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Abstract

The interaction between an intense laser pulse and a gas medium leads to the emission
of coherent bursts of light in the extreme ultra violet range. This process, known as
high-order harmonic generation, has today, almost three decades after its discovery,
developed into a reliable source of extremely short (∼100 as, 1 as=10−18 s) pulses of
electromagnetic radiation, with a wide range of applications in the atomic, molecular
and optical sciences. The access to radiation with attosecond duration opens up new
possibilities for studying and even controlling electronic processes that takes place on
this timescale.

This thesis presents a series of experiments where sequences of attosecond pulses,
attosecond pulse trains, are used to perform photoelectron interferometry. Free elec-
tronic wave packets, launched via photoabsorption of a coherent train of ionizing
attosecond pulses, are manipulated by an infrared laser field and brought to interfere.
From the resulting interferogram the phase of the escaping wave packets can be partly
reconstructed. This phase in turn carries a signature of the interactions that lead to
the ejection of the electron. Under certain conditions the measured phase can be re-
lated to a delay of the wave packet, corresponding to the time it takes for it to escape
the ionic binding potential, called photoionization time delay.

This method was applied to a range of atomic systems and ejection mechanisms in
order to study the influence of atomic electronic structure on the ejection of electrons.
Since the composition of the electronic wave packets is partly determined by the
temporal structure of the ionizing radiation, a comparative approach was applied to
isolate the effect of the ion-electron interactions. The photoionization time delay for
ionization from the 3s subshell of argon was measured relative to that of the 3p shell.
In another experiment the delay of a two electron wave packet resulting from double
ionization of xenon was referenced to single ionization from the valence shell. In an
iterative measurement procedure, interferograms were cross-referenced from ionization
of the valence shells of argon, helium and neon. Finally, the significant phase distortion
resulting from an autoionizing resonance in argon was mapped out by stepwise tuning
the central frequency of the exciting pulse train.

The interferometric method was also utilized to study the temporal synchronization
between the attosecond pulse train and the laser pulse used to produce it. The results
show that the synchronization is dependent on the density of the gaseous medium due
to the specific dispersion properties of the gas.
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Populärventsakplig
sammanfattning

Egenskaperna hos de material som utgör och omger oss, som t.ex. färg, struktur och
kemiska egenskaper, bestäms av hur elektronerna som är en del av dess byggstenar,
atomerna, är strukturerade. Ett sätt att undersöka elektronstrukturen är med hjälp
den fotoelektriska effekten. Ljus, elektromagnetiska fält, kan beskrivas som en ström
av ljuspartiklar, fotoner, som alla bär på en bestämd mängd energi. Den fotoelek-
triska effekten är den process där en foton, med tillräckligt hög energi, absorberas av
atomen och en (eller flera) elektron(er) frigörs. Genom att mäta rörelseenergin hos de
elektroner som kommer ut, får man reda på hur starkt bundna de är till atomen. Att
studera elektronernas energi ger tyvärr bara begränsad kunskap om hur det går till
när elektronenrna lossnar.

I den här avhandlingen beskrivs experiment där extremt korta ljusblixtar med
våglängder inom det extrem-ultravioletta området, s.k. attosekundspulser (as, 1
as=10−18 s), utnyttjats för att studera hur växelverkan mellan atomkärnan och elek-
tronen påverkar tidsförloppet då elektronen slits loss. Vidare har processen att gener-
era attosekundspulser studerats, detta i syfte att svara på frågan hur precisa den här
sortens experiment kan göras. Metoden som använts utnyttjar materiens vågnatur i
den mikroskopiska världen och kan beskrivas som interferometi med elektroner.

Attosekundspulser

En sekvens av attosekundspulser, ett pulståg, skapas när man fokuserar en stark
laserpuls in en gas. Mekanismen bygger på att de yttersta elektronerna i atomerna
plötsligt blir fria då den elektriska kraften med vilken laserpulsen påverkar atomerna
övervinner den kraft som binder elektronerna till atomen. Styrkan och riktningen på
kraften varierar dock periodiskt, varför de fria elektonerna inom en kort tidsram (1.6 fs,
1 fs=10−15s) drivs tillbaka och kolliderar med atomen. Kollisionen ger upphov till en
ljusblixt med en varaktighet på bara ett hundratal attosekunder. Det faktum att alla
atomer i gasen påverkas på samma sätt, det vill säga ljusblixtarna avges samtidigt, gör
att alla ljusvågorna svänger likadant, man säger att de är koherenta. Koherens är en
förutsättning för att ljuspulserna ska kunna användas till experimenten som beskrivs
i den här avhandlingen. Till exempel visade ett av experimenten i avhandlingen
att synkroniseringen mellan attosekundspulserna och laserpulsen som skapar dem,
påverkas av densiteten hos gasen i vilken de genereras.
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Interferometri med elektroner

På mikroskopisk nivå beskrivs all materia som vågor. Efter det att en elektron frigjorts
från en atom fortplantar sig dess vågrörelse och sprids likt det som sker när en droppe
träffar en vattenyta. Lokalt, nära atomkärnan störs dock vågrörelsen av de krafter
som verkar mellan atomkärnan, elektronen och de övriga elektornerna som är bundna
till atomen. Detta ändrar hur elektronvågorna ser ut då de detekteras långt borta
från atomen, det ändrar när dalarna och topparna kommer. Kvantmekaniken, som
beskriver den mikroskopiska världen, säger oss dock att sådana s.k. fasskiften inte är
direkt mätbara. Istället måste vi utnyttja en teknik som kallas interferometri. När
två vågor med samma våglängd adderas blir resultatet en ny våg, vars våglängd är
den samma men vars amplitud beror på var vågdalarna och vågtopparna befinner sig
relativt varandra hos de ursprungliga vågorna. Denna process kan vi åstadkomma
genom att ändra våglängden hos de ursprungliga elektronvågorna något, med hjälp av
en infraröd laserpuls. Genom att mäta amplituden hos de resulterande vågorna går det
alltså att mäta hur mycket en våg är skiftad i förhållande till en annan. Vågamplituder
är direkt mätbara eftersom de är proportionella mot sannolikheten att vår detektor
registrerar en elektron med en viss kinetisk energi. Dessa resultat kan sedan jämföras
med förutsägelser från teoretiska modeller av atomens elektronstruktur och man kan
dra slutsatser om vilka mekanismer i dessa komplexa system som spelar stor roll och
vilka man eventuellt kan bortse ifrån. Samma teknik kan också användas för att
karakterisera sekvenser av attosekundspulser, eftersom karakteristiken hos pulserna
påverkar sammansättningen av elektronvågen.
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Chapter 1

Introduction

1.1 A brief background

The development of attosecond science sprung from the experimental discovery of the
generation of high-order harmonics [1, 2]. When atoms were exposed to an intense laser
field, optical frequency up-conversion was observed yielding higher harmonic orders
than ever reported before, and higher than what was expected from the understanding
of the mechanisms of non-linear optics at that time. The light emission thus generated
was found to be confined in a narrow angular region around the forward direction of
the generating laser beam and restricted to narrow spectral regions, centered around
odd order harmonics of the driving laser frequency.

These properties give the light generated through high-order harmonic genera-
tion a high spectral brightness, compared to other types of table-top sources in the
VUV/XUV spectral range. Thus, despite a relatively low conversion efficiency, it was
directly realized that this process had potential for spectroscopic applications.

What was not directly apparent in the first experimental observations was the
prospect of achieving light emission temporally confined down to ∼100 as (1 as=10−18

s), that is, on a timescale much shorter than the driving laser pulse. The understanding
of this temporal confinement grew out of further experimental and theoretical work.
While it was explicitly proposed in 1992 that high-order harmonics can be used to
produce attosecond pulses [3], it was not experimentally demonstrated until 2001
[4]. This discovery gave rise to a rich flora of applications for this light source (for
contemporary overviews, see Refs. [5–9]).

The new scientific field that developed around the high-order harmonic generation
(HHG) technique is called attosecond science, due to the timescales one can access
with these short duration electromagnetic pulses. With light bursts with a duration
on the order of 100 as, the current world record of characterized attosecond pulse
being 67 as [10], the timescale of electronic dynamics in atoms and molecules is within
reach.
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1.2 The atomic time-scale

1.2 The atomic time-scale

To understand why attosecond pulses allow us to time resolve electronic processes in
atoms, we consider the atomic valence states, where the typical energy spacing is on
the order of 10 eV. Dynamics in a quantum system can in general be described by the
time evolution of a superposition of stationary states. Thus if the system is left in a
superposition of states a and b at a at t = 0, with spatial wave functions ϕa(r) and
ϕb(r) and corresponding energies Ea and Eb, the wave function evolves as,

Ψ(r, t) = caϕa(r)e−i
Ea
~ t + cbϕb(r)e−i

Eb
~ t, (1.1)

where ca and cb are complex, possibly time dependent numbers. We ignore the time
dependence of ca and cb in a first approximation. The electronic probability density
can be written as,

|Ψ(r, t)|2 = |caϕa(r)|2 + |cbϕb(r)|2 + 2|caϕa(r)cbϕb(r)| cos[(ωa − ωb)t+ ∆φab], (1.2)

where Ea,b/~ has been replaced by ωa,b and ∆φab is a phase originating from the fact
that ca,b and ϕa,b(r) are complex quantities. Equation 1.2 indicates that the relevant
timescale in these dynamics, i.e. the timescale on which the charge distribution actu-
ally moves, is on the order of 2π/(ωa−ωb). Assuming that the energy spacing between
the involved states is 10 eV this time amounts to about 400 as.

It is possible to catch this motion in a so called pump-probe experiment, where
a short pump pulse initiates the dynamics and a delayed probe pulse gives rise to a
signal which depends on the instantaneous charge distribution. For the fast motion
mentioned above, pump and probe pulses must have a duration less than 400 as.
Furthermore the control of these pulses, in terms of when they arrive on target, would
have to have an uncertainty of less than or on the same order of magnitude as the
pulses themselves. If these two criteria are not met, the resulting experimental signal
becomes an average over a time that exceeds the period of the last term in eq. 1.2.
Since the time average over the cosine is zero, such an experiment would only capture
some aspects of the static charge distribution.

Pump-probe experiments using attosecond pulses, where the outcome can be inter-
preted and understood directly in terms of a time evolution of bound state superposi-
tions or bound wave packet formation have been performed [11–13]. In these studies,
a short pulse generated by the HHG process serves as either a pump pulse, starting
the dynamics, or as a probe pulse, creating an observable outcome such as electron
emission or molecular fragmentation by photoionization.

1.3 Electron interferometry

The time evolution of Ψ(r, t) can also be determined from its Fourier transform,
Φ(r, ω). To retrieve the time evolution from the spectral information it is neces-
sary to know both the spectral amplitude and the spectral phase. Measuring spectral
amplitudes has been done for decades with, for example, photoelectron spectroscopy
in combination with synchrotron radiation sources. Maybe one of the major achieve-
ments of attosecond science is to provide the means to measure spectral phases.
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Introduction

The experimental method applied throughout in this thesis is based upon pho-
toelectron interferometry. The method was originally suggested in 1996 [14] and
demonstrated in 2001 [4, 15] when it was launched under the acronym RABBITT
(Reconstruction of Attosecond Beating By Interference of Two-photon Transitions).
Conceptually, this method has a great deal in common with a method for the charac-
terization of optical wave packets, or pulses, based on spectral interferometry, known
by the acronym SPIDER [16].

Briefly, the RABBITT technique uses the frequency comb of high-order harmonics
and a delayed infrared field. These two fields are lead to ionize an atomic gas and
induce quantum interferences in the photoelectron signal. From these interferences
the spectral phase variation of the photoionization amplitude can be recovered. This
technique does not require isolated pump and probe attosecond pulses. Interestingly,
the time resolution that can be obtained is not limited by the pulse duration of the
attosecond pulses but rather by the precision of the optical interferometer controlling
the delay between the two fields (below 50 as), and the resolution of the photoelectron
spectrometer.

In this thesis photoelectron interferometry has been used to study the dynamics
of both single- and double photoionization, including ionization in the vicinity of a
resonance.

1.4 Papers and outline

This thesis is based on eight papers. Papers I, II, III and V present studies of
photo ionization dynamics for various atoms and electron ejection mechanisms. The
results presented in Paper I complement the measurements in [17]. The results are
also presented together with a more elaborate theoretical interpretation. In Paper II
photoionization time delays from the outer valence shell of different noble gas atoms
are compared. In Paper III it is demonstrated how photoelectron interferometry can
be applied to measure an ionization delay of a two electron wave packet resulting from
double ionization. Paper V presents a measurement of the phase distortion that an
autoionizing state causes on an ionized wave packet.

This thesis also presents work that is concerned with exploring certain aspects of
the HHG light source. Paper IV is an investigation of the effect of the density of the
harmonic generation medium on the temporal synchronization between the emitted
radiation and the driving laser field. In Paper VI it is demonstrated how low order
harmonics generated from a gas target can enhance the high order harmonic generation
from a second gas target. Paper VII is a feasibility study of a scheme for seeding a
free-electron laser with harmonics of a high-power laser generated form a gas target.
Finally, Paper VIII describes the design an tests of a charged particle momentum
imaging spectrometer, designed for attosecond experiments.

The outline of this thesis is as follows. Chapter 2 contains an introduction to the
fundamentals of HHG. The physical processes involved in the generation are explained
as well as how these processes can be optimized to best serve the purposes of attosecond
science. Chapter 3 describes photoelectron interferometry, the main experimental
method used during this thesis work, and how it was implemented. In Chapter 4,
experiments carried out using this technique are described and discussed in detail.

3



1.4 Papers and outline

These experiments have in common that they are designed to extract information
about the dynamics of photoionization. Finally, Chapter 5 gives a summary and an
outlook.

4



Chapter 2

High-order Harmonic Generation

This chapter introduces non-linear optics from a strong field perspective. The pos-
sibility of non-linear frequency conversion through laser-matter interaction has been
known of since the 1960’s, when Franken and co-workers demonstrated second har-
monic generation in quartz [18]. For their experiment they used the first working laser,
based on a flash-lamp pumped Ruby crystal, invented by Mainman just the year be-
fore [19]. The maximum field strength achievable with this laser, quoted by Franken,
was on the order of 103 V/m. In the HHG process non-linear frequency conversion is
driven to the extreme, and thus into a different physical regime.

2.1 Introduction

As mentioned above, HHG is a process that results from laser-matter interaction, but
can only occur if the laser field is sufficiently strong. What is considered a strong
field is of course somewhat dependent on the target in question. In this thesis only
HHG from neutral atomic species in gas phase will be considered. This method of
generating short wavelength light has proven, thus far, to be superior to harmonic
sources based on other targets, in terms of conversion efficiency and pulse quality.
The field intensity required to drive this process is on the order of 1014 W/cm2, which
in vacuum corresponds to a field strength of about 3·1010 V/m. This field strength
is sufficient to substantially distort the static electric field that confines the valence
electrons in an atom.

To achieve these high field strengths in a laboratory the available laser energy has
to be concentrated, i.e. confined, in both time and space. The transversal confinement
of a laser beam is easily achievable by focusing it using a curved mirror or a lens. There
are however both a practical and a theoretical limit to how small a laser beam spot
can be focused.

The longitudinal and temporal confinement is obtained by the production of pulsed
light. The shorter the driving pulse the less energy per pulse is required to achieve a
given intensity. This relaxed requirement can be utilized to increase the repetition rate
of the experiment [20–22] without having to significantly increase the average output
power. Short laser pulses, limited to just a few optical cycles, are also instrumental
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2.1 Introduction

in producing isolated attosecond pulses [6]. Multiple cycle driving pulses result, as we
shall see, in a train of attosecond pulses. The development of HHG sources are thus
closely interlinked with the progress of short pulse laser technology.

The laser system used in all experiments presented in this thesis delivers pulses with
a central wavelength of 800 nm and a typical energy of 3 mJ available for harmonic
generation, at a repetition rate of 1 kHz. Typical parameters for the focusing geometry
is a 1 inch beam diameter and a focal-length of 50 cm. Given diffraction limited focal
conditions, this gives a focal spot with a diameter of about 200 microns and an average
fluence of 1 J/cm2. This puts a restriction on the laser pulse duration of the order tens
of fs to reach the required intensities over a significant volume. At its current state
this system can produce pulses with a FWHM duration of 20 fs. From a contemporary
attosecond science perspective this is relatively long, since a vacuum wavelength of
800 nm corresponds to a field cycle time of 2.7 fs. It is most definitely a multi-cycle
pulse.

This system relies on femtosecond laser technology which is now standard in many
research laboratories. Its key concepts are a Ti:Sapphire based Kerr-lens mode-locked
(KLM) laser oscillator [23, 24] combined with an amplifier chain working along the
principles of chirped pulse amplification (CPA)[25], both of which will be briefly de-
scribed in the next section.

Figure 2.1: Illustration of HHG in neon gas. The displayed spectrum was retrieved using a
flat field grating spectrometer after the generated light had been spectrally filtered through a
thin Ti foil. The displayed laser pulse is a rough estimate of the pulse used in the experiment,
based on a pulse length measurement and the cut-off frequency of the harmonic spectrum,
which allowed us to estimate the laser intensity (see eq. 2.9). A Gaussian pulse shape was
assumed.

