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Abstract

When writing computer software one is often forced to balance the need for high run-
time performance with high programmer productivity. By using a high-level language
it is often possible to cut development times, but this typically comes at the cost of
reduced run-time performance. Using a lower-level language, programs can be made
very efficient but at the cost of increased development time.

Real-time computer graphics is an area where there are very high demands on
both performance and visual quality. Typically, large portions of such applications
are written in lower-level languages and also rely on dedicated hardware, in the form
of programmable graphics processing units (GPUs), for handling computationally de-
manding rendering algorithms. These GPUs are parallel stream processors, specialized
towards computer graphics, that have computational performance more than a mag-
nitude higher than corresponding CPUs. This has revolutionized computer graphics
and also led to GPUs being used to solve more general numerical problems, such as
fluid and physics simulation, protein folding, image processing, and databases. Un-
fortunately, the highly specialized nature of GPUs has also made them difficult to
program.

In this dissertation we show that GPUs can be programmed at a higher level, while
maintaining performance, compared to current lower-level languages. By construct-
ing a domain-specific language (DSL), which provides appropriate domain-specific ab-
stractions and user-annotations, it is possible to write programs in a more abstract and
modular manner. Using knowledge of the domain it is possible for the DSL compiler
to generate very efficient code. We show that, by experiment, the performance of
our DSLs is equal to that of GPU programs written by hand using current low-level
languages. Also, control over the trade-offs between visual quality and performance is
retained.

In the papers included in this dissertation, we present domain-specific languages
targeted at numerical processing and computer graphics, respectively. These DSL
have been implemented as embedded languages in Python, a dynamic programming
language that provide a rich set of high-level features. In this dissertation we show
how these features can be used to facilitate the construction of embedded languages.
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Introduction

When writing computer software, a balance must be struck between two complemen-
tary goals: run-time performance and programmer productivity. High-level languages
increases productivity by providing abstractions and features that simplify program-
ming. However, often these features comes with an abstraction penalty in the form of
decreased run-time performance. Lower-level languages offer great performance and
enable fine-grained control over the target hardware. But this control comes at the
expense of an increased burden on the programmer.

Performance-sensitive applications are typically written in lower-level languages to
obtain maximal performance. For example, real-time computer graphics applications
are typically implemented in C/C++, or even assembler, to answer the ever increasing
demands on performance, visual quality, and interactivity. Such applications generally
also rely on dedicated programmable graphics processing units (GPUs) for offloading
computationally demanding rendering algorithms from the main CPU.

These GPUs are highly specialized, parallel stream processors that have a compu-
tational performance more than a magnitude higher than that of CPUs. For program-
ming these processors a number of specialized C-like languages are available (Cg [44],
HLSL [25], and GLSL [57]). This combination of flexible programmability and high
performance has led to a revolution in computer graphics, allowing many realistic
rendering algorithms to be executed in real-time [10, 20, 54, 49, 21]. Also, GPUs
have been adapted to be used as co-processors for solving more general numerical
problems [39, 42, 9].

However, due to their highly specialized nature, the programming model of GPUs
is very restricted. There is no heap or stack, no flexible addressing, and limits on where
data may be written. Using current languages these limitations must be explicitly
addressed in the program source code. This makes GPU programs difficult to write,
modify, and manage, a problem in modern graphics applications [48, 3].

In this dissertation we show that by constructing domain-specific languages (DSLs)
it is possible to program the GPU at a higher level, while maintaining performance
compared to current GPU languages. A DSL provides a set of abstractions and user-
annotations targeted at a specific problem domain. Together with knowledge of the
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1. DOMAIN-SPECIFIC LANGUAGES

target domain, a compiler can use these annotations to perform domain-specific op-
timization and analysis to ensure both performance and correctness.

In the papers included in this dissertation, we present a number of DSLs targeted
at general purpose computations on the GPU (Papers I and II) and real-time graphics
(Papers III-VI), respectively. These languages enable GPU programs to be constructed
in a more abstract and modular fashion. We show, by experiment, that the perfor-
mance is equal to that of programs hand-written in existing GPU languages. Also, in
the case of rendering, we demonstrate that control over the trade-offs between perfor-
mance and visual quality, can be maintained compared to lower-level approaches.

The presented prototype DSLs are all implemented as embedded languages [17].
Language embedding enables quick experimentation with different language design
choices and compiler implementation techniques. For this we have used the dynamic
programming language Python [43]. Dynamic languages typically provide a rich set
of high-level programming constructs together with extensive support for introspection
(i.e. the ability of a program to observe and manipulate its own execution) making
them well suited for implementing embedded languages. In this dissertation, we show
how these features can be used to enable straightforward construction of embedded
domain-specific languages.

The rest of this introduction is structured as follows: In Section 1 we describe
domain-specific languages in more detail. In Section 2 we give a brief introduction to
dynamic programming languages. Next (in Section 3) we introduce modern graphics
programming using the GPU. In Section 4 we summarize the contribution made in
this dissertation and then, in Section 5, we discuss our results and give some ideas for
future work.

1 Domain-specific languages

The earliest uses of domain-specific languages were in compiler-related tools such as
parser and scanner generators (Lex [40], YACC [34], and Zephyr [70]) and in com-
piler construction (JastAdd [27], UUAG [4]). Other examples of DSLs are in database
query languages (SQL [11], dBase [35]), symbolic algebra (Maple [12]), and paral-
lel programming (Orca [6]). Also, languages such as LISP [61] and FORTRAN [5]
started out as domain-specific languages, targeted at artificial intelligence and numer-
ical code, respectively, but gradually evolved into more general languages. In relation
to this, we see that it is not obvious what constitutes a domain-specific language and
what does not. Van Deursen et al. [67] proposes the following definition:

A domain-specific language (DSL) is a programming language or exe-
cutable specification language that offers, through appropriate notations
and abstractions, expressive power focused on, and usually restricted to,
a particular problem domain.

2



1. DOMAIN-SPECIFIC LANGUAGES

The use of the term problem domain here is rather vague. For instance, a language such
as MATLAB [45] can be said to be a DSL targeted at array programming. The key
distinction is that DSLs are usually small, only providing a limited set of abstractions
and operations, highly targeted at the problem domain. Neither LISP, FORTRAN,
nor Matlab are small languages; their expressive power is not restricted to their re-
spective initial domains. Also, DSLs generally contain assumptions, and perform
optimizations, that are not valid in the general case.

Using a language specialized for the problem at hand comes with a number of
benefits. DSLs allow problems to be expressed using the idioms inherit to the problem
domain. This enables non-programmer domain experts to understand, modify, and
sometimes even develop DSL programs. A DSL can be very concise, expressing in
a few lines what would require several hundred lines in a general language, and this
increases productivity, reliability, and maintainability. Furthermore, since the DSL
compiler has access to domain-specific knowledge, it can perform optimization and
validation at the domain level.

The advantages of domain-specific languages come at a rather large initial cost.
Designing and implementing a new language from the ground up is a costly venture.
There is a high likelihood that the initial designs will not be good enough. The lan-
guage will evolve and change with user demand for more or different functionality.
Following the argument of Hudak [29], this will lead to a higher initial cost com-
pared to conventional methods. However, when viewed over the whole life-cycle of a
software project, the total implementation cost is reduced.

1.1 Embedded domain-specific languages

One approach to lowering the initial cost of implementing a domain-specific language
is reusing the infrastructure of an existing language. An embedded DSL, also known
as a domain-specific embedded language (DSEL) [30], can be created in terms of
an existing host language. By doing so, a large part of the existing functionality of
the host language can be reused. This includes aspects such as syntax, type-checking,
evaluation model, etc. Consequently, using an embedded approach enables the imple-
mentor to focus on the domain-specific idioms and abstractions, leaving more general
details to the host language.

Implementation strategies for embedded languages

When implementing an embedded DSL, there is one important factor to consider:
whether the language should target the same platform as the host language, or a differ-
ent one. If the target coincides with that of the host language then the most common
strategies are using either macros or domain-specific libraries. The macro facilities of
LISP and Scheme [1] have long been used to create constructs having the “look-and-
feel” of built-in primitives. Macros have been used to implement embedded languages

3



1. DOMAIN-SPECIFIC LANGUAGES

and language extensions such as the Common LISP Object System [38] (for object-
oriented programming in LISP) and Verischemelog [33] (an embedded language for
digital hardware design in Scheme).

When using a domain-specific library approach, the operator and function over-
loading facilities of the host language are used to construct the embedded language.
Functional languages, such as Haskell [36], that provide extensive overloading and
operator redefinition facilities, are popular with this method. To name a few exam-
ples of languages embedded in Haskell, and their respective domains: FRAN [18]
and Yampa [31] (reactive animations), Haskore [32] (music), and Lava [7] (hardware
description and verification). The industry standard C++ [62] has also been used to
implement embedded languages; for example TBAG [19], for interactive animations,
and Spirit [60], a template meta-programming language [15] for constructing parsers.

When the target is not the same platform as that of the host language then the
above approaches can not be used. Instead a generative approach is typically em-
ployed, where programs in the host language are executed to generate programs for the
DSL target platform. This is the approach taken by the Haskell-embedded languages
Pan [17], for image manipulation and synthesis, and Vertigo [16], for programming
the vertex processing functionality of the GPU . Both these languages use the over-
loading facilities of Haskell to construct tree-representations that are compiled to their
respective target platforms: Photoshop plug-ins and GPU vertex programs. In C++,
Sh [46] is a language for programming GPUs. It uses a technique where functions are
executed and have their execution recorded. This recording is then used as input to a
compiler responsible for generating GPU assembler code. A similar method is used by
Accelerator [64], an embedded language for data-parallel computations on the GPU,
available in C# [28].

The problem with using a generative approach is that much information of the
program is lost. For example, when embedding in a procedural language, since the
host level code is executed to generate the intermediate representation, host language
constructs such as conditionals and loops will not appear in the recorded stream of
operations. Hence, they can not be translated. Instead, a host language conditional is
equivalent to conditional compilation in the embedded language.

