simplified if a single-mode pump laser is used, 
as the laser linewidth is then considerably smaller than the 
Raman Iinewidth and the laser radiation can simply be de
scribed by a delta function in frequency space. For the 
multimode YAG laser, an accurate calculation turns out to 
be quite complicated.5- 7 CARS spectra recorded with the 
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Fig. 1. Conceptual picture of the CARS process. wa. wb, and we 
represent the frequencies of the incoming photons, and Was repr~
sents the frequency of the CARS photon. A Raman resonance 1s 
indicated. 

conventional setup are generated by a second-order process 
in the frequency-doubled YAG laser light. Thus, to calcu
late such a CARS spectrum, the autocorrelation function of 
the frequency-doubled YAG radiation must be known. 
(This is the case in principle; however, for temperature de
terminations, details of the laser statistics may not in prac
tice necessarily affect the result to any significant degree. 
Compare, e.g., Ref. 7 .) The more complicated calculation is 
an argument against using a multimode YAG laser in CARS 
thermometry, in particular as the autocorrelation function 
appears to be a characteristic of each individuallaser6•7 and 
also varies with the operating conditions.3•24 Thus, al
though yielding higher noise in Raman resonant spectra, the 
single-mode laser is more attractive from a modeling point of 
view. 

At this point the new experimental approaches to CARS 
seem to have attractive properties. In these, only one pho
ton from the Y AG laser is used for the generation of each 
anti-Stokes photon, thus eliminating a major computational 
difficulty. In these so-called dual-broadband techniques, 
two broadband dye lasers drive the vibrational Raman reso
nance, 15 or, in the case of rotational CARS, both photons 
driving the Raman resonance may actually be provided by 
one single broadband dye laser .16•17 The Y AG laser beam is 
then scattered off the vibrating molecules. The three ex
perimental approaches, conventional CARS, dual-broad
band CARS, and rotational dual-broadband CARS, hence
forth abbreviated CC, DBC, and RDBC, respectively, are 
conceptually described in Fig. 1 and Table 1. 

As usual, in the case of broadband CARS,2•4•8•9 noise is here 
defined as a(I)/(1), where a(I) is the shot-to-shot standard 
deviation of the intensity I, the anti-Stokes intensity regis
tered by a diode, and (!) is the average intensity registered 
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by the diode. The weak-signallimit, where, e.g., shot noise, 
Johnson noise, and incoherent background must be taken 
into account, was previously analyzed for several different 
four-wave-mixing processes (Ref. 25 and Ref. 26, p. 156). 
The present analysis is primarily valid for the high-signal
intensity limit, where the noise level is primarily determined 
by the shot-to-shot fluctuations in the laser-mode phases 
and intensities. A main feature of the present model is that 
the noise contributions from the stochastic laser-mode 
phases and the stochastic laser-mode intensities can be cal
culated separately and that the noise contribution from each 
laser source is obtained separately. A simplified physical 
picture of the different sources of noise, as defined in this 
paper, can be obtained by considering two electric-field 
modes, Ea and Eb, with amplitudes a and b and frequencies 
wa and wb and phases Oa and ()b, where 

Ea =a exp[i(wat +()a)], 

Eb = b exp[i(wbt +()b)], 

and t is time. 
The intensity (10) from such a field would be 

! 0 = lEa+ Ebl 2 = a 2 + b2 + 2ab cos[(wa- wb)t +()a- Ob]. 

The noise due to shot-to-shot fluctuations in the term a2 (b2) 

is considered to arise from mode-intensity fluctuations in 
mode a (b), and the noise due to shot-to-shot fluctuations in 
the cross term 

2ab cos[(wa- wb)t +()a- Ob] 

is considered to arise from phase fluctuations. It may be 
noted that in contrast to the two first terms (a2, b2) the 
average intensity contribution from several shots is zero for 
the cross term. Noise due to phase fluctuations is often 
referred to as mode beating. We have used a notation in 
which we call the noise from the cross term mode beating if 
wa ~ Wb and phase incoherence if Wa = Wb· The multimode 
laser fields are modeled as a sum of a large number of modes 
with independent phases and amplitudes. This is a com
monly used representation for the radiation from a broad
band laser. 27 The modes in the frequency-doubled Y AG 
laser radiation are, however, not strictly independent be
cause partial mode locking occurs in the frequency-doubling 
process.1·6 Also, a number of publications have appeared 
lately that indicate that this representation may not be cor
rect for a broadband pulsed dye laser; at least this seems to 
be the case if the number of modes is small (""'10).28•29 To 
keep the problem tractable, independent phases and ampli
tudes have still been assumed for all fields. Spatial effects 
in the mode structure2•6,30 and the time dependence of both 
phases and amplitudes have also been neglected. Given the 
assumptions above, a general expression for the noise in a 
four-wave-mixing process is given in Section 2. In Section 3 

Table 1. Laser Types Used for Each of the Steps in 
the CARS Process Depicted in Fig. 1 

Pump laser (narrow band) 
First broadband dye laser 
Second broadband dye laser 

CC DCB RDBC 
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we describe how we have applied the approach outlined in 
Section 2 to calculate the noise in non-Raman resonant 
CARS and to rotational Raman-resonant CARS for the case 
in which the spectral width of the pump laser is much broad
er than the Raman resonance. A discussion of some crucial 
details in the evaluation of the expressions for the noise and 
a physical interpretation of the different mechanisms that 
give rise to the noise are given in Section 4. In Section 5 a 
discussion is given, and in Section 6 a summary of the results 
is presented. All explicit calculations and proofs are collect
ed in Appendixes A-E. In Appendix A, we show how, by 
starting with light fields with stochastic-mode amplitudes 
and phases, it is possible to obtain a deterministic expression 
for the mean and variance for a signal generated in a four
wave-mixing process by using three independent light 
soy.rces. In Appendixes B and C examples of the explicit 
calculations of the noise and some mathematical details are 
given. In Appendix D expressions that can be used to calcu
late the noise in a more general n-wave-mixing process are 
given, and, finally, in Appendix E analytical expressions are 
given for the noise in various approaches to CARS as calcu
lated by the presented model. 

2. MODEL FOR CALCULATING NOISE 

The description of the nonlinear interaction is similar to the 
ones in Refs. 6 and 31. The laser fields are described as a 
summation over an infinite number of independent modes: 

_ ~ { 1 (mnc)2 
• 0 } Ec- ~em exp -2 T, + t[(wc + mQc)t + lfm] + c.c. 

Many symbols used in this paper are defined in Table 2. 
Here wao, wb0, and wco are the center frequencies of the multi-

Symbol 

r 

Wi 

Was 

D. a 

T 
t 
I 
(x) 
a(x) 
a(!)/ (I) 

Table 2. Definition of Symbols 

Definition 

Bandwidth of laser i 
Linewidth of Raman resonance 
Spectral width of detection system's instrument func

tion 
(ra2 + rb2 + rc2 + W2)112, where a, b, and c may or may 

not be different 
Mode spacing of laser i 
Frequency of laser i 
Anti-Stokes frequency 
Frequency difference between the center frequency 

transmitted through the detection system to diode a 
and the frequency where a nonresonant CARS signal 
would have its maximum 

Duration of anti-Stokes pulse 
Time 
Intensity detected by one diode in the diode array 
Expected value of x 
Standard deviation of x 
noise 
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mode fields and c.c. stands for a complex conjugate. fla, Qb, 
and Qc and ra, rb, and rc are mode spacings and linewidths, 
respectively, of the laser sources. The electric-field mode 
amplitudes a, b, and c and phases¢, 8, and If are assumed to 
be stochastic variables varying slowly in time. This time 
dependence will be neglected henceforth. ak2, bk2, and ck2 

belong to the distributions r(1, ia), r(1, ib), and r(1, ic), 
respectively (see Appendix A), and the phase factors are all 
uniformly distributed in the interval (0, 27r). The phase 
factors have been chosen such that the mode amplitudes are 
real. The lower-order spatial modes focus more tightly and 
are thus the ones mainly contributing to the generation of 
the CARS signal. 2 The lasers are assumed to operate in 
their lowest-order spatial mode, and differences in beam 
overlap are neglected. Thus the spatial integration may be 
replaced by multiplication by a constant.6 

In the weak-interaction limit the nonlinear polarization 
[P(3)) for a general four-wave-mixing process can be written 
as (Ref. 26, p. 46) 

(1) 

where x(3) is the third-order nonlinear susceptibility. In the 
weak-signal limit the generated electric field is proportional 
to the induced polarization. In particular, the field at fre
quencies near 

[which would correspond to the anti-Stokes field (Eas) in 
CARS] is given by 

Eas rv L Eas<wkrm) =I I I Xk~makbrcm 
krm k r m 

X exp{i[(wa0 - wb0 + w/ + kQa- rQb + mQc)t 

+ 8k - ¢r + lfm)} + C.C., 

where Wkrm is the frequency of the generated field for the 
particular mode combination k, r, and m, and xk~m may be 
frequency dependent. For the generated intensity (I) at, 
e.g., frequency Was = Wa - Wb + We, we may write 

I= I akalbrbscmcn exp[i(Ok- 8l- ¢r + ¢s + lfm- lfn)] 
klr 

smn 

X H(k, l, r, s, m, n). 

