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Problems of ldentification and Control*
K. 1. Astrdm anND B, WITTENMARK

Division of Automatic Control, Lund Institute of Technology, Lund 7, Sweden

1. INTRODUCTION

Identification problems have received a great deal of interest during recent
years, [6, 8, 12, 13]. One of the motivations has been the desire to apply
modern control theory to practical problems in industry and the biosclences,
Almost all resuits in modern control theory require, however, a description
of the system in terms of differential or difference equations and a description
of the disturbances as stochastic processes, characterized by stochastic dif-
ferential or difference equations or by second order properties such as covari-
ance functions and spectral densities. In many practical problems in industry
and the biosciences, descriptions of systems and disturbances are simply not
available. The purpose of identification is to obtain the required descriptions.

In principle it should be possible to obtain the required information from
first principles using basic physical laws. In many applications the funda-
mental results required are, however, not available. T'ypical examples of this
are rate coefficients in pharmacokinetics and heat transfer coefficients in
industrial processes. When the models required cannot be obtained from first
principles it is necessary to derive the models from data obtained from experi-
ments made on the process.

The identification problem is frequently formulated as follows:

Given a class of models, a criterion and measuremnents of input and output
signals, find the particular model which fits the experimental data best in the
sense of the given criterion. A wealth of methods for solving the identification
problem have appeared, [8, 11, 12, 13]. The methods differ in the choice of
models and eriteria as well as mathematical techniques. Both models and
criteria are frequently chosen quite arbitrarily, {11, 12]. Even if the main
motivation for doing the identification is to solve a control problem this fact
is frequently overlooked in the literature. A consequence of this has been
that fundamental problems have been neglected e.g.:

— Ts it possible to obtain rational choices of model structures and criteria
if we know that the results of the identification will be used to design
control strategies?

* Supported by the National Institutes of Health under Grant No. GM 16157-01,
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IDENTIFICATION AND CONTROL 91

— Is it necessary to take into account that the solution of the identification
problem is not exact when selving the control problem ? :

— What do we mean by the “accuracy” of an identification problem? What
accuracy s needed in a particular case?

The relation between identification and control has been observed in a few
papers, [14, 17, 18]. Farison et al. [14] formulates a problem in such a way
that the identification and controi problems separate. Another class of
problems for which this occurs is also discussed by Schwartz and
Steiglitz [17].

In this paper we will get some insight into the questions raised above by
analyzing a simple case, namely a linear system with one input and one
output and a quadratic criterion. Our main purpose has been to Jook into the
problem of optimal control of a system with constant but unknown param-
eters, It has turned out, however, that the mathematical machinery devel-
oped will permit us to deal with the case when the parameters are stochastic
processes. We will thus be able to get some insight into the adaptive problem,
i.e. a situation where identification and control are performed simultaneously.

The mathematical model is presented in Section 2. The solution to the
control problem in the case of known parameters is discussed in Section 3,
and the identification of the parameters is covered in Section 4, These two
problems are almost trivial for the chosen example. The interrelations between
control and identification are discussed in Section 5. In that section we con-
sider the problem of controlling a system with constant but unknown param-
eters, It is assumed that the identification problem is first solved and that
the results of the identification are then used to solve the control problem.
The result gives some important aspects on the interrelations between identi-
fication and control.

Other aspects on: the relationships between identification and control are
given in Section 6 where we consider the combined problem of identification
and control, The problem discussed differs from the problem of Section 5 in
the respect that the data obtained during the operation of the systern are
used to update the solution to the identification problem. The formulation of
the problem is discussed in Section 6, It turns out that the problem can be
formulated as a nonlinear stochastic control problem, Such a problem will
i general be extremely difficult to solve because of the curse of dimensional-
ity. The state of the system will in general be the conditional probability distri-
butions of the parameters, given the observations. For the particular problems
it turns out, however that the conditional probability distributions are normal,
This leads to a significant reduction of dimensionality.

A sufficient statistic for the conditional distributions is derived in Section 7.
1t turns out that it is not necessary to assume that the parameters are constant
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but that we can also generalize to the situation when the parameters of the
system ar¢ stochastic processes without increasing the compiexity of the
problem. This means that we can consider truly adaptive systems. The sto-
chastic optimization problem is solved in Section 8 where the fundamental
functional equations are derived using Dynamic Programming. It is shown
in particular that the choice of criterion is very important. The strategy which
mninimizes Ey%(#) in the steady state will be very different from the strategy
which minimizes

1 N
Bl Y.
By L)

In Section 9 we present resuits of numerical solutions for a simple system.
This example clearly exhibits the differeaces between the different control
strategies, In particular it is shown that it is possible to obtain strategies where
the control and identification problems separate simply by choosing suitable
loss functions. It is also shown that the control strategies obtained for the
problems where identification and control separate can be significantly
inferior to the case when a dual control is used.

2. A SowrrLe CoONTROL PROBLEM

In this section we will formulate a simple control problem for a linear
system. The problem is chosen in such a way that the solution of the control
problem is almost trivial if the parameters are known, The pure identification
problem iz also easy to solve for the particular model.