Recently, Microsoft’s C# and Visual Basic have introduced support for construct-
ing an expression tree representation of a piece of code at compile-time. These trees can
be accessed and examined by the program at run-time and be used to implemented
a DSEL compiler, for instance. Expression trees, combined with a specialized query
syntax, is the basis of LINQ [66] a method for querying data structures and databases
integrated into C# and Visual Basic.

4



2. DYNAMIC LANGUAGES

2 Dynamic languages

Dynamic languages, such as Python, Ruby [65], LISP, and Smalltalk [23], are lan-
guages designed to increase programmer efficiency. Dynamic languages enables faster
development cycles by allowing parts of a program to be modified at run-time. Func-
tions may be introduced, removed, or changed, classes added, class inheritance mod-
ified, and modules can be created or removed. This allows a programmer to quickly
test a new feature, or a new piece of code. Furthermore, modern dynamic languages,
such as Python and Ruby, provide syntax and high-level programming models that
are easy to learn, resulting in higher productivity.

Since every part of a program can be changed at run-time, dynamic languages
are generally interpreted, looking up symbols and code at run-time. Consequently,
dynamic languages also tend to be dynamically typed, i.e. they perform type checking
at run-time. Dynamic typing has the advantage of making code clearer and shorter,
since the syntactic clutter of explicit type information is avoided. Furthermore, since
functions are written without type information, code can be reused on many types
of objects. This is achieved without introducing a common base-class or interface,
giving very fine-grained requirements of a function; a function requires only those
operations it uses, no more, no less. This leads to an alternate name for dynamic
typing; duck typing, inspired by the metaphor “if it looks like a duck and quacks like
a duck, it must be a duck” [68]. These features together with the fact that dynamic
languages tend to be higher-level than traditional static languages, lead to reduced
development time and, consequently, increased programmer productivity.

The downside of using dynamic languages is performance. Since symbol lookup
and type checking is performed at run-time, there is a higher run-time overhead. Fur-
thermore, since the types of a function’s arguments is not known statically, generating
efficient native CPU code for dynamic languages is a very difficult problem [56, 58].
Also, the lack of static types makes compile-time checking and verification hard.

Meta-programming facilities

The fact that type checking and variable lookup occurs at run-time implies that the
machinery for doing this is, at least partially, available to the programmer. The meta-
level ability of a running program to observe itself and its own execution is usually
referred to as introspection. Introspection is an integral part of LISP and Scheme and
it is supported by most other dynamic languages. Some other languages, notably
Java [37], C#, and the C++-extension OpenC++ [14], also support introspection.
In addition, dynamic languages tend to also support intercession, allowing parts of
a running program to be modified. Collectively, introspection and intercession are
called reflection.

The most common use of introspection is in the development of programming
tools such as class browsers or debuggers. More interestingly, reflective languages fa-
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3. GRAPHICS PROGRAMMING

cilitates the adaption of the language to the application domain. Using reflection
it is possible to meta-programmatically extend an object-oriented language with ad-
ditional functionality such as multi-method dispatch [69], and aspect-oriented pro-
gramming features [63]. Also, as shown in this dissertation, introspection can be
used to greatly facilitate the implementation of embedded languages by making more
structural information available to the compiler of the embedded language.

3 Graphics programming

Real-time three-dimensional computer graphics is usually done using a dedicated
graphics card, responsible for drawing, or rasterizing, polygons to the screen. Modern
graphics cards also have a programmable graphics processing unit (GPU) that enables
parts of the rasterization process to be programmatically redefined. For a thorough
introduction to graphics card programming, see “The Cg Tutorial” by Fernando and
Kilgard [55] or the “OpenGL Programming Guide” by Shreiner et al. [59].

3.1 3D graphics cards

3D graphics cards implement a graphics pipeline (see Figure 1) consisting of multiple
stages where polygons are transformed, clipped, textured, and finally rasterized to the
screen. Typically, each stage consists of multiple parts where each part can be turned
either on or off. Also, the different parts can be controlled to some limited degree.
For example, the depth testing part of the pixel processing stage can be turned on or
off, and be instructed to use different functions for determining whether a pixel is
visible or not.

By controlling the different stages of the pipeline, an application can achieve a
wide range of different visual effects. For example, texturing, transparency, anti-
aliasing, and line stippling can all be controlled by setting one or more states to
the appropriate values. For controlling these pipeline stages, graphics APIs, such as
OpenGL [59] and DirectX [8], are supported by all major graphics card vendors.

3.2 The graphics processing unit

In the late 1990s and early 2000s, the increasing demands of real-time graphics ap-
plications, typically games, led to the introduction of a large number of specialized
hardware extensions. These extensions each provide a specific feature required for
increased visual acuity over that provided by the original fixed-function pipeline. Ex-
amples of such extensions are per-pixel lighting, bump-mapping, and vertex weighting
used for skinning. As an interesting comparison, today there are over 300 different
OpenGL extensions. A more general method for handling extensions was needed.
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Figure 1: A schematic view of the rasterization pipeline of a modern GPU. White

boxes represent programmable stages and grey boxes indicate fixed functionality. The
stippled geometry shader stage is optional and need only be used if dynamic geometry
generation or re-tessellation on the GPU is required. The example triangles on the

right indicate how a single primitive is transformed by the different stages.

This led to the introduction of programmable graphics hardware, commonly
called the graphics processing unit (GPU), in 2001 [41]. The first GPU genera-
tions allowed the vertex and pixel processing stages of the graphics pipeline to be
programmatically redefined. This programmability simultaneously allowed most of
the extensions previously introduced to be emulated, and expanded the boundaries of
the kind of real-time visual effects that were possible.

Today the scope of what kind of effects are possible has been further expanded
with the introduction of the geometry processing unit [8] that enables primitives (points,
lines, triangles, etc.) to be generated and manipulated as part of the GPU pipeline.
This makes it possible to dynamically re-tessellate meshes or procedurally construct
geometry on the GPU, for example.

Programs running on the GPU are called shader programs, originally referring to
the act of coloring, or shading, a pixel. The vertex shader processes the vertices of the
input mesh one by one, and computes data that is interpolated across each primitive.
The interpolated data is used as input to the pixel shader1, which computes the final
pixel color. If used, the geometry shader accepts as input single primitives constructed
from output vertices of the vertex shader. The output is zero or more new primitives,
which need not be of the same type as the input. The primitives generated by the
geometry shader are rasterized and passed on to the pixel shader.

1In OpenGL this is known as a fragment shader since it processes a complete data fragment (including,
for instance, color, texture coordinates, and depth information). The distinction is not important in the
context of this work and the term pixel shader will be used from here on.
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Figure 2: A schematic view of a unified GPU processing core. Usually these cores are
implemented as stream processors where the final memory location of the output can
not be changed or manipulated.

3.3 GPU programming

Modern GPUs are aggressively pipelined processors with raw floating-point perfor-
mance more than an order of magnitude higher than corresponding CPUs [39]. Also,
the increase in performance between successive generations is higher than that of
CPUs. Together this makes the GPU a computationally powerful platform, both
for graphics applications and more general purpose ones.

The first generations used separate vertex and pixel processors for executing the
vertex and pixel shader programs, respectively. Recent GPUs generally use a unified
shader model where each programmable pipeline stage is executed on the same physical
processing cores. Sharing cores between the different pipeline stages enables the GPU
to do load-balancing to match the balance of computations for a particular shader.
For example, for effects that require a high amount of pixel shader computations,
correspondingly more cores can be assigned to the pixel processing stage. For an
overview of a unified processing core of a modern GPU, see Figure 2.

The high performance of the GPU comes from it being both highly parallel and
aggressively pipelined. This imposes certain restrictions on the level of programma-
bility of the GPU. When using shaders, there is no support for globally writable
random-access memory. Memory may be read only from 1, 2, or 3-dimensional tex-
ture maps. There is no stack or heap, and no support for pointers. All computations
are performed using a set of registers dedicated to input, output, or temporary storage.

The lack of writable memory put severe restrictions on the programmability of
the GPU. For instance, it is not possible to use objects or even lists, since they both
rely on dynamic memory allocation. Furthermore, a pixel program may only write
information to a single pixel on screen. The position of this pixel is determined earlier
in a fixed-function part of the pipeline and can not be changed (if desired, the pixel
may be discarded however). This lack of scattered writes has implications primarily
for using the GPU for more general computational tasks.
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3.4 GPU programming languages

The first generations of GPUs were programmed using assembler languages specific
to each vendor. Now, NVIDIA’s Cg, Microsoft’s HLSL, and GLSL by the OpenGL
ARB, provide C-like languages for programming the GPU. These enable shader pro-
grams to be written at a higher level than previously possible. However, to clarify, these
languages are not domain-specific languages. They are general purpose languages that
target the GPU. The make only minimal assumptions on the structure of the GPU
and do not perform any domain-specific optimization or analysis (such as moving
code between different pipeline stages, tracking/inferring the coordinate frame of a
vector quantity, or automatically normalizing interpolated unit vector data). One rea-
son for this is to maintain a high degree of programmer control. Also, it provides a
clear path by which future features can be supported [44].

Also, as mentioned above, Sh and Vertigo provide GPU programming languages
embedded in C++ and Haskell, respectively.

3.5 General purpose GPU computations

The programmability and high performance of GPUs have spawned great interest in
using them for computationally intensive, non-graphics tasks. Algorithms, such as
image processing [53], fluid simulation [26], behavioral models [13], audio process-
ing [71], database operations [24], and numerical solvers [22], have all been imple-
mented to run on GPUs. Using a GPU for non-graphics tasks, such as simulation or
numerical computations, is collectively known as general purpose GPU computing,
abbreviated GPGPU.

The main advantage of using the GPU is performance. By using the pipelined,
highly parallel architecture it is possible to achieve raw numerical floating-point per-
formance an order of magnitude greater than current CPU generations. Moreover,
the speed increase with each new GPU generation is greater than the corresponding
increase in CPU processing power. This makes the GPU a very attractive platform for
computationally intensive algorithms.