His a deterministic function containing, e.g., the third-order 
nonlinear susceptibility, the response of the detection sys
tem (to be briefly discussed in Section 3), and the nonsto
chastic parts of the laser fields. The expected value E(I) 
and the variance V(I) for the intensity above (assuming 
three independent laser sources) can be written in the simple 
form (see Appendix A) 

E(I) = iaibic I H(k, k, r, r, m, m), (2a) 

krm 
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V(l) = (iaibic) 2 I [H(klrrmm)H(klssnn) 
klr 

smn 

+ H(kkrsmm)H(llrsnn) + H(kkrrmn)H(llssmn) 

+ H(kkrsmn)H(llrsmn) + H(klrrmn)H(klssmn) 

+ H(klrsmm)H(klrsnn) + H(klrsmn)H(klrsmn)]. 

(2b) 

(The commas between indices have been omitted.) Provid
ed that approximation (1) is valid and the generated field is 

weak, the variance above is a general analytical expression 
for the fluctuations in a signal from a four-wave-mixing 
process, where all the process-dependent parts are con
tained in the deterministic function H. In particular, it may 
be noted that the expression is valid for all frequency combi
nations w4 = ±wa ± Wb ± We· In Appendix D we give more
general expressions, which can be used to calculate the noise 
in a nonlinear process in which an arbitrary number of pho
tons are taken from each laser source. Consequently, these 
expressions are applicable to the CC and RDBC cases. With 
N different lasers and if we take fk photons from laser k, the 
variance will contain 

N N 

II <2tk)! - II <h!)2 

k=l . k=l 

terms, and the expected value will contain 
N 

IItk! 
k=l 

terms. Thus, unless the function H has some symmetries in 
the permutation of the indices (as is the case in, e.g., nonres
onant CC, where the number of terms in the variance is 
reduced from 44 to 5 by symmetry), the large number of 
terms begins to make the explicit evaluation rather cumber
some when more than one photon is taken from a laser 
source. 

3. APPLICATION TO · COHERENT ANTI
STOKES RAMAN SCATTERING 

In this section we describe how the model in Section 2 can be 
applied to calculate the noise in non-Raman-resonant and 
Raman-resonant broadband CARS. The signal in broad
band CARS thermometry is normally dispersed by a spec
trograph and registered by a diode array. It is assumed that 
each diode in the detector array sees the detection system as 
a Gaussian with a width W. The electric field reaching a 
diode in the diode array is then given by 

I Eas(Wkrm)Sa(Wkrm), 
krm 
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where [Sa(w)]2 is the detection system's instrument function 
for diode a, chosen such that Sa(w) = exp[-(wa- w) 2/(2W2)], 
and wa is the center frequency impinging upon diode a. The 
nonlinear third-order susceptibility x<3> is a real constant in 
the non-Raman-resonant case. The anti-Stokes intensity 
registered by the detector is then proportional to 

1 JT/2 _ _ I- Eas(wkrm)Sa(wkrm)Eas(wlsn)Sa(Wzsn)dt = J(D..a), 
krm T -T/2 

lsn 

yielding 

(3) 

where 

. sin(x) 
smc(x) = --, 

X 

and 

D,.a = Wa- WaO + WbO- WcO• 

Consider a single diode in the diode-array detector. Assume 
that the intensity (I) in this diode is normalized by dividing 
by the total intensity recorded by all diodes. This is normal
ly done in order to eliminate the overall intensity fluctua
tions in the anti-Stokes pulse such that only the spectral 
fluctuations in the laser pulses contribute to the noise.4•9 

The normalized intensity (IN) in an arbitrary diode a may 
then be written as 

where the summation over (3 is made over all diodes in the 
diode array. The mean and variance for IN can be estimated 
by using the first-order Gaussian approximation32 for the 
ratio between two random variables. For broadband CARS 
the following conditions will generally be valid (x =a, b, c): 

Qx « min(W, r X), 

TQX » 7r/2. 

(4a) 

(4b) 

The conditions in expressions (4) imply that the summa
tions over mode combinations necessary to calculate the 
intensity, in most cases, may be replaced by integrations 
without significant loss in accuracy. The exceptions when 
this is not the case are discussed in Section 4. The evalua
tion of E(l) and V(l) for the three-laser case is outlined in 
Appendix B. Explicit expressions for the noise calculated 
for non-Raman-resonant CARS using CC, DBC, and RDBC 
are given in Appendix E. In the calculations for single
mode pump laser cases the single-mode fields are assumed to 
be deterministic and are represented by delta functions in 
frequency space. For Raman-resonant CARS the calcula-
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tion is restricted to the special case of a single Raman line 
centered at the transmission maximum of the detection sys
tem. With the exception of the RDBC case, the laser pro
files are assumed to be tuned to give maximum intensity at 
the corresponding anti-Stokes wavelength. Thus, for the 
Raman-resonant case, 

where Aa = 0 for CC and DBC. This approach is reasonably 
correct for rotational CARS, where the spacings between the 
Raman resonances are normally larger than the width of the 
instrument function. A vibrational CARS spectrum corre
sponds to an intermediate case, and the non-Raman-reso
nant situation corresponds to a case in which all anti-Stokes 
modes have nearly the same weight. The explicit evaluation 
of the Raman-resonant case, as above, is performed for 

ra, rb, rc, W » r, » 1/T, 

where r, is the width of the Raman resonance. These condi
tions will generally be fulfilled for the Y AG laser pumped 
system operating without an etalon in the Y AG laser, but 
they are normally not fulfilled if an etalon is inserted into the 
YAG laser in order to narrow its bandwidth. In the second 
part of Appendix B the calculation of the noise for the 
Raman-resonant cases is briefly described, and the expres
sions for the noise are given in Appendix E. 

4. ANALYSIS 

One of the main differences between this treatment and the 
previous treatments of noise in broadband CARS2,8,9,l4 is 
that a quantitative estimate is made of the effect that ran
dom phases of the individual modes in the multimode lasers 
will have on the noise. The noise depends critically on how 
the sine function in Eq. (3) is treated in the summation over 
all modes. This point is thus examined in some detail. 
· A necessary requirement for replacing the summations in 

Eqs. (2) by integrations is that there are not too few combi
nations of k, l, r, s, m, n yielding a value of ID.wTI < 1r. 