Figure 2.1 illustrates how an HHG source based on a gas target is operates using
an example where the aim was to generate photons in the energy range of 100 eV.
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The NIR laser pulse was focused in to a open ended cell filled with neon gas. After
the harmonic beam passed though a 200 nm thick titanium foil it was spectrally
dispersed using a flat field grating spectrometer. The foil serves two purposes. It acts
as a spectral filter, in this case a high-pass filter, in order to only allow the spectral
components relevant for the experiment to propagate to the experimental vacuum
chamber further downstream. It also allows us to remove the intense IR light from
the beam, which otherwise would interfere with the experiment.

As is evident from the spectrum presented in the Fig. 2.1, the spectral structure
of the emitted radiation consists in regularly spaced peaks centered around the odd-
order harmonics of the frequency of the IR laser pulse. The central peaks are of
comparable strength, indicating that they belong to the so called harmonic plateau.
This term originates from the generic shape of an HHG spectrum, which divide into
three characteristic energy regions. For the low-order harmonics the peak strength
drops rapidly with increasing photon energy. Between this region and an abrupt
cut-off on the high energy side, the harmonic peak strength is more or less constant.

Before turning to the details of the laser-atom interaction responsible for the emis-
sion of these high energy photons, a brief overview of high-power laser technology is
given.

2.2 Production of high-power ultrashort optical laser pulses

Laser systems producing pulses with an mJ pulse energy and an fs duration yield peak
powers in the TW range. Such systems are commercially available today and widely
used in laser laboratories. The enabling concepts of femtosecond laser systems were
developed during the 1980’s and led to a leap in technology in the early 1990’s, when
these concepts were combined. For a more exhaustive overview than presented here
see, for example, [26].

Ti:sapphire

The titanium ion (Ti3+) doped sapphire (Al2O3) crystal, investigated by Moulton [27]
in the 1980’s, has qualities that make it an excellent laser gain medium for production
and amplification of short intense pulses. Its gain profile, which peaks around 800 nm,
spans more than 400 nm and thus supports production of very short pulses. It also
has a good quantum efficiency, meaning that the pump energy is efficiently transferred
into to laser light. Furthermore, the sapphire crystal has high thermal conductivity,
which facilitates removal of excess heat, which could otherwise damage the crystal.
The laser transition can be pumped at wavelengths around 530 nm, which matches
well with frequency doubled Nd-ion or Yt-ion based solid state lasers.

Kerr-lens mode-locking

In order to utilize the broad amplification bandwidth of the Ti:sapphire crystal for
short pulse production the laser oscillator has to allow for a large number of lon-
gitudinal modes to lase simultaneously. The individual modes also need to have a
well-defined phase relation in order for their superposition to add up to a traveling
pulse inside the cavity (see discussion in sec. 2.5). In a conventional resonator, dif-
ferences in gain and losses between the modes leads to that the lasing is limited to
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Figure 2.2: Schematic outline of a z-shaped Ti:sapphire mode-locked oscillator.

a narrow bandwidth. This limitation can however be circumvented by a careful de-
sign of the laser cavity and utilization of an optical non-linearity in the laser gain
medium. The optical Kerr effect is a third order non-linear effect (see sec. 2.3.1)
which makes the refractive index intensity dependent. As a result, the gain medium
will act as a lens. The strength of this effect depends on the instantaneous inten-
sity. When the light energy is temporally confined, the Kerr-lens will significantly
influence the transversal cavity modes. A mode-locked oscillator is thus deigned to
meet the stability conditions, and to induce both minimum losses and maximum gain
on the transversal modes induced by the Kerr-lens. Once a short pulse is produced,
the oscillator remains mode-locked, as long as the round-trip gain and losses favor
mode-locked operation. To achieve mode-locked operation of the oscillator, a short
pulse thus has to spontaneously appear. This can be achieved, for example, by ran-
domly inducing different transient states in the cavity by swiftly shifting the cavity
end-mirror out of position and back again. Once one of the transients happens to
be a short pulse, the oscillator is mode-locked. Figure 2.2 shows a schematic outline
of a z-shaped Ti:sapphire mode-locked oscillator. This construction would, however,
not support pulses of fs duration. In order to do that, the dispersion of the pulse
while traveling inside the cavity, has to be compensated for. This can be achieved by,
for example, introducing chirped mirrors, combined with tunable dispersive elements
(wedges or prisms), in the cavity [28, 29]. Properly dispersion-compensated mode-
locked Ti:sapphire oscillators can support pulses of sub 10 fs approaching the NIR
single optical cycle limit [30].

Chirped pulse amplification

The output pulse energy from a mode-locked oscillator is typically limited to a few
nJ. In order to reach TW peak powers the pulses have to be amplified by a factor of
106-107. Such high peak powers are however difficult to handle in an amplifier chain.
Due to practical constraints on the size of the amplification crystals and optical com-
ponents, the fluence quickly exceeds their damage thresholds. Furthermore, non-linear
propagation, caused by high peak intensities, can heavily distort the time-structure
of the pulses. This problem can be circumvented by strongly chirping the pulses, in
a controlled manner, before they are amplified. Using carefully aligned dispersive el-
ements, for example a grating or a grating pair in combination with imaging optics,
pulses with a duration of a few fs can be stretched to ∼100 ps. After amplification,
the reverse operation can then be applied to re-compress the pulses in time.

Figure 2.3 illustrates the principle of chirped pulse amplification. The ideal spectral
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Figure 2.3: Schematic overview of an ideal CPA laser-chain.

transfer function of each unit in the chain is indicated. The stretcher adds a phase
that is a quadratic function of the angular frequency Ω and symmetric with respect
to the central angular frequency of the pulse, ω. After amplification with a factor A,
which ideally is independent of frequency, the initial spectral phase is restored by the
compressor. The chirp rate (a) and the amplification factor in the figure are merely
illustrative; in reality they are many orders of magnitude larger.

Two common types of amplifiers used in CPA-laser chains are the multi-pass and
the regenerative amplifier. In the multi-pass amplifier, the pulse is guided multiple
times through the pumped gain medium from slightly different angles. In the regener-
ative amplifier the gain medium is instead contained in a cavity. The pulse is switched
in and out of the cavity using a combination of reflective polarizers and pockel-cells
that rotates the polarization of the pulse when high voltage is applied.

The 1kHz laser in Lund

The laser system used for retrieving the experimental results in Papers I, II, III,
IV and V is described here. During this thesis work the laser system underwent a
substantial upgrade, yielding more output power and shorter pulses. This description
applies to the current state of the system.

Figure 2.4: Schematic outline of the 1kHz CPA laser-chain in Lund.

The CPA laser chain, schematically outlined in Fig. 2.4, is seeded with a 76
MHz pulse train from a KLM-mode-locked Ti:sapphire, "Rainbow", oscillator built by
Femtolasers. The pulses, that originally have a duration of 7 fs and a pulse energy of
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2.5 nJ, are stretched using a configuration of a single grating and reflective imaging
optics [31]. Before being amplified the seed pulses are reshaped in an acousto-optic
programmable dispersive filter (AOPDF, a Dazzler from Fastlite). In normal operation
this device is used for correcting errors in the spectral phase, introduced in the process
of stretching, amplifying and compressing, such that a Fourier-transform limited pulse
is retrieved at the end of the laser-chain. The Dazzler can, however, also be used to
selectively limit the bandwidth of the seed pulse, which in addition of generating a
slightly longer pulse after compression, makes it possible to tune its carrier frequency
(see Paper V).

Two diode pumped, Q-switched and frequency doubled Nd:YAG lasers pump the
Ti:sapphire crystals in four different amplification stages at a repetition rate of 1 kHz.
After initial amplification in the multi-pass amplifier, to about 250 nJ, the pulse is
"cleaned" by a pulse-picker and switched in to the cavity of the regenerative amplifier.
This cavity contains another AOPDF (a Mazzler, also from Fastlite), operating as a
spectral amplitude filter, whose purpose is to counteract gain-bandwidth-narrowing.
Since the Ti:sapphire gain profile peaks around 800 nm, the Mazzler attenuates these
spectral components after each pass through the gain medium, in order to achieve
a flat round-trip gain profile. After 14 round-trips in the regenerative amplifier, the
pulse is switched out, containing an energy of about 0.5 mJ, and is further amplified
in two 3-pass amplifiers to a final energy of typically 6 mJ. The pulse is then re-
compressed via a double pass on a grating pair in a parallel configuration according
to the methods developed in [32, 33]. After compression the pulse energy is about 3.5
mJ. The spectral bandwidth of the amplified pulses is close to 100 nm, which supports
a Fourier transform limited pulse duration of 20 fs. Alternatively, the bandwidth can
be limited to 50 nm and the central wavelength tuned to between 780 and 830 nm, as
shown if Fig. 2.5.

Figure 2.5: Normalized spectra, demonstrating the tuning of the central wavelength from
the laser-chain using the Dazzler.

2.3 Laser-atom interaction

The interaction between optical light and atoms is well described within the dipole ap-
proximation. Light propagating through a medium will induce dipole moments along
its path via the force exerted by the electric field on bound electrons. In classical
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physics the radiation emitted from an oscillating dipole is proportional to the dipole
acceleration, or to the second order time derivative of the dipole moment. When an
ensemble of atoms is considered the corresponding quantity is called the polarization
density, P, which is proportional to the sum of the individual atomic dipole moments.
From this perspective it is intuitive that the second order time derivative of the po-
larization density plays the role of a self induced source term in the electric field wave
equation for propagation in a non-magnetic material,

∇2E− 1
c0

∂2E
∂t2

= µ0
∂2P
∂t2

(2.1)

For a coherent ensemble of atoms the polarization density can be calculated via
the quantum mechanical correspondence to a classical dipole which is related to the
time-dependent expectation value of the position operator r̂,

P(t) = Ne〈Ψ(t)|r̂|Ψ(t)〉, (2.2)

where N is the number density of atoms and Ψ(t) is the atomic wave function of
the atom dressed by the light field. In this way the quantum mechanical Schrödinger
equation is coupled to the Maxwell equations.

2.3.1 The weak field regime
If the dressing field strength is weak, in the sense that the dominating interactions
are those between the electrons and the atomic core and among the electrons, then
time-dependent perturbation theory provides a tool to solve the quantum-mechanical
problem.

In applying this approach, the starting point is the Schrödinger equation,

i~
∂|Ψ(t)〉
∂t

= (Ĥ0 + λeE(t) · r̂)|Ψ(t)〉, (2.3)

where Ĥ0 is the unperturbed Hamiltonian, E(t) the dressing electric field and λ is
a scalar parameter that controls the strength of the perturbation. This approach
guarantees a smooth deformation from the unperturbed state as the strength of the
perturbation increases from zero. Given that the electric field is not driving the atom
at a frequency close to a resonance, the system can be assumed to remain in its
ground state. The anzats for the perturbed ground state wave function is that it can
be expanded as a power series of λ in the basis set of the unperturbed Hamiltonian,
|φn〉

|Ψ(t)〉 = a0|φ0〉+
∞∑
m=1

∞∑
n=1

λma(m)
n (t)|φn〉e−iωnt (2.4)

Plugging this ansatz into eq. 2.3, multiplying from the left with 〈Ψ(t)| and equat-
ing the terms of the same power of λ, yields a set of differential equations for the
expansion coefficients a(m)

n (t), which can be solved iteratively for increasing order m.
The solutions to these equations are significantly simplified if the calculations are car-
ried out in the Fourier plane i.e. if the field is monochromatic or is expressed as a sum
over monochromatic waves. Under the condition that E(t) is monochromatic, and
thus can be written as the real part of E0e

−iωt, plugging the wave function, expanded
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to order m into eq. 2.2 yields an expansion of the polarization density in powers of
the electric field amplitude,

P(m)(t) =
m∑
k=1

Ek0χ
(k)(ω)(e−iωt + eiωt)k, (2.5)

where the expansion coefficients are called the susceptibilities of order k. The linear
response, expressed by the first order susceptibility χ(1)(ω), describes the dispersion
and absorption of the medium. Inserting 2.5, expanded to first order, into eq. 2.1 it
can be concluded that the refractive index, n(ω), can be expressed as,

n(ω) =
√

1 + χ(1)(ω) (2.6)

The susceptibilities of order k > 1 describe the non-linear response of the medium
and are associated with the generation of new frequencies, which are harmonics of the
fundamental frequency ω.

From this treatment we can draw some conclusions about the physical properties
of the harmonic light. For the perturbative approach to be valid the included terms
have to converge, which implies that the intensities of the generated harmonics should
rapidly decrease with order. Furthermore the intensity of an individual harmonic
should depend on the intensity of the driving field to the power of the order. However,
as noted in the previous section, neither of these statements are true for high-order
harmonics. For HHG the intensity of the harmonics is approximately constant after
the lowest orders up until an abrupt cut-off. The harmonic strength does not vary
as Ek0 , but instead is, for the harmonics in the plateau region, rather independent of
order. This departure from the predictions of perturbation theory indicate that the
assumptions made in formulating certain aspects of the theory are invalid and calls
for a different understanding of HHG.

2.3.2 The strong field regime
The current understanding of the generation of high-order harmonics is based on a
model put forward in 1993 [34, 35], called the Three-step Model. As it was formulated
using concepts from both classical physics and quantum mechanics, it is refereed to as
semi-classical. Soon after this model was published, the insight it brought was used
to describe the process in quantum mechanical terms [36]. These models provided an
explanation for the lacks in the perturbative model.

The semi-classical model

The key to understanding where the perturbative model breaks down relates to
the concept of tunnel ionization. Under the influence of a sufficiently strong, long-
wavelength (opical) electric field there is a non-vanishing probability for an electron
originally bound by an atom to tunnel through the potential barrier formed by the
Coulomb potential distorted by the optical field. Thus, since tunneling is a strong
field effect, the distortion of the atomic field cannot be treated as a perturbation.

The tunneling phenomenon is taken into account in the first step in the Three-step
Model, as indicated in Fig. 2.6. The part of the electronic wave function that tunnels
through the barrier forms a "free" wave packet, which will interact predominantly
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with the strong laser field. The Three-step Model focuses on the dynamics of this
continuum wave packet.

I

II

III

Figure 2.6: Illustration of the Three-step Model for HHG, indicating the three time ordered
events of the model, tunneling (I), acceleration(II) and recombination (III).

As the continuum wave packet is formed it can be accelerated by the light field.
This process is treated semi-classically in the model. The electron is modeled as a
classical particle appearing at the position of the nucleus with zero velocity at time ti,
the tunneling time, with a certain probability. As its interaction with the remaining
ion is neglected, its trajectory, x(ti, t), is trivially found by Newtonian mechanics,

x(ti, t) = eE0

mω2 [sin(ωt)− sin(ωti)− ω(t− ti) cos(ωti)], t > ti (2.7)

for a linear polarized, electric field, E(t) = E0 sin(ωt), where e andm are is the electron
charge and mass, respectively. Some of these trajectories will cross the position of the
nucleus again, as indicated by the black solid lines in Fig. 2.7, while others will acquire
a drift momentum large enough for the electron to escape from the vicinity of the ion,
indicated by gray dashed lines. In this semi-classical picture the trajectories that cross
the zero position describe a wave packet that has been accelerated and driven back to
its original position by the electromagnetic field (process labeled II in Fig. 2.6). The
returning wave packet has a non-vanishing spatial overlap with the part of the wave
function that is left in the atomic ground state and their interference will therefore
contribute to the dipole moment in eq. 2.2.

The energy difference between the ground state and the distribution of states
forming the continuum wave packet defines the beat frequencies at which the dipole
moment will radiate. This is step III in the model, where the interaction between
the returning wave packet and the remaining ground state results in a burst of light
being emitted. The kinetic energy of the returning electron, Ekin, is a function of the
tunneling time and the time of return, tr, and can be calculated from eq. 2.7. The
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range of photon energies emitted in the recombination process is consequently given
by Ekin + Ip.

Figure 2.7: Left, classical trajectories of an electron in a electromagnetic field for different
release or tunneling times. Right, kinetic energy of a returning electron as a function of
tunneling (dashed lines) and return time (solid lines).

The right panel in Fig. 2.7 shows the return kinetic energies as a function of
tunneling and return times. The energy is expressed in units of the ponderomotive
potential, which is the average kinetic energy of a free electron driven by an oscillating
electromagnetic field. The pondermotive potential depends on the intensity, I, and
the frequency, ω, of the driving field as,

Up = e2I

2meω2ε0c
. (2.8)

The maximum kinetic energy for a returning electron is 3.17Up, which means that the
highest photon energy in the emitted radiation is,

Emax = 3.17Up + Ip. (2.9)

This equation thus gives the position of the high energy cut-off. In a more elaborate
analysis that takes in to account all possible electron trajectories, not just those ful-
filling the initial conditions of eq. 2.7, it can be shown that the emitted radiation
extends to higher photon energies than given by eq. 2.9. The cut-off energy is thus
rather an estimate of where the harmonic plateau ends and the generation process
becomes inefficient.