Unfortunately, as explained in Section 3.3, the programming model of the GPU
is quite restricted. Also, the GPU is optimized to work with graphics primitives such
as vertices, triangles, and textures. Until recently, porting an algorithm to run on
the GPU entailed expressing it in terms of these primitives. This has changed with
the introduction of NVIDIA’s CUDA [50] and AMD’s Close-to-Metal (CTM) [52]
languages, that provide a programming model that is closer to the actual hardware
of the GPU. These languages lifts some of the restrictions inherit in expressing an
algorithm as operations on graphics primitive. For example, it is possible to write to,
and read from, arbitrary memory locations on the GPU, assuming synchronization of
overlapping parallel writes is handled.

However, regardless of the implementation technique used, to use the GPU effi-
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ciently, the programmer must be aware of the minutiae of how the GPU is structured:
number of stream processors per block (a group of processors with fast shared memory
and synchronization facilities), total number of blocks, performance of using different
types of memory, synchronization, and so on. This implies that, in order to use the
GPU as a numerical co-processor, an implementor must have in-depth knowledge of
both the target domain, e.g., numerical algorithms or audio processing, and advanced
knowledge of GPU programming. These limitations have severely limited the spread
and uptake of GPGPU techniques.

In addition to CUDA and CTM, other projects have previously been proposed
for facilitating the use of the GPU in numerical processing. BrookGPU [9] is a com-
piler for writing numerical GPU algorithms. The Brook language is an extension of
C that incorporates the primitives streams, representing data, and kernels, represent-
ing operations on streams, for expressing data parallel computations. Sh [47] pro-
vide a similar C++ template-based abstraction primarily targeted at implementing
GPGPU algorithms. Similarly, as mentioned Accelerator provides an array interface
to programming the GPU from C#.

4 Contributions

This dissertation focus on techniques and methods for high-level programming of the
graphics processing unit. To achieve this we use domain-specific languages embedded
in the dynamic language Python. The use of language embedding enables us to im-
plement prototype DSLs quickly, allowing us to test different language design choices
and implementation strategies.

We have focused primarily on three aspects of high-level programming:

− Abstraction Abstractions that simultaneously provide a practical programming
model and are sufficiently close to the target hardware to enable translation to
efficient low-level code.

− Modularization By building programs as combinations of well-defined mod-
ules, that can be maintained and developed separately, it is possible to increase
code reuse and reduce development time.

− Performance The primary uses of GPUs are in very performance-sensitive areas
such as real-time rendering and numerical simulation. Hence, performance is
a very important consideration.

In particular, our goal is to support high levels of abstraction and modularization
while maintaining performance equal to that of hand-written GPU programs.

In Papers III to VI, we have tried to keep the syntax and semantic models of our
DSLs close to those of existing GPU languages [25, 44, 57]. Our wish have been
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to minimize the amount of user-annotations that are required and instead focus on
maximizing the amount of information that can be automatically inferred by the com-
piler. For example, in Papers III, IV, and VI, we only require that the programmer
distinguish between unit vectors and directions. This is necessary for correct interpo-
lation of such data across the primitives. In Paper V we extend this classification by
also mandating that the space in which a vector is expressed must be specified when
that information can not be automatically inferred. These small extensions are suffi-
cient to enable a compiler to perform significantly more domain-specific analysis and
optimization than is possible using only structural data types.

Next, our contributions in each of the above areas are presented in separate sub-
sections. The author of this dissertation is the primary author of all the included
papers. Also, he is responsible for the implementation of all the presented DSLs and
compilation techniques, as well as the vast majority of the examples.

4.1 Abstraction

In Papers I and II we present PyGPU, a DSL embedded in Python that enables high-
level programming of image processing algorithms on the GPU. We present a novel
functional image abstraction that, by construction, encapsulates the most important
restriction of the GPU; the lack of scattered writes. In Paper I we present a number of
examples of using this abstraction to implement several non-trivial algorithms to take
advantage of the performance of the GPU. The compilation strategy used by PyGPU
is described in Paper II. It uses the introspection support of Python to make more
structural information available to the compiler. This enables us to have the simpler
implementation of a generative approach while still being able to translate elements
such as loops and conditionals (see Section 1.1).

In Papers III and IV, we introduce the unified programming model where the
programmer need not be aware of the separate GPUs stages. Shaders are written as
single programs that the compiler analyzes, splits, and finally maps to the appropriate
pipeline stages. Compared to previous methods, our approach does not require any
user-annotations about the placement of operations. Instead the compiler uses knowl-
edge of the domain to ensure that the generated GPU programs are correct. Also, our
approach extends previous methods by supporting loops, conditionals, vertex texture
fetches, etc., available on modern GPUs.

Paper V introduces a novel optimization and analysis strategy that enables shaders
to be written without explicit space-transformations. Instead, our compiler uses in-
formation about the application to infer the best, correct choice of space (i.e. the same
choice that an experienced programmer would make). This simplifies programming
and reduces application dependencies. Also, it represents a optimization strategy not
previously considered.
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4.2 Modularization

The PyGPU language introduced in Papers I and II enables straightforward mix-
ing of GPU and CPU computations by making PyGPU computations map to ordi-
nary Python functions. This enables performance-critical part of an application to be
rewritten using PyGPU with minimal impact on the rest of the application.

In Paper IV we present a programming model that enables the GPU pipeline
to be programmed in a more modular fashion, allowing geometry generation to be
specified separately from the actual surface shading. This enables the geometric and
shading parts of an effect to be developed as separate, composable modules that can
be combined to yield new effects. To our knowledge, this is the first real-time shading
language that supports modular programming in this way. This paper also introduces
a novel analysis algorithm for factorizing shaders across all stages (vertex, pixel, and
geometry) of a modern GPU.

In Paper VI we present a framework capable of automatically rewriting an existing
shader to use any combination of the shader-based rendering techniques: instanced
rendering, deferred shading, and vertex stream-out caching. This reduces code du-
plication by eliminating the need to explicitly combine rendering with shading code,
and increases code reuse.

4.3 Performance

The overarching goal of all research presented in this dissertation has been to keep
the introduced performance penalty very low, preferably non-existent. We succeed in
this. In Papers III, IV, and VI the performance of our approaches is equal to that of
hand-written shader programs implemented in current lower-level GPU languages.
The inference method introduced in Paper V does have a small performance hit, but
only on the order of a few percent (see Table 2, page 95). In PyGPU (Papers I and II)
we achieve very good performance numbers even though the compiler does not yet
implement any advanced optimization techniques.

Furthermore, we address a common objection to high-level programming models
and languages: loss of control. In high performance applications, in particular, this
loss of control is often coupled with a loss of performance. In GPU programming
this is aggravated by the added complexity of being able to perform operations at
different stages of the rendering pipeline, choices that have a large impact on both the
performance and visual quality of the resulting shader.

In Papers III and IV we provide a high-level programming model where this level
of control is retained. Instead of relying on the programmer to spread computations
across the pipeline stages manually, an initial placement is inferred by our compiler.
This placement can then be controlled through an external interface such as an artist’s
GUI. This enables the balance between performance and visual quality to be con-
trolled to the same degree as when writing shader programs by hand, but without
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requiring any source code changes. Hence control is retained, and development time
is reduced. This kind of external control mechanism has not been considered previ-
ously.

5 Conclusions and future work

We have shown that it is possible to have a high-level programming model of the
GPU while maintaining performance compared to using current GPU languages.
By using domain-specific analysis and optimization it is possible for a compiler to
generate very efficient code from such higher-level programs. Also, we show that
control over the trade-offs between shading performance and visual quality can be
maintained. Moreover, this control is achieved without requiring any rewriting of the
shader source code. As demonstrated, this control can be integrated in an artist’s tool
thereby allowing shader programs to be manipulated as part of the asset authoring
process.

In all the papers presented in this dissertation, we have used domain-specific
embedded languages implemented in the dynamic language Python. Thus we have
shown, by several examples, that it is possible to implement very high performance
DSLs even in a dynamic host language. In particular, the introspection ability of
Python have significantly simplified the implementation and testing of different lan-
guage features and design choices.

For future research, a number of areas are of interest. For example, combining the
space analysis and inference from Paper V with the “building block” approaches for
constructing shaders [2, 47, 48]. This could potentially lead to higher performance
(by letting the compiler choose an appropriate block implementation for the optimal
space) and more general code (by writing blocks that work for an arbitrary choice of
space). Similarly, combining the modular approach of Paper IV with the block-based
methods is a natural extension.

Also, investigating other code generation targets for the PyGPU language pre-
sented in Papers I and II is an interesting research venue. For example, translating to
CUDA or CTM can potentially give significant performance gains compared to the
currently used technique of mapping programs to operations on pixels and textures.

Mapping other types of programming paradigms to the GPU would also be a nat-
ural evolution of the techniques and results presented in this dissertation. For exam-
ple, automatic translation of array programming (such as provided by the NumPy [51]
library or MATLAB [45], for example) could potentially lead to a significant perfor-
mance increase compared to direct interpretation or translation to CPU code.
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ABSTRACT

Image processing is an area with many computationally demanding algo-
rithms. When implementing an algorithm the programmer has to make the

choice of either using a high-level language, thereby gaining rapid development
at the expense of run-time performance. Or, using a lower-level language having
higher run-time performance, but also a higher implementation cost. In this

paper we present PyGPU, an embedded language that enables image process-
ing algorithms to be written in the high-level, object-oriented language Python.
PyGPU functions are compiled to execute on the graphics processing unit (GPU)

present on modern graphics cards, a streaming processor capable of speeds more
than a magnitude higher than those of current generation CPUs. We demon-
strate a number of common image processing algorithms, showing how these can

be implemented succinctly and clearly using high-level abstractions, while at the
same time achieving high performance.
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1. INTRODUCTION

1 Introduction

Using a high-level language for writing software comes with many benefits. The code
is typically easier to read and understand, making spotting bugs easier. The time
spent programming is reduced since the programmer need not worry about low level
details such as memory management and data storage formats. In the field of image
processing, MATLAB [15] is a popular choice of high-level language. MATLAB is
based around an array programming model in which algorithms are expressed on
whole images instead of their individual pixels. For example, adding two equal sized
images A and B is written simply A + B.