As an example we have, for CC, 

Aw = (k- l + m- n)fla- (r- s)flb = Pfla + Sflb, 

where P = k - l + m - n and S = s - rare integers. Aw is the 
beat frequency between the anti-Stokes modes kfla- rflb + 
mfla and lfla- sflb + nfla. It is clear that for every P there 
exists an S = SMIN(P) yielding a minimum value of Aw 
(AWMIN) such that AWMIN = !Pfla + SMIN(P)flbl < flb/2. With 
N pump modes these can be combined to a Pin N4 ways, and 
there will be "'4N different values for P. ForT= Io-8 sec 
and flb = 0.01 cm-1, IAwMINTI ~ 37r. AwMIN may be expected 
to be uniformly distributed in the interval ( -37r/T, 37r/T) as 
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P runs through its 4N different values. Thus there will be 
approximately N4/3 pump-mode combinations yielding a 
value of AwT/2 in the interval ( -1r/2, 7r/2), and there will be 
roughly 4N/3 different values of AWMINT in this interval. 
Computer simulations show that even for such small values 
of r a as r alfla = 10, the error in approximating the sum by an 

integral is less than 1%. With a single-mode pump laser, 
however, AWMJN = flb for r ~ s, and there are now no mode
beating terms with a value of AwTin the interval (-61r, 61r). 
Thus terms for which r ~ s will now only give a negligible 
contribution, and the sine function is best replaced by a 
delta function o(r- s). To visualize how the different noise 
terms appear, we examine the expression for the noise in 
non-Raman-resonant DBC [rewritten from Eq. (E3) below]: 

1 O'(I) 1 { ""' flXr X 

U> = (27r)l/4 x~,c -r -[<_r_2 ___ r_x_2_p-,---t2 

+ (k!l.- r!lb + m!l,- ~.)~2 (l!l.- s!lb- nll,- ~.>']} 

X sinc{f [(k- l)fla- (r- s)flb + (m- n)flc]}, 

where the indices have been grouped in pairs. If one and 
only one of the three pairs is different, as in the first three 
terms in Eq. (2b) [corresponding to the first three terms, 
respectively, in Eq. (6)], the sine function is approximated 
by a delta function, as discussed above. This is explicitly 
done in Appendix B by setting I: H(k, l, r, r, m, m)H(k, l, s, s, 
n, n) ~ f H(k, k, r, r, m, m)H(k, k, s, s, n, n) for the first term 
in Eq. (2b). If the first-order Gaussian approximation is 
used to calculate the variance for a function F, which is a 
function of the independent stochastic variables xi, i = 1, 2, 
3, ... , we have 
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where the index E indicates that the derivative is to be 
evaluated at the expected values of Xi. The first term in Eq. 
(6) is (apart from a numerical factor) equal to 

in the Gaussian approximation, where ak are the stochastic
mode amplitudes in laser a andiN is the normalized diode 
intensity. Thus the term above can be interpreted as arising 
from amplitude fluctuations in the modes from laser a. As 
can be seen from Eq. (6), each of the first three terms is 
inversely proportional to the square root of the number of 
modes from one of the lasers contributing to the signal in 
that particular diode. Thus, for all three lasers, there is one 
noise contribution due to stochastic-mode-intensity (or -am
plitude) variations. In non-Raman-resonant CARS the sig
nal contribution from mode-intensity fluctuations is the 
same for all diodes in the diode array for a laser x with 

rx « (ra2 + rb2 + rc2 + W2)1/2 

(e.g., a multimode pump laser in CC). For such a case, the 
normalization employed in Section 3 eliminates this noise 
contribution. In Eq. (6) this is manifested through the 
function F!!;., which arises from the normalization [see Eq. 
(B8) below]. 

If the two components in one, and only one, of the three 
pairs of indices in H above are equal, the next three terms in 
Eq. (6) are obtained. If none of the pairs has two indices 
that are equal, then the last term is obtained [compare Eq. 
(2b)]. These last four terms correspond to mode beating 
between anti-Stokes modes. The first three of these terms 
correspond to beating between anti-Stokes modes where, for 
one, and only one, of the lasers, photons from the same mode 
have been used to create the anti-Stokes photons. In the 
last four terms in Eq. (6) none of the lasers contributes a 
photon from the same mode to the different pairs of anti
Stokes components beating against each other. 

A possibly more physical picture of how the mode-beating 
terms contribute to the noise is to consider anti-Stokes elec
tric-field modes with random phases and a mode separation 
!::lw impinging upon a diode after passing the detection sys
tem with an instrument function with a spectral width W. 
The intensity registered by that diode is proportional to the 
square of the electric field averaged over the anti-Stokes 
laser pulse duration T. In Fig. 2 an instrument function 
with a width Wand two electric-field modes, separated by an 
interval !::lw in frequency, is shown. The intensity generated 
by these two modes contains a term oscillating with a fre
quency !::lw. If !::lwT » 1r, this term will average to zero if 
integrated over the laser pulse, but if !::lw < 1r IT, there will 
generally be a net contribution to the intensity registered by 
the diode from the beat signal. By considering all possible 
mode combinations, we can infer that the number of phase
incoherent terms fulfilling the condition !::lwT < 1r is propor
tional to W /T. Because of the random phases, the average 
value of their contribution is zero with a standard deviation 
of (W/T)112• The number of mode combinations contribut
ing to the recorded intensity is proportional to W. Thus this 
noise contribution is proportional to 1/(WT)112, which corre
sponds to the last term in Eq. (6). The three terms before 
this last one can be motivated by similar arguments. 
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Fig. 2. A conceptual picture of an instrument function with the 
spectral width W and two anti-Stokes modes with a frequency 
separation l:l.w transmitted through the detection window. The two 
modes will give rise to a beat signal at frequency l:l.w in the detector. 
The horizontal scale is frequency, and the vertical scale is intensity 
(arbitrary units). 

As a special case, consider now the situation when two 
photons (e.g., a and c) are taken from the same laser. The 
sinc2 function in the term where k ~ l and r = s but m ~ n 
should here again be replaced by o(k - l - m + n) in the 
calculation. The influence of such a term is discussed in 
Ref. 8 for the case r a = r c « r. For such a case all diodes in 
the diode array would experience the same contribution 
from this term, and this noise contribution is, as pointed out 
in Ref. 8, eliminated by the type of normalization that has 
been employed in Section 3 before calculating the noise. If, 
however, the bandwidth of the laser generating this incoher
ent term is large, as in RDBC, this contribution will be 
different for different diodes and can no longer be eliminat
ed by normalization. This term is the main contribution to 
the noise in RDBC. One way to understand this term is to 
consider the mode-beating case first and then to assume that 
the two modes have the same frequency. With two anti
Stokes modes w:s and w:8 , with phases cf>' and cf>", the regis
tered intensity f EasEasdt will contain terms of the type 
Jg' expli[(w:s - w:8)t + cf>' - cf>"]ldt. Assume that a mode 
combination has been found for which w:s exactly equals w:8• 

The recorded signal will then be proportional to cos( cf>' - cf>"). 
The size of this contribution is thus determined by the rela
tive phases of the modes, and, although the mode beating is 
now absent, there will still be a phase-incoherent noise con
tribution from these modes. Furthermore, this contribu
tion will not be decreased by an averaging over the laser 
pulse as a mode-beating term is. Thus this type of phase
incoherent contribution may be expected to be particularly 
strong. If two photons are taken from the same (multi
mode) laser, there will clearly be a large number of mode
combination pairs that have exactly the same frequency. 
An equivalent term arising in sum-frequency generation is 
briefly discussed in Ref. 31. 

5. DISCUSSION 

In deriving the expression for the noise in a nonlinear-opti
cal process the electric fields have been modeled as a sum of 
modes with stochastic and independent amplitudes and 
phases. On the basis of this approach, it is possible to 
separate the noise contribution into two types, one due to 
the random amplitudes and one due to the random phases. 
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Table 3. Values Used When Calculating the Noise in 
Tables 4 and 5a 

Parameter cc DBC RDBC 

r a 0.5 100 100 
rb 100 100 =fa 
~ =~ M M 
Common for All Three Experimental Approaches 

na = nb = nc ~ 0.01 
W= 1.0 
T = 8.3 nsec 
rr = 0.03 

a Units are inverse centimeters if not otherwise stated. All Q's, r's, and W 
must be multiplied by a factor of 21rc, where cis the velocity of light ( =3 X 1010 

em/sec). To convert to FWHM's the r's and W need to be multiplied by a 
factor of 2(ln 2) 112• All quantities are defined in Table 2. 