Two different classes of trajectories can be identified, labeled long and short in
Fig. 2.7. For the long trajectories, the time between tunneling and return are long
compared to the class of trajectories labeled short. This picture also partly explains
the temporal structure of the emitted radiation. To understand how, we relate the
return time to the spectral phase of the wave packet (φ) by interpreting the return
time as a group delay,

tr = ~
∂φ

∂E
(2.10)

The propagation of the electron wave packet in the continuum leads to a significant
dispersion and the time window of return is longer than that for tunneling (see Fig.
2.7). This stretch in time leads to a chirp of the emitted radiation. The leading
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edge of the wave packet which contains contributions from the short trajectories, is
positively chirped ( ∂φ∂E > 0) while the trailing edge is negatively chirped ( ∂φ∂E < 0) due
to the contributions from the long trajectories. From an experimental perspective this
fact constitutes a potential problem. The interference between the harmonic fields
with different spectral phases could potentially distort the time-structure of the pulse.
Luckily, the different contributions can be experimentally selected by choosing the
generation conditions, as discussed in the next section.

A quantum-mechanical model: The strong field approximation

The semi-classical model gives an intuitive picture and explains some aspects of HHG,
such as the cut-off law and the intrinsically chirped generated pulses. In the long
wavelength limit, the propagation of the wave packet in the continuum along the
spatial coordinate defined by the polarization direction of the driving field can be
rather well described classically. However, pure quantum effects such as tunneling or
transversal spreading of the wave packet due to quantum diffusion have to be added
ad-hoc rather than derived from first principles.

As stated, the quantum version of the three-step model was introduced by Lewen-
stein and co-authors in [36]. It is derived under what is known as the strong field
approximation, which makes is possible to derive an analytical expression for the
time-dependent wave function and the atomic dipole moment under the influence of
a strong laser field.

The strong field approximation consists in neglecting the influence of the bound
states, other than the ground state, on the formation and return of the wave packet,
and also in neglecting the influence of the atomic potential on its continuum propa-
gation and assuming that the ground state is not depleted. The Schrödinger equation
can be written as,(

− ~2

2mp̂2 + V (r̂) + eE(t) · r̂
)
|Ψ(t)〉 = i~

∂

∂t
|Ψ(t)〉, (2.11)

which is equivalent to eq. 2.3. Here, however, the full Hamiltonian is explicitly written
in order to point out some properties of the SFA anzats. Following the derivation in
[37], the continuum part of the wave function is represented by Volkov states,

〈r|p + eA(t), t0, t〉 = 1√
2π
ei

1
~ [p+eA(t)]·re

−i 1
~

∫ t

t0
dτ ~2

2m [p+eA(τ)]2+Ip
. (2.12)

These are the exact solutions to the time-dependent Schrödinger equation if the atomic
potential were not present, and are simply plane waves where the instantaneous mo-
mentum is modulated by the vector potential A(t) due to the presence of the external
field. The vector potential is, in the gauge chosen in eq. 2.11, the time integral over
the electromagnetic field,

A(t) = −
∫ t

−∞
dτ E(τ). (2.13)

Since all other bound states but the ground state are assumed not to play a role for
the continuum dynamics responsible for HHG, and since the ground state population
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is assumed to be approximately constant, the full SFA wave function can be written
as,

|Ψ(t)〉 = |φ0〉+
∫
dp ap(t)|p + eA(t)〉e−i

1
~

∫ t

t0
dτ ~2

2m [p+eA(τ)]2+Ip
, (2.14)

i.e. as a superposition of the ground-state and a continuum wave packet. Plugging
the ansatz into eq. 2.11 and multiplying from the left by 〈Ψ(t)| yields a set of integral
equations for the expansion coefficients ap(t). Here another approximation comes
into play. Since the states |p + eA(t)〉 are not eigenstates of the full Hamiltonian they
will be mixed by the presence of the atomic potential. In other words there is a finite
probability at each point in time for the plane wave |p+eA(t)〉 to scatter off the ion to
another plane wave |p′+ eA(t)〉. In a first order approximation the term representing
scattering can be left out, giving the following equation for the expansion coefficients,

ap(t) =
∫ t

−∞
dt′ E(t) · 〈p + A(t)|r̂|φ0〉e

−i 1
~

∫ t

t′ dτ
~2
2m [p+eA(τ)]2+Ip (2.15)

Having found the wave function, the time-dependent dipole moment can be calcu-
lated. In doing so we neglect the term representing radiative transitions between the
Volkov states. This should not have a big influence on the result since the continuum
population is assumed to be small. The final approximate expression for the time-
dependent dipole moment under the SFA approximation can accordingly be written
as,

〈Ψ(t)|r̂|Ψ(t)〉 ≈ e

i~

∫
dp
∫ t

−∞
dt′ E(t′) · 〈p + A(t′)|r̂|φ0〉

e
−i 1

~

∫ t

t′ dτ
~2
2m [p+eA(τ)]2+Ip〈φ0|r̂|p + A(t)〉+ c.c

(2.16)

Here we can recognize the three steps from the semi-classical theory. The first
factor on the upper row represents tunneling at time t′. The electron then propagates
in the continuum acquiring a phase given by the exponential factor, to a time t when
it recombines with the ion. The recombination is represented by the last factor in the
second row.

This interpretation of eq. 2.16 has a grate deal in common with Feynman’s path
integral formulation of quantum mechanics [38]. The exponential factor acts as a
propagator, and the phase accumulated can be identified as the classical action for
the path defined by t, t′ and p, divided by ~. Fourier transforming the time-dependent
dipole moment reveals the spectral content of the emitted radiation.

The resulting triple integral can be evaluated in an approximate fashion by only
considering the dominating contributions, which appears when the phase of the prop-
agator is stationary with respect to t, t′ and p. This approach to evaluating integrals
with rapidly oscillating integrands is known as the saddle point approximation. In
this context the method also has a physical meaning. In classical mechanics, the path
of a particle is defined by a stationary action. Using the saddle point approximation
is thus equivalent to excluding all quantum paths or trajectories but the classically
allowed ones. Not surprisingly, carrying out this analysis, one then recovers many of
the results from the semi-classical model. For example, over a large spectral range
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that corresponds to the plateau region, the Fourier components are the sum of two
contributions, given by two different branches of the stationary action. These two
classes of quantum trajectories are similar to the classical short and long trajectories
and also give rise to the emission of two chirped attosecond pulses per half cycle [39].

There are several methods for including the neglected contributions or correcting
for some of the approximations made in this derivation. The effects of ground state
depletion [36] and the scattering of the Volkov states in the atomic potential can be
included. Further corrections to the model can be made in order to account for the
effect that the Coulomb potential has on the propagation of the wave packet [40].
To get a good qualitative agreement with experiments, however, the time-dependent
Schrödinger equation has to be solved numerically.

Limitations of HHG

The high-order harmonic cut-off law (eq. 2.9) stipulates an upper limit to what photon
energies can be generated from an HHG source. Pushing this limit as high as possible
is of course desirable as it increases the applicability of the source.

Since the ponderomotive potential scales linearly with the intensity of the driving
field (see eq. 2.8), a high intensity generally generates a high cut-off. However, the
generation of high-order harmonics is closely linked to field ionization. In a sense they
are competing processes. Thus the conversion efficiency drops if a large fraction of
the target atoms becomes ionized by the driving field [41]. For a given laser pulse
length there is thus an upper limit for the peak intensity of the pulse, a saturation
intensity, below which the frequency conversion can be considered efficient. Higher
intensities can be used with target atoms that has a higher ionization potential, since
these have a smaller probability to be field ionized [42]. The price paid then, however,
is an overall lower conversion efficiency. On the other hand, as we shall see later on,
a small degree of ionization of the generation medium (on the order of a few percent)
is often a prerequisite for efficient harmonic generation.

The ponderomotive potential scales quadratically with the driving field wavelength.
In addition to generating a more dense spectrum, using a long wavelength driving
pulse also generates a high cut-off frequency. Making use of this insight, it has been
experimentally proven that HHG can be pushed to generate photons with keV energy
by using MIR laser drivers [43]. This is accomplished, however, at the expense of a
dramatically decreasing conversion efficiency. Theoretical and experimental studies
suggest that the efficiency scales with wavelength as unfavorably as λ−6 [44, 45].

2.4 Macroscopic ensemble effects - Phase matching

Having discussed how an atom responds to a strong optical field and its ability to act as
a radiator at a harmonic frequency, we now consider the collective response of a large
ensemble of coherently radiating atoms. From this perspective the electromagnetic
field interacts with an optically homogeneous medium with macroscopic dimensions
and the response is described by the polarization density. However, solving the full
problem of the (non-linear) wave equation coupled to the Schrödinger equation in time
and space is a tremendous computational task. Here we thus treat the problem on a
high-level of approximation and rely on qualitative arguments rather than on a rigid
mathematical derivation.
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Phase-matching of monochromatic plane waves in a static medium

To introduce the concept of phase-matching we start with an unrealistic but simple
case, where the fundamental field is described as a plane monochromatic wave. We
can then assume slow spatio-temporal modulations of the complex amplitude with
respect to the cycle time and wavelength and correct the model accordingly. The
polarization density at the harmonic frequency, qω, includes two contributions. The
induced dipole moment of an individual atom is not only driven by the fundamental
field but also by the presence of the generated harmonic. The two contributions can
however, be assumed to be independent. Therefore the polarization density can be
written as a sum of the non-linear polarization density and a linear response to the
harmonic electric fields, described by the first order susceptibility,

P q = P qNL + χ(1)(qω)Eq, (2.17)

This is a good approximation as long as the harmonic field itself is not strong enough
to induce a non-linear response in the generation medium, which is generally the case.
The interplay between these two contributions gives rise to the concept of phase-
matching. Since we have decoupled the linear- from the non-linear polarization density
we can also treat each harmonic frequency independently. Furthermore, since the
density of the medium is low, we can assume that the overall conversion to harmonic
light is small, meaning that the fundamental field itself is unaffected by the non-linear
polarization density it induces.

Under these simplifying conditions, we can simply write the non-linear polarization
density at the harmonic frequency in a complex representation as,

P qNL(r, z, t) = NAq(E0)ei[−qωt+φ
dip
q (E0)+φq(z)], (2.18)

where N is the number density of atoms. Aq(E0) is an amplitude and φqdip(E0), a
phase which both depend on the single atom response to a fundamental field with
an amplitude of E0. The spatial phase variation, φq(z), along the coordinate that
defines the propagation axis of the fundamental field is, owing to the coherence of all
the oscillating dipole moments, locked to the spatial phase of the fundamental field.
This can be understood by considering that the driving field is shifted by φ0. For a
monochromatic wave this is equivalent to a time shift of ∆t = −φ0ω

−1. Since the
non-linear dipole moment only depends on the driving field, the same transformation
should be made in eq. 2.18, t→ t+ ∆t, which establishes the phase relation φq(z) =
qφ0(z). Therefore, under the plane wave approximation, φq(z) = qk0z, where k0 =
ωn(ω)c−1

0 .
Inserted into the wave equation it becomes apparent that the non-linear polariza-

tion density acts as a source term that generates a new plane wave with a frequency
qω and a field strength proportional to iq2ω2PNL(r, z, t). The linear response of the
medium at this frequency causes the generated wave to propagate with a wave vector
kq = qωn(qω)c−1

0 . The total field at a point z is thus proportional to the coherent
sum over the fields that have their source point at z′ and have propagated a distance
z − z′. Since the medium from a macroscopic point of view can be considered a con-
tinuum the sum turns into an integral. Given that the fundamental laser beam enters
the medium at z = 0 and that the density is approximately constant, the complex
harmonic field can be written as,
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Eq(r, z, t) ∝ iNAqei[−qωt+φ
dip
q ]
∫ z

0
dz′ eiqk0z

′+kq(z−z′), (2.19)

where the explicit E0 dependence is implied. Carrying out the integration and intro-
ducing the wavenumber mismatch, ∆kq = kq − qk0, the resulting field can be written
as,

Eq(r, z, t) ∝ iNAqz
sin(∆kqz/2)

∆kqz/2
ei[

z
2 (kq+qk0)+φdip

q −qωt] (2.20)

The wave vector mismatch expresses the fact that the non-linear and linear polar-
ization fields propagate with different phase velocities. As is evident from eq. 2.20
this can have large consequences for the conversion efficiency. Figure 2.8 illustrates
how the real harmonic field, E(z), build up along the propagation axis in two different
cases.

Figure 2.8: Illustration of the effect of wave vector mismatch. To the left, no mismatch, the
field envelope grows linearly with z. To the right, a mismatch, the field envelope is sinusoidal
in z.

In the fully phase-matched case, i.e. when ∆kq = 0, the factor sinc(∆kqz/2) in
eq. 2.20 is 1, and therefore the amplitude of the field grows linearly with z. The field
generated from an individual atom, symbolized by black dots in the figure, is in phase
with the dressing field at the harmonic frequency, which optimizes the conversion
efficiency.

On the left side in the figure, the wavelength of the harmonic field is slightly longer,
or equivalently, the wave vector is smaller. The fundamental field and the non-linear
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response are, however unchanged, which results in a situation where the emitted light
is slightly out of phase with the dressing harmonic field. This in general reduces the
total conversion efficiency, and sets an upper limit on the length of the generation
medium. If the medium were to end where the axis ends in the figure, none of the
available fundamental laser energy would be converted into harmonic light.

A more convenient way to describe the wave vector mismatch, when relating it to
the length of the non-linear medium, is to use the coherence length, Lqc ,

Lqc = π

|∆kq|
. (2.21)

The coherence length is the distance over which the traveling harmonic field de-
phases by π relative to the non-linear polarization field under non phase-matched
generation conditions. As a consequence, to have as efficient harmonic generation as
possible, the medium length should be about half the coherence length.

Re-absorption

The model introduced above for HHG on a single atom level, describes and explains
how photons with an energy greater than the ionization potential of the target atom
are produced. On a macroscopic level this also means that the generated light will
photoionize the generation medium along its path. The attenuation of the harmonic
field due to photoabsorption can be included in our current model by allowing the
wave vector, kq, to have an an imaginary part, iκq. This follows from the fact that
an optically absorbing medium has a complex susceptibility. To a good degree of
approximation κq = σ(ωq)N/2, where σ(ωq) is the photoabsorption cross section at
the qth harmonic frequency. Carrying out the integration in eq. 2.19 with the modified
wave vector gives the following expression for the harmonic intensity as a function of
the longitudinal coordinate z,

Iq(z) ∝ N2A2
qe
−κqz

cosh(κqz)− cos(∆kqz)
∆k2

q + κ2
q

. (2.22)

Analogous to the coherence length we can define an absorption length,

Lqabs = 1
2κq

. (2.23)

Figure 2.9 shows how the longitudinal build-up of the harmonic intensity is affected
by re-absorption, under different phase-matching conditions. To estimate the impact,
the absorption limited curves, in black, can be compared to the quadratic growth
(linear for the electric field) of phase-matched generation in a non-absorbing medium,
in blue.

Re-absorption of the harmonic light limits the effective length over which the field
is built up. Therefore, the non-linear frequency conversion eventually saturates if the
generation medium is extended to more than a few times the absorption length [46].

2.4.1 Controlling phase-matching
An important question that has generated a great deal of interest since the discovery
of HHG is how the collective response of a gaseous medium can be controlled or ma-
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Figure 2.9: Intensity of the harmonic field as a function of the longitudinal coordinate in
units of the absorption length, under different phase-matching conditions. The blue curve
displays the quadratic growth of absorption free phase-matched harmonic generation. The
figure is adapted for [46].

nipulated in such a way that the photon flux for a given experiment can be optimized
(see e.g. [47–50]).

The simple model presented above does not provide any tools for this type of
optimization control. The wave vector mismatch is given by the target atom and the
density of the generation medium. Reducing the mismatch can only be achieved by
reducing the gas density, but this also reduces the number of atoms that contribute
to the frequency conversion. The key to manipulating the generation conditions to
favor a high level of conversion is to balance the wave vector mismatch by utilizing
dynamical and geometrical effects that are not accounted for in the purely static,
plane-wave model.

Ionization

Ionization of the generation medium induced by the strong fundamental field is an
unavoidable secondary consequence of the production of high-order harmonics. If the
level of ionization is moderate at the time and location where the driving pulse is
maximum, the presence of free electrons can help to locally balance the wave vector
mismatch and dramatically increase the total conversion efficiency.

For a medium with only neutral atoms kq < qk0, since the susceptibility (and the
refractive index) generally decreases monotonically with frequency when ~ω > Ip. For
a low density plasma, where there is an abundance of free electrons, the dispersion
relation is approximately,

k(ω) ≈ ω

c0
− Nee

2

2meε0c0ω2 , (2.24)

where Ne is the free electron number density. In an ionized gas the local wave vector
mismatch is consequently altered by a positive correction,

∆keq = Ne(r, z, t)e2

2meε0c0q2ω2 (q2 − 1) (2.25)

The local free electron density can be calculated using the general solution to a
coupled rate equation,

Ne(r, z, t) = N

(
1− e−

∫ t

∞
dτ Γ[E0(r,z,τ)]

)
(2.26)
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where Γ is the local ionization rate and N is the initial number density of neutral
atoms. The ionization rates, which depend on the instantaneous electric field, can in
turn be estimated from calculations based on, for example, ADK theory [51], if the
driving laser pulse is known.