The downside of high-level languages is poor performance. Even though the in-
dividual operations have efficient implementations, the overall performance is gener-
ally not enough for computationally intensive applications such as real-time motion-
tracking or high-resolution video post-processing. To overcome this lack of perfor-
mance it is often necessary to implement the algorithm in a lower-level language,
such as C/C++ or FORTRAN, instead. However, this comes at a substantial increase
in implementation cost, mainly in terms of programmer effort. Using a third-party
image processing library such as Intel’s Integrated Performance Primitives (IPP) [9],
OpenCV [17], or Mimas [1], that provide optimized versions of standard algorithms,
it is possible to reduce this cost somewhat. However, the total implementation cost of
using a high-performance, lower-level language is typically much greater than when
using a higher-level language.

Recently, there has been increased interest in using the graphics processing unit
(GPU) present on modern graphics cards as a computational co-processor. The GPU
is a highly specialized processor that provides very good performance. On some prob-
lems it is capable of outperforming current-generation CPUs by more than a fac-
tor of ten [12]. Programming the GPU is done using specialized languages such as
NVIDIA’s Cg [14], Microsoft’s HLSL [6], or GLSL by the OpenGL ARB [21].

Unfortunately, taking advantage of the performance of the GPU requires express-
ing an algorithm in terms of graphics primitives such as polygons and textures. Doing
this requires intimate knowledge of modern real-time graphics programming. Conse-
quently, implementing image processing algorithms to take advantage of GPU comes
at a significant implementation cost, even compared to using lower-level languages.

In this paper we present PyGPU, a language for programming image processing
algorithms that run on the GPU. It is implemented as an embedded language [8]
in the high-level, object-oriented language Python [20]. PyGPU using a point-wise
image abstraction that, together with the high-level features of Python, allows image
processing algorithms to be expressed at a high level of abstraction. By using the GPU
for execution, PyGPU is able to achieve performance in the order of 2–16 GFLOPS
without optimizations even on mid-range hardware. This is more than enough to
perform real-time edge-detection, for instance, on high-definition video streams.
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2. PYGPU

The rest of this paper is organized as follows: In Section 2 we introduce PyGPU
and show a number of example image processing-related algorithms. In Section 3 we
discuss performance considerations. Section 4 contains an overview and discussion of
PyGPU and how the restrictions and capabilities of the GPU affect how algorithms
are implemented. In Section 5 we summarize the contributions made in this paper.

2 PyGPU

PyGPU is a domain-specific language for image processing with a compiler that can
generate code which executes on the GPU. It is implemented as an embedded lan-
guage in Python. An embedded language is constructed by inheriting the function-
ality and syntax of an existing host language. This enables PyGPU to get a lot of
high-level language features for free. Python, with its dynamic typing and flexible
syntax, allows the embedding to be made very natural manner. Furthermore, using
the extensive reflection support of Python, the PyGPU compiler can be implemented
very concisely as described in [13].

The fundamental abstraction in PyGPU is its image model. An image is modeled
as a function from points on a 2-dimensional discrete grid to some space of colors
(RGB, YUV, gray scale, CMYK, etc). As will be shown, this functional model admits
expressing image processing algorithms concisely using the high-level language con-
structs of Python. Also it has the advantage of mapping naturally to the capabilities
and restrictions of the GPU.

Below is a small PyGPU function implementing a simple skin detector. It uses
the fact that the color of human skin typically lies within a bounded region in the
chrominance color plane:

@gpu
def isSkin(im=DImage, p=Position):

y,u,v = toYUV(im(p))
return inRange(u, uBounds) and \

inRange(v, vBounds)

Looking at the function we see that it has a decorator named @gpu. This is a directive
to PyGPU’s compiler to generate code for the GPU for this function. The default
values, DImage and Position, are type-annotations that are required to compile the
function for the GPU.

Apart from these details the function looks like ordinary Python code. The func-
tion body shows that to determine if the pixel p contains skin we first transform the
color value of the pixel p in the image im to the YUV color space. Then we check if
the red and blue chrominance values u and v both lie within the specified bounds.

Applying the skin detector to an image is done by calling it as an ordinary Python
function:

skin = isSkin(hand)
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2. PYGPU

Figure 1: Skin detection

Note that the position argument is omitted, the skin detector is applied to the whole
image. The result is shown in Figure 1.

The functions toYUV and inRange are examples of functions from the standard
library of PyGPU. This library also provides standard mathematical operations such
as basic arithmetic operators, trigonometric functions, and logarithms. These oper-
ations work on both scalars and, element-wise, on vectors. PyGPU provides vectors
of dimension two, three, or four. Vector operations such as scalar products, and mul-
tiplication by scalars are provided through operator overloading, giving an obvious
semantics to an expression such as

v + a

where v is some vector and a either a vector or a scalar.

2.1 Convolutions

The skin detector is an example of the most basic kind of image operations where
each pixel in the result image only depends on the pixel at the same position in the
sources image(s). Many algorithms, however, require access to multiple source image
pixels to compute a single pixel in the result image. Convolution operations, such as
differentiations and filters, are typical examples of such algorithms. One example of
a convolution is the Sobel edge detector seen below. The edge strength of a pixel is
determined as the length of an approximation of the image gradient.

@gpu
def sobelEdgeStrength(im=DImage, p=Position):

Sx = outerproduct([1,2,1], [−1,0,1])
Sy = transpose(Kx)
return sqrt(convolve(Sx, im, p)∗∗2 + \

convolve(Sy, im, p)∗∗2)
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The gradient is estimated by the convolution of the so called Sobel kernels, one for
the horizontal and one for the vertical direction. One can conveniently be expressed
as the outer product of two vectors and by symmetry the other is the transpose of the
first one.

This example shows a particularly powerful aspect of PyGPU. The functions
transpose and outerproduct are not PyGPU functions but come from Numarray, an
established high performance Python array programming library implemented in C
[7]. And yet these functions can be used in code that is compiled for the GPU.
The reason this works is that the compiler uses generative techniques [3] to partially
evaluate the code at compilation time [13].

In addition to allowing the use of third-party extension libraries, this generative
feature makes it possible to use high-level language constructs such as lists and list
comprehensions or built-in standard Python functions even though these features
cannot be directly translated to the GPU. For example, the convolve function used
above can be succinctly expressed as:

def convolve(kernel, im, p):
return sum([w∗im(p+o)

for w,o in zip(ravel(kernel),
offsets(kernel))])

The Numarray function ravel is used to compute the column-first linearization of
the kernel. Using the built-in Python function zip to combine each kernel element
with its corresponding offset (computed by the offsets helper function), the list of
weighted image values can be expressed as a list comprehension. The final result is
then computed by the standard Python function sum.

2.2 Iterative algorithms

The operations presented thus far have been algorithms where the result is computed
in a single pass. Many operation use an iterative strategy where successive applica-
tions gradually improve the quality of the result. One example of such an algorithm
is anisotropic diffusion filtering [19] that allows efficient removal of noise without
simultaneously blurring edges in an image. One step of Perona-Malik anisotropic
diffusion can be expressed as

@gpu
def pmAniso(edge=DImage, im=DImage, p=Position):

offsets = [(1,0), (−1,0), (0,1), (0,−1)]
return im(p) + 0.25∗sum([f(edge, im, p+dp, p)

for dp in offsets])
def f(edge, im, x, p):

return g(0.5∗(edge(x)+edge(p)))∗(im(x)−im(p))

def g(x):
return e∗∗(−x/(K∗K))
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Figure 2: Perona-Malik anisotropic diffusion.

The function pmAniso is the main function that is compiled for the GPU and the
functions f and g are helper functions which are generatively evaluated during the
compilation process. The function g controls the conduction coefficients of the dif-
fusion process with K determining the slope. The choice here is one of the functions
used in the original paper.

Iteratively applying the diffusion operator to an image can either be done by the
standard PyGPU function iterate or by direct loop as shown below:

edges = edgeStrength(im)
for i in range(n):

im = pmAniso(edges, im)

This results in successively more smoothed versions of the original image. Figure 2
shows an example image and the result of applying 400 iterations of the anisotropic
diffusion operator using K = 0.25.

2.3 Reductions

One common pattern in the above examples is that the result of the operation is always
another image. In image analysis, however, it is often the case that the result of an
operation is instead some overall property of the image, for example the maximum or
average image color. These kinds of operations are called reductions, operations which
reduce the size of an image down to a single value or set of values. For example, a
function which computes the pixel-wise sum of an image can be implemented as:

def sumIm(im):
return reduceIm(add, im)
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Figure 3: Center of mass

Here, the function add is passed as an argument to a general reduceIm operation. This
function is provided by PyGPU and works analogously to Python’s built-in reduce

but on 2-dimensional images instead of on lists. It is implemented as an iterative
algorithm similar to the example in the previous section. Its implementation will be
shown in Section 2.6.

A useful example of a reduction is the calculation of the center of mass of a region
in a binary image. It can be used, for instance, to approximate the center of a hand or
face detected by the skin detector above. The center of mass is the average position of
all pixels in the region and can be computed as:

def centerofmass(im):
return sumIm(pos(im))/sumIm(im)

@gpu
def pos(im=DImage, p=Position):

return p∗im(p)

The result of applying the center of mass detection algorithm to the result of the skin
detector above can be seen in Figure 3.

2.4 Multi-grid operations

One of the advantages of programming in high-level languages is that the abstrac-
tion mechanisms available makes it possible to package complex operations as basic
building blocks that can be used to construct even more complex operations. As an
example we will show the implementation of an operation from the notion of Poisson
editing introduced by Pérez, Gangnet, and Blake in [18]. The example is called seam-
less cloning and it is a technique for pasting parts of one image into another in such
a way that there is no visible seam between the two images. The idea is to solve the
Laplace equation for both images and only replace the differences from these solutions
in the pasting operation.
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The Laplace equation states that the sum of the second derivates should be equal
to zero. In the case of discrete images this is equivalent to saying that a pixel should
be equal to the average of its four nearest neighbors. This average is computed by the
following PyGPU function.