Table 4. Calculated Noise for Nonresonant CARS 

Percentage Noisea 
cc DBC RDBC 

Parameter SM MM SM MM SM MM 

Mode-amplitude fluctuations 6 6 <1 <1 <1 <1 
Mode beating 8 4 5 4 
Phase-incoherence non mode beating ~o 6 6 
Total (added in quadrature) 6 10 4 5 6 7 

a SM, single-mode pump laser; MM, multimode pump laser. 

Table 5. Calculated Noise in a Spectrum Where a 
Single Raman Resonance Contributes to the Signal in 

Each Diode 

Percentage Noisea 
CC DBC RDBC 

SM MM SM MM SM MM 

Mode-amplitude fluctuations 23 
Mode beating 
Phase-incoherence non mode beating 
Total (added in quadrature) 23 

11 <1 3 <1 4 
3 

23 23 
23 24 

20 15 16 
~o 

23 15 16 

a SM, single-mode pump laser; MM, multimode pump laser. 

The incoherent contribution due to the random phases may, 
as was described in Section 4, be separated into a mode
beating and a non-mode-beating term. For all three tech
niques, CC, DBC, and RDBC, the noise in non-Raman
resonant and Raman-resonant (for the particular situation 
described in Section 3) CARS is calculated for both a multi
mode and a single-mode pump laser by using the data given 
in Table 3. The results of these calculations are given in 
Tables 4 and 5. 

The two types of noise have quite different characteristics. 
The random amplitudes cause variations in the coherent 
intensity contribution to the nonlinear signal. These varia
tions can be reduced by letting as many modes as possible 
participate in the generation of the signal. This is effective
ly what is happening in DBC and RDBC, where the mode
amplitude fluctuation part is consequently negligible. An 
effect of this type was anticipated in the papers originally 
introducing these approaches to CARS.15•17 

The noise from phase fluctuations is, in contrast to the 
amplitude noise, incoherent. Contrary to the case for the 
coherent noise, the incoherent noise is decreased when as 
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few incoherent terms as possible contribute to the signal. 
Thus reducing the coherent noise seems (at least at first 
sight) incompatible with reducing the incoherent noise and 
vice versa. The incoherent-noise contribution arises as soon 
as more than one photon in the wave-mixing process comes 
from a multimode source. (If Tflx < 1r the incoherent-signal 
contribution may also be significant with only one photon 
from a multimode laser.) It may be clarifying to study a 
particular case in more detail. The main noise term in 
Raman-resonant CARS with a single-mode pump laser is 

(Qb/27rrr)I/2 

for CC and RDBC and 

(7a) 

(7b) 

for DBC. In CC the noise comes from mode-amplitude 
variations. The dye-laser mode spacing may then be de
creased in order to increase the number of modes participat
ing in driving the Raman resonance and thus reducing the 
noise. This will be effective until flxT is of the order of 1r. 

Two adjacent dye-laser modes are then so close in frequency 
that mode beating between these two modes will be too slow 
to be averaged to zero during the anti-Stokes pulse, and a 
phase-incoherent contribution will start to appear for the 
CC single-mode case. In a more mathematical approach the · 
fact that flxT is of the order of 1r means that the sinc2 

function in Eq. (3) can no longer be replaced by a delta 
function before the integrations are carried out, as was de
scribed in Section 4. We can actually show that in the limit 
of zero mode spacing, the noise in CC (single mode) will 
decrease to 1/(Trr)112, the noise observed in DBC. As can be 
seen from Table 4, the noise in the non-resonant CC single
mode case is determined by mode-amplitude fluctuations in 
the dye laser only. This is the spectral noise in the dye laser. 
In the case of DBC the total noise is indeed below this value. 
Essentially, the noise in DBC is given by expression (7b) 
with r r exchanged for W. This can also be inferred from Eq. 
(E4 below) and Table 3. 

At this point, it is interesting to compare the calculated 
results with experimental data. In CC (single-mode) we 
essentially need to take only the amplitude noise into ac
count. Snelling et al.9•14 have compared the noise in experi
mental vibrational CARS spectra with theoretical calcula
tions of mode-amplitude noise for this experimental config
uration. A factor-of-1.4 higher noise than predicted by the 
theoretical calculations is observed in the experimental 
spectra for the non-Raman-resonant, as well as the Raman
resonant, case.14 On the other hand, in a comparison with 
the experimental noise measured by Alden et al.I7 for non
Raman-resonant RDBC (multimode), the theoretical model 
presented here overestimates the noise by a factor of 1.8. 
From expressions (7) it is seen that the analytical expres
sions for the main noise term are the same in CC and RDBC, 
and this is, as a matter of fact, also the case for non-Raman
resonant CARS. A more extensive investigation of the 
noise- and temperature-accuracy properties of rotational 
CARS, which may be compared with the present model, is in 
progress.33 In practice, CC and RDBC may not give the 
same noise at all. The theoretical expressions in Eq. (2) and 
in Eqs. (Dl) and (D2) below are exact under the conditions 
given. However, several approximations have been made in 
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order to arrive at them. Transverse modes have been ne
glected, amplitudes and phases have been assumed not to 
change during the laser pulse, and all mode amplitudes and 
phases have been assumed to be independent. Deviations 
from these conditions may affect, e.g., CC and RDBC differ
ently. In particular, we may expect that the CC noise would 
be reduced for a laser experiencing amplitude locking and 
that the RDBC noise would be reduced for a laser experienc
ing phase locking. Spontaneous processes of these types 
have been observed in some multimode dye lasers.28,29,34 

It is thus questionable whether the model can be used for 
quantitative predictions of noise. It may, however, be help
ful for qualitative interpretations and, in particular, it shows 
that if we assume multimode sources with independent 
modes the noise should be larger in non-Raman-resonant 
CARS when the CC multimode approach is used than with 
the CC single-mode approach, as has been shown experi
mentally.4 The mode-beating term contributing in this case 
will also contribute to Raman-resonant spectra and may 
thus be one of the sources of the noise observed by Snelling 
et al.14 in addition to the mode-amplitude noise in their 
multimode spectra. They have noted that (for their system) 
the Stokes and pump laser intensities appear to be correlat
ed in time (on a nanosecond time scale),4·14 and they point 
out that this may be the reason for the increased noise when 
a multimode pump laser is used. As can be seen from Table 
5, the model fails to predict the reduction of noise that is 
obtained in Raman-resonant spectra when a multimode 
pump laser is used. This would be consistent with the fact 
that the model underestimates the noise due to mode-ampli
tude fluctuations and overestimates the noise due to phase 
fluctuations. It is unclear exactly how the statistics of laser 
radiation should deviate from what has been assumed in 
order to reproduce this behavior. 

From the analysis presented here and the comparisons 
with experimental measurements, it seems that to design the 
optimum experimental approach it would be helpful to know 
more about the characteristics of the statistics of the laser 
radiation. One may also attempt to manipulate the laser 
radiation such that it suits the experimental approach cho
sen. An approach to achieve phase locking has recently 
been demonstrated by Li et al. 35 

A completely different approach to reduce the noise in 
CARS measurements would be to use accurate -referencing. 
This has long been considered a difficult task. As discussed 
in Ref. 10, it is important to ascertain that the same modes 
contribute to the reference spectra and the signal for suc
cessful referencing. This seems to be a necessary condition. 
At present, it is, however, unclear to what extent it is a 
sufficient condition. 

6. SUMMARY 

An approach for calculating the noise in a general four-wave
mixing process, in which the generated field is weak and a 
perturbation expansion in the incoming fields is sufficient 
for calculating the induced polarization, has been presented. 
Mode amplitudes and phases of the electromagnetic fields 
have been assumed to be uncorrelated, and their time de
pendence during the laser pulse has been neglected. The 
model is strictly correct only for uncorrelated and uniformly 
distributed laser-mode phases. This model has been used to 
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evaluate explicitly the noise in different experimental ap
proaches to broadband CARS, yielding the following infor
mation on noise in broadband CARS as it is used in thermo
metry. 