Figure 2.10: Fractional density of free electrons in argon gas, induced by strong field
ionization, as a function of time. The laser pulse, whose intensity profile is mapped out by
the gray line, has a duration (FWHM) of 23 fs, a peak intensity of 1.2·1014 W/cm2 and a
carrier frequency corresponding to a vacuum wavelength of 800 nm.

Figure 2.10 illustrates how the fractional free electron density varies in time when
argon gas is ionized by a laser pulse with a Gaussian time envelope. The rates used for
the calculation are tabulated cycle averaged rates extracted from numerically solving
the TDSE [41]. The figure does thus not show the true sub-cycle behavior of strong
field ionization, which is, however, not important in this context. A potentially more
important aspect that is left out in this simplified calculation is the spatial and tempo-
ral distortion of the pulse caused by rapidly changing dispersion properties and strong
dispersion gradients in the generation medium [41]. The most prominent sign of a
moderate plasma formation is a blue shift of the carrier frequency of the pulse, due
to the temporal change in the refractive index of the medium, and a "de-focusing" of
the laser beam, due to a plasma induced transversal gradient in the refractive index.

To a large extent, the wave vector balance can be controlled by varying the pulse
energy, duration and focal geometry. Good phase matching conditions can normally be
reached by an ionization degree of a few percent, which also means that the generation
is far from saturating due to depletion of the atomic ground state.

Focusing geometry

With a low degree of ionization, where the plasma reshaping of the fundamental pulse
is negligible, the phase-matching conditions should again be rather independent of
medium density, since the dispersion contributions from both neutral atoms and free
electrons scale almost linearly with the initial pressure. From an experimental point of
view it is clear, however, that phase-matched harmonic generation can normally only
be achieved within a limited pressure interval [52], which is a consequence of that the
laser energy has to be confined to a small volume. For a freely propagating beam, close
to the focus the phase gradient along the axis is not simply k0, but rather k0 plus a
contribution that depends on the focal geometry. The most widely used mathematical
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model to describe a laser beam is the Gaussian beam, for which geometrical phase
shift is,

φg(z) = − arctan
(
z

z0

)
, (2.27)

given that the focus i located at z = 0. z0 is a parameter, called the Rayleigh length,
that depends on the initial beam diameter and the focal length. In this case the
on-axis spatial phase of the non-linear dipole moment is thus qk0z + qφg(z), which,
put into eq. 2.19, clearly changes the phase-matching conditions. In a loose focusing
geometry, where the medium length is much smaller than z0, it is motivated to Taylor
expand φg(z) around the focal position to first order. In that case one finds that the
geometrical phase shift gives rise to a correction to the wave vector mismatch which
amounts to,

∆kgq = − q

z0
(2.28)

This contribution is pressure independent and therefore the total phase mismatch
does not necessarily scale with the medium density. Clearly, extremely loose focusing,
i.e. with the focal length very long or the beam diameter very small, will lead to a
situation where the effect of the geometrical phase shift is negligible.

The phase of the non-linear polarization density

In a focused beam the on-axis intensity will of-course also vary with position. For a
Gaussian beam this variation is Lorenzian,

I(z) = I0
1 + (z/z0)2 , (2.29)

where I0 is the intensity at the focus position. From a phase-matching perspective
this is important since it means that the phase factor φdip cannot be considered a
constant, in space or time.

The phase of the non-linear dipole moment has its origin in the exponential propa-
gation factor in the SFA integral expression given in eq. 2.16. The phase imprinted on
the electronic wave packet during propagation will be reflected in the radiation emit-
ted. A saddle-point analysis of the Fourier transformed dipole moment shows that the
phase corresponding to a given quasi-classical trajectory varies predominately linearly
with the intensity of the driving field [53]. Consequently, the two contributions to the
Fourier component of the dipole moment at a frequency qω have a phase that can be
written approximately as,

φS,Ldip (qω) = βS,Lq + αS,Lq I(z), (2.30)

where α and β are coefficients that vary smoothly with frequency and the indexes S and
L denotes the long- and short trajectories, respectively. Since the two contributions
have comparable amplitudes, their interference causes the total spectral phase to vary
rapidly and seemingly randomly in the plateau region. The long trajectories have,
however, a much longer excursion time than the short, which means that the phase
accumulated along these trajectories is more sensitive to a change of intensity. In other
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2.5 High-order harmonics and attosecond pulses

words αSq < αLq . This fact can be utilized by tailoring the macroscopic generation
conditions to select the contribution from one group of trajectories, and thereby to
smoothen the spectral phase [54]. Effectively this means selecting one of the two
chirped pulses emitted every half cycle. Generally, it is easier to optimize the short
trajectory contribution due to the smaller phase gradient along the axis. The phase
gradient contribution due to the intensity sensitive dipole phase, ∆kdip, is positive
before the focus position (∂I∂z > 0) and negative after (∂I∂z < 0). Therefore it can be
balanced locally with the negative geometrical wave vector mismatch, after the focus.

Due to the transversal intensity gradient across the focused beam the short and long
trajectory contributions also have different behaviors in the far-field. The generated
wave front is curved by the transversal dipole phase variation. This curvature is
much more pronounced for the long trajectory contribution, which therefore produces
a more divergent beam in the far field. The spectral phase and temporal structure
of the harmonic field can consequently also be filtered by introducing an aperture
somewhere in the far-field as seen from the generation point [55].

Summary

In summary, the efficiency and spectral characteristics of a HHG source depend heavily
on how well the phase-matching conditions can be tailored such that the total wave
vector mismatch over a substantial volume and during a majority of the driving pulse
duration, is minimized. To achieve this the four contributions to the total wave vector
mismatch have to be balanced against each-other such that,

∆ktotq = ∆knq + ∆keq + ∆kgq + ∆kdipq ≈ 0. (2.31)

Furthermore, the available parameter space in terms of, medium density and
length, focal conditions, peak intensity and pulse duration, is limited by re-absorption
and strong-field ionization.

2.5 High-order harmonics and attosecond pulses

At the atomic level, strong field non-linear optics are governed by the sub-cycle dy-
namics of electronic continuum wave packets. At the same time the propagation of the
generated electromagnetic field is most conveniently treated in the spectral domain,
and is therefore described as a sum of or integral over monochromatic waves. Fur-
thermore, since no photodetector has a sufficiently fast response to resolve attosecond
(or even femtosecond) time structures, characterization of attosecond pulses has to be
carried out in the spectral domain. This, sometimes confusing, dual perspectives calls
for a brief discussion.

At the atomic level, a short burst of light is emitted during an interval that cor-
responds to the duration of the returning electronic wave packet. This event repeats
itself once every half cycle of the driving field, with the only difference being that the
dipole moment changes sign at each consecutive event. In the time domain it is easily
realized that this generates a train of pulses separated by half a cycle (T/2), with a π
phase-shift between consecutive pulses. The Fourier transform of the pulse train can
be written as a sum over the contributions from each cycle n,
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E(Ω) =
∑
n

[
EI(Ω)eiΩnT − EI(Ω)eiΩ(n+ 1

2 )T
]
, (2.32)

where EI(Ω) is the Fourier transform of the individual (assumed identical) pulses and
T is the duration of one cycle of the driving field. The time-shift between the pulses
is accounted for by the phase factors given by the Fourier shift theorem. Using the
fact that T = 2πω−1 and summing eq. 2.32 from n = −N to N , we obtain,

E(Ω) = EI(Ω)
sin
[
(2N + 1)πΩ

ω

]
sin
(
πΩ
ω

) (1− eiπ Ω
ω ) (2.33)

The middle factor of this equation is similar to the expression describing a diffraction
pattern from a grating with N rulings. This factor peaks when the numerator tends to
zero, i.e when Ω/ω approaches an integer value. The last factor is, however, zero when
Ω/ω takes an even integer value, and thus cancels out the peaks corresponding to even
integers. Figure 2.11 illustrates how |E(Ω)|2 changes with the number of contributing
sub-cycles. The more pulses that are included in the sum, the more the spectral power
becomes concentrated in sharp peaks at odd order multiples of ω.

Figure 2.11: Illustration of the effect of multi-pulse interference. The black dashed line
shows EI(Ω), the gray dash-dotted line the case when two pulses from the same cycle are
added (N = 0) and the black solid line when 14 pulses from 7 consecutive cycles are added
(N = 3).

In the limit, N → ∞, the middle factor tends to a series of Dirac delta functions
and the spectral representation of the electric field becomes,

E(Ω) = EI(Ω)
∑
q

δ(Ω− qω)(1− eiπq) = 2EI(Ω)
∑
q

δ[Ω− (2q + 1)ω], (2.34)

This shows that only frequencies that are odd order harmonics of ω survive the pulse
to pulse interference.

The fact that a broad bandwidth of frequencies can be generated simultaneously is
a prerequisite for short pulse production. Since the time and frequency representation
of a light pulse are linked by a Fourier transform the frequency bandwidth (∆ν) and
pulse duration (∆τ), in terms of FWHM, are subject to the time-bandwidth product
condition, ∆ν∆τ > 0.44. A second condition is a well defined spectral phase, i.e.
a fixed phase relation between the frequency components, or coherence. Equality in
the time-bandwidth product condition holds for a Gaussian shaped spectrum with a
linear spectral phase.
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Figure 2.12 illustrates the frequency to time mapping in the case of harmonic
generation as well as the role of the spectral phase.

Figure 2.12: Illustration of the spectral- to time domain mapping of harmonics.

The left column shows three identical spectra, in terms of the spectral power
density, S(Ω), but with different spectral phases. S(Ω) corresponds to what would be
measured in an experiment such as the one illustrated in Fig. 2.1 using a laser pulse
with a carrier angular frequency of ω. The right column shows the corresponding time
representation in terms of the time dependent flux, Φ(t), where time is expressed in
units of T . The 2ω periodicity of the spectra translates into a train of pulses that are
spaced by one half cycle of the fundamental field.

In the upper row where the spectral phase is linear (flat) across the spectrum,
the duration of the individual pulses are Fourier transform limited, and just inversely
proportional to the bandwidth of the full spectrum. Furthermore, the duration of the
pulse train is inversely proportional to the bandwidth of the individual harmonics.
Moreover, an indication, although not proof, of an isolated pulse is the presence of a
spectrum without the modulations due to the harmonic lines.

The central row shows an example where the phase relation between the harmonics
is quadratic (dashed line), while the phase is flat across the spectral width of each
individual harmonic. As a consequence the pulses in the train are chirped, i.e. their
carrier frequency varies linearly in time, and are therefore stretched. The frequency
content in each pulse is however the same, if they were to be isolated. Also, since
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the phase is linear across the individual harmonic line, the envelope of the pulse train
remains unchanged compared to that in the top row. This is an important example
since, as described earlier, the pulses generated from HHG are intrinsically chirped,
due to the characteristics of the laser-matter interaction. It is therefore often necessary
to implement post generation compression schemes in order to retrieve the shortest
possible pulses on the experimental target. The conventional way to do this is to let
the radiation pass through thin foils of some dispersive material that will imprint a
spectral phase with a variation opposite to the initial one [56].

In the lower row we illustrate the situation where the phase varies in a non-linear
fashion across the harmonic lines. As can be seen from the corresponding time rep-
resentation only the pulse envelope of the pulse train is affected while the duration
of the individual pulse remains the same. Furthermore, while the carrier frequency of
each pulse is constant, the frequency content now varies from pulse to pulse.

For a short fundamental pulse, the characteristics (phase and amplitude) of the
half-cycle change rapidly. This leads to a situation where each pulse in the XUV
pulse train is generated under different conditions and therefore has a varying spectral
content. This effect is easier to analyze if we consider that each line in the harmonic
spectrum represents a pulse with a duration comparable to that of the fundamental
pulse. The temporal phase of these pulses can be estimated by inserting the time
varying intensity of the fundamental pulse into eq. 2.30, which gives the phase of
the non-linear dipole moment as a function of intensity. Around the peak of the
fundamental pulse the temporal intensity profile will be approximately quadratic. As
a consequence the harmonic pulses are generated with a chirp [57, 58]. The chirp rate
will depend on the harmonic order (through the α coefficients), which means that,in
addition to stretching the pulse train, this effect also results in a non-equidistant time
spacing between the attosecond pulses.

A driving pulse with an initial chirp or a complicated temporal phase will also
generate harmonic pulses with a non-linear spectral phase and consequently an ATP
with a time varying carrier [59]. As already pointed out, ionization driven by the
generation pulse will generally up-shift its carrier frequency, due to a close to linear
time variation of the dispersion. This effect also blue-shifts the harmonic light. At
the leading and trailing edges of the pulse, the dispersion change is not linear (see
Fig. 2.10). As a consequence the spectrum of the driving pulse is broadened and the
harmonic pulses are generated with a time varying chirp rate [60].

Chirped harmonic pulses will result in ATPs that are longer than indicated by the
supported bandwidth of the harmonic lines in the power spectrum. This is the reason
why a continuous harmonic spectrum is not a guarantee for a single isolated harmonic
pulse. It is easy to imagine a situation where each attosecond pulse is sufficiently
frequency shifted to smear out the harmonic spectral structure.

Of course the chirp originating from the sub-cycle dynamics, often called the atto-
chirp, and the chirp of the harmonic pulses, which comes from the cycle to cycle
variation, in reality are both present simultaneously. In Fig. 2.12 the effects have
been separated for pedagogic purposes.

Attosecond pulse walk-off

The spectral phase and time-structure of an ATP is not only a product of the single
atom response, but also depends on propagation effects [61]. Using the simple static
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on-axis 1D-model introduced earlier in eq. 2.18, the phase of the qth harmonic due to
propagation through the generation medium can be written as,

φq(L) = (qk1 + kq)
L

2 − arctan
(

tan(∆kq L2 )
tanh(κq L2 )

)
+ arctan

(
∆kq
κq

)
, (2.35)

where L is the length of the harmonic medium. In Paper IV we used this model to
understand how the relative phase between the fundamental and the harmonic fields
changes as a function of the pressure in the harmonic generation gas cell. Previous
work has also studied the phase locking between the harmonics and the fundamental
in detail, but then focused instead on the atomic response [62–64].

At the output of the generation medium the accumulated phase difference is ∆φq =
φq(L)− qk1L, which put into eq. 2.35 yields,

∆φq = ∆kq
L

2 − arctan
(

tan(∆kq L2 )
tanh(κq L2 )

)
+ arctan

(
∆kq
κq

)
. (2.36)

When there is no absorption (κq = 0), the de-phasing between the harmonic- and
fundamental field is just the average accumulated phase mismatch between linear- and
non-linear polarization densities. Absorption shortens the effective build-up length
and therefore consequently limits the accumulation of phase mismatch.

Using the RABBITT method, implemented with an actively stabilized interferom-
eter, we studied the quantity ∆φq+1−∆φq−1 for a set of harmonics generated in argon
gas, while changing the amount of gas ejected into the cell at each laser shot. Combin-
ing a phase measurement with a measurement of the spectral amplitude allows for a
reconstruction of the average pulse in the pulse train. Figure 2.13 shows reconstructed
attosecond pulses for three different pressures, together with the absolute value of the
fundamental field. Our method only allows us to reference one pulse train to the
next in terms of timing. The group delay of the pulses with respect to the sub-cycle
of the fundamental is estimated using eq. 2.30 with coefficients extracted from SFA
calculations and the intensity using the high-order harmonic cut-off law (eq. 2.9).

The experiment confirms that the timing of the attosecond pulses with respect
to the sub-cycle of the fundamental field, depends on the phase-matching conditions,
since changing the generation pressure should not alter the single atomic dipole mo-
ment. This result can be understood by rewriting the measured quantity as a finite
difference approximation,

∆φq+1 −∆φq−1

2ω ≈ ∂φΩ

∂Ω −
φ1

ω
, (2.37)

where φΩ is the spectral phase at the harmonic frequency Ω, and φ1 is the phase of the
fundamental. The shift of the ATP is a consequence of altered dispersion conditions
in the generation medium, which changes the group delay of the ATP and phase delay
of the fundamental. It is thus a matter of, in common non-linear optics terminology,
a sub-cycle temporal walk-off of the ATP.
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Figure 2.13: Reconstructed attosecond pulses generated in argon gas at different pressures.
The background pressure in the vacuum chamber where the gas was injected is used as an
indicator of the pressure in the generation cell. The background pressure was 2.5×10−3 mbar
when the light gray pulse was recorded, 3.5×10−3 mbar for the dark grey pulse and 4.5×10−3

mbar for the black pulse. The red curve indicates the absolute value of the fundamental field
amplitude, with an estimated phase.
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Chapter 3

Photoelectron interferometry

Photoelectron interferometry is an experimental method for characterizing electronic
wave packets that have been created via a coherent excitation of continuum states.
The interferometric signal carries a signature of the electronic structure and dynam-
ics involved in the subsequent ejection of one or several electrons as well as of the
time structure of the ionizing electromagnetic radiation. The method can also be
considered as an extension of photoelectron spectroscopy, which utilizes the fact that
photoionization occurs by absorption of a coherent frequency comb of XUV light in
the presence of an intrinsically synchronized low frequency light field.