@gpu
def crossAverage(im=DImage, p=Position):

offsets = [(1,0), (−1,0), (0,1), (0,−1)]
return sum([im(p+o) for o in offsets])/4

Using the standard higher-order PyGPU function masked, that applies a function
within a given mask and leave the values outside unchanged, we can express one
part of the Laplace equation solver as:

x = masked(crossAverage, m)(x)

The statement is of the same form as in the anisotropic diffusion example above. It can
be used as the basic step in an iterative solver where each iteration yields a successively
better solution. The complete implementation of seamless cloning can be expressed
succinctly as:

def solveLaplace(x, mask):
return iterate(n, masked(crossAverage, mask), x)

def seamlessCloning(source, target, mask):
source0 = solveLaplace(source, mask)
target0 = solveLaplace(target, mask)
return = (source−source0) + target0

An example of seamless cloning can be seen in Figure 4.
The Laplace solver above will eventually reach a solution, but it converges very

slowly. For the example in Figure 4 it requires on the order of 10 000 iterations
to compute source0 and target0, respectively. A standard technique to improve con-
vergence is to use a multi-grid approach where solutions are first found at a lower
resolution. This approximate solution is then used as input to solving the problem
at the higher resolution level, giving a better initial value for the solution and thereby
achieving faster convergence. By changing the definition of solveLaplace to

def solveLaplace(x, mask):
return maskedMultigrid(n, crossAverage, mask, x)

The example instead converges in around 200 iterations. The maskedMultiGrid solver
is available in the standard library of PyGPU. Its implementation will be shown in
Section 2.6.

2.5 Sparse operations

The kind of image operations where the parallelism of the GPU is most efficiently
used are dense operations, where the computations involve all pixels in the image. All
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source target

source0 target0

mask result

Figure 4: Seamless cloning

operations we have shown so far are all examples of this kind. Sparse operations on the
other hand operate only on a well chosen subset of points in the images, for example
feature points such as detected corners. The irregular access pattern used by sparse
methods make them less suitable for implementation on the GPU.

Some kinds of operations use a combination of dense and sparse methods. One
class of such operations are active contours or snakes [11] where a polygon is used to
define an image area that is interesting in some sense. The contour can automatically
search for its area by iteratively moving the polygon until a local minimum is found
on a suitably defined energy function. This function typically consists of a weighted
average of two separate components: the internal energy and the external energy. The
external energy is a measure of the image being analyzed, whereas the internal energy
is a measure of the shape of the contour itself, for example its smoothness.

The idea is to sample the neighborhood of each vertex of the snake and if any
position in this neighborhood gives the vertex a lower energy it is moved to this po-
sition. This step is then repeated as many times as needed. A simple implementation
of active contours is:

def externalEnergy(im, vs, o, v):
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Figure 5: Contour detection using the snake algorithm

return im(vs(v)+o)[0]

def internalEnergy(vs, o, v):
p,x,n = [vs((v+i)%nVerts)[0:2]

for i in [−1,0,1]]
x += offset
m = (p+n)/2
return norm(x−m)/norm(p−m)

def totalEnergy(wInt, wExt, im, vs, o, v):
return wInt∗internalEnergy(vs, o, v) + \

wExt∗externalEnergy(im, vs, o, v)

@gpu
def energyOptimize(wInt=Float, wExt=Float,

im=DImage, vs=DImage, v=Int):
offsets = array([[0,0],

[1,0], [−1,0],
[0,1], [0,−1]])

energies = [totalEnergy(wInt,wExt,im,vs,v,o)
for o in offsets]

return vs(v) + min(zip(energies, offsets))[1]

Here, the parameters im and vs contain the image we are optimizing over and the
vertices of the polygon, respectively. The weights wExt and wInt contain the relative
weights of the external and internal energy. The use of min relies on the fact that
comparison between tuples in Python is defined lexicographically. This means that
we will find the energy minimum since this is the first member in each tuple. The
corresponding offset of that energy minimum is given as the second tuple entry.

The input image used for the external energy is typically not the image being
analyzed but rather some preprocessed version, for example a segmented version with
edge enhancements. The internal energy shown here is simply a measure of how far
a position is from the midpoint of the two neighboring vertices. This choice will give
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Figure 6: Block-wise reductions

a “rubber band”-like snake contour where a enclosed region is always convex. Many
other variants are possible. The result of applying the snake algorithm is shown in
Figure 5.

2.6 Implementation of some generic operations

In the previous sections we have used some generic high-level operations such as
reduceIm and maskedMultigrid. Although these are very general and powerful, their
implementation in PyGPU is still fairly simple.

The reduction operator is implemented by successively applying the base oper-
ation to blocks of the image, resulting in smaller and smaller intermediary results.
When the size of the image is 1 × 1 it will contain the sought quantity as illustrated
in Figure 6. For a square image having sides that are a power of two, the operation
can be implemented in PyGPU as:

block = array([(0,0),(0,1),(1,0),(1,1)]

def reduceIm(f, im):
@gpu
def reduce(im=DImage, p=Position):

return f([im(2∗p+o) for o in block])

while im.size[0] >= 1 and im.size[1] >= 1:
im = reduce(im, targetSize=im.size/2)

return im

This inner function, which is the one executed on the GPU, successively applies the
function f to 2× 2 blocks of the image im until it is reduced to a single 1× 1 image.
The actual reduction in image size is achieved by the parameter targetSize which is
implicitly made available on all PyGPU compiled functions with a default value of
the size of the input image.
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# pixel
ops.

# texture
accesses

Gpixel
ops./s

Tex. reads
(GB/s)

Convolve (3× 3) 27 9 0.56 3.0
Convolve (7× 7) 151 49 0.65 3.4
Skin detection 57 1 3.9 1.1
Anisotropic diff. 43 10 0.58 2.1
Laplace solver 18 4 0.60 2.8

Table 1: Performance figures for some of the examples.

A multi-grid solver first finds an iterative solution on a coarse resolution of the
image which is then used as the initial value on successively finer resolutions. This
masked multi-grid solver in PyGPU can be expressed as:

def maskedMultigrid(n, f, mask, x, minSize):
y = None
for x, m in reversed(zip(averageR(im, minSize),

averageR(mask, minSize)):
if not y: y = x
else: y = masked(inflate(y), m)(x)
y = iterate(n, masked(f, m), y)
return y

The averageR helper function generates a sequence of successively coarser representa-
tions of an image down to size minSize. The function inflate does the opposite, i.e., it
computes the input to the next higher resolution level.

3 Performance

Although the compiler of PyGPU does not yet implement a number of important
optimizations it typically achieve between 0.5 and 4 GPixel operations per second
(roughly equal to 2 to 16 GFLOPS) on the examples shown in this paper. This means
that a 9-tap convolution filter can be applied to a 500 × 500 RGBA color image in
about 13 ms. The examples were run on a NVIDIA GeForce 6600 graphics card, a
lower mid-range card at the time of writing.

Table 1 gives a summary of the performance figures for the most representative
examples in this paper. The execution times are essentially proportional to the number
of pixels times the number of instructions in the compiled shader program to execute
for each pixel. They also include a constant overhead for each pass for setting up
the graphics cards, passing parameters to the GPU program, and constructing the
result texture. This overhead corresponds roughly to the computation of a couple of
thousand pixels, meaning that it is negligible for larger images.

The theoretical peak performance of the NVIDIA 6600 card of our test setup
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is approximately 4.8 GPixel operations per second (300 MHz core clock, 8 pixel
pipelines using instruction co-issuing) with an peak memory bandwidth of 4 GB/s
(500 MHz bus clock, 128 bit bus bandwidth, 64 bits per memory access). As we
see from the performance figures, programs that perform more computations relative
to the number of texture accesses per pixel perform very well. For example, the skin
detection algorithm is able to reach 80% of the computational peak performance.

However, programs that perform many texture accesses per computed pixel quickly
become bounded by the available memory bandwidth. This is particularly true for the
convolution filters that achieve 75% and 85% bandwidth utilization, but with only
11% and 13% computational efficiency, for the 3× 3 and 7× 7 case, respectively.

This figures indicate that the key limiting factor in many GPU programs is mem-
ory bandwidth. At present, PyGPU is not optimized for minimizing bandwidth con-
sumption. For example, all computations are carried out on 32-bit floating point
4-tuples, which means that both gray scale and binary images are treated as full four
channel RGBA images. By using more compact storage formats, as well as reducing
the precision to 16-bits where possible, the bandwidth requirements will be reduced
and performance increased further. These improvements, as well as trying to locate
other bottlenecks in the processing pipeline, are things which will be incorporated in
future versions of PyGPU.

4 Discussion

As we have seen the PyGPU language combines high-level programmability with high
performance. Being embedded in Python allows functions running on the GPU to be
called transparently from Python, greatly facilitating integration of GPU algorithms
in larger applications. Furthermore, since PyGPU functions are, at the same time,
valid Python functions GPU programs can be tested on the CPU before being run
on the GPU. This allows standard debugging and testing tools to be used for GPU
programs also, reducing the need for more specialized GPU debugging tools [4].

The performance of the GPU comes from it having a pipelined, highly parallel
architecture. This introduces a number of restrictions on what kinds of operations are
possible to implement on the GPU. It lacks writable memory. Memory is read only
and may only be accessed only in the form of textures containing up to 4-tuples of
floating point values. This means that Python features such as lists and objects cannot
be used directly on the GPU. But, as we have seen, they may be used to construct
programs. For information on how this is achieved, see [13].

Also, GPU programs can only write output to a predetermined image location.
This means that GPU algorithms must be, using the terminology of parallel computa-
tion, written using a gather, rather than scatter, approach. This restriction is encoded
in PyGPU’s image model, where algorithms are expressed in a point-wise manner us-
ing only gather operations. This is also the reason why the general reduce operator,
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used to do summation for example, is implemented as a iteration over a sequence of
progressively smaller images, rather than using a straightforward accumulation loop.