A Mathematical Model of the System

Consider a linear discrete time dynamical system with one input and one
output characterized by the input-output relation

W)+ @)y — 1) + - + a,(t) y(2 — n)

(2.1
= By(8) u(t ~— 1) 4 - + by(t) ult — n).

The Eq. (2.1) thus represents the dynamics of a linear system of n-th order,
As we want to formulate a control problem we would also like to introduce
some disturbances. A simple way of doing this is to replace (2.1) by

¥ + a(By 3t — 1) + - + a{t) 3t — n)

(2.2)
= By u(t — 1)+ B8 ult — ) - e(t),
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where {e(t), t=..—1,0,1,.} is a sequence of independent equaily
distributed normal {0, ¢) random varjables. It is also assumed that e(2) is
independent of y(tf — 1), ¥(2 — 2),..., u{t — 1), u(t — 2),....

The coefficients g, and #; will be assumed constant theoughout Sections 3,
4 and 5. In such a case the model (2.2) represents an autoregressive process if
#(t) = 0 and a general linear dynamics if ¢ = 0. It can be shown that any
linear system with a disturbance which is a stationary stochastic process can
be approximated arbitrarily close by a model of type (2.2) if the order # is
taken sufficiently large. Hence even if the model (2.2) is simple it can fre-
quently be used as an approximation to a large class of realistic problems,

The Criterion

We will assumne that the purpose of the control is to keep the output of the
system as close as possible to a prescribed value which we arbitrarily take to
be equal to 1. The deviation is specified by the criterion

Ety = E[y(t) — 1" (2.3)
Qr
B, = E%,;l[y{:) g @.4)

where E denotes mathematical expectation,

The criterion (2.3) is referred to as the one stage control and {2.4) as the
N-stage control. If the process {y(t}} is ergodic the criteria (2.3} and (2.4)
appear to be identical as N - c0. As will be seen later the control processes
obtained by minimizing (2.3) and (2.4) can be widely different.

Admissible Control Strategies

T'o specify the control problem completely it is also necessary to define the
admissible control strategies. A control strategy is admissible if the value of
the control signal at time ¢, #(2), is a functien of all the outputs observed up to
time ¢ Le. ¥(¢), y(t — 1), ¥{t — 2),... all previously applied control signals
u{t — 1), u(t — 2},... and the a priori data, e.g. the values of the coeflicients
or the estimates of the coefficients and their accuracies.

3. SorurioN oF THE CONTROL PROBLEM
IN THE CasE oF CoNSTANT KNOWN PARAMETERS

We now assume that the parameters of the model {2.2) are constant and
known. The a priori data is thus the parameters 7, a; .., @, 8y, g 40y By
and o. The control problem is then easy to solve. We will first determine a
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control strategy such that the criterion {2.3) is minimal and we will then show
that this strategy also minimizes the criterion (2.4). We have

E[(t) — 11 = E[— ayp(t — 1) — =+ — ayy(t — n) + byti(t — 1) + =
+ bt — m) — 11* 4 2E{e(t) [— ay¥(t — 1) — - -
— @yt —n) bt — 1)+ - 4 bu(t —a) — 1]}
+ Ee¥(t).

Since e{t} has zero mean and is independent of “p{t — 1), y{( — 2), ...,
u(t — 1), ut — 2) the second term of the right member vanishes and we get:

Ely(t) — 1P = E[— ayy(t — 1) — = (¢ — 1) 4 byt — 1) (32)
o bt —n) — 1] 0 2 o, '
where equality is obtained for the control strategy
I
ut) = b_l[i @ y(t) + apy(t — 1) + -+ + @yt —n + 1)
(3.3)

— bt — 1} — - — Bt —n -+ D]

This is an admissible strategy because u(t) is a function of (£}, ¥(t — 1),...,
u(t — 1),... and the a priori data,

The problem is thus solved for the criterion {2.3) and the criterion (2.4)
will now be considered. We would thus like to find a control strategy which
minimizes

() — 1T% (3.4)

1=

1

Consider the situation at time N — 1. The outputs (N — 1), (N — 2),...
have been observed and the problem is to determine the control signal
#(N — 1). Since u(N — 1) only influences the last term of the loss function,

ie.

[v(N) — 1
it is apparent that the strategy (3.3) is optimal for ¢ = N — 1, We also find
min{ ¥{N) — 1}2 = o (3.5)

Now consider the situation at time N — 2. The output signals y(&V — 2),
¥{N — 3),... have been observed and the problem is to determine a{N — 2},
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As u{N — 2) only influences the last two terms of the loss function it should
be chosen so as to minimize

E{[p(N) — 1) + [¥V — 1) — 1%}
If an optimal strategy is used at the last stage we find
E{fy(N) — 1]+ [y(N — ) = 1]} = 0* + E[y(N = )~ 1]2. (3.6)

As ¢ is a constant, we now find that the strategy (3.3) is optimal for all 2. We
also find

N .
min Y [(t) — 1]* = No* (3.7
te=i
Summing up we get:

THEOREM 1. Assume that the parameters of the model (2.2) are constant and
Fnown. Then the admissible control strategy (3.3) is optimal with respect to both
the criterion (2.3) and the criterion (2.4). The minimal value of the expected
loss is ot in both cases.