3.1 Photoelectron spectroscopy

When the photon energy of XUV radiation exceeds the ionization energy of an atom,
the interaction between them leads to photo ionization. In this thesis the majority of
the work has been carried out using angular integrating photoelectron spectrometers
(see Section 3.3). Applying such an instrument to study the outcome of a photoioniza-
tion event driven by a XUV pulse amounts to mapping out the probability densities
of continuum energy eigenstates at a time after the interaction is over [65]. More
specifically, the experimental signal, which is a function of the kinetic energy of the
detected electrons, Ekin, is

S(Ekin) ∝
∑
l,m

|cε,l,m|2, (3.1)

where cε,l,m is the probability amplitude of a state with an energy ε, and angular and
magnetic quantum numbers l and m, respectively. When the electron is sufficiently
far away from its parent ion, such that they no longer interact, all the energy of the
electron is kinetic, i.e Ekin = ε. The interaction between the atom and the XUV
field is described, to a very high degree of accuracy, by first order time-dependent
perturbation theory. By formally taking the limit t → ∞, the first order probability
amplitude c(1)

ε,l,m can be written with the help of the spectral representation of the
XUV field EXUV (Ω),

c
(1)
ε,l,m = e

i~
〈ε,m, l|r̂|g〉EXUV (Ω)δ (~Ω + Eg − ε) , (3.2)
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where |g〉 is the initial state, the bound ground state with an energy Eg, and |ε,m, l〉 is
the continuum final state. The Dirac delta expresses energy conservation, which must
be fulfilled once the interaction is over. Figure 3.1(a) shows a schematic energy level
diagram and the resulting experimental signal from ionization of an atom A using a
frequency comb of three harmonics.

Figure 3.1: a) Photo-ionization of an atom A by a harmonic frequency-comb with a line-
spacing of 2ω. (b) Two-color two-photon ionization of the same system as in (a), by a
combination of the harmonic frequency-comb and a probe field with an angular frequency of
ω.

3.2 Photoelectron interferometry - The RABBITT technique

Our interferometric method is based on the RABBITT (Reconstruction of Attosec-
ond Beating by Interference of Two-photon Transitions) technique, which consists in
recording photoelectron spectra of two-photon two-color ionization, i.e., the process
illustrated in Fig. 3.1(b). The second color field is generally a weaker copy of the
IR pulse used to drive the harmonic generation, which is overlapped with the XUV
pulse train at the experimental target. The two-photon transitions generate new peaks
(called sidebands) in the photoelectron spectrum. These peaks appear at positions
that correspond to a one-photon transition driven by an even order harmonic, since the
spacing between the harmonic lines in the spectrum is twice the energy of an IR pho-
ton. The RABBITT scheme requires that the field strength of the IR field, the probe
field, be sufficiently high to induce two-photon transitions, but not so strong that the
probability for higher order transitions becomes non-negligible [66]. The combined
action of the XUV- and probe fields can then be treated by second-order perturbation
theory. The probability amplitude for the two-color two-photon interaction is in the
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limit t→∞,

c
(2)
ε,l,m = lim

ε→+0

e2

i~2EXUV (Ω)EIR(ω)
∑
ν

∫
〈ε,m, l| r̂ |ν〉 〈ν| r̂ |g〉
~Ω− Eν + Eg − iε

δ(~Ω±~ω+Eg − ε), (3.3)

where the sum integral runs over all eigenstates, ν, of the field-free Hamiltonian, both
its bound and continuum spectrum, and EIR(ω) is the Fourier transform of the probe
field. The parameter ε, which tends to zero from the positive side, is introduced to
make the integral well defined despite the pole at Eν = ~Ω + Eg. Again, the Dirac
delta function guarantees that the energy is conserved when the interaction is over.
After the two-photon transition, one XUV photon has been absorbed and one probe
field photon has either been absorbed (+~ω) or emitted (−~ω). This means that the
same sideband state can be reached via interaction with different spectral components
of the XUV field, as indicated in Fig. 3.2(b). Temporarily ignoring the fact that the
transition can be made in a number of angular momentum channels, as stipulated by
the dipole selection rules, the spectral signal, Sq, at an energy corresponding to an
even harmonic transition ε = ~qω − Eg is,

Sq ∝
∣∣∣c(2,+)
q + c(2,−)

q

∣∣∣2 , (3.4)

where (+) and (−) denote the contributions to the total amplitude associated with
absorption and emission of a probe field photon, respectively. Equation 3.4 can be
rewritten by introducing the phases φ(2,±)

q as the argument of c(2,±)
q ,

Sq ∝
∣∣∣c(2,+)
q

∣∣∣2 +
∣∣∣c(2,−)
q

∣∣∣2 +
∣∣∣c(2,+)
q

∣∣∣ ∣∣∣c(2,−)
q

∣∣∣ 2 cos
(
φ(2,+)
q − φ(2,−)

q

)
, (3.5)

which shows that the sideband amplitude is sensitive to the relative phase between
the probability amplitudes involved. Referring to eq. 3.3 it is clear that these phases
can be decomposed into three terms,

φ(2,+)
q = φq−1 + φ1 + φ

T (2)
q−1 (3.6)

where φq−1 is the phase of the (q−1)th harmonic field, φ1 is the phase of the probe field
and φT (2)

q−1 , the argument of the two-photon dipole transition matrix element induced
by these two fields. Since EIR(−ω) = EIR(ω)∗ we also have,

φ(2,−)
q = φq+1 − φ1 + φ

T (2)
q+1 (3.7)

The phase delay of the probe field relative to the XUV pulse train, τ = φ1/ω, can
be controlled in an adjustable delay line. By recording a spectrogram composed of
two-color photoelectron spectra at different values of τ , the phase information can be
retrieved. Figure 3.2 shows a schematic RABBITT spectrogram and illustrates how
the sideband signal oscillates when τ is scanned. The phase of the sideband oscillation
only depends on the phase difference between the matrix elements associated with the
transition to the sideband state,

φ(2,+)
q − φ(2,−)

q = 2ωτ − (φq+1 − φq−1)− (φT (2)
q+1 − φ

T (2)
q−1 ) (3.8)
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Figure 3.2: Upper panel, schematic RABBITT spectrogram showing how the two-color two-
photon photoelectron spectra from three harmonics and a probe field changes as a function
of τ . Lower panel, the signal integrated over the sideband peaks. The black curve and the
gray curve correspond to the high energy and low energy sideband, respectively.

The sideband signal can therefore be analyzed in terms of the following equation,

Sq = Aq +Bq cos
(

2ωτ − [φq+1 − φq−1]− [φT (2)
q+1 − φ

T (2)
q−1 ]

)
, (3.9)

where Aq and Bq depend on the intensity of the fields involved, the strengths of the
transitions, the density of the target and the detection efficiency. The phase of the
oscillation can be retrieved independently of these parameters via curve fitting or a
numerical Fourier transform of the sideband signal, since it is spectrally separated and
free of background.

3.2.1 Applications of RABBITT
The RABBITT method was originally introduced as a tool for characterizing the
spectral phase of the XUV pulse train. Together with a measurement of the relative
spectral amplitudes of the harmonics, Eq, the relative spectral phases, φq+1 − φq−1
can be used to reconstruct the temporal structure of the average pulse in the XUV
pulse train. The relative amplitudes of the harmonic fields can be extracted from a
photoelectron spectra given that the photon energy dependent photoionization partial
cross section of the target is known. The intensity profile of the average pulse is given
by,

IXUV (t) ∝

∣∣∣∣∣∣
∑
q odd

Eqe
iφq−iqωt

∣∣∣∣∣∣
2

. (3.10)

The spectral phases can be determined, up to a constant, by summing up the relative
phases cumulatively,

q∑
n=qi

φn+1 − φn−1 = φq+1 − φqi−1, (3.11)
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where qi is the lowest order sideband of the sidebands in the recorded spectrogram.
Measuring the phase relation between consecutive harmonics is also equivalent to
determining the spectrally resolved group delay of attosecond pulses, τXUVq , within
the finite difference approximation,

τXUVq = φq+1 − φq−1

2ω (3.12)

As explained in Section 2.5, this aspect was used in Paper IV to characterize the
effect of the generation conditions on the timing of the attosecond pulses relative to
the fundamental field.

A reconstruction of the attosecond pulses using the RABBITT method requires
that the phases of the two-photon dipole transition matrix element can be either
neglected or calculated [67–73] (see eq. 3.9). In Papers I, II, III and V it is instead
measurements of this phase contribution that constitute the main results. Just as the
relative spectral phases of the harmonic fields are associated with a group delay of
the XUV pulses, the relative phases of the transition matrix elements constitute an
additional group delay of the emitted electron wave packet,

τT (2)
q =

φ
T (2)
q+1 − φ

T (2)
q−1

2ω . (3.13)

This delay is a consequence of the interaction between the escaping electron, the probe
field, and the ionic core that takes place when the electron has made a transition to
a continuum state [74]. The group delay of the electron wave packet thus carries
a signature of the ultrafast dynamics of photoionization, which is accessible with
photoelectron interferometry.

By identifying the spectral phase differences encoded in the second order transition
amplitude as a spectrally resolved group delay of the second order continuum wave
packet enables us to write the equation for the sideband modulations in a RABBITT
spectrogram in a more compact and intuitive form,

Sq = Aq +Bq sin(2ω[τ − τXUVq − τT (2)
q ]). (3.14)

3.2.2 Conditions for RABBITT
When implementing the RABBITT method and interpreting the results, it is im-
portant to keep in mind that this approach is only valid under the condition that
second-order perturbation theory is applicable. It is therefore necessary to have pre-
cise control of the probe pulse energy. In order to obtain a sense of the general validity
of this approximation, it is instructive to study the same process under a different ap-
proximation, namely the strong field approximation. As explained in Section 2.3.2,
this approximation assumes that the continuum wave functions are plane waves, which
is a consequence of ignoring the interaction between the ionized electron and the ionic
core. The probability amplitude of a continuum state with a final momentum p after
interaction with the APT and the probe pulse is then [75, 76],

cp =
∫ ∞
−∞

dt′ EXUV (t′) · 〈p + A(t′)|r̂|g〉e−i
1
~

∫∞

t′ dt′′ ~2
2m [p+eA(t′′)]2+Ip , (3.15)
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where EXUV is the electric field of the APT and A is the vector potential of the probe
pulse. Just as for the SFA expression for HHG, eq. 3.15 can be interpreted in terms
of a sequence of events. The electron emerges in the continuum at a time t′ when it is
ionized by the APT. It then propagates with an average momentum p, which is mod-
ulated by the vector potential of the probe field. Mathematically, the integral takes
the form of a Fourier transform of the one photon probability amplitude, frequency
modulated via the action of the probe field. The dominant time-dependent term in
the exponential phase factor is proportional to p · A(t′′), meaning that the energy
modulation amplitude is proportional to the final momentum. As a consequence the
probability of sideband formation increases with the energy of the photoelectrons.

Figure 3.3: SFA calculation of photoelectron spectrum as a function of probe pulse intensity.

The left panel of Fig. 3.3 shows the spectrum of photoelectrons with an initial
kinetic energy of 20 eV as a function of the peak intensity of a 30 fs long probe
pulse with a central wavelength of 800 nm, calculated using eq. 3.15. As the probe
field strength increases sidebands start to form. From the perspective of perturbation
theory, sideband formation is a consequence of absorption or emission of an additional
photon. From the perspective of the strong field approximation, sideband formation
instead has to be understood as a consequence of a periodic energy modulation of
the continuum wave packet driven by the probe field. Increasing the intensity further
results in the appearance of additional sidebands. Explaining the this process within
a perturbative model requires that the model is extended to third-order perturbation
theory that accounts for the interaction with yet another probe field photon.

The right panel of Fig. 3.3 shows the integrated signals over the central peak
(labeled 0th) and the first and second order sidebands. The black curve indicates the
ratio to which the central peak and the first order sidebands account for the total
signal. It can be shown, via manipulations of eq. 3.15, that these curves are described
by generalized Bessel functions (of zeroth-,first- and second order).

Second order perturbation theory predicts that the first order sideband should
grow linearly with the probe pulse intensity. Furthermore, if no higher order processes
is accounted for, the probability density should only be redistributed from the central
peak to the first order sideband. Figure 3.3 indicates that these predictions start to
be wrong for electrons with a kinetic energy of 20 eV, when the probe pulse intensity
exceeds 3·1011 W/cm2.

When dealing with extremely broadband XUV pulses (several tens of eV) it is
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challenging to set the intensity of the probe pulse such that the RABBITT conditions
are fulfilled over the entire spectral range, while still managing to have detectable
sidebands on the low energy side.

3.3 Detection of photoelectrons

Most of the results in this thesis (Papers I-IV) have been obtained using a magnetic-
bottle electron spectrometer (MBES). In this instrument the kinetic energy of the
photoelectrons, emerging from an effusive gas jet target, is analyzed by determining
the photoelectron flight-time in a drift tube. The main advantage of this instrument is
its high collection efficiency, which is enabled by a magnetic field designed to direct the
electron towards the microchannel plates at the end of the drift tube, independently
of its emission angle and without altering its kinetic energy [77]. The field lines of this
guiding magnetic filed, schematically outlined in Fig. 3.4, maps out the shape of a
bottle. The bottle shaped magnetic field lines have given the instrument its name. The

Figure 3.4: Schematic diagram the magnetic field in a MBES, adapted from [77].

strong, divergent field in the interaction region is created by an electro- or permanent
magnet, supplied with one or two conical pole pieces that concentrate the magnetic
field into the volume where the electrons are emitted. The weaker magnetic field in
the drift region is induced by a solenoid magnet that encircles the drift tube.

An electron emitted in the interaction region with a speed v and a velocity compo-
nent perpendicular to the magnetic field lines, v sin(θi), will follow a helical trajectory.
In a plane perpendicular to the magnetic field lines, the electron will travel in a cir-
cular, cyclotron motion with a radius

ri = vm sin(θi)
eBi

, (3.16)

while drifting into the parallelization region, due to its longitudinal velocity com-
ponent. If the variation of the magnetic field that the electron experiences changes
negligibly during one revolution of the cyclotron motion, the component of the elec-
tron angular momentum that is parallel to the magnetic field lines is conserved. We
can therefore equate the final angular momentum of the cyclotron motion in the ho-
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mogeneous field of the drift region, with the initial angular momentum,

rimv sin(θi) = rfmv sin(θf ), (3.17)

which together with eq. 3.16 gives a relation between the initial and final traveling
angles relative to the magnetic field lines,

sin(θf )
sin(θi)

=
√
Bf
Bi

. (3.18)

The momentum of the electron is thus essentially parallel to the magnetic field lines
once it reaches the drift region. The transition from the high to low field region
should be made relatively short, a few mm, so that the travel time of the electron
from the interaction region to the detector is a good measure of the particle speed,
independently of the emission angle from the target. However, the transition should
not be made over a too short distance. The magnetic field gradient then becomes
too large for the adiabatic approximation to be valid, i.e the magnetic field strength
changes significantly during one revolution of the electron cyclotron motion.

The time-of-flight (TOF) of the electrons is recorded by a time-to-digital converter
that registers the time between two trigger events. The first is generated by a pho-
todiode that fires when hit by the laser pulse, and the second by the electron impact
on the MCP. From a recorded list of TOFs, a histogram is constructed that, after re-
binning from time to energy bins, constitutes a photoelectron energy spectrum. The
conversion between TOF and kinetic energy in eV is accomplished using the formula
[78],

Ekin =
(m

2e

)[ L

T + Td

]2
+ Va + Vr, (3.19)

where L is the length of the drift tube, T is the TOF and Td is the delay of the first
trigger event relative to the true emission time of the electron. A voltage Va can be
applied to a grid located in the drift tube to slow the electrons down, and thereby
increase the energy resolution. Vr is any residual voltage not accounted for when
measuring Va. A calibration of the energy scale is achieved by fitting eq. 3.19 to
a range of spectral peaks with known energies, generally using L, Td and Vr as free
parameters.

Equation 3.19 also dictates that the energy resolution (∆Ekin) is related to the
TOF resolution (∆T ) by,

∆Ekin
Ekin

= 2∆T
T

. (3.20)

The energy resolution is thus better at low electron energies. Furthermore long drift
tubes (long TOF) are to prefer from a resolution point of view. The time resolution
is in general limited by the efficiency in the parallelization of the electron momentum.

The spectroscopic results presented in Papers I-V are obtained using a MBES that
collects electrons emitted over a solid angle of 2π steradians. The strong magnetic field
in the interaction region of this instrument is created by an electromagnet mounted on
the outside of the vacuumchamber and two hollow conical pole pieces facing each other
from opposite sides of the interaction region (similar to the instrument described in
[77]). The 0.8 m drift tube is encircled by a solenoid magnet and two Helmholtz-coils
which compensate for the Earth’s magnetic field.
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The results presented in Chapter 5, on Auger electron spectroscopy, were obtained
with a different instrument. This other MBES collects electrons emitted over a solid
angle of 4π steradians. The magnetic field in the interaction region forms a magnetic
mirror that is created by a permanent magnet with a single conical pole piece, mounted
inside the vacuum chamber, as in refs. [79, 80]. The 2 m drift tube is encircled by a
solenoid magnet and screened from the Earth’s magnetic field by a µ-metal shield.