This lack of scatter support sometimes creates difficulties. One such problematic
example is computing histograms. This operation is traditionally implemented as a
loop over all pixels, having time-complexity linear in the number of pixels. Since
the GPU does not support for scattered writes it must instead be implemented as a
reduction

histogram = reduce(countBins, toBins(im))(0,0)

where toBins sorts pixels to their respective bins and countBins count the number of
occurrences in each bin. GPUs only support outputting a limited number of values
per pixel, currently 16 floating point values. With a larger number of bins than this
the algorithm must be run multiple times resulting in a time-complexity on the order
of the number of pixels times the number of bins. This illustrates that not all kinds
of image processing algorithms are suitable for the GPU.

4.1 Related work

PyGPU was inspired by Pan written by Elliott et al. [5], which is an domain-specific
language for image synthesis embedded in the function language Haskell [10]. In
particular, the functional image model of PyGPU is very similar to that of Pan, but
where Pan uses a smooth model, PyGPU focuses on a discrete formulation that allows
easier pixel-wise addressing for operations such as convolutions etc.

Other domain-specific languages for using the GPU as a computational co-processor
have been proposed. For example, BrookGPU by Buck et al. [2] is a compiler for
writing numerical GPU algorithms in the Brook streaming language, an extension
of ANSI C that incorporates streams and kernels, representing data and operations
on data, respectively. The stream and kernel primitives can be mapped to efficient
programs running on the GPU. Also, Sh by McCool et al. [16], for instance, uses
C++ templates to provide stream processing abstractions similar to those of Brook.
These two projects are based on C and C++, respectively. By using Python, PyGPU is
able provide higher-level facilities for writing GPU image processing algorithms than
currently possible with these approaches.

4.2 Future work

The current syntax of PyGPU requires the programmer to clearly make the distinction
between the parts of the code that should execute on the GPU and the parts that
should executon the CPU. A nice feature would be to have the compiler be able to do
this allocation by itself. Apart from relieving the responsibilities of the programmer,
it would also allow the compiler to perform more optimizations, both on for storage
requirements and also load-balancing.

34



5. SUMMARY

Also, in order to translate a Python function to the GPU, PyGPU’s compiler
must know the types of the function parameters. Currently, this information must
be provided by the programmer. An interesting improvement would be to remove
this requirement and instead have the compiler automatically infer the necessary type
information.

5 Summary

We have presented PyGPU, a language for image processing on the GPU embedded
in Python. The functional programming model used by PyGPU allows algorithms to
be translated to efficient code running on the GPU, while still retaining the high-level
language features allowing them to be implemented concisely and clearly. The perfor-
mance of PyGPU is good, allowing many algorithms to be run on real-time streaming
video sequences without need for special optimization. This enables the implementor
to receive rapid feed-back during algorithm development and debugging.

Also, by using language embedding the high-level benefits of Python are trans-
ferred onto PyGPU, allowing features such as list comprehensions and higher-order
functions to be used in the construction of image processing algorithms. By writing
at a higher level of abstraction the code is easier to read and understand. Furthermore,
constructing more complex algorithms from simpler building blocks facilitates error
detection, making algorithm development and implementation faster and easier.
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ABSTRACT

Dynamic languages typically allow programs to be written at a very high level
of abstraction. But their dynamic nature makes it very hard to compile such
languages, meaning that a price has to be paid in terms of performance. However

under certain restricted conditions compilation is possible. In this paper we
describe how a domain specific language for image processing in Python can
be compiled for execution on high speed graphics processing units. Previous

work on similar problems have used either translative or generative compilation
methods, each of which has its limitations. We propose a strategy which combine
these two methods thereby achieving the benefits of both.
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1. INTRODUCTION

1 Introduction

In this paper we introduce PyGPU, a domain-specific language for writing image pro-
cessing algorithms embedded in the interpreted, object-oriented, dynamically typed
language Python. The PyGPU language consists of a number of classes that allow
image processing algorithms to expressed clearly and succinctly. These classes use
overloading to provide operations such as multiplying a color by a scalar, and access-
ing an image, with intuitive semantics. For instance, a function for multiplying every
pixel of an image by a scalar can be implemented as:

def scalarMul(c=Float, im=Image, p=Position):
return c∗im(p)

Furthermore, this function can be compiled to native code executing at very high
speeds on the graphics processing unit (GPU). However, as will be described be-
low, the GPU is a very restricted platform, and in order to compile a function type-
annotations, as in the above example, are required. The types used are exactly the
above classes which here serve the alternate purpose of encoding the restrictions and
capabilities of the GPU.

The outline of the rest of this paper is as follows. In Section 2 we introduce the
graphics processing unit (GPU) as well as a more extensive example of using PyGPU.
In Section 3 we present the implementation of PyGPUs compiler and in Section 4 we
finish up with a discussion.

2 GPUs

Most computers come equipped with a powerful 3D graphics card capable of trans-
forming, shading, and rasterizing polygons at speeds in excess of those provided by the
CPU alone. These cards are also equipped with a programmable graphics processing
unit (GPU) that enable parts of the polygon rasterization process to be program-
matically redefined allowing, for instance, many image processing algorithms to be
implemented. And, since floating-point performance of the GPU is typically an order
of magnitude higher than that of a corresponding CPU [9] it is a very attractive target
platform.

The speed advantage of GPUs comes from their highly specific nature; they em-
ploy a number of very long pipelines executing in parallel and in order to efficiently
use this parallelism the computational model of the GPU is very restricted. There
is no dynamic memory allocation. Memory is read-only and may only be accessed
in the form of textures containing 4-dimensional floating-point values. Furthermore,
flow control structures such as branches and subroutines are not guaranteed to exist
even on very modern cards.
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Figure 1: Sobel edge detected lena

2.1 Existing GPU languages

There are a number of specialized language available for programming the GPU.
The first generations of GPUs provided limited forms of programmability trough
assembler-like languages specific to each vendor and graphics API. With the increased
power and maturity of GPUs a number of higher level languages were introduced: Cg
by NVIDIA [11], HLSL by Microsoft [5], and GLSL by the OpenGL ARB [8]. These
languages are all syntactic variants of C with some added constructs and data-types
suitable for expressing GPU programs.

Other projects aimed at providing embedded languages for programming the
GPU are Vertigo [3] and Sh [12]. Vertigo uses Haskell [7] to program the vertex
shader functionality of GPUs. Sh is embedded in C++ and uses a generative model
for constructing GPU programs at run-time from specification written in C++. Sh
also supports, through the use of C++ templates, combining GPU program fragments
into new GPU programs [13].

2.2 An image processing example

We will now provide an extended example of PyGPU by implementing an edge de-
tection algorithm. We will construct a general edge detector which will then be used
to implementing the well known Sobel edge detector.

Edge detection in general

Edge detection is the process whereby sharp gradients in image intensity are identified.
In general, this can be implemented as the application of convolution kernels estimat-
ing the image intensity gradient in the x and y-directions, respectively. Consider the
following function definition:

def edgeDetect(kernel, im=Image, p=Position):
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Gx = convolve(kernel, im, p)
Gy = convolve(transpose(kernel), im, p)
return sqrt(Gx∗∗2 + Gy∗∗2)

This function applies an arbitrary kernel in the x and y-directions (by symmetry the
vertical gradient approximation kernel is the transpose of horizontal approximation
kernel) and then computes the magnitude of the image gradient.

Gradient approximation kernels

There are many examples of gradient approximation kernels. One common choice is
the Sobel operator which can be represented by the matrices





−1 0 1
−2 0 2
−1 0 1



 and





−1 −2 −1
0 0 0
1 2 1





for the x and y-directions, respectively.

Complete edge detector

Using the general edge detection function and the kernel from the previous section
we can now create a Sobel edge detector by partially specializing the general edge
detection function. To do this we call the PyGPU compiler passing the kernel as a
compile-time parameter:

sobelEdgeDetGPU = pygpu.compile(edgeDetect, kernel=sobelKernel)

The function returned by the compiler runs entirely on the GPU and can be applied
to images just as a normal function. However, the position parameter need not be
specified, the returned function operates on whole images in parallel:

edgesLena = sobelEdgeDetGPU(lena)

The result of applying the Sobel edge detector to the standard Lena example image
can be seen in Figure 1.

Example discussion

Interestingly, the general edge detection function presented above can not be trans-
lated to native code on the GPU and the reason lies in the kernel argument. Because
the GPU lacks support for dynamic memory allocation translating the kernel argu-
ment to the GPU is impossible. PyGPU expresses this by the fact that the kernel
argument cannot be given a type in PyGPUs type system. And, since these types
encode the capabilities of the GPU, an argument which cannot be typed must be
supplied as a value at compile-time.
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As a consequence we are allowed to use external libraries even when these libraries
cannot be translated to the GPU. For instance, the transpose function is taken directly
from Python Numeric, an array programming library implemented in C and running
on the CPU[14]. Clearly, this function cannot be directly translated but, since the
value of kernel must be supplied at compile-time, it may still be used to construct
PyGPU functions.

3 Compiler implementation

The PyGPU compiler is implemented in Python and it is responsible for two major
tasks: compiling PyGPU functions to programs running on the GPU, and providing
the necessary glue-code allowing these programs to be called as ordinary Python func-
tions. The implementation of the latter is straightforward and will not be covered.
The implementation of the translation from Python functions to GPU programs is
the focus of this section.

3.1 Related work

PyGPU lies at the intersection of two problem areas related to compilation: dynamic
languages and embedded languages. It shares a number of problems from both ar-
eas all of which must be overcome to allow effective compilation. Furthermore, the
restrictions of the target platform greatly affects implementation choices.

Compiling dynamic languages

Compiling dynamic languages is, in general, a very difficult problem. Most of what
we know from static languages cease being true: function implementations can be
changed at run-time, arbitrary code can be executed via eval, and classes can be dy-
namically constructed or changed. One approach is to restrict the dynamism of the
language. This is used in PyPy [15] and Starkiller [17], two projects targeted at
compiling Python. Both projects perform static analysis such as type inferencing to
translate general Python code into lower-level compilable code.