Remark 1. Notice that Theorem 1 still holds if the parameters of the
system are time-varying but known,

Remark 2. It is well known that optimal strategies might sometimes be
very sensitive to parameter variations, It has been shown in [7] that the con-
trol strategy (3.3} is not sensitive to parameter variations if the polynomial

bt 4 byt 4 b, =0 68

has all its zeros inside the unit circle,

4. IDENTIFICATION OF THE PARAMETERS OF THE MODEL

If the parameters of the model {2.2) are not known they can be determined
from experimental data by several methods. The least squares method is one
of the simplest techniques available. In this section we will briefly review the
application of the least squares method to the determination of the parameters
of the model (2.2). For additional details see [6]. Using the least squares
method the parameters 4, and b; of the model (2.2) are simply determined
in such a way that the criterion

N4n
V(ay yousy @y by geeny by) = E [y(t) +asy(t — 1) + =

+ a;;(t —#) — byt — 1) — - — bu(t — n)j2
(4.1)
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is as small as possible, In (4.1) u denotes the actual values of the control signal
used during the experiment and y denotes the observed outputs.

As the ecriterion (4.1} is quadratic in g; and b; it is easy to minimize V
analytically. Let @ and & denote vectors whose compoenents are a; and b; .
Introduce the column vector x defined by

% =collay , 25 ooy @y, by, Dp 5eey By 4.2)

and the row vector 8(t) whose components are defined by

B(t) = ["—y(t - I): f}'(t - 2)!'": —'y(t - n), “(t - l)s u(t - 2):---: u(t - n)]

(4.3)
The loss function V can then be written as:
N a+iN Nin
Ve =Y 130 a0 s = T 0 —2( % 9 00) s
= | =n =n (4'4)
T (z 67(t) e(r)) "
t=n

Assuming that the matrix Z[87(2) 0(2)] is positive definite we find that the
minitnum of ¥ with respect to x is obtained for

¥ d = [; 67(t) 9(:)] - z 67(£) 3(2). (4.5)
The minimal value is:
n+N n+N Nin ~1 N+4n
min V' = tZ Yo — tZ 1) 9@){2 (1) 9(t)] g 67(1) ¥(t)
=N =71 t=m 7L (46}
= ;[y(t) — b(1) ST

Several questions now arise, Is the estimate unbiased ? What is the variance
of the estimate ! What conditions are required if the matrix Z67(¢) 8(¢) should
be nonsingular. Answers of these questions are given by:

TueoreM 2. Let all the roots of the equation

2t b gl poe g, =0 4.7
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have magnitudes less than one, Assume that the limits

. l N . 1 N _
Esljg i El u{t)  and AI]LR; N tgl wt)u(t 4+ 1) = R{7)

exist and that the matrix A whose elements are defined by

a;=R(—7) 4j=12.,n (4.8)
is positive definite. Then the least squares estimates £ converges to the true param-
eter value x as the number of observations N tend to infinity. For large N the
estimate £ is asymptotically normal with mean value x and covariance matrix
P = RN where R is a positive definite matrix defined by

. 1 N+n -
R =lim+ Y. () 6(t). 4.9)

t=mn

This theorem is an extension of Mann and Wald’s theorem on the con-
sistency of the least squares estimate for an autoregressive process. An outline
of the proof is given in [6]. We also have the following result.

THEOREM 3. Let the matrix
Nin
Y. (1) 6()
t=n
be definite, Then the conditional distribution of the parameters a; and b; of the
model (2.2} piven
I'}?/J\"-Iwz = [y(N -+ ﬁ)’ y(N + 2 — ., ¥{0), H(N +n— 1},
X WN +n — 2),.., 1(0)]

18 normal with the mean value

Ntn —_1N+n
4= LZ () ﬁ{f)} PIRAGRION {4.5)
=1 t=n

gnd the covariance matrix P defined by

P [Nf; 6 (8) ﬁ{a)r o, (4.10)

i=t

409/34/1-7
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A proof of this theorem is found in [6]. A slightly more general version of
this theorem is also proven in Section 7 of this paper. Summing up we thus
find that in the particular case the identification problem can be solved easily
using the method of least squares and that the least sguares estimate has
several desirable properties such as asymptotic unbiasedness and asymptotic
efficiency. In the next section we will investigate the refevance of these
properties in relation to the solution of the controb problem.