3.4 Optical interferometers for photoelectron interferometry

From an experimental perspective RABBITT is equivalent to a cross-correlation mea-
surement between an APT and an optical pulse. Interferometry in general requires
good experimental stability and precise control. In attosecond science this is particu-
larly true. To shift the arrival time of an electromagnetic pulse on target by 100 as, it
is sufficient to alter its optical path-length by only 30 nm. Optical experimental setups
for photoelectron interferometry are therefore built as two-color interferometers, with
a high requirement on interferometric stability.

Here, two of these setups are described which were both used to obtain some of the
results presented in this thesis. The first one was constructed before I joined the Lund
attosecond physics group and is therefore referred to as the old setup. The second
setup was built during this thesis work and will therefore be refereed to as the new
setup. I contributed largely to the design and building of this experimental setup.

3.4.1 Old setup
The photoelectron interferometry experiments presented in Papers I-IV were per-
formed using the optical setup schematically outlined in Fig. 3.5.

The setup consists in a Mach-Zehnder type interferometer with a gas-cell inserted
in one of the arms for generation of high-order harmonics. The other arm guides the
probe pulse to the active region of the electron spectrometer.

The output beam from the laser is split by a thin (3 mm) beam-splitter. Seventy
percent of the pulse energy is focused by a spherical mirror (or an off-axis parabolic
mirror) through an open-ended gas cell into which the generation gas is released in
a pulsed manner, synchronized with the arrival of the pulse. The IR-beam is then
blocked and separated from the generated XUV beam by a thin foil. The XUV beam
is passed through a hole in the center of the mirror that re-combines the two arms of
the interferometer, and is then focused by a gold coated toroidal mirror onto the gas
target in the interaction region of the MBES. Focusing of the XUV beam is performed
in a 2f-2f configuration, i.e. the toroidal mirror images the point where the beam is
generated in the gas target.

The remaining 30% of the IR pulse energy goes into the probe arm of the interfer-
ometer. In order to be able to adjust the pulse energy to the experimental conditions,
a rotatable half-wave plate and two reflective polarizers are mounted in the beam path.
The pulse is passed through a delay line for course adjustments of the probe delay.
Fine adjustments and scans of the delay are achieved by translating a mirror using a
piezo-eletric actuator. The outer part of the beam is reflected off the recombination
mirror and overlapped in time and space with the APT in the electron spectrometer.
The recombination mirror has a curvature designed to create a virtual focus of the
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Figure 3.5: Optical setup for attosecond interferometry experiments. The labels are ab-
breviations of: AP, aperture; BS, beam-splitter; CHM, curved holey mirror; FM, focusing
mirror; FW, filter-wheel; GC, gas-cell; M, mirror; MTS, motorized translation-stage; PTS,
piezoelectric translation-stage; RP, reflective polarizers; TM, toroidal mirror; WP, half-wave
plate.

collimated probe beam at the position of the HHG gas cell in order for the XUV- and
IR to focus at the same position.

The beam path marked in yellow in Fig. 3.5 constitutes a second interferometer,
which is designed to monitor and control the probe pulse delay. The part of the probe
beam that leaks through the hole in the recombination mirror is combined with a part
of the generation beam picked off by a small d-shaped mirror on a beam splitter. The
two beams are then crossed, at a small angle, at a camera chip. The camera is provided
with an interference filter that limits the bandwidth of the incident beams. The spatial
interference pattern that forms on the camera when the two pulses overlap is used to
create an error signal for a feed-back loop that controls the piezoelectric delay stage
in the probe arm. The automatic control is implemented using a simple proportional-
integral-derivative software controller. Its parameters are manually tuned to make the
actual measured delay best follow a few fs step in the desired delay. This additional
stabilizing interferometer serves two purposes, as discussed below.

In the experiments presented in Papers I, III and in the coincident measurements
presented in Chapter 5, the signal level from the relevant process was relatively weak
(less then 1 electron collected per laser shot). Under such conditions it is important
to minimize the time jitter between the APT and the probe pulse, in order to obtain
good quality statistics. A low signal also means that the time to record a spectrogram
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is long. Slow drifts in the probe delay then become a potential problem. Since the
signal is periodic (see Fig. 3.2) slow drifts can be partly compensated for in the data
treatment, but this introduces an uncertainty that also degrades the statistical quality
of the data.

In Papers II and IV the results were obtained by comparing spectrograms recorded
using harmonics generated under different conditions and with different target gases,
respectively. This comparison relies on the fact that the same range of probe delays
can be scanned in a reproducible manner, which requires a reliable way to keep track
of the probe delay.

The short term timing jitter is substantially reduced by the active stabilization of
the main interferometer. For a measurement of 6 min the RMS in the measured delay
drops from 200 as to 50 as when the active stabilization is switched on. The long term
drift, however, has proved difficult to completely eliminate.

Figure 3.6: Delay measurements over time from the interferometer in a non-stabilized mode.
The black curve is a recording of spatial fringes formed after the recombination of the beams.
The red curve, a recording of spatial fringes in the interferometer with the beam path marked
in yellow in Fig. 3.5.

Figure 3.6 shows a measurement of the long term interferometric stability. The
red curve represents the probe delay measured by the small interferometer. The
black curve shows the actual probe pulse delay, measured after the point where the
two main beams are recombined. This measurement was performed by directing the
beams towards a camera and forming an interference pattern by slightly misaligning
the recombination mirror. The data were recorded using a He-Ne CW laser and not
the IR laser, since the main aim was to study how the thermal load from the high-
power beam affected the system. At the beginning of this measurement the IR-beam
was let into the setup and the stabilization software was turned off. The IR beam was
then left as it was for the entire time of the measurement. The thermal load on the
optical components form this high-power laser beam induces a drift in the path length
difference between the arms such that the delay of the probe pulse changes on a fs
scale over hours. This effect should in principle be compensated for by the feed-back
loop. However, the length of the beam path marked in yellow in Fig. 3.5 also drifts,
which is shown by the fact that the two curves in Fig. 3.6 gradually separates. After
two hours they are separated by about 1.5 fs. In a situation where the feed-back
loop controls the delay of the probe pulse the error signal fed to the control software
slowly becomes more and more incorrect due to this effect. To minimize this drift it
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Figure 3.7: Plans for re-building of the optical setup presented in Fig. 3.5. The labels are
abbreviations of: AP, Aperture; BS, beam-splitter; FM, focusing mirror; FW, filter-wheel;
GC, gas-cell; HM, holey mirror; L, lens; M, mirror; MTS, motorized translation-stage; TM,
toroidal mirror; SP, Anti-reflection coated silica plates.

is important to let the system reach a thermal equilibrium before data that depend
on interferometric stability are recorded.

Outlook - A plan for improvements

Plans are presented below for a new version of the optical setup in Fig. 3.5. The
main aim of this new version is to overcome the difficulties of maintaining a long term
interferometric stability as discussed above. Fig. 3.7 shows the planed modifications.
As in Fig. 3.5, the Mach-Zehnder type interferometer remains the main building
block in the design, but the new version contains a number of conceptual changes.
The curved recombination mirror has been replaced by a flat holey mirror. Instead
of imaging a virtual focus, the toroidal mirror images a real focus in the probe arm
into the target in the electron spectrometer. This modification lowers the level of
complexity in the manufacturing of the drilled recombination mirror. It should also
offer more flexibility for making small adjustments of the position and quality of the
probe focus at the experimental target.

A pair of silica plates with high optical quality surfaces has been added in the XUV-
beam path. At gracing incidence a high fraction of the harmonic beam is reflected
off these plates, while most of the co-propagating IR pulse is transmitted through
the front surfaces, thanks to a broadband multilayer anti-reflection coating. This
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modification was introduced to separate the APT from the driving pulse before it
is transmitted through the thin spectral filter foil. From experience we learned that
there is otherwise a substantial risk, depending on the material of the foil, that foils
will break, due to the heat load exerted on them by the IR-laser pulse. According
to the manufacturer, the pair of silica plates should attenuate the IR beam such that
only 2% of the power remains after two reflections.

The main reason for considering a redesign of the setup was, a mentioned, to
improve the long term interferometric stability. The approach based on an active
stabilization of the probe pulse delay in a feed-back loop is kept, but the delay is
monitored by applying a design was inspired by the experimental setups described in
refs. [81, 82], which both report a good long- and short-term interferometric stability.
The relative optical path length of the interferometer arms is probed by a HeNe
laser beam that co-propagates with the NIR laser pulse. The idea is to avoid that
the beam path used to monitor the stability deviates from the paths of the main
beams. The HeNe beam is therefore picked off from the generation arm first at the
recombination mirror, via a reflection from its backside. This beam is then parallel
with the part of the probe beam that leaks through the hole in front side of the
mirror. Since the mirror substrate is thick (5 mm), passing two orthogonal beams
through the mirror required that two channels be drilled in the substrate. The two
channels meet at the front side of the mirror. The beams emerging form the backside
are, however, displaced by 7 mm with respect to each other. These two, originally
diverging beams, are then crossed via a positive lens. Where they overlap, spatial
interference fringes are formed. As previously described, these fringes are registered
by a camera and processed by a software. In order to prevent that a thermal expansion
of the recombination mirror causes a non-registrable drift, its substrate is made of
Zerodur, a glass with an extremely small thermal expansion coefficient.

In order for this scheme to work, a sufficiently large fraction of the power in the
HeNe laser beam has to be transmitted past the pair of silica plates and the filter
foil. The anti-reflection coating of the silica plates does not cover the wavelength of
the HeNe laser (633 nm), and the pair transmit about 40% of the incoming power at
this wavelength. The filter foils are held by custom made silica mounting rings. The
diameter of the circular filters are only 2.5 mm, which allows for the outer part of the
laser beam to pass around it.

The design has been partially verified by both computer ray-tracing and via a
model setup built within the framework of a BSc-thesis work [83], supervised by me.
This setup will soon be fully implemented and should lead to better long interfero-
metric stability.

3.4.2 New setup
The results presented in Paper V were obtained using the optical interferometric
setup designed and constructed as part of the work of this thesis and outlined in
Fig. 3.8. In addition to being actively stabilized, this interferometer was designed
to promote interferometric stability by being intrinsically resistant to vibrations and
beam-pointing drifts that could induce a jitter and drift in the probe pulse delay.

All optical components are maintained under vacuum, except for a folding mirror
and the beam splitter that splits the pulse. The separation between the two arms
is only 10 cm, which allows the setup to be relatively compact. In both arms of
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Figure 3.8: Optical setup for attosecond interferometry experiments. The labels are abbre-
viations of: BS, beam-splitter; FIM, flip-in mirror; FM, focusing mirror; FW, filter-wheel;
GC, gas-cell; HM, holey mirror; M, mirror; MA, motorized aperture; TM, toroidal mirror;
TP, turbomolecular pump.

the interferometer the beams are guided by an odd number of 45◦ and 0◦ incidence
angle reflections and are focused using mirrors with the same radius of curvature.
According to computer ray-tracing, simulations these conditions should minimize any
relative arm length shift induced by an angular shift of the incoming laser beam [84].

The incoming beam is split on a beam splitter that directs 70% of the incident
power to the arm in which the harmonic light is generated. Both of the beams are
folded on holey mirrors and focused back though the hole in the folding mirror. In
this configuration, off axis incidence on the spherical mirrors is avoided, which would
otherwise generate astigmatic beams. The ray-tracing simulations also indicate that,
the reduction of abberations should result in an intensity in focus which is about the
same as if the full beam were to be focused on a position slightly off the optical axis
of the spherical mirror, even though the central, most intense, part of the beam is
dumped when passing the folding mirror.

The approach of using hollow beams has two advantages. Firstly, since this setup
is intended for interferometric experiments it is important that the wave fronts over
the experimental target volume be as flat and uniform as possible. A distortion of
the probe beam wave front would, for example, mean that the phase delay, τ , varies
across the focal volume, which in turn would reduce the contrast or visibility of the
modulations in the photoelectron sidebands. Since the re-focusing of the beams is
accomplished using a single toroidal mirror, it is difficult to retroactively correct an
already distorted wave front. Secondly, even though the fundamental beam is hollow,
the harmonic light is emitted mainly on the optical axis. Furthermore, the divergence
of the plateau harmonics generated from short trajectories is generally smaller than
the divergence of the fundamental beam [85]. By placing an adjustable aperture in
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the far field of the generation point, most of the fundamental light can be removed
from the beam without significantly attenuating the XUV pulses. This means that
thin foils usually used for this task are exposed to less risk of being damaged. If there
is no need for spectral filtering of the harmonic light, the filters can even be removed.

The probe pulse delay is monitored in a similar fashion to that described previously.
Before entering the optical setup, the IR laser beam is combined with the beam from
a frequency stabilized HeNe laser. Using holey mirrors, the outer parts of the HeNe
beam are later picked off and re-combined via a beam splitter on a CCD camera chip.
In order for spatial linear interference fringes to appear, one of the pick-off mirrors is
slightly misaligned. The software generated feed-back signal, based on the phase of
the fringes, is fed to a translation stage with a piezoelectric actuator that translates
the focusing mirror in the probe arm. Both of the spherical mirrors can also be
translated over a longer range (63 mm) via linear translation-stages mounted under
the mirror holders. This allows for a precise positioning of the generation beam focus
relative to the gas cell where the harmonic light is generated and also allows for coarse
adjustments of the probe pulse delay.

After passing the toroidal mirror, the IR beam can by picked out via a motorized
flip-in mirror and diagnosed. RABBITT measurements are very sensitive to any de-
viations from co-linearity between the harmonic and probe beams, since their wave
fronts have to be parallel to achieve good contrast in the sideband modulations. The
co-linearity and temporal overlap between the generation and probe pulse can be
routinely checked and controlled via the beam pick-out.

Figure 3.9: Delay of sideband 16 extracted from 15 RABBITT spectrograms, recorded
under the same conditions, one after another during 1.8 hours.

The RMS jitter of the probe pulse delay is typically about 50 as when the interfer-
ometer is stabilized. The main contribution to this jitter is most likely vibrations at
frequencies that exceed the update frequency of the feed-back loop. The bottleneck
in the loop is the camera read out.

To obtain an estimate of the long term stability of the interferometer a series of
RABBITT spectrograms were recorded one after another, under the same conditions,
for 1.8 hours. Figure 3.9 shows the evolution of the delay (τ − τXUV − τT (2)) of
sideband 16 extracted from each spectrogram. The result suggests that there is a
drift of the probe pulse delay (τ) of 300 as during this time. This is a substantial
improvement relative to what could be achieved with the setup previously presented
(about 1 fs drift per hour).
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Chapter 4

Atomic phases and time delays

This chapter introduces the concept of time delays of wave packets in quantum me-
chanics. The connection with the phase measured by the RABBITT trace is de-
scribed. The chapter also reviews a series of experiments (described in Papers I-II
and V) where phases and delays of electronic wave packets where measured for differ-
ent atomic species and ionization mechanisms.

4.1 Time delays of scattering wave packets

The concept of time delays in quantum mechanics was originally introduced by Wigner
and Eisenbud within the framework of scattering theory [86]. In this context the time
delay is defined as an asymptotic shift in the arrival time of a scattered wave packet due
to the interaction with a scattering potential. For simplicity, here we consider a one-
dimensional geometry, however, with a few modifications the same reasoning applies
to the radial dimension of a three-dimensional problem if the scattering potential is
spherically symmetric.

In the case where the potential is of limited range, the scattered wave packet can be
written as a superposition of the free particle solutions to the Schrödinger equation, i.e
plane waves, outside of this range. A wave packet that is traveling along the positive
x-axis which has interacted with a potential, V (x), ranging from 0 to a can in the
region x > a be written,

Ψout(x, t) =
∫
p

dp |cp| exp
[
i

{
p

~
x− p2

2m~
t+ 2η(p)

}]
(4.1)

where p is the particle momentum. Assuming that the potential is sufficiently smooth,
such that reflections can be neglected, the interaction with the potential does not sig-
nificantly alter the amplitude, |cp|. It does however induce a phase shift, 2η(p), relative
to the phase of the incoming wave (which here is assumed to be zero). Physically, this
phase shift originates from the fact that the local momentum,

p(x) =
√

2m([E − V (x)]), 0 < x < a (4.2)

where E = p2/2m, is different from the asymptotic momentum, p, which the particle
achieves outside the range of the potential. The phase that a given wavelet accumulates
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within this region is thus different from what it would be if the potential were absent
(V (x) = 0). Depending on whether the potential is attractive (V (x) < 0) or repulsive
(V (x) > 0), the phase shift is positive or negative, respectively. Technically, the
phase η(p), called the scattering phase, is found by matching the solution of the time-
independent Schrödinger equation that is outside the range of the potential to the
solution that is inside, i.e. at the boundary between the regions [87].

The integrand in eq. 4.1 is an oscillating function with non-linear phase. Since
rapid phase variations generally lead to destructive interference, the main contribu-
tions to the integral are given by instances of x and t, where a stationary phase
coincides with the peak of the momentum distribution [88]. Equating the derivative
of the phase with respect to the momentum with zero at the peak momentum, pc, we
get an equation of motion for the peak of the wave packet,

t = mx

pc
+ m~

pc

dη

dp

∣∣∣
pc

= mx

pc
+ 2~ dη

dE

∣∣∣
Ec

. (4.3)

This shows that the wave packet is moving with a group velocity vg = pc/m and is
delayed with respect to a non-interacting wave packet by a group delay,

τg = 2~ dη
dE

∣∣∣
Ec

. (4.4)

4.2 Time delays in photoemission

The concepts used above to describe scattering can also be applied to photoionization.
Since there is no incoming wave in this case, the interaction between the atomic
potential and the escaping electron wave packet is often referred to as half a scattering
event.