Alternatively, the dynamism can be kept by performing run-time specialization to
compile functions at call-time. This is the approach taken by Psyco [16], a just-in-
time compiler for Python.

Compiling embedded languages

By construction, embedded languages can typically be compiled by the host language
compiler. The problem with compiling embedded language however is that they typ-
ically target a different platform than that supported by the host language. Some
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examples of such platforms are co-processors [12], VHDL designs [1], and midi se-
quencers [6].

The most direct approach for implementing an embedded language compiler is
to view the host language merely as syntax for the embedded language. A traditional
compiler can then be implemented by reusing the front-end for the host language and
implementing a new back end. Such translative methods work well when the features
of the embedded language closely match the capabilities of the target platform. In
such cases translative methods can be implemented fairly directly.

An alternate approach is to use the overloading capabilities of the host language.
By implementing a suitable set of abstractions it is possible to execute a program in the
embedded language in such a way that it generates a program on the target platform.
These types of generative methods are typically straightforward to implement since
much of the existing compiler infrastructure is reused. They are however restricted
to translating only those features of the host language that can be overloaded. Con-
ditionals, loops, and function calls, for instance, cannot be overloaded in most lan-
guages and consequently cannot translated using this approach. Examples of projects
using a generative approach are Pan [4], Vertigo [3], and Sh [12]. Pan and Vertigo
are Haskell domain-specific embedded languages for writing Photoshop plugins and
vertex shaders, respectively. Both use a tree-representation constructed at run-time
to generate code for their respective platforms. Sh is a GPU programming language
embedded in C++ that uses overloading to record the operations performed by a Sh
program. This “retained” operation sequence is then analyzed and compiled to na-
tive GPU code. We will use a combined approach giving the benefits of both these
methods.

3.2 Combining translation and generation

Given that we use Python as host language for PyGPU we are faced with a difficult
decision. The restrictions of the GPU makes direct translation of features such as lists
and generators impossible, requiring either restricting the languages or implement-
ing advanced compiler transformations. Using a generative method we are required
to supply our own conditionals and loop-construct thereby sacrificing the syntactic
brevity of our host language. Ideally one would like to use a translative approach for
those features that admit direct translation and a generative approach for those that
do not.

We propose that this can be achieved by combining two features commonly found
in dynamic high-level languages: introspection and dynamic code execution. Introspec-
tion is the ability of a program to access and, in some cases, modify its own structure
at run-time. Dynamic code executing allows a running program to invoke arbitrary
code at run-time. For instance, we can use the introspective ability of Python to access
the bytecode of a function, where elements such as loops and conditionals are directly
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represented. This allows using a translative approach where possible. Using dynamic
code execution we can reuse large parts of the standard Python interpreter to thereby
giving the benefits of translative methods.

3.3 The compilation process

As explained above (see Section 2.2) PyGPU requires that types of all free variables are
known at compile-time. Parameter which cannot be given a type must be supplied by
value. Hence, for every parameter of a function we know either its type or its value.
The compilation strategy thus becomes: if the value is known we evaluate generatively,
if only the type is known we perform translation.

The compiler is implemented in the usual three stages: front end, intermedi-
ate code generation, and back end. The intermediate code generation and back end
stages are implemented using well-known compiler techniques. We use static single-
assignment (SSA) [2] for representing the intermediate code. This enables many stan-
dard compiler optimization, such as dead-code elimination and copy propagation, to
be implemented effectively. The optimized SSA code is then passed to a back end
native code generator. At the moment we use Cg [11] as a primary code generation
target allowing optimizations of that compiler to be reused.

The front end however, differs from the standard method of implementing a com-
piler. Instead of using text source code it operates directly on a bytecode representa-
tion and it is the front end that implements the above compilation strategy. How
this is implemented using the dynamic code execution features of Python will now be
described in detail.

Bytecode translation

The front end parses the stack-based bytecode of Python and translates it to a flow-
graph which is passed to the intermediate code generator. Throughout this process
the types of all variables are tracked allowing the compiler to check for illegal uses as
well as performing dispatch of overloaded operations.

Simple opcodes, such as binary operations, are translated directly. More compli-
cated examples such as function calls, that would not be translatable using a generative
approach, are handled using the above strategy:

elif opcode == CALL FUNCTION:
args = stack.popN(oparg)
func = stack.pop()
if isValue(args):

stack.push(func(∗args))
else:

compiledF = compileFunc(func, args)
result = currentBlock.CALL(compiledF, args)
stack.push(result)
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That is, if all the arguments are values then the function is evaluated directly in the
standard interpreter. This is done by using the dynamic code execution abilities of
the standard interpreter to call the function via func(∗args). This allows the PyGPU
compiler to reuse functionality present in external libraries (even compiled ones) gen-
eratively. Note that, in general this kind of constant-folding of function calls is not
permitted. The function being called may depend on global values whose value may
change between invocations. But, since the GPU lacks globals variables PyGPU does
not allow global values to be changed after a function has been compiled and conse-
quently this transformation is valid.

If the value of at least one argument is not known then the callee is compiled and
a corresponding CALL-opcode is added to the current block of the flow-graph.

This strategy is not restricted to the case of function calls, it can be used to handle
loops as well. Consider the fragment

for i in range(n):
acc += g(i)

If n is known at compile-time then we may evaluate range(n). Consequently the se-
quence being iterated over is known and the loop can be trivially unrolled. If n is
not known the fragment is translated to an equivalent loop in the GPU. The code
for handling loops is similar to that of handling function calls albeit slightly more
complicated.

3.4 An illustrative example

The compilation strategy presented above is very straightforward and it is not obvious
how this strategy enables us to translate more complicated examples. Consider the
implementation of the convolve function used in Section 2.2:

def convolve(kernel, im=Image, p=Position):
return sum([w∗im(p+d)

for w,d in zip(ravel(kernel),
offsets(kernel))])

The implementation reads: to compute the convolution we first compute the column-
first linearization of the kernel using the function ravel. The offset to each kernel ele-
ment is computed and each offset is associated with its corresponding kernel element.
The image is accessed at the corresponding locations and the intensities are weighted
by the kernel element. Finally the resulting list of intensities is summed and the result
returned.

Note that here we use a number of features which cannot be directly translated
to the GPU: the compiled Numeric [14] function ravel, list-comprehensions, and the
built-in Python functions zip and sum both which operates on lists. However, us-
ing the above strategy compilation proceeds as follows: The value of kernel must be
known at compile-time and, consequently, the values of ravel(kernel) and offsets(kernel)
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can be computed. Hence the arguments to zip are known which implies that it may,
in turn, be evaluated at compile-time. The resulting list is used to unroll the list-
comprehension resulting in a known number of image accesses which can be directly
translated to the GPU. The code for summing these accesses and returning is gener-
ated similarly thereby concluding the translation of the above function.

4 Discussion

We have shown how a compiler for an embedded language can be implemented to
combine the advantages of previous methods. By taking advantage of introspection
and dynamic code execution features of the host language Python we could implement
this compiler very compactly. As an example, The compiler and run-time consists of
around 1500 lines of code with the bytecode to flow-graph translator occupying 400
of those lines. By compiling for the GPU, performance in excess to that of optimized
CPU code can be obtained. Furthermore, the relative increase in speed for new GPU
generations is greater than the corresponding increase for CPUs making the GPU a
very attractive platform.

A recent area of research is using the GPU for general purpose computations. Ex-
amples of algorithms which have been implemented on the GPU are fluid simulations
[10], linear algebra [9], and signal processing [18]. Future work includes extending
the PyGPU compiler to allow programming all aspects of the GPU including general
purpose numerical algorithms. Also, the presented method ought to be suitable for
compiling embedded languages to other platforms such as ordinary CPUs.

Another interesting area for future research is studying how the approach used
here integrates with that of PyPy [15]. Of particular interest is reusing parts of the
PyPy framework to be able to handle more general examples, including the above
general purpose uses of the GPU as well as targeting other platforms.
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ABSTRACT

Programmable shading has become an essential part of interactive three-dimensional

graphics and today, graphics cards provide powerful graphics processing units
(GPUs) capable of executing complex shading algorithms in real time. Program-
ming these GPUs requires, in addition to CPU support code, writing two pro-

grams, one to be executed for every mesh vertex and one to be executed for every
projected on-screen pixel. This separation gives the programmer great control
of the rendering pipeline. However, it also makes GPU programs difficult to

manipulate or reuse because the vertex/pixel processing unit allocation must be
declared explicitly.

In this paper we show that GPUs can be programmed in a unified manner,

without explicitly factoring the program into vertex and pixel parts, and without
sacrificing control or performance. The split between vertex and pixel compu-
tations is automatically inferred by the compiler without requiring any source

code annotations. This process can be controlled, making it possible to directly
manipulate the performance and visual quality characteristics of the program.
Splitting control can be integrated in an interactive artist’s tool or in an off-line

analysis algorithm, for instance. Previous approaches to unified programming
were restricted to Renderman-like surface and light shaders, thereby excluding a
large part of the contemporary uses of the GPU. We extend these methods to

handle arbitrary GPU programs, including branches and conditionals.

Technical report, Lund University, LU-CS-TR:2008-244
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1. INTRODUCTION

1 Introduction

Programmable shading — the process of computing the on-screen appearance of a
graphical model — has become an essential part of three-dimensional graphics and
visualization. It is used to achieve a wide range of visual effects, ranging from lighting
models to hardware-assisted particle systems to procedural geometry. Programmable
shading was introduced in off-line systems [4, 25] where it was popularized by the
Renderman shading language [10].