5, SeparaTE IDENTIFICATION AND CONTROL

In Section 3 the contro] problem was solved in the case of known param-
eters, and in Section 4 it was shown how the parameters of the model can
be identified using the method of least squares, We will now discuss the
interaction between identification and control in connection with the problem
of controlling a system with constant but unknown coefficients, To be specific
we will consider a system governed by Eq. (2.2) where it is assumed that the
parameters a; and b; are constant but that their numerical values are not
known, It is alsc assumed that the object of control is to minimize the crite-
rion {2.3) or (2.4). Throughout the section it is assumed that we first make an
experiment on the system, that the outcome of this experiment is used to
identify the parameters and to design a control taw, This control law is then
used to control the system throughout its operating period. The data obtained
during the phase when the system is controlled is thus not used to improve
the parameter estimates. There are many guestions which arises naturally,
eg.,

— Deoes there exist a separation theorem in the sense that the optimal control
law can be obtained simply by using the strategy obtained in the case of
known parameters and substituting the true parameters by their estimates ?
{This assumption is frequently used in practical applications.)

~— If a separation theorem exists, what estimates should be used?

— How much will the expected loss increase due to the fact that the
parametess are not known accurately ?

~— Will the eriteria (2.3) and (2.4) lead to the same result as was the case when
the coefficients are known?

We will approach the problem by deriving the optimal control strategy
and then analyzing its properties, Let us first consider the criterion (2.3). We
will thus determine a control strategy which minimizes E[y(z) — 1] To
derive such a strategy we consider the situation at time ¢ — 1. The outputs
y(t ~ 1), y(t — 2),... are observed and the previous input signals u(z — 2),
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u(t — 3),... are known, Let & _; be a vector which contains the known data,
i.e.

oy =t — 1), 20t — 2)puer, w(t — 2}, u(t — 3),..].
'The problem is thus to determine u{t — 1) as a function of &,_,; in such 2 way
that E[y(¢) — 1]? is minimal. Using the fundamental lemma of stochastic
control theory [7, Lernma 3.2 of Chap, 8] we find that:

min E[(t) — 112 = E min, E([3(0) — 111 %1y

We have .
W) = 00 5+ o) = ZO@O w4 bult — )+ e, (5])

where 2’ denotes the sum over 1 to 2z with the value n 4 | excluded.

In Eq. (5.1} the elements 8,(t),..., 8,(t}, O,g(t),n, Goalt} are equal to
— 3t — 1), —p{t — 2,0, — ¥t — 1), ult — 2),..., u(t — n) respectively
which are all known; u(¢ — 1) is 2t our disposal. The components of the vector
x are the parameters of the system which are not known. Compare (4.2). The
Identification experiment and the computation of the least squates estimate
gives, however, the conditional distribution of x given the results of the
identification experiment. It follows from Theorem 3 that the conditional
distribution given & ,_; is normal with the mean value # given by (4.5) and the
covariance matrix P given by (4.10). We thus find

E{[p(t) — 1121 ¥ Ly} = [ 2 040) & -+ byu(e — 1) — 1T
+ ZhpfA) 01) + @t — 1) Pragna (52)
+ zu(t - }) 2z Pn-i—i.iei(t) + Uz’

where 0{t), p;s(t) and £; do not depend on u{t — 1). We thus find that the
control strategy

by — 2 by + prar,i] 40)
f =2t 1 +1, 3.3
u{ ) 512 + Pn+1.n+1 ( )

will minimize (5.2). The minimal value of the loss function is given by
min E[y(1) — 1] = 0% + Z{ 9, 6,(8) 8(1) + (1 — 2} 0,(2) x,)?

_ [6y — &' [by&; + Pryaa] GO )
512 + pn+i,n+1

(5.4)

A comparison of (3.3) and (5.3) shows that the optimal strategy for the
combined problem is not abtained simply by substituting the true parameter
values by their least squares estimates. A comparison of (3.2} and (5.4} shows
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that the last three terms of (5.4) represent the increase of the loss function
due to the uncertainty of the identification.

Since the last three terms of the right-side of (5.4) depend on u(t — 2),
u(t — 3) etc., we find that the strategy (5.3) will not minimize the criterion
(2.4). The solution of the problem for the criterion (2.4) is given in Section 8,

Summing up we thus find that it is not sufficient just to compute the least
squares estimate in order to obtain the optimal control but that the knowledge
of the conditional probability distribution of the parameters is required. We
summarize the result as:

Tueorenm 4. Consider the system (5.1) with constant but unknown param-
eters. The control law (5.3) then minimizes the criterion {2.3),

6. CoMBINED IDENTIFICATION AND CONTROL

The solution discussed in Section 5 has the apparent drawback that the
data obtained during the control phase are not used to improve the parameter
estimates, ‘This possibifity was excluded afready in the problem formulation,
In this section we will investigate a combined estitnation and control problem,
At each step of the process all the available information is used both to
determine a suitable parameter estimate and a suitable value of the control
signal.

It turns out that the problem obtained can be solved using the theory of
optimal control of Markov processes [1, 2, 3, 20]. We will consider the system
(2.2) with the criteria (2.3) and (2.4). The coefficients of (2.2) are assumed to
be unknown. It turns out that the problem can be generalized slightly without
introducing extra mathematical complications, It is thus possible to solve the
probiem in the case that the parameters g; and b; are Gauss-Markov processes
with the same mathematical machinery, We can thus consider a truly adaptive
problem.