The concept of a scattering phase, in a case that is relevant for photoionization,
is illustrated in Fig. 4.1. It displays the radial part of the hydrogen wave function
with a positive energy of 15 eV and no angular momentum (s-wave), in red. The black
line shows the hydrogenic Coulumb potential. For comparison, the radial part of a
"free" s-wave with the same energy is displayed in gray. Due to its interaction with
the potential, the phase accumulation is larger for the Coulomb wave than for the
free wave, especially at small radial distances, where the potential is strong. However,
the phase accumulation of the Coulomb wave is always larger than that of the free
wave, at any radial distance. Since the Coulomb potential is not of limited range the
interacting wave only slowly converges to a purely plane wave.

The asymptotic form of the radial part of a Coulumb scattering state with a wave
vector k = p/~ and angular momentum quantum number L can be written,

lim
r→∞

φk̂(r) ∝ sin
(
kr + ln(2kr)

ka0
+ ηL(k)− πL

2

)
, (4.5)

where a0 is the Bohr radius. Thus, the asymptotic phase can be decomposed into two
components, one dependent on the radial coordinate and one constant, which in the
case of a pure hydrogenic potential takes the form,

ηL(k) = arg
[
Γ
(
L+ 1− i 1

ka0

)]
, (4.6)
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Figure 4.1: Comparison between a "free" s-wave and a Coulumb s-wave.

where Γ(z) represents the complex gamma function. A short range deviation from a
pure Coulomb potential would alter this quantity, i.e. introduce an additional phase
shift, but would not change the form of the asymptotic solution to the Schrödinger
equation. More complex atomic systems than hydrogen can therefore be analyzed in
the same manner. As a result, the scattering phase can be said to carry a signature
of the electron-ion interaction.

In a fashion similar to that in the previous section, we can define a group delay
for a wave packet escaping the atom in a single angular channel L as,

τL = ~
dηL
dE

(4.7)

Due to the logarithmic divergence in the phase of the asymptotic scattering state, the
physical interpretation of this delay is, however, not as straight forward as in the case
of a limited range potential. The group delay of a wave packet escaping a Coulomb-
like potential, compared to that of a non-interacting wave packet, will depend on its
radial position and can therefore not be defined in absolute terms (see ref. [65] for an
elaborate discussion on this topic). This does not prevent us, however, from making
meaningful comparisons between delays from different subshells (Paper I), different
ejection mechanisms (Paper III) and different atomic species (Paper II). As long
as the experiment can be designed such that one photoelectron wave packet can be
referenced to one or several others the results will reveal differences in the short range
interactions between the ion and the escaping electrons.

4.3 Measuring time delays in photoemission

Measuring the group delay of photoelectrons using the interferometric method pre-
sented in Chapter 3 relies on the fact that this delay can be related to the phase of
the two photon transition matrix element,

φ(2)
q = arg

(
lim
ε→+0

∑
ν

∫
〈ε,m, l| r̂ |ν〉 〈ν| r̂ |g〉
~Ω− Eν + Eg − iε

)
. (4.8)

In Papers I-III and V this relation is derived using an approximative treatment based
upon perturbation theory. To do this, we consider only the asymptomatic behavior
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of the continuum wave functions associated with the final, |ε,m, l〉 and intermediate
states |ν〉. In the case of one angular channel L for the intermediate states, φT (2)

q , can
be written as [74, 89],

φT (2)
q = ηL(εν)− Lπ

2 + φcc(εν , ε), (4.9)

where ηL is the scattering phase of the resonant state in the one photon ionizing tran-
sition from the ground state, and εν is the energy of this state. The additional phase,
φcc is a consequence of the continuum-continuum transition between the intermediate
and final states in the presence of the long range Coulomb potential. An analytical
expression for this phase is given in ref. [74]. An important property of φcc is that,
to a very good approximation, it is independent of the scattering phase of the final
state and does not depend on the angular orbital of either the intermediate (L) or
final states (l). Since it does not depend on the short range behavior of the atomic
potential, it is universal and can be considered a a simple correction term in the data
analysis.

It is important, however, to consider the energy range within which the asymptotic
approximation is valid. At low positive energies (small k) there is a slow convergence
of the continuum scattering states to their asymptotic form. One cannot therefore
assume that the scattering states can be treated using the asymptotic form at all
radial distances. In ref. [74], it is shown that the energy range of the approximation
can be extended as far down as ∼5 eV. This is achieved by introducing a correction
term that takes into account the amplitude variation of the scattered wave in the long
range tail of the Coulomb potential. Furthermore an ad hoc adjustment is introduced
for the lower boundary of the radial integral representing the dipole transition from
the intermediate to the final state. This adjustment is chosen such that the hydrogenic
scattering phases are recovered when φcc is subtracted from the phases given by exact
calculations of the two-photon matrix element.

In Chapter 3 we introduced the group delay τT (2)
q which, added to the group delay

of the attosecond pulse train, determines the relative phase shifts of the sidebands in
the RABBITT spectrogram. Considering eq. 4.9 τT (2)

q becomes,

τT (2)
q = ηL(q + 1) + φcc(q, q + 1)

2ω − ηL(q − 1) + φcc(q, q − 1)
2ω , (4.10)

where the state energy has been replaced by the order of the resonant harmonic and
sideband states, i.e εν = q~ω − Ip, in accordance with the labels in Fig. 4.2. This is

Figure 4.2: Schematic energy level diagram of the states involved in the two-photon tran-
sitions giving rise to sideband q.
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equivalent to the sum of two group delays,

τT (2)
q = τL(q) + τcc(q) (4.11)

where
τL(q) = ηL(q + 1)− ηL(q − 1)

2ω . (4.12)

τL(q) is thus a finite difference approximation of the group delay of a wave packet
created via absorption of one XUV photon, i.e.

τL(q) ≈ ∂ηL
∂ε

∣∣
ε=q~ω−Ip

(4.13)

The delay originates, as explained earlier, from the short range interaction experienced
by the escaping photoelectron. τcc(q) can be seen as a measurement-induced group
delay, following from the fact that the original wave packet has to be manipulated in
order for the measurement to reveal phase information.

Figure 4.3: Phase and delay induced by a continuum-continuum transition driven by an
800 nm laser field.

Figure 4.3 displays φcc and τcc calculated following the procedure in [74]. The
kinetic energy axis refers, in both cases, to the energy of the intermediate state, i.e.
the final state of a one-photon resonant energy conserving transition. The case when
the intermediate state has an energy of 1.55 eV higher than that of the final state
(φcc(q, q + 1)) results in the black curve in the panel to the right. This case describes
the stimulated emission of an IR photon. The red curve shows the situation when the
final state has a higher energy than that of the intermediate state (φcc(q, q−1)), which
corresponds to the absorption of an IR photon. As can be seen in the panel to the right,
the resulting group delay is negative, independently of energy. Hence the interaction
between the electron and the probe field in the presence of the Coulomb potential
advances the radially outgoing motion of the electronic wave packet, independently of
its initial momentum. This effect is much more pronounced for low energy electrons.

4.3.1 Electron correlation and angular channels
The general description of the two-photon above-threshold ionization given here is only
strictly valid within the single active electron approximation. This approximation
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builds on the assumption that the electron that is interacting with the light fields
moves as an independent particle in a static electric field created by the atomic nucleus
and the other electrons. For a theoretical description of the experiments presented
in this chapter, a reduction of the electron-electron interactions to a static potential
is a drastic oversimplification. Neither one-photon double ionization (Paper III) nor
autoionization (Paper V) can be explained within a mean field single active electron
model. To explain these processes, our description must allow for interactions often
referred to as electron correlations, that is, direct Coulomb interactions between the
electrons in more than the mean field sense.

Electron correlations are included in the theoretical analysis of the experimental
data presented in his thesis, by replacing the scattering phase with the phase of the
one-photon dipole transition matrix element (see eq. 3.2), calculated using a model
that takes into account electronic correlation. The asymptotic approximation is then
applied to the final state of these interactions under the assumption that the asymp-
totic behavior of the scattering state is unaffected by the correlation interactions.

In the discussions in the previous section it was also assumed that available inter-
mediate states of the two-photon transition were non-degenerate, or that one ionization
channel strongly dominates the interaction. Figure 4.4 shows a more general situation,

Figure 4.4: Two-photon ionization in multiple angular channels.

which occurs when this is not the case. Such a situation makes the interpretation of the
sideband modulation phases in a RABBITT spectrogram more complicated since the
phases of the population amplitudes of the final states depend on the angular momen-
tum of the intermediate state. Furthermore, in an angular integrated measurement
the final state population densities can not be disentangled.

In a comparison with a theoretical calculation, the strength of each transition to a
final state l has to be considered separately and the resulting population amplitudes
added. The phase of the sideband can then be calculated by adding up the modulations
in the population densities of each final state. For more extensive discussions on this
topic see Paper II and ref. [90]

4.4 Experiments and results

In a RABBITT spectrogram the phase of a sideband modulation is given by,

τ + τXUVq + τL(q) + τcc(q). (4.14)

Since we lack the possibility to independently characterize the absolute phase delay
of the probe field (τ) and the relative group delay of the APT (τXUVq , referenced
to τ = 0) these terms can only be eliminated by referencing two sidebands of the
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same order, q, to each other. To be able to extract an absolute group delay difference
between two processes (a and b), τL(q)a − τL(q)b, τ also has to be the same for both
sideband traces. In other words an experiment has to be designed in such a way that
it includes a fixed internal phase reference.

4.4.1 Comparing ionization form subshells of argon
The experiment described in Paper I follows up on work published by Klünder et al.
in 2011 [17]. As [17] in photoelectrons from ionization of the 3s and 3p subshells of
argon were measured at the same time.

Figure 4.5: Experimental principle: Left panel, RABBITT spectrogram from photo ion-
ization of argon. The signal in the low energy part of the spectrogram (2-13 eV) originating
from ionization of the 3s subshell has been enhanced for the sake of visibility. The signal
in the high energy part of the spectrum originates from ionization of the 3p subshell. Right
panel, schematic energy level diagram of the two processes involved.

Figure 4.5 describes the principle of the experiment. The difference in ionization
potential is just 13.4 eV. As a consequence, the bandwidth of the harmonic radiation
had to be limited to four harmonic orders, 21-27 (32.6-41.9 eV), in order to avoid an
overlap in kinetic energy between photoelectrons originating from the two different
subshells. This was achieved by passing an APT generated in argon through a 0.2 µm
thick chromium foil. In order to protect the chromium foil from IR laser radiation, an
aluminum foil of the same thickness was also inserted. The combined attenuation of the
two foils in combination with the low ionization cross section of the 3s subshell resulted
in a signal level that required long acquisition times. The experiment therefore greatly
benefited from the active stabilization of the interferometer described in Section 3.4.1.

The difference in photoemission delay between the subshells was estimated for side-
bands 22-26 (marked with red labels in Fig. 4.5) by taking the difference between the
sideband phases extracted from the spectrogram and correcting for τcc. The agreement
with theoretical calculations based on the RPAE (Random Phase Approximation with
Exchange) method [69, 91] is reasonable for sidebands 22 and 24, but not for sideband
26. Close to photon energies of 40 eV, the cross section of the process 3s → εp goes
through a minimum induced by electron correlation between the 3s and 3p shells.
The calculation suggests that this effect is coupled to a rapid phase variation of the
transition matrix element, which is not completely reflected in the measurement data.
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4.4.2 Comparing ionization from valence shells of noble gas atoms
Paper II describes an experiment where photoemission delays from the outer valence
shells of argon, neon and helium were referenced to each other. An essential component
in this experiment was the use of the actively stabilized interferometer described in
Section 3.4.1. This experimental setup allowed us to reproducibly scan the same range
of probe pulse delays while recording RABBITT spectrograms using different target
gases. Therefore, as the parameters of the high-order harmonic generation were kept
constant, the sideband oscillation phase difference between those spectrograms could
be directly attributed to a difference in photoemission delay among the target atoms.
The harmonic light that was used to ionize the target gas was generated in argon gas
and passed through an aluminum foil of 0.2 µm thickness.

Figure 4.6: Illustration of the experimental procedure (left panel) and experimental results
(right panel). The data points in the left panel are shifted in energy with respect to each
other only for the sake of visibility.

The experimental procedure is exemplified in the left panel of Fig. 4.6, which shows
two (cropped) spectrograms that were recorded as a part of the same data set using
argon and neon as a target gas, respectively. Both spectrograms span the same probe
pulse delay scale. Therefore the sideband delays extracted from the first spectrogram
can be directly subtracted from the corresponding delays from the second spectrogram.
The graph to the right shows measurements for three pairs of target gases.

Since the interferometer had a tendency to slowly drift off its temporal reference
point, each pair of target gases had to be measured in alternating series, such that the
drift could be interpolated from two consecutive measurements on the same target gas.
The error bars in Fig. 4.6 represent the standard deviation calculated from a series of
9 such alternating measurements. To check the validity of this measurement procedure
τNe − τHe was also calculated by subtracting the measured values of τAr − τNe from
τAr − τHe. The result, which is displayed with black markers, matches the measured
values within the precision of the experiment.

In a comparison with theoretical calculations based on both the RPAE and MCHF
(Multi-Configural Hartree-Fock) [70] methods, the agreement between theory and ex-
periment is by far the best for the quantity τNe − τHe. The disagreement between
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the calculations and the experimental results involving argon is attributed to the the-
oretical difficulty of including the inter-shell correlation effects between the valence
shells.

A similar experiment, presented in refs. [92, 93], used the attosecond streaking
technique [94]. As they were detecting photoelectrons and ions in coincidence, two
target gases could be measured simultaneously by injecting a mixture of them in the
detector chamber. From this data they then reconstructed two spectrograms, one for
each target gas, from the same probe pulse delay scan. Their results for τAr − τNe
also significantly deviate from theoretical calculations in the photon energy region
covered in our experiment. They do however find evidence of sharp variations in the
photoemission delay predicted by the argon MCHF calculations. Those variations can
be attributed to a series of doubly excited state resonances.

4.4.3 Comparing double and single ionization from xenon
Electron interactions following absorption of a high energy photon might lead to the
ejection of two electrons, given that the double ejection is energetically allowed. This
process is called single photon double ionization. Paper III describes an experiment
where the photoemission delay of single photon double ionization in xenon is referenced
to the delay in the emission of a single electron from the same atomic species.

To be able to distinguish the double from single ionization events, the photoelec-
trons were detected in coincidence. The electron TOF was logged separately for each
laser shot under conditions where the count rate was much less than one detector
impact per shot. With a certain statistical uncertainty, a double impact can then be
assigned to one double ionization event. In the left upper panel of Fig. 4.7 this data
is presented in a two-dimensional histogram, or coincidence map. Each count in the
histogram represents an electron pair. The energy of the least energetic electron is
given on the horizontal axis and the sum energy of the pair on the vertical axis.

In order to obtain a ratio between the double to single ionization rates that would
not induce a high fraction of false coincidences, the bandwidth of the harmonic light
was restricted to four harmonic orders, (21-27) with a photon energy in the vicinity of
the double ionization threshold of xenon (33.1 eV). This was achieved by filtering an
APT generated in argon through a combination of chromium and aluminum foils. The
horizontal stripes in the map each correspond to a final state of the Xe2+ ion that has
been reached via an excitation by a photon of a given harmonic order. The populated
spin-orbit levels all belong to a configuration with two holes in the 5p valence shell.

The continuous stripes indicate that the ionized electrons share the excess energy
in a non-predetermined fashion, which is a result of the direct ionization mechanisms
shake-off and knock-out.

The shake-off mechanism is often described within the sudden approximation [95].
A fast escape of the photoelectron is equivalent to a sudden removal of one electron
from its orbital. However, when the remaining occupied atomic orbitals are projected
onto the ionic states, there is a possibility that they will overlap with the continuum
states of the ion. In that case there is a finite probability that the relaxation pro-
cess will result in the emission of a second electron. The knock-out mechanism can
rather be described as a direct collision between the photoelectron and a secondary
electron. A Coulomb interaction between the escaping energetic photoelectron and a
secondary electron transfers enough energy to the latter for both of them to escape.
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Figure 4.7: Single photon double ionization of xenon. Upper left panel, coincidence map
recorded with XUV only. Upper right panel, coincidence map recorded with XUV and IR.
Lower panel, comparison between sideband oscillations in the single and double ionization
spectra.

The secondary electron is thus knocked out. Both processes lead to a continuous
energy sharing between the electrons.

The sharp structures on top of the continuous stripes are signatures of bound ex-
cited states of the Xe+ ion involved in the emission of the secondary electron, i.e.
autoionizing states. The secondary electron then has a fixed kinetic energy, corre-
sponding to the difference in energy between the excited state of the singly charged
ion and the final state of the doubly charged ion. Since an intermediate state is
involved, these ionization mechanisms are termed indirect.