The first real-time shading systems were custom-built architectures such as the
Pixelflow system [20]. Today, graphics cards provide high performance, programmable
graphics processing units (GPUs) which allow the transformation, tessellation, and
pixel processing stages of the rendering pipeline to be controlled. This enables GPU
programs, commonly referred to as shaders, to combine geometric effects, such as
mesh deformations and animation, with advanced lighting, texturing, and coloriza-
tion computations. Since their introduction in 2001 [17], programmable GPUs have
been used to implement a wide range of graphical applications: lighting models [1, 4],
procedural materials [29], geometric detail approximation techniques [13], etc. Also,
GPUs have been successfully deployed in non-shading applications such as skinning,
particle systems, procedural geometry (e.g., water, grass), and image post-processing.
All these techniques are today considered an essential part of GPU programming.

When writing GPU programs, the programmer must typically specify at least
three different programs: one running on the host CPU for interfacing with the ap-
plication, and the vertex and pixel shaders, for doing calculations on the GPU. The
vertex shader executes early in the pipeline and is responsible for computing geomet-
ric data such as position, normals, and texture coordinates. The pixel shader then uses
the interpolated geometric data to compute the final pixel color. This separation stems
from the structure of the graphics pipeline and it gives the programmer great control
over both visual quality and performance. However, it also makes GPU programming
needlessly complex since the programmer must focus not only on implementing the
algorithm correctly, but also distributing the computations across the vertex and pixel
processing units. Furthermore, explicitly splitting what is essentially a single opera-
tion (that of transforming and shading a mesh) makes modification, e.g. by changing
from per-vertex normals to normal maps, more difficult.

In this paper, we show that GPUs can be programmed in a unified manner, al-
lowing both CPU, vertex and pixel computations to be specified in a single program.
Using this unified approach, GPU programs to be implemented more directly, result-
ing in programs that are easier to maintain and manipulate. In our approach we stay
close to the capabilities of existing hardware in the sense that we require the same de-
gree of control over performance and visual quality as in current GPU languages. In
our approach, we are thereby able to extend previous attempts at unified shading [26]
to handle general GPU programs including:

52



2. RELATED WORK

• arbitrary vertex computations such as geometry deformations, tangent frame
computations, and shadow volume extrusion,

• branches and conditionals in GPU programs,

• vertex texture fetches,

• multiple outputs at different computational frequencies,

• fine-grained type system necessary to support correct interpolation of unit vec-
tors,

• external control of the how the unified program is distributed across the vertex
and pixel processing stages of the GPU,

By supporting general, arbitrary GPU programs we enable a large number of complex
effects to be implemented, such as, sub-surface scattering [3], model skinning [14],
procedural materials [8], ray-marching algorithms [16], particle systems [15], or LOD-
branching [28].

Furthermore, being able to externally control how a program is distributed across
the GPU enables fine-grained control of the performance characteristics of that pro-
gram. More importantly, this control is achieved without requiring any source code
modifications. It makes it possible to, for example, shift computations to the ver-
tex unit which can result in performance gains. We present a dependency analysis
algorithm capable of automatically splitting unified GPU programs across the CPU
and GPU. This algorithm identifies operations which can be computed by either the
vertex or pixel processing units. By default such operations are performed per-pixel
but this can be controlled via the external interface. We demonstrate how this type of
control can be integrated with the artist’s tool chain or in an offline analysis tool.

The rest of the paper is organized as follows: in Section 2 we give an overview of
related work. Section 3 introduce unified GPU programming in more detail. Sec-
tion 4 present the splitting algorithms and discusses GPU operation scheduling. Sec-
tion 5 discusses integration of the external control mechanism and finally, Section 6
summarizes the contributions of this paper and discusses future work.

2 Related work

The first GPU generations were programmed using assembler languages but today,
specialized high-level GPU languages, such as Cg [18], HLSL [9], or the OpenGL
Shading language [27], are typically used. These languages provide a C-like syntax
with constructs and data-types tailored specifically for the GPU. Also, there exist some
embedded languages for GPU programming, most notably Sh [19] and Vertigo [6].
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A number of works have focused on compiling Renderman, or Renderman-like,
surface shaders for real-time graphics hardware. Olano and Lastra [22] compile
shaders written in a Renderman-like language to the Pixelflow platform [20]. Peercy
et al. [23] compile surface shaders into a series of OpenGL rendering passes, which
are combined using framebuffer blending. In the Stanford real-time shading lan-
guage (RTSL) project [26] the problem of compiling Renderman-like surface shaders
to modern programmable graphics hardware was addressed. They combined data-
dependence analysis with optional user-annotations to split shaders into parts execut-
ing at different computational frequencies (constant, model, vertex, and pixel) where
the vertex and pixel frequencies map to the vertex and pixel processing units of the
GPU.

Olano et al. [21] introduced a technique for reducing and simplifying memory
accesses in GPU programs, a key performance-limiting factor in real-time shader pro-
gramming. The approach used is to pre-compute parts of a shader program, using
textures to cache the results. This inspired Pellacini [24] to create a method for the
automatic simplification of arbitrary shader program computations. He present a
technique based on transforming an abstract syntax representation of the shader to
reduce the amount of computations necessary. The resulting reduced shaders are then
analyzed using a Monte Carlo sampling scheme, to evaluate the visual error of a reduc-
tion. The approach of Pellacini is widely applicable to per-pixel shading, including
off-line rendering systems, but does not address splitting computations across vertex
and pixel shading units.

Another shader error estimation scheme was proposed by Heidrich et al. [11]
who employed affine arithmetic to guarantee error bounds when sampling procedural
shaders. This enables a compiler to do optimizations based on error bounds anal-
ysis, resulting in faster shading computations without affecting visual quality. This
approach is, however, better suited for off-line rendering where the rendering time
typically out-weighs the time spent analyzing and specializing shaders.

3 Unified GPU programming

When implementing an algorithm in a GPU program the programmer must typi-
cally write three distinct programs. One that executes per-vertex to compute vertex
clip-space positions and other geometric information that is interpolated across the
primitive. One program executing per-pixel, using the interpolated output of the
vertex program to compute the final pixel color. Finally, a CPU program is required
to do parameter passing, data loading, user interaction, etc. This division gives the
programmer great flexibility, and allows algorithms to be implemented efficiently by
using a combination of CPU pre-computations and GPU code. It also enables al-
gorithms to be tailored to meet specific demands for performance and visual quality.
For example, a shading algorithm such as Blinn-Phong can be computed entirely per-
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pixel, giving high visual quality, or per-vertex, typically giving higher performance
at the expense of visual quality. Another variant is a to compute the diffuse term
per-vertex and the specular term per-pixel. This approach gives better performance
without sacrificing visual quality by computing slowly changing lighting components
at a lower computational frequency.

Today, these types of trade-offs are expressed explicitly in the source code by forc-
ing the programmer to write separate programs for each programmable step in the
pipeline. This implies that a given GPU program is expressed as a combination of
intimate knowledge of the target hardware and the application-specific performance
and visual quality demands. So depending on whether a particular algorithm is to be
applied on a finely or coarsely tesselated mesh, it can be implemented differently. On
a finely tesselated mesh one can use more vertex computations since the relative error
when interpolating across the primitives will be small. When used on coarser meshes
a greater degree of pixel computations are required to avoid shading artifacts. Also,
since such considerations are represented explicitly in the code, adapting or reusing
such a shader becomes a needlessly complex and time-consuming task.

We argue that information regarding how a program should be distributed across
the processing stages of GPU should not be explicit in the program itself. Instead
it should be supplied via an external mechanism, enabling this distribution to be
controlled without rewriting the original program source code. In this paper, we
show how a GPU program can be automatically distributed across the vertex and
pixel processing units while retaining numerical precision. Operations which can be
computed in either the vertex or pixel processing stage are initially assigned to the pixel
stage, to achieve maximal numerical precision, but can be moved to the vertex unit via
an external interface. This reduces the number of explicit assumptions expressed in
the program source code, making it easier to reuse that program in another application
or on another hardware platform. Also, by allowing external modification, GPU
programs can be quickly adapted to a particular usage scenario (such as modifying a
lighting algorithm to use vertex instead of pixel computations to gain performance at
the expense of visual quality). This type of control can be integrated in an artist’s tool,
for example, and reduces the burden on the programmer, leaving him or her free to
focus on producing high-quality algorithms instead of tweaking low-level details.

3.1 A unified shader language

In a unified GPU program, or a unified shader1, shading computations from different
computational frequencies are written as a single program. A compiler analyzes this
program and automatically factorizes it across the CPU and vertex/pixel processing
units of the GPU. In this paper we use a prototype GLSL-like language implemented

1Not to be confused with a unified shading core which is a hardware unit that can act both as a vertex
and as a pixel shading unit.
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as an embedded language [12] in Python. This approach enables rapid experimenting
with language features without the need for implementing a whole compiler suite
(parser, front-end, back-end, etc.) from scratch. The method presented here is not
limited to this case, however. The algorithms described below operate at the level of
data-dependencies and code blocks, and is stable across different language front-ends.

As in GLSL, GPU programs declare their input parameters together with where
these parameters appear; attribute for vertex-data such as position and normals, and
uniform for model-data such as textures and transformation matrices. Also, the full
range of GLSL built-in parameters are provided: gl ModelViewProjectionMatrix, gl Vertex,
gl Normal, and so on (see Rost [27]). The shader defines a function main that com-
putes the color and the final clip-space position which are written to the dedicated
variables gl Position and gl FragColor, respectively. For an example of a unified shader,
see Listing 1 (page 65). This shader implements animated water using the approach of
Finch [7], by combining Gerstner waves, and bump-mapped normal perturbations.

4 GPU program factorization

Given a unified GPU program we must split it across the vertex and pixel processing
units of the GPU. This problem was first addressed in a restricted form in the Real-
Time Shading Language (RTSL) [26]. That approach was to infer the computational
frequency of each operation using data-dependency analysis, where frequency infor-
mation is propagated forward in the data-flow graph. The inferred frequency is then
used to assign the operation to either the CPU, or the vertex and pixel processing
stages of the GPU.

In RTSL, the lowest frequency at which it is possible to perform an operation is
used. So, if the possible frequencies are (ordered from lowest to highest) constant,
model , vertex, and pixel , then the frequency of an operation f with