Generally two principal sources of noise can be identified. 
From each multimode source there is a term, inversely pro
portional to the square root of the number of modes, that 
contributes to the CARS signal. Normalizing the intensity 
registered by a single diode to the total intensity registered 
by the diode array, as is generally done in CARS thermo
metry, will tend to eliminate this noise contribution for a 
laser with a bandwidth that is much smaller than the convo
luted bandwidth of all laser sources and the instrument 
function. The reason for this is that this contribution will 
be the same for all diodes and that the different types of 
noise contribution are statistically independent. The other 
main source of noise arises from the phase incoherence in the 
multimode lasers, which adds noise primarily through mode 
beating between the generated anti-Stokes modes. If the 
different mode combinations are frequency degenerate, 
noise will. still be added because the phases for different 
mode combinations will be different. The analysis shows 
that it is essentially only the stochastic laser-mode phases 
(and not the stochastic-mode amplitudes) that cause the 
noise in the dual-broadband techniques, and, conversely, it 
is only the stochastic-mode amplitudes (i.e., the spectral 
noise in the dye laser) that cause the noise in the convention
al CARS single-mode pump laser case. Consequently, the 
dye-laser spectral noise is not strictly a limiting factor in the 
temperature accuracy in the dual-broadband approaches. 

The model predicts that the noise in nonresonant broad
band CARS is higher with a multimode YAG laser than with 
a single-mode YAG laser, as a multimode YAG laser will 
contribute to the noise through phase incoherence. This 
result is supported by existing experimental data. 4·9 

In general, however, the model seems to underestimate 
the noise due to amplitude fluctuations and to overestimate 

· the noise due to phase incoherence. As the exact mathemat
ical and statistical description of the laser radiation is un
known, the discrepancy may, in principle, arise from an 
incorrect representation of the laser fields. A conclusion 
that may be drawn from the calculations is that it may be 
possible to reduce the noise and thus to improve the accura
cy in single-shot broadband CARS by using amplitude- and/ 
or phase-locked lasers. 

APPENDIX A 

Consider two complex-valued random variables 

Ij = L akatbrbscmcn expli[(Ok- Oz) - (l/>r- l/>8 ) 

klrsmn 

j = 1, 2, 

where the summation is performed over all integers, includ
ing infinity. The functions Hj are deterministic but other
wise arbitrary, j = 1, 2. lxk2} is a sequence of independent, 
exponentially distributed random variables with mean 
ix(x =a, b, c), and IYk} is a sequence of independent random 
variables that are uniformly distributed over the interval 
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(0, 21r),y = 0, ~. 1/;. Furthermore, these six sequences of real 
random variables are independent of one another. 

We will calculate here the expected value E{I1) and the 
covariance C(l}, /2) between the random variables hand / 2. 
At the end of this appendix we will choose H 1 = H 2 = H, and 
hence /1 = /2 = I, and we will determine E(I) and V(I) = 
C(I, I) as a special case. 

For a complex-valued random variable Z = Z 1 + iZ2, where 
Z1 and Z2 are random real variables, the mean is E(Z) = 
E(Z1) + iE(Z2). The covariance between two complex-val
ued random variables Z and W is 

C(Z, W) = Cl[Z- E(Z)][W- E(W)J} 

= E(ZW) - E(Z)E(W). 

Suppose that X 2 is exponentially distributed with a mean m, 
i.e., that X2 E r(1, m). Then, X2 has the density f(z) = 
(1/m)exp( -z/m) for z > 0, and hence 

E(X2) = m, 

E(X4) =2m2• 

(A1) 

(A2) 

If Y is uniformly distributed over the interval (0, 27r) we 
have, for an integer k, 

if k = 0, and 0 otherwise. 

Mean 
Because the six sequences are independent, we have 

E(I1) = L E(akaz)E(brbs)E(cmcn)E{exp[i(Ok- 81)]1 
klr 
smn 

X E{exp[i(~s- ~r)JlE{exp[i(l/lm -1/ln)]} 

X H 1 (k, l, r, s, m, n). 

(A3) 

Consider the expected value E{exp[i(Ok - Oz)Jl. If k ~ l, Ok 
and 01 are independent, and if we use (A3), we have 

Elexp[i(Ok- 01)]} = E[exp(iOk)]E[e( -i01)] = 0. 

But if k = l, we have Elexp[i(Ok - Oz)J} = 1. 
The same argument for ~ and 1/; gives 

E(Jl) = L E(ak2)E(br2)E(cm2)H1(k, k, r, r, m, m). 
krm 

Finally, from Eq. (A1), we have 

E(/1) = Uaibic) I H1 (k, k, r, r, m, m). 

Covariance 
First we write 

where 

krm 

8 

Ii = 2: S/n), j = 1,2, 
n=l 

(A4) 

S. Kroll and D. Sandell 

S/1) = L akalbrbscmcn exp{i[(Ok- Oz) + (~8 - ~r) 
klrsmn 

k,sl,r,ss,m,Sn 

+ (1/lm -1/ln)]} H/k, l, r, s, m, n), 

S/2) = L akalbrbscm2 exp{i[(Ok- Oz) + (~s- ~r)]} 
klrsm 

k,sl,r,ss 

X Hi(k, l, r, s, m, m), 

Sj(3) = L akalbr2cmcn exp{i[(Ok - Oz) + (1/lm - 1/Jn)]} 
klrmn 

k,sl,m,sn 

X H/k, l, r, r, m, n), 

S/4) = L ak2brbscmcn exp{i[(~s- ~r) + (1/lm -1/ln)]} 
krsmn 

r,ss,m;>tSn 

X H/k, k, r, s, m, n), 

Si(5) = L akatbr2cm2 exp[i(Ok- 81)]H/k, l, r, r, m, m), 
klrm 
k,sl 

S/6) = L ak2brbscm2 exp[i(~s- ~r)]H/k, k, r, s, m, m), 
krsm 
r,ss 

S/7) = L ak2br2cmcn exp[i(l/lm -1/ln)]H/k, k, r, r, m, n), 
krmn 
m;>tSn 

S/8) = L ak2br2cm 2H/k, k, r, r, m, m), j = 1,2. 
krm 

This partition of lj is convenient because we can show that 
C[S1(u), $2(v)] = 0 when u ~ v, and hence 

8 

C{I1, 12) =I C[S1(u), S2(u)]. (A5) 
u=l 

Therefore it only remains to calculate the covariances 

where 

L H 1(k, l, r, s, m, n)H2(o, p, q, t, u, v)C1, 

klrsmnopqtuu 
k;>tSl,r;>tSs,m;>tSn 
o;>tSp,q;>tSt,u;>tSu 

C1 = C(akazbrbscmcn exp{i[(Ok- 01) + (~s- ~r) + (1/lm -lfn)J}, 

a0apbqbtcucu exp{i[(00 - OP) + (~t- ~q) + (1/lu -1/lu)]}). 

Because 
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and because the sequences are independent, we have 

CI = E(akazaoap)E(brbsbqbt)E(cmcncucv) 

X E!exp[i(Ok- Oz + OP- 00 )]}E!exp[i(<Ps- <Pr + <l>q- <f>t)]} 

X E\exp[i(~m- ~n + ~u - ~v)]}. 

Now consider the mean E!exp[i(Ok- Oz + Op- 00 )]}. Clearly, 
if one index differs from the other three, say k, then (Jk is 
independent of Oz, Op, and 00 , arid hence the mean is zero. 
Furthermore, it is obvious that this mean differs from zero 
only when (Jk - Oz + (JP - 00 = 0, which, because k ~ l and 
p ~ o, happens only when k = o and l = p. A similar 
argument holds for <f> and~. so when k = o, l = p, r = q, s = t, 
m = u, and n = v, we have CI = E(ak2az2)E(br2bs2)E(cm2cn2), 
and C I = 0 otherwise. 

Because k ~ l, r ~ s, and m ~ n, by independence and by 
using Eq. (Al), we then have 

CI = (iaibic)2. 

Hence we have 

= (iaibic) 2 L HI(k, l, r, s, m, n)H2(k, l, r, s, m, n), 
klrsmn 

k ,e l,r;ts,m ,en 

L HI(k, l, r, s, m, m)H2(o, p, q, t, n, n)C2, 

klrsmopqtn 
k ,e l,r;ts,o ,e p,q ,e t 

(A6) 

where 

C2 = C(akazbrbscm 2 expli[(Ok- 01) + (<f>s- <Pr)]}, 

aoapbqbtcn2 exp\i[(00 - OP) + (<f>t- </>q)]}). 