Formulation

Consider the model (2.2). Let the parameters a; and b; be timevarying

x{t) = ay(t);

“:2('5) = ayt);

5a(8) = anlt)
x:;+z(t) == bl(i); (61)
Sealt) = by(t);

nlt) = 1)
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Assume that ¥ is a Gauss-Markov process which satisfies the stochastic
difference equation

«(t + 1) = Oxlt) + (1), (6.2)

where @ is a known constant 22 X 2n matrix and {o(f), £ =ty , &, + 1.} isa
sequence of independent equally distributed normal vectors with zero mean
value and covariance R, . The initial state of the system (6.2) is assumed
normal with mean value

Ex{ty)) =m : (6.3}
and covariance

covin(ty), 2(fp)] = Ry . {6.4)

It is assumed that ¢(2) is independent of x(#;). The case of constant coefficients
is included in (6.2) because we can always choose @ = I (the identity matrix)
and R, = R, = 0. The input-output relation of the system (2.2) can be
written in the compact form

Aty = 0(2) 2(0) + e(1) (6.5)

where the vector § is defined by (4.3). It is also assumed that e(t) and o(s)
are independent for all 2 and s.

We are thus considering a lincar time-varying system whose parameters are
Gauss—Markov processes. Notice that the control signal appears as compo-
nents of the vector 6,

The criterion is taken so as to minimize the expected loss given by (2.3)
or (2.4). It turns out that these two criteria will give results which are mostly
different.

The admissible control strategies are the ones defined in Section 2,

Outline of Solution

Before entering the details we will first outline the main steps in the solu-
tion. The problem we have formulated is an optimal control problem for a
Markov process with incomplete state information. It is known [1, 2, 20] that
such problemns can be solved using Dynamic Programming if a suitable
hyperstate is chosen. The hyperstate is in general infinite dirnensional. It
is in essence the conditional distribution of the original state of the original
Markov process given the observed outputs. In this particular case the hyper-
state is the conditional distribution of # given all the observed outputs, This
conditional distribution will be derived in Section 7. It turns out that the
conditional distribution is Gaussian which gives a considerable reduction
of dimension.
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7. TraE HYPERSTATE OF THE PROBLEM

In this section we will consider the model (6.2) described in the previous
section. We will derive a convenient form for the conditional distribution of
#(t) given all applied inputs and all observed cutputs. For this purpose we
introduce &, = [ (1), 3(t — I},..., u(t — 1), u(t — 2),...] as the vector whose
components are all inputs applied and ail outputs observed up to time ¢, The
conditional distribution of x(¢) given %, is given by the following.

THEOREM 5. Consider the model (6.2) with the output defined by (6.5). The
conditional distribution of x(t) given® ,_, is normal with mean £(t) and covariance
P(t), where & and P satisfies the difference equations

4 1) = P&(t) + K(2) [¥(r) — 8(1) £(2)], (7.1)

Pt 4 1) = [® — K@) 62)] PO) 87 + Ry, (7.2

e Kty = OP(t) 07(t) [6(2) P(2) 67(t) + R}, (7.3}
and the initial conditions are

£(ty) = m, (7.4)

P(ty) = Ry. (7.5}

Proof. If 6(t) was known a priori then the theorem would be identical to
the Kalman filtering theorem. Going through the details of Kalman’s proof
we find, however, that the arguments used in the proof still hold because 8(¢)
is a function of %, , . Compare Eq. (4.3).

Remark 1. Notice that Theorem 5 includes Theorem 3 as a special casel

Remark 2. Notice that Theorem 3 can be easily generalized to the case
when the parameters a; and b; are stochastic processes given by arbitrary linear
stochastic differential equations.

Summing up we thus find that the conditional distribution of x{¢) given
@, , is normal in spite of the fact that the process {y(t), t ==ty , 5 + 1,...}
is not normal, We also find that in order to carry out the computations given
by (7.1} and {7.2) it is necessary to store 6(t). We thus find that the hyperstate
of the system given by Egs. (6.2) and (6.5) is the triplet £, P, 6. Based on this
triplet we can then generate the conditional distribution of x(£) and 3(¢) given
Y.

8. Dynamic PrROGRAMMING

Having obtained the corditional distributions we will now sclve the control
probiem formulated in Section 6 using Dynamic Programming.
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Consider the situation at time ¢ — 1. The outputs 3(f — 1), y(t — 2),...
have been observed. The past inputs #{t — 2), u(t — 3),... are known and the
problem is to determine #(2 — 1) in such a way as to minimize the expected
loss. By changing #{f -~ 1}, only the part

[~

[y(k) =1

k=1

is influenced. It follows from a fundamental result of stochastic control theory
[7, Lemma 8:3.2] that

n ™
min E Y [y(k) — 1]* = Ey,_, min £ Y [y — 1R ¥, (8.1)
fe=st k=t
where %,_; denotes the vector [y{f — 1), (¢ — 2),..., u(t — 2), uft — 3),...]
and it is assumed that the minimum exists.

Tt was shown in Section 7 that E[- |#,_,] is a function of £(¢), P(t), 6(t}
and #, Also notice that the n - I-th component of 6(t} equals u(z — 1),
the control variable which should be determined.