The right upper panel in Fig. 4.7 shows part of a coincidence map recorded with
the probe pulse overlapping the XUV pulse train. The presence of the probe field
transfers some of the counts from the main lines into two electron sidebands. To
show an example of the data analysis from the probe pulse delay scans, we focus
on the area enclosed by the white dashed rectangle. This area could be uniquely
identified as belonging to sideband 26 and associated with the 1D2 state of the Xe2+

ion. The oscillation of the signal within this area could also be clearly discriminated
from noise. The lower panel in Fig. 4.7 shows the variation of the signal integrated
over the rectangular area as a function of probe pulse delay (DI), together a fitted
sinusoidal curve. The same analysis was carried out with the single ionization data
(SI), which was recorded simultaneously, for the corresponding sideband.

The shift between the two fitted curves provides an estimate of the single to double
ionization two photon delay of 55±61 as. Correcting for the effect of the continuum-
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continuum transition, the resulting difference in photoemission delay is 480 as, assum-
ing that shake-off is the dominant process. If knock-out is the main ejection mech-
anism, the corresponding value is 535 as. These values agree well with theoretical
calculations based on RPAE.

4.4.4 Measuring the phase variation across a Fano resonance
When approaching the ionization threshold of an inner atomic shell from below, the
photoionization cross section passes through a series of sharp variations (see e.g [96]).
These increasingly dense sharp features correlate in energy with bound atomic states
in the Rydberg series converging to the inner shell ionization threshold. These phe-
nomena can be explained by configuration interaction or equivalently channel coupling
via electron correlations.

Due to the interactions between electrons, an atomic state cannot be fully repre-
sented by one configuration of single independent electron states. In the configuration
interaction picture, individual configurations are instead treated as part of a basis
set. Diagonalizing the atomic Hamiltonian leads to a mixing of configurations, i.e
the atomic eigenstates are expressed as superpositions of individual configurations.
The mixing is a consequence of the fact that the Hamiltonian term representing the
Coulomb interactions between the electrons is non-diagonal in the single configuration
basis.

Given that it is energetically allowed, an interaction between a fully bound ex-
cited state configuration and a configuration that includes an electron in a continuum
state leads to autoionization. This phenomenon can also be described as a relaxation
process, where an atom in a excited state decays via the ejection of an electron. In
a famous paper from 1961, U. Fano showed that the interference between an ioniz-
ing transition via an autoionizing state and a direct transition to a single electron
continuum state leads to sharp asymmetric variations in the ionization cross section
[97].

Paper V investigated the phase of the dipole transition amplitude resulting from
such interference between ionization channels. More specifically we used a wavelength
tunable APT generated in argon gas to map out the phase variation across the Fano-
resonance induced by the 3s13p64p excited state configuration in argon. The left
hand panel in Fig. 4.8 shows a schematic energy level diagram containing the relevant
states and transitions. Harmonic 17 of 800 nm has a photon energy (∼26.4 eV) that
closely matches the transition energy needed to excite the resonance. The bound
excited state decays via configuration interaction (V ) to the s and d continua with
an ionic core state in the 3s23p5 configuration. Interference between this channel
and the direct transition channel induces a local variation in the phase of the total
transition amplitude, which then in turn affects the phase of sidebands 16 and 18 in
an interferometric measurement.

While tuning the central frequency of harmonic 17 across the resonance, which
was achieved by shifting the central frequency of the driving laser pulse (see Section
2.2), it could not be guaranteed that the group delay or group delay dispersion of the
attosecond pulses would remain constant. The analysis of the spectrograms could,
therefore, not be conducted by simply referencing them to each other. However, as-
suming that the phase of the transition amplitudes associated with the other harmonic
orders only varies marginally within the tuned energy range, it was possible to use
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Figure 4.8: Right, schematic energy level diagram and transitions relevant for the exper-
iment. Middle, illustration of the analysis strategy used to obtain a fixed phase reference.
The color scale in the spectrograms have been saturated in order to make the weak sidebands
visible. Left Experimental results and comparison with theoretical calculations.

the sidebands that are not affected by the resonance as an internal reference. Since
the APT is expected to have a linear chirp, i.e the attochirp, a deviation of sidebands
18 and 16 from a straight line connecting the other sideband maxima is attributed to
the ionizing transition involving harmonic 17. The middle panel of Fig. 4.8 illustrates
this procedure for two spectrograms recorded with harmonic 17 on the far red side of
the resonance (lower) and close to the center (upper). The result from this analysis is
displayed in the rightmost panel. The graph shows the phase deviation of sidebands
18 and 16 from the fitted line as a function of the photon energy of harmonic 17.
It clearly does not map out a π phase variation with opposite signs for sideband 16
and 18 respectively, as expected in the most simple situation where one bound state
channel interacts with one continuum channel.

There are three main reasons for this unexpected behavior. Firstly, as mentioned
previously there are two interacting continuum channels (s and d) in the single photon
transition. As a consequence, the two photon matrix element, where the autoionizing
state acts as an intermediate state, must be expressed as a coherent sum of two
contributions, which significantly smoothens and flattens its phase variation. Secondly,
the spectral width of the harmonics are comparable to the width of the resonance,
why analyzing the sideband phase after having integrated over its bandwidth has an
averaging effect that further smoothens and broadens the actual phase variation. This
effect is further reinforced by the fact that the probing pulse has a finite duration and
thus a certain bandwidth. Lastly, the asymmetry between the variation of sidebands
16 and 18 can be attributed to the blue shift of the harmonics due to a partly ionized
generation medium. This results in a situation where two probe photons do not exactly
match the energy gap between the harmonic lines. When combined with an energy-
dependent phase variation across the bandwidth of the harmonic, this effect creates an
asymmetry between the quantum pathways associated with absorption and emission
of a probe field photon.

The experimental results match well with theoretical calculations accounting for
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all the mentioned effects. The red curves in Fig. 4.8 were obtained from calculations
of the two-photon matrix elements in combination with a model of the RABBITT
method which accounts for the finite duration of both the harmonic pulses and the
probe pulse [98].
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Chapter 5

Summary and Outlook

5.1 Summary

This thesis presents results from a series of experiments that applied photoelectron
interferometry to the study of photoemission delays in various atomic systems and for
different emission mechanisms.

In the study presented in Paper I, the relative group delay between electrons
emitted from the 3s and 3p shells of Argon was measured. Close to a photon energy
of 40 eV the 3s ionization cross section goes through a minima induced by inter-shell
correlation, which is also expected to have a strong effect on the photoemission delay.
This experimental work stimulated a number of theoretical studies investigating this
effect as well as the influence of doubly excited states [69, 70, 73].

In Paper II photoemission delays of the outer valence shells of argon, neon and
helium were compared. The interferometric method was extended to allow photoe-
mission delays from different atoms to be referenced to each other. The most relevant
reference system is the helium atom as its simple two-electron structure allows for
highly accurate theoretical calculations. Combining these relative measurements with
calculations makes it possible to retrieve accurate estimates of photoemission time
delays on an absolute rather than relative time scale.

Combining photoelectron interferometry with electron coincidence spectroscopy
enabled a novel type of experiment for investigating the delay in photoemission as-
sociated with a two electron continuum wave packet (Paper III). The continuum
electron pairs were created from double photoionization of xenon. The experiment
demonstrated that a coherent manipulation of the two-electron wave packet by an IR
pulse gives rise to an interferometric signal. Furthermore, since the emission of two
electrons is a result of electronic correlations, this type of experiments could generate
vital input for theoretical models going beyond the single active electron approach.

In the work presented in Paper V the aim was not to measure the group delay of a
continuum wave packet but rather the phase of a two-photon dipole transition in the
vicinity of a resonance. This was accomplished by tuning the photon energy of one
harmonic across the range of a resonance induced by a autoionizing state in argon.
This approach allowed a significant phase distortion to be mapped out, together with
the cross section profile. This experiment demonstrates a new way to characterize
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the interaction between a bound state and an ionization continuum, a method that
goes beyond measuring the cross section profile. For example, in this particular case,
the phase of the two-photon transition matrix element proved to be influenced by the
existence of two interacting continuum channels.

The RABBITT technique was also applied in the work presented in Paper IV,
where we study the synchronization between an APT and the laser pulse giving rise to
it. Here, a temporal walk-off depending on the density of the generation gas medium
was observed. The results show that the macroscopic response of the generation
medium influences the timing of the APT in the sub-cycle of the driving field. These
findings are complementary to previous studies that focused on aspects of the atomic
response.

In Paper VI it is demonstrated that low order harmonics generated from a gas
target can enhance the high order harmonic generation from a second gas target.
Paper VII presents plans for seeding a free-electron laser with harmonics from a gas
target placed in-line with the electron beam. My contribution to these two publications
consisted in running a computer code for simulation of gas generated harmonics [99].
Finally, Paper VIII describes the design and tests of an electron spectrometer that
allows for a full reconstruction of the photoelectron momenta.

5.2 Outlook

The studies on photoemission delays presented in this thesis were conducted with a
photoelectron spectrometer that integrates over the emission angle of the electrons. An
angular resolved detection technique is to prefer in cases where the ionizing transition
is not limited to one single or dominant angular channel, since the group delay of the
wave packet then depends on the emission angle.

An interesting candidate for a study with angular resolved detection is ionization
from the valence shell of argon in an energy region close to the 3p→ εd Cooper min-
ima. Here the photoemission delay is expected to vary strongly with emission angle
due to the mixing of s and d partial waves [100, 101]. The Velocity Map Imaging
Spectrometer (VMIS) is one type of instrument that provides angular resolved photo-
electron spectra and which has been widely used in combination with HHG sources.
The spectrometer presented in Paper VIII is partly based on this technique. More
recently, reaction microscopes have enabled angular resolved attosecond experiments
utilizing HHG sources. These instruments enable a full reconstruction of the momenta
of the charged particles resulting from a ionization event via coincident position sensi-
tive detection of both electrons and ions. In ref. [102] a reaction microscope was used
in combination with the RABBITT technique to measure the delay in photoemission
from helium. The result shows that there is a significant angular anisotropy in the
group delay of the wave packet created by a two-color two-photon transition, due to
the presence of two degenerate final states with different angular momenta.

Coincidence electron spectroscopy is based on the requirement that each laser
shot should result in at most one ionization event. Conducting experiments that
demand coincident electron detection using a 1 kHz laser system is therefore very time
consuming. Long data acquisition times are a challenge for the type of experiments
presented in this thesis, since long acquisition times mean that the interferometric
stability required to measure time shifts of tenths of attoseconds has to be maintained
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during long periods of time. Hopefully, however, an implementation of the plans for
the new interferometric setup presented in Section 3.4.1 will make time-consuming
experiments less of a challenge and more of a routine.

In a slightly longer perspective, experiments that build on single particle counting
will preferably be conducted using lasers with a higher repetition rate than 1 kHz.
Recently a 200 kHz repetition rate laser system was installed in the Lund High-Power
Laser Facility. The amplifier chain is based on Optical Parametric Chirped Pulse
Amplification (OPCPA) and is specified to deliver 8 fs pulses with an energy of 17 µJ
and a central wavelength of 850 nm. Current work is progressing to construct a HHG
source driven by this laser system [22] in combination with an optical interferometric
setup and a reaction microscope end-station.

As was demonstrated in Paper V, frequency tunable attosecond pulses provide the
means to investigate the narrow bandwidth phase distortion of a transition matrix
element induced by an ionizing resonance. If the bandwidth of the harmonic driving
a resonant transition is wide enough to cover the full bandwidth of the resonance
and the electron spectrometer resolution is good enough to resolve it, the spectral
phase profile of a two-photon resonant transition can be retrieved from one single
spectrogram. This was recently shown by a research group from the University of
Paris-Saclay. In a joint experimental effort this method is now being applied to the
study of other resonances. One interesting example is the experiment theoretically
modeled in [103] that is concerned with a series of autoionizing doubly excited states
in helium. It is also of interest to revisit the previously examined argon resonance
using this method and compare the results with those in Paper V.

Another phenomenon which also involves autoionization is Auger decay. In this
process, which follows after the ionization of an inner shell or core level electron, the
excited ion decays via a reconfiguration and ejection of a second electron. Using a sin-
gle attosecond pulse and a few cycle IR pulse, Drescher et al. conducted a pump-probe
experiment that temporally resolved the decay of an M4,5-shell (3p3/2,5/2) vacancy in
krypton [104]. During the last year of this thesis work we have worked on measur-
ing the decay of an N4,5-shell (4d3/2,5/2) vacancy in xenon using the interferometric
method. Inner shell electron spectroscopy requires higher photon energies than were
used in the previously presented spectroscopic studies. To ionize the xenon 4d-shell we
use a broadband frequency-comb of harmonics generated in neon, spanning a photon
energy range between 75 and 105 eV. Such a broad band excitation means that the
photoelectrons and Auger electrons overlap in energy. As a result, coincident detection
of the emitted electron pairs is required to disentangle the spectral features.

Figure 5.1 shows a spectra recorded with XUV radiation only. A simulation of
the coincidence spectra based on spectroscopic data [105] provides an identification
of all the spectral features. The most intense peaks, which do not overlap with any
other features in the spectra, can be assigned to the N4,5O1O1 Auger processes. Here
the 4d3/2,5/2 vacancy decays to a doubly ionized configuration of two vacancies in the
5s-shell (O1). The energy of these Auger electrons is low, around 10 eV, so the fastest
electron of the pair can be unambiguously identified as the photoelectron over an
energy range of more than 30 eV. Each peak in the two rows along the fast electron
energy axis can therefore be associated with a photon energy of certain a harmonic
order, as exemplified in the figure. The analysis of the two-color two-photon (IR
and XUV) ionization data has for these reasons focused on the N4,5O1O1 process.
Unfortunately, this experiment has proven to be very challenging under the current
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Figure 5.1: Coincidence spectrum of xenon N4,5OO Auger decay.

conditions. Each single spectrum in the spectrogram requires almost an hour of
acquisition time. Keeping the probe pulse delay and the laser system stable during
a long enough period of time to record a full data set still remains a challenge and
requires more work.

With the methods presented in this thesis, phase shifts of electronic matter waves
can be accessed in the spectral domain. These methods, which have been developed
within the attosecond science community during the last decade, thus give access to a
new physical observable. Undoubtedly this will, via the interplay between experimen-
tal observations and their theoretical interpretation, generate a better understanding
of dynamics in complex electron systems. While this thesis deals with atomic systems
exclusively, there is no fundamental limitation that prevents more complex systems to
be investigated. Photoelectron interferometry has for example been demonstrated to
be applicable in condensed matter physics, where it was used to resolve the dynamics
in photoemission from a surface.
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Comments on the papers

I Photoemission-time-delay measurements and calculations close to
the 3s-ionization-cross-section minimum in Ar
In this paper, we present new measurements of the relative photoionization time
delays between electrons originating from the 3s and 3p subshells in argon, to-
gether with theoretical calculations. I took part in the experiments.

II Measurements of relative photoemission time delays in noble gas
atoms
The photoemission time delays for valence electrons from argon, neon and he-
lium are measured and referenced to each-other. The results are compared to
theoretical calculations. I conducted the experiments together with another stu-
dent and contributed to the preparation of the manuscript via discussions and
by feedback.

III Double ionization probed on the attosecond timescale
The electron emission time in one-photon double ionization of xenon is measured
and referenced to the single ionization time delay. The results are interpreted
and compared to theoretical calculations. I took part in the preparations and
conduction of the experiment.

IV Attosecond pulse walk-off in high-order harmonic generation
A temporal walk-off of attosecond pulses in High-order harmonic generation is
measured and explained using an on-axis phase matching model. I had a leading
role in conducting the experiments, analyzed the data, developed the ideas for
interpreting the results, did the simulations presented in the paper and wrote a
major part of the manuscript.
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V Spectral phase measurement of a Fano resonance using tunable
attosecond pulses
Using a tunable attosecond pulse-train, we measure the phase variation of the
photoionization probability amplitude as a function of excitation energy in the
proximity of the 3s23p6 → 3s13p64p autoionizing resonance in argon. The re-
sults are compared with theoretical calculations. I contributed largely to the
construction of the experimental setup and preformed the experiments together
with two other authors. I also contributed to the data analysis, preparation of
figures for the manuscript and the theoretical interpretation through discussions.

VI Efficient high-order harmonic generation boosted by below-threshold
harmonics
This paper presents an experiment where high-order harmonics are generated in
a dual gas cell setup. The results show that the low-order harmonics, created
in the first cell, boosts high-order harmonic generation in the second cell. I
contributed to this work by performing numerical simulations that supported
the argument that low-order harmonics were responsible for the boosting effect.

VII Seeded Coherent Harmonic Generation with in-line Gas Target
This conference proceeding presents a plan for seeding the test-FEL at MAX-
lab with harmonics of a Ti:sapphire laser beam, generated in a gas target. The
presented scheme features a new approach, to bring the gas target in-line with
the electron beam. I conducted numerical simulations of harmonic generation
in these conditions, whose results were fed to a different code for simulation of
FEL.

VIII Multi-purpose two- and three-dimensional momentum imaging of
charged particles for attosecond experiments at 1 kHz repetition rate
This paper presents the design and tests of a two-sided momentum imaging spec-
trometer. The test results demonstrates the performance of the spectrometer in
two different modes of operation, that allows for either a 2D or 3D reconstruc-
tion of charged particle momenta. I contributed by operating the HHG-source
used in one of the tests.
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