By using arguments similar to those for the calculation of CI, 
we have 

C2 = E(aka1auap)E(brbsbqbt)E(cm 2cn 2) 

X E!exp[i(Ok- Oz + OP- Oo)]} 

X E{exp[i(<Ps- <Pr + <l>q- <f>t)]} 

= E(ak 2a1
2)E(b/b8

2)E(cm2cn 2) 

= (iaib)2E(cm 2c/), 

when k = o, l = p, s = t, r = q, and c2 = 0 otherwise. 
We have to separate the cases where m = n or m ~ n. If m 

= n, from Eq. (A2), 

C2 = (iaib)2E(cm 4) = 2(iaibic)2. 

If m ~ n, cm2 and cn2 are independent, and hence 

C2 = (iaib)2E(cm2)E(cn2) = (iaibic)2. 

We therefore have 
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C[SI (2), S2(2)] = (iaibic) 2[ L HI (k, l, r, s, m, m) 
klrsmn 

k;el,r;ts,m,tn 

+ 2 L HI(k, l, r, s, m, m) 
klrsm 

k ,e l,r;ts 

X H 2(k,l, r, s, m, m)J 
By symmetry we must have 

C[SI (3), S2(3)] 

(A7) 

= (iaibic) 2[ · L HI (k, l, r, r, m, n)H2(k, l, s, s, m, n) 
klrsmn 

k,el,r;ts,m,tn 

+2 L HI(k, l, r, r, m, n)H2(k, l, r, r, m, n)] · (A8) 
klrmn 

k;el,m,tn 

C[SI (4), S2(4)] 

= (iaibic) 2[ L HI (k, k, r, s, m, n)H2(l, l, r, s, m, n) 
klrsmn 

k,el,r;ts,m,tn 

+2 L HI (k, k, r, s, m, n)H2(k, k, r, s, m, n)] · 
krsmn 

r;ts,m;tn 

L HI(k, l, r, r, m,.m)H2(o, p, s, s, n, n)C3, 

klrmopsn 
k ,e l,o;e p 

where 

(A9) 

C3 = Clakalbr2cm2 exp(i(()k- ()!)], aoapb5
2Cn2 exp(i(()0 - Op)]}. 

By the same argument as before we have 

C3 = ia 2E(b/bs 2)E(cm 2cn 2) 

if k = o and l = p, and 0 otherwise. 

We now have to distinguish the four cases 

r = s, m = n- c3 = 4(iaib}c)2, 

r = s, m ~ n- c3 = 2(iaibic)2, 

r ~ s, m = n- c3 = 2(iaibic)2, 

r ~ s, m ~ n - c3 = (iaibi) 2 

because of independence and Eqs. (Al) and (A2). Hence we 
have 
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= (iaibic)
2
[ L H 1 (k, l, r, r, m, m)H2(k, l, s, s, n, n) 

klrsmn 
k;;el,r;;Cs,m;;Cn 

+ 2 I H 1 (k, l, r, r, m, m)H2(k, l, s, s, m, m) 
klrsm 

k;;el,r;;Cs 

+ 2 I H 1(k, l, r, r, m, m)H2(k, l, r, r, n, n) 
klrmn 

k;;el,m;;en 

+ 4 I H 1 (k, l, r, r, m, m)H2(k, l, r, r, m, m)J · (AlO) 
klrm 
k;;el 

As in the previous case, by symmetry we have 

C[81 (6), 82(6)J 

= (iaibic)
2
[ I H 1(k, k, r, s, m, m)H2(l, l, r, s, n, n) 

klrsmn 
k;;el,r;;Cs,m;;Cn 

+ 2 L H 1(k, k, r, s, m, m)H2(l, l, r, s, m, m) 
klrsm 

k;;el,r;;es 

+ 2 L H 1(k, k, r, s, m, m)H2(k, k, r, s, n, n) 
krsmn 

r;;Cs,m;;Cn 

+ 4 I H 1 (k, k, r, s, m, m)H2(k, k, r, s, m, m)J' 
krsm 
r;;Cs 

C[81(7), 82(7)] 

(All) 

= (iaibic) 2[ I H 1(k, k, r, r, m, n)H2(l, l, s, s, m, n) 
klrsmn 

k;;el,r;;Cs,m;;Cn 

+ 2 I H 1 (k, k, r, r, m, n)H2(l, l, r, r, m, n) 
klrmn 

k;;el,m;;en 

+ 2 L H 1(k, k, r, r, m, n)H2(k, k, s, s, m, n) 
krsmn 

r;;Cs,m;;Cn 

+ 4 I H 1(k, k, r, r, m, n)H2(k, k, r, r."m, n)J · 
krmn 
m;;Cn 

Finally, we calculate 

(Al2) 

C[S1(8), 82(8)] = L H1(k, k, r, r, m, m)H2(l, l, s, s, n, n)C4, 

klrsmn 

where 
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C4 = C(ak
2
b/cm

2
, a?b/cn

2
) 

= E(ak 2al)E(br 2bs 2)E(cm 2Cn 2) - (iaibic)2. 

As for the previous cases, we separate the covariance into the 
(eight) appropriate cases, which finally yields 

C[81(8), 82(8)] 

= (iaibic)
2[7 I H1 (k, k, r, r, m, m)H2(k, k, r, r, m, m) 

krm 

+ 3 I H 1(k, k, r, r, m, m)H2(k, k, r, r, n, n) 
krmn 
m;;Cn 

+ 3 I H 1(k, k, r, r, m, m)H2(k, k, s, s, m, m) 
krsm 
r;;Cs 

+ 3 I H 1(k, k, r, r, m, m)H2(l, l, r, r, m, m) 
klrm 
k;;el 

+ I H 1(k, k, r, r, m, m)H2(k, k, s, s, n, n) 
krsmn 

r;;Cs,m;;Cn 

+ I H 1(k, k, r, r, m, m)H2(l, l, r, r, n, n) 
klrmn 

k;;el,m;;Cn 

+ I H 1 (k, k, r, r, m, m)H2(l, l, s, s, m, m)J · (Al3) 
klrsm 

k;;el,r;;Cs 

Thus we have computed C[81(u), 82(u)], u = 1 ... 8, and 
therefore, by using Eq. (A5), we have found C(JI,/2) to be the 
sum of 1 + 3(2) + 3( 4) + 7 = 26 different sums. Fortunately, 
when we simplify the expression, it turns out that most 
terms vanish. Because these tedious calculations are of 
little interest, we will just give the final result without any 
details: 

C(/1, 12) = (i.i,iY[I H 1(k, l, r, s, m, n)H2(k, l, r, s, m, n) 

+ L H 1 (k, l, r, s, m, m)H2(k, l, r, s, n, n) 

+I H 1 (k, l, r, r, m, n)H2(k, l, s, s, m, n) 

+ L H 1(k, k, r, s, m, n)H2(l, l, r, s, m, n) 

+ I H 1 (k, l, r, r, m, m)H2(k, l, s, s, n, n) 

+I H 1(k, k; r, s, m, m)H2(l, l, r, s, n, n) 

+ 2: H1(k, k, r, r, m, n)H2(l, l, s, s, m, n)J 
(Al4) 
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where each summation is performed over all occurring indi
ces. If we now choose H1 = H2 = Hand if we use Eqs. (A4) 
and (Al4), we have [as in Eq. (2)] 

E(I) = (iaibic) I H(k, k, r, r, m, m), 
krm 

V(I) = (iaibic) 2 I [IH(k, l, r, s, m, n)l2 

klrsmn 

+ H(k, l, r, s, m, m)H(k, l, r, s, n, n) 

+ H(k, l, r, r, m, n)H(k, l, s, s, m, n) 

+ H(k, k, r, s, m, n)H(l, l, r, s, m, n) 

+ H(k, l, r, r, m, m)H(k, l, s, s, n, n) 

+ H(k, k, r, s, m, m)H(l, l, r ~ s, n, n) 

+ H(k, k, r, r, m, n)H(l, l, s, s, m, n)]. 