Introduce the vector 6(t) defined by

) = [— y(t — Uy, — 3t — 1), (t — Dhsoe, 8t — )] (8.2)

which equals the vector §(t) with the component u(t — 1) removed and the
function ¥ defined by

V£, P(), 0(t), 1) = min By [y(k) — 12| ¥, {8.3)

k=t

§ is thus a vector which contains all elements of § except u(t — 1).
Using Dynamic Programming we find the following functional equation
for 7

V), P2), 0. 1) = min E{y() — 11
(8.4)
A4 VS + 1), P+ D, 00+ 10,6+ 1) | %50

It follows from Eq. (6.5) and Theorem 3 that the conditional distribution of
¥(t) given %,_; is normal with mean value

E[y() | ¥ ] = 6(2) £(¢) (8.5)

and the covariance

cov[p(t), y(t) | ¥ ] = 6(2) P(t) 07(2) + o™ (8.6)
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Hence
E{ly(t) — 1P 1%} = [8) &(2) — 11> + 0() P(8) 07(8) + 0> (8.7)

Furthermore it follows from Eq. (7.1) that the conditional distribution of
&t + 1) given #,_; is normal with mean value

EXt + 1)¥ ] = 04(1) (8.8)

and the covariance
cov[#(e + 1), £t + 1) | ¥ 4] = K(t) [ + 6@) Pe} 07()) K7(¢).  (8.9)

It follows from Eq. {7.2) that P(¢ 4 [) is simply a deterministic function of
P(t) and 6(z).
The Egs. (4.3} and (8.2) imply that

G+ =80, i=2 3 mn 42,20 (8.10)
wi—1), f=n4+l

The conditiona! distribution of #(t 4 1) given #,_, is then easily obtained
from (8.5) and (8.6).

Exploiting the Eqs. {8.5-10), we find that the functional Eq. (8.4) reduces
to

Vs, P, 6e), ) = min 18() $(6) — 11 + o

PO PO+ [ Vs + 1, PG ),
X Ot -+ 1)t + 1) et dsg , @8.11)
where
At -+ 1) = L) + K(£) Vo? + B(t) P(2) 67(2) 53 (8.12)
P(t 4 1) = [@ — K(r) 0(t)] P(2) &7 + Ry; (8.13)
K{t) = DP() 67(2) {o* - 6() P() 07(2)]; (8.14)
0.t + 1) = — 8(8) #() + v'o* I 0@ Py 67(8) 5; (8.15)

B+ =0, i=2u,nmn+2u2n—1;
Gpialt 4 1) = n(t — 1),

The first three terms of (8.11) represent the immediate loss and the last
term the accumulated loss over the last steps starting with ¢ + 1. Notice
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that the control variable u(t — 1) equals the # -+ |-th component of 6(¢). It
follows from (8.12), (8.13) and (8.15) that u(t — 1) influences £(¢ + 1),
P(t + 1), and §(z + 1). This implies that the choice of the control signal
u(t — 1) influences both the future parameter estimates, their accuracy and
the future values of the output signal. Due to the non-linearity of (8.11) it is in
general not possible to carry out the minimization explicitly except at the
last step. For ¢+ = N we have, however,

V(&) P(2), 8(2), 1) = rr}i_rll){[fi(t) A1) — 112 -+ o® -+ 8(2) P(r) 07(2)} {8.16)

where the function to be minimized is quadratic. We thus get

Bt Z [faga(t) £{8) + P, i8] 0i(D)
u{t — 1) = i=1 , 8.17
(t—hH= NGET ) (8.17)

where £’ means that the term corresponding to 7 =2 + 1 is excluded. We
also find

Vi BB, N) = o 4 2 py08, + (1 — Z/048)
A[ﬁnérl -2 (J;'nJrl'i:i +Pn+}.f) 81’ 12 )

22
%orl T Pt

(8.18)

Notice that the strategy {8.17) is optimal if the criterion {2.3) is chosen,
Summing up we now find

THEOREM 6. Assume that the minimum of the loss function exists, The
optimal strategy is then given by the functional Eg. (8.11) where £(¢ + 1),
P(t + 1), and §(t -+ 1) are given by (8.12), (8.13) and (8.15). The initial cond:-
tton of (8.11) ts given by (8.18). The minimal value of the expected lass is

EV(m, Ro ) g{iu)’ IO)!

where E denotes mathematical expectation over the distribution of 8(t,).

Remark 1. It was mentioned previously that the analysis includes the case
of constant but unknown parameters as the special case, @ = and R, = 0.
It follows from the Eqgs. (8.12-15) that this is not a significant simplification.
The effort required to solve the combined estimation and controi problem
in the case of constant but unknown parameters thus is not significantly
easier than to solve the problem in the case of stochastic patameters,
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Remark 2. Notice the drastic difference between the optimal strategies
for the criteria (2.3) and (2.4). When the criterion is chosen (2.3) we find that
the optimnal strategy is given by {8.17). This strategy will only minimize the
immediate loss. It does not attempt to pick the contzal signal in such a
way that the future estimates are improved.