APPENDIX B 

In this appendix we will evaluate E(J) and V(J), which are 
given at the end of Appendix A. We will thus be able to 
obtain a corresponding expression for the noise [V(J)]ll2/ 
E(I). At the end of this appendix we give an expression for 
the noise in the normalized signal /N(Aa). 

To simplify forthcoming calculations, we begin with a 
slightly more general expression. Let 

/(A) = I akazbrbscmcn exp{i[(Ok- Oz) - (¢r- c/>8 ) 

klrsmn 

where 

{ 
1 [Q 2 

HA(k, l, r, s, m, n) = exp - 2 r:2 (k
2 + l2) 

+ Qb2 (r2 + s2) + Qc2 (m2 + n2)]} 
rb2 rc2 

X exp{-~ [(Qak- Qbr + Qcm- A)2 
2W 

+ (!l.!- n,s + ll,n- .:1.) 2
]} 

(Bl) 

X sinc{f [Qa(k- l) - Qb(r- s) + Qc(m- n)] }· 

After we have evaluated the mean E[/(A)] and the covari
ance C[/(Aa), l(A.a)], E(I) and V(J) above will easily follow as 
a special case, letting A = Aa = A.a = 0. 
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To be able to replace summations with integrations, we 
assume throughout this appendix that 

Qx « min(W, rx), x =a, b, c. 

The mean E[l(A)] is given by Eq. (A4). Hence we should 
evaluate the following integral: 

After suitable variable substitutions and repeated use of the 
identity 

we obtain 

where r 2 = W 2 + ra2 + ra2 + rc2. 
Define a constant C A by 

(B3) 

We will now evaluate the covariance C[/(Aa), l(A.a)] by using 
Eq. (A14) with H1 = HAa and H2 = HAf3" We first note that 
there are three unique sums; the remaining four are given by 
obvious symmetry. Although the evaluation of these three 
unique sums is somewhat more difficult than for the mean, 
we shall only mention some difficulties and not give the 
explicit calculations. 

First, we observe that for the last three sums in Eq. (A14) 
we have to replace the sine function in HAaHAfJ with a delta 
function in order to replace the summation with integration. 
The reason for this substitution is discussed in Section 4. 
Hence the integration in these three cases only goes over five 
variables. 

Second, the remaining four integrals cannot be solved 
exactly because the sine function does not vanish, as in the 
case of the mean, nor can they be replaced with a delta 
function, as above. Hence the result in these cases will 
depend on an integral f(a), defined for a> 0 by 

(B4) 

Using this function, we obtain the following expression for 
the covariance: 
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(B5) 

where the constant Ct:. is defined in Eq. (B3). 
If we let .1 = 0 in Eq. (B2) and .1a = .1fJ = 0 in Eq. (B5) we 

find E(J) and V(I). Finally, we give an expression for the 
noise in the signal: 

a(I) = [ V(I) ]1/2 
(I) E(J)2 

[ [
n ( r 2)-112] ~ (211")-114 I rx 1- ;2 

x=a,b,c x 

+ ~ ,~,, (r{ w~T' [ 1 
+ r• - (;:.

2 

+ w•J ]} 

We will now evaluate the noise in the normalized signal 

where /(.1) is given by Eq. (Bl). 
Using the first-order Gaussian approximation32 for the 

quotient X/Y of two complex-valued random variables, we 
have 

and hence 
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V(X/Y) ~ V(X) + V(Y) _ 2 Re[C(X, Y)]. 
E(X/¥)2 E(X)2 E(Y)2. E(X)E(Y) 

Let X= l(.1a) andY= "L.p/(.1{J). Now 

E(X) = E[/(.1a)], 

E(Y) = E[ ~ J(!J.~)J = ~ E[J(llp)], 

V(X) = V[/(.1a)] = C[I(.1a), 1(.1a)], 

C(X, Y) = C[/(.1a), I /(.1{J)] =I C[/(.1a), /(.1(3)], 
{J {J 

V(YJ = v[ ~ I(llpl] = c[ ~ I(llpl. ~ J(ll.JJ 

=I C[J(.1a), /(.1{J)]. 
a{J 

(B7) 

For suitable choice of .1, .1m and .1fJ in expression (B2) and 
Eq. (B5), these moments can be evaluated. Hence, using 
Eq. (B7), we are able to get an expression for the noise in the 
normalized signal. If we introduce a function F t:.a(x) by 

· I exp[-~
2

- :. (!J.~- ll.}' 2(1 ~ x)] 
Ft:...(x) = 1- 2 _:_fJ ____________ _ 

I exp(-.1//r2) 
{J 

I exp[- :. (llp' + ll/) - :. (llp - A,J2 2(1 ~ x)] 
+~ ' 

[ ~ exp(-llp'/r2)J 
(BS) 

we have, after some rearranging, 

APPENDIX C 

In this appendix we will express the functionf(a), defined by 
Eq. (B4), as a cm.npositiofi of simpler fuHctioHs and 

1 IX <I>(x) = ~ exp(-y2/2)dy. 
(211") -0) 
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ci>(x) is the distribution function for a standard normally 
distributed random variable. 

We will also find approximations for f(a) when a > 0 is 
small and will estimate F!l(x), defined in Eq. (B8), when xis 
close to zero or unity. We have 

· f(a)- f(O) = r f'(y)dy, 

Furthermore, 

f(O) = JR sinc2(x)dx = 1r, 

f'(y) = - JR sin2(x)exp( -yx2)dx 

=- _!_ (1r/y)112[1- exp(-1/y)]. 
2 

J: f(y)dy = (.-;"' [J: y-112 exp(-1/y)dy- J: y-112dy J 

= (1r)
112 

(2(a)112 exp( -1/a) - 4(11") 112 

2 

X {1- c1>[(2/a) 112]}- 2(a)112). 

Hence 

f(a) = 1r- 21r{1- cl>[(2/a)112]}- (1ra)112[1- exp(-1/a)]. 
(C1) 

For all x > 0, 

--- ')'(X)< 1- cJ>(x) <-')'(X), (
1 1) ' 1 
X x3 X 

where ')'(x) = exp(-x2/2)/(21r)112• Hence, if xis large, 

1 - ci>(x) ~ exp(-x2/2)/[x(21r)112] 

is a good approximation. If a> 0 is small, (2/a)l/2 is large, 
and we have 

1 - cl>[(2/a)112] ~ (a/2)112 exp(-1/a)/(211")112 

=% (a/1r)1/2 exp(-1/a). 

Hence 

f(a) ~ 1r- (1ra)112 exp( -1/a) - (1ra)1/2 

+ (1ra)112 exp(-1/a) = 1r- (1ra)112• (C2) 

Concerning F !l(e) and F !l(1 - e), we give the following 
estimates without proofs: 

Fll(1- e)~ 1, 

F!l(e) < e, 

when e > 0 is small. 

APPENDIX D 

In this appendix we will deduce a general expression for the 
mean and variance for a general n-wave-mixing process. 

Assume that we have ann-wave-mixing process using N 
different multimode laser sources and taking fv photons 
from laser v; v = 1, ... , N. Let 
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k 

Fk = 2,fv, k ~ 1, 
v=l 

and define Fo by Fo = 0. Furthermore, let 

Ij = ~ { ll L-~+1 ak[u(x)] 

X exp( y•~+l IO.[u(2y -1)]- o.[u(2y)]l) 

X Hj(u(l), u(2), ... , u(2F N)] ]} 
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The outer summation is over the indices u(1), u(2), ... , 
u(2FN) and u(v)eZ, v = 1, ... , 2FN. 

As usual [ak2(r)]r is a sequence of independent identically 
distributed r(l, mk) variables and [Ok(r)]r is a sequence of 
independent identically distributed R(O, 21r) variables, k = 
1, ... , N. If m ~ n, Om(r) is independent of On(s) and am(r) 
is independent of an(s) for all r and s, am(r) and On(s) are 
independent for all m, n, r, and s, and Hj is a (possibly 
complex) deterministic function. 