9. EXAMPLES

In order to illustrate the results we will now give a few examples. In order
to get simple computations we will consider the following simple system:

3} = xu(t — 1)+ €(t) 9.1

where x is the unknown parameter and {e(t)} a sequence of independent
normal (0, ¢) stochastic variables. The system (9.1) thus has no dynarnics and
an unknowsn gain parameter, It is assumed that the purpose is to keep the
output of the system as close to one as possible. The performance of the
systen is ecvaluated by the expected loss using the loss function {2.3)
or (2.4).

Separate Identification and Control

We will first consider the case when identification and control are performed
separately, Choosing an arbitrary input signal {u(f), t =0, L., N — 1},
observing the corresponding output {¥(2), ¢ = i, 2,..., N} we find from Eq.
(4.5) that the least squares estimate 1s given by

N

2 u(t — 1) ()
= (9.2)
Y o — 1)

The variance of the estimate is
2

P i (9.3)
Y ourt— 1)
t=1

It also follows from Theorem 3 that the conditional distribution of x given
{¥#), t =1,2,.., N} is normal with mean £ and variance P. Using the
results of the identification experiment to design a control law we find from
Theorem 4 that the control law

# 1 #

M =BT P TETP ©.4)
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will minimize the criterion (2.3). The minimal value of the expected loss is
given by

p .
Vl = E[j’(i} - 1]2 = g? —%— m . (9-5)

As the rightside of Eq. (9.5) does not depend on u{t — 2),... we find the stra-
tegy (9.4) will also minimize the criterion (2.4). If the parameter x is known
the optimal strategy is simply

f
ut) = - : (9.6)
and the minimal loss is
Vo = Ely(t) — 1J? = o* 9.7)
A comparison of (9.4) and (9.6) now shows that the effect of the uncertainty
is to reduce the gain of the system by the factor /(2 + P).

A comparison of (9.5) and (9.7} also shows that the relative increase of the
loss function due to the uncertainty of the parameters is

v,—Vv, P
vV, T ARt

For example if # = 1, ¢ = 0.5 we find that the parameter must be deter-
mined with the accuracy P = 0.0025 (o, = 0.05) if the uncertainty of the
parameters should not increase the loss function by more than 1 % compared
to the case of known parameters, If it is assumed that | #()] = 1 during the
identification experiment we find from (9.3) that this uncertainty of the
parameters corresponds to an identification petiod of N = 100 samples.

If a 10 %, increase of the loss function due to the uncertainty of the param-
eters is permitted we find that an identification period of N = 10 samples
is sufficient,

Combined Identification and Control

We will now discuss the combined identification and control problem, Tt is
assumed that the parameter x satisfies the stochastic difference equation

x(t 4+ 1) = 0.9x(8) + «{t) (9.8)

whete {2()} is a sequence of independent normal (0, 1) stochastic variables,
The initial condition of (9.8) is assumed to be normal with zero mean and the
vartance

Var xe(t) = T:—].—E = 5.26.

0.
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This means that the gain parameter of the system is a stationary Gauss-
Markov process with zero mean value. As the gain of the system changes
according to (9.8) it is intuitively clear that the contro! problem can be very
difficule, The pain parameter can change sign.

Mimimization of E[y(f) - 1]?
If the criterion given by Eq. (2.3) is chosen we find that the optimal control

problem can be soived analytically using Theorem 6. The optimal control
faw is given by the equation (8.17) which in this particular case reduces to

where & and P are given by the Eqs. (8.12), (8.13), and (8.14):
4 1) = 094(0) + KO [y0) — ut ~ DOk (9.10)
P(t + 1) = 0.9[0.9 — K{t) u{t — )] P(t) + 1; (9.11)
Ky = Q9P U = 1) 0.12)

o+ Pyt - 1)

It is not easy to analyze the properties of the system {9.1) when the param-
eter ¥ is given by (9.8) and the control law (9.9) is used because the equa-
tions for the closed loop system are strongly nonlinear. In order to get some
insight into the properties of the system we will therefore use simulations. In
Fip. 1 we show some results of a simulation of the system. Notice in particular
the strange behaviours of the control signal. There are long intervals during
which the control signal is practically zero. This means in fact that the system
is not controlled at all during this interval,

The graph of the parameter estimate £ shows that the estimate agress
reasonably well with the true parameter value except at the intervals when the
control signal assumes very low values. The graph of the variance of the
parameter estimate also shows that the variance is close to the steady state
value

|
P, =gt =526 9.13)

when the control signal is small,

Minimization of E S, [y(t) — 1J?

It is thus clear that the control strategy obtained by minimizing the crite-
rian E{v(t) — []* has several undesirable features. We will therefore turn
to the criterion (2.4). In this case we have to solve the functional Eq. (8.11}.