Now we define the permutation operators Pn(2m) and 
Pn(2m). Pn(2m) operates on a function H(k1, ••• , k2N). 
More specifically, Pn(2m) permutates the variables kn+h 
... , kn+2m in the following way: kn+2 is replaced by any one 
of the variables kn+2r-b r = 1, ... , m. This can be done in m 
different ways. Next, kn+4 is replaced by any of the remain
ing m - 1 variables. We continue this procedure until kn+2m 
is replaced by the only remaining variable: 

Definition: 

Pn(2m)[H(k1, ••• , kn, kn+l' ... , kn+2m' kn+2m+l' ... , k2N)] 

= (U I )H(k,, · · ·, kn, kn+l• k;,, kn+3• k;,, 
J-1 '/: An(m) 

i,;e 0 0 0 ;tij 

where An(m) = {n + 2r- 1; r = 1, ... , m} and 

2: 2: 2..'.:· 
i3r=An(m) i2EAn(m) i 1EAn(m} 

i,;ei2;ti3 i,;ei2 

The operator Pn(2m) operates on a product of two functions 

where the variables at places n + 1, ... , n + 2m in H 1 equal 
the variables at the same places in H 2• The remaining vari
ables s, t, u, and v are arbitrary. As with Pn(2m), Pn(2m) 
permutates only the variables kn+h ... , kn+2m and leaves 
the others unaffected. The permutation works as follows: 
in H 1, kn+2 is replaced by any one of the variables kn+n r = 1, 
. .. , 2m, which can be done in 2m different ways. Next, still 
in H~, kn+4 is replaced by any of the 2m - 1 remaining 
variables. The procedure of replacing kn+2n r = 1, ... , m 
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(in H1) by any one of the variables not yet used continues 
until kn+2m have been assigned a value among the now m + 1 
remaining variables. Now, we permute the k variables in H2 
in a similar way: kn+l is replaced by any one of the m 
remaining variables, then kn+3 is replaced, and so on until 
kn+2m-1 has been assigned the last variable. Definition: 

= (fi L )[H1(s1, · · · , sn, kn+l• ki1, kn+3• ki2, 

j=1 i;eAn(m) 

il~ ... ~ij 

where An(m) = In + r; r = 1, ... , 2mj. Using these two 
permutation operators, we make the following two state
ments: 

E(I,) = ( fi m}) I {[ ll P2F.)2fn) J 
X H1[u(l), ... , u(2N)]}· (Dl) 

E(Il,J = ( fi m, 
21
') I {[ ll P,F._, (2fn) J 

X H1[u(l), ... , u(2N)]H2[u(l), ... , u(2N)]}· 

(D2) 

where the summation in the first case is over the indices u(1), 
u(3), ... , u(2N- 1) and in the second case is over u(1), u(2), 
... ,u(2N). Asusual,u(x)EZ,x = 1, ... ,2N. We have not 
proved these statements rigorously, except in the special 
case where fn ~ 2 and N is arbitrary. However, general 
considerations indicate that Eqs. (D1) and (D2) are correct 
for an arbitrary case as long as the stochastic variables be
long to the stated distributions. Finally, we have 

and in particular 

We note that in a general case, where the mode amplitudes 
are not exponentially distributed, there will be correction 
terms to Eqs. (D1) and (D2). The summations in the correc
tion terms will run over fewer indices than the main terms, as 
given in Eqs. (D1) and (D2), and thus will normally be 
smaller. Thus, as long as only the phases are uniformly 
distributed over the interval (0, 211'), Eqs. (D1) and (D2) can 
be expected to be reasonable starting points for calculating 
the noise. 
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APPENDIX E 

In this appendix we give approximate analytical expressions 
for the noise u{n/ (I) in the different experimental ap
proaches to broadband CARS calculated as outlined in the 
paper and Appendixes A-D. The present expressions are 
appropriate for the conditions normally encountered in 
CARS, e.g., such as those given in Table 3. The complete 
analytical expressions, which, e.g., are valid for much shorter 
laser excitation pulses, can be obtained from the authors. 

Non-Raman Resonant Case 

Conventional Coherent Anti-Stokes Raman Scattering 
Multimode pump laser: 

u(n 1 [(4 + v'2>nara nb 
(i) = (211")1/4 r2 + (W2 + 2r a 2)1/2 

+ +- . 871' 271' ]1/2 
T(W 2 + r/)112 WT 

Single-mode pump laser: 

u(n 1 ( Qb )
112 

(I) = (211')1/4 w . 

(E1) 

(E2) 

Dual-Broadband Coherent Anti-Stokes Raman Scattering 
Multimode pump laser: 

O'(n 1 [ "" nxrx (i) = (211')1/4 L r -(r_2 ___ r_2-)1--,-/2 
x=a,b,c x 

1 

271' "" ( 1 1 )1/2 271' ]1/2 
+ T xfa:b.c w2 + r/- r2 + WT . (E3) 

Single-mode pump laser: 

O'(n _ 1 [ "" QXr X 1 + 27!' ]
112 

( ) 
(i)- (211')1/4 x~b r (r2- r/)1/2 WT • E4 

Rotational Dual-Broadband Coherent Anti-Stokes Raman 
Scattering 
Multimode pump laser: 

u(n 1 [ 1 r Qa nbrb 271' ] 1/2 

(i) = (211')1/4 y'2 ra (W2 + rb2)1/2 + 7 + WT • 

(E5) 

Single-mode pump laser [to first order in (W/r)112] 

O'(n 1 ( na )112 

(I) = (211')114 w . (E6) 

Raman Resonant Coherent Anti-Stokes Raman Scattering 
It is now assumed that there is a single Lorentzian Raman 
resonance centered under the instrument function and (with 
the exception of RDBC) that we have chosen a diode with 
which the non-Raman-resonant anti-Stokes signal would 
have its maximum. Furthermore, the noise is calculated 
under the conditions given at the end of Appendix B. In 
particular it should be noted that the bandwidth of the 
pump laser is assumed to be much larger than the Raman 
line width (r r) in the multimode case. Only terms to first 
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order in rr1r1aser (""0.1) are included. Furthermore, only 
zeroth-order terms in r pump laserlr dye laser (""0.01) are includ
ed. The symbol F5, which is introduced in the multimode 
expressions, is ""0.1 if normalization, as in the second half of 
Appendix B, is employed and is 1 otherwise. 

Conventional Coherent Anti-Stokes Raman Scattering 
Multimode pump laser: 

(I) { 1 n {( r 2)112 ( r 2)112 
~I> = (21r)1/2 r: 1 + ;2 + 1 + r:2 

X [1 + 2(1 + 2W~: r.2f]} 

+ (21r)1/2_1_[(1 + ra2)1/2 + 4(1 + ra2)1/2 
Tra W2 rb2 

X 1+ +- · 
( 

· r a 
2 

)112] 1 }112 

2W2 + ra2 Trr 

Single-mode pump laser: 

u(I) 1 ( nb )1/2 
(I} = (21r)1/2 rr . 

Dual-Broadband Coherent Anti-Stokes Raman Scattering 
Multimode pump laser: 

u(I) [ 1 nc ( rc
2 

)
112 

(I} = (27r)1/2 rc 1 + W2 Fo 

+-- 1+- +- . 
(21r) 112 ( r / )112 1 ]112 

Trc W 2 Trr 

Single-mode pump laser [to first order in (!la/ra)112]: 

u(I) = 1 
(I) (Trr)1/2 

Rotational Dual Broadband Coherent Anti-Stokes Raman 
Scattering 
Multimode pump laser: 

~i1 = [ (2:)112 ~: ( 1 + ~: )F, 
+-- 1+- +-- . 

(21r)1/2 ( rc2 )1/2 1 na]1/2 

Trc W2 21r rr 

Single-mod~ pump laser [to first order in (rr/ra)l/2]: 

u(I) 1 ( na )
112 

(I) = (21r)1/2 rr . 
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Note added in proof: The calculations for CC and RDBC 
are done assuming that the two photons taken from the same 
laser come from the same beam or from two beams correlat
ed in time. For uncorrelated beams the noise in Tables 4 
and 5 will decrease by a factor of J2 for RDBC.33,36 
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