IDENTIFICATION AND CONTROL 109

This cannot be dene analytically, The state of the system is £ and P and we
thus have to solve a Dynamic Programming problem with two variables, This
is easily done using discretization. To simplify the computations we introduce

the variables

P

g = Ux, w;‘:}?

and the variables = and @ are quantized instead of the original variables.
With exact state information the optimal control is £ = I, i.e. ¥ = 1. This

QUTPLT SIGNAL Y

24

oq;ﬁw%xww fif

-2

h + t r - —— —— y
) 108 200 300 400
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0 100 200 0 400
51 PARAMEIER X
2..
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.'z..
-5 —_—r
¢ 100 200 300 400
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hE:
_2‘
"8 1o | 200 a®me | 40
B VARIANCE OF PARAMETER ESTIMATE
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2,
0 ——
] 100 200 300 480

Frc. 1. Result from simulation using the ccntrol faw, u(t) = ()£ + P{)
which minimize E¢, .
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OUTPUT SIGNAL Y
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Fic. 2. Result from simulation using the control tabie obtained through Dynamic
Programming when minimizing E¢; .

means that z can be interpreted as a weighting factor, See also {9.9). The
variable w can be interpreted as the refative variance of the estimate of w.
In the computations twenty levels of quantization were used for both z and w.

The integration in (8.11) was performed using Simpson’s formula, It was
found that the control table achieved steady state after about 20 steps at the
iteration. In the simulation we only used the steady state control law. To
check the results the average loss was evaluated both by integration in the loss
table and by simulation of the optimal control strategies.
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In Fig. 2 we show the results of a simulation, It is of interest to compare
with the results of Fig. 1. By choosing the criterion (2.4} the control signal
will not only eliminate the instantaneous error but it will also improve the
accuracy of the estimation error. This effect is clearly seen by comparing the
variances of the parameter estimates shown in Fig. 1 and Fig, 2.

In Fig. 3 we finally give a comparison between the accumulated errors
obtained using strategies which minimizes (2.3) and (2.4). This graph also
shows the estimated loss obtained by integration in the loss table of the
Dynamic Programming problem. For further discussions of the dual control
law sec [19]. )

400 r /

SIMULATION (£}
i NO CONTROL
! SIMULATION 1£) ==
200+ A=
-
—~
- . -—
~ Pea
I - Expacted loss obtained by
e integration in loss table
o -—_
Q I3 1 1 i 1 i 1
0 100° 200 300 400
TIME

Fic. 3. Accumulated foss 7 == E;.ﬁl (p(k} — 1)? for the strategles which minimize
E#, and EY, ,

10. CoNcLUsSION

T'he relationships between identification and control have been investigated
for a simple regression model. The analysis has shown that if the results of the
identification problem will be used to design control strategies it is not suf-
ficient to compute the conditional probability distribution of the parameters
of the system given the outputs obtained during the identification experiment.
For the simple regression model it was shown that the conditional distribution
is normal with a mean value equal to the least squares estimate.

Two different problems have been pursued, called separate identification
and control and combined identification and controf. In the first problem the
identification problem is first solved separately and the data obtained during
the operation of the system are not used to improve the parameter estimates.
In the combined problem estimation and control are performed simultane-
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ously and the input-output pairs obtained at each stage are used to update the
parameter estimates,

It turps out that when solving the combined estimation and control problem
the case of constant but unknown parameters is not significantly easier than
the problems with stochastically varying parameters. We have therefore
considered the case when the coefficients are Gauss—Markov processes.

Two different criteria have also been used. The criteriz are characterized
by the loss functions

A=DO—1F  od  L=g Y [0~ 1

In the separate identification and control problem the determination of
optimal strategies reduces fo a linear quadratic control problem.

The optimal strategy for continued identification and control problem can
be obtained analytically for the loss function £ . The solution of the combined
problem for the loss function ¢, requires Dynamic Progremming, The state
space of the problem is &, P and § a vector of # past outputs and n -~ 1 past
inputs. For a system of n-th order the dimension of the problem is then
202 - Sn — .

Even if the optimal strategics for the combined problem with the loss
function £ can be derived analytically, it is not easy to analyze the properties
of the closed loop system because the equations are nonlinear, Stmulation of a
simple example has shown, however, that the equations have interesting
propettics. It has been shown that the system exhibits a “falling asleep” effect
in the sense that it happens that the control signal can become close to zero
over long periods, Similar phenomena have been observed in other adaptive
systems, There is a marked differcnce between the systems obtained when
minimizing the loss functions (2.3} and {2.4) in this respect. The strategy
which minimizes (2.4} does not exhibit the “falling asleep” effect.

This paper should be regarded as an initial attempt to investigate the rela-
tionships between identification and control. There are many guestions which
remain to be answered. For example it would be highly desirable to provide
mathematical apalysis which gives insight into the difference between the
properties of the systems which minimizes (2.3) and (2.4}. This is essentially
a problem of analyzing nonlinear stochastic differential equations of a partic-
ular class,

Tt would also be highly desirable to look inte the computational aspects of
the functional Eq. (8.11) as well 2s to extend the results to more general
models,

Another problem of great interest would be to investigate the Eqs. (8,11-15)
in the case of constant but unknown parameters to find out if the control
strategy converges to the control stategy for known parameters as N — co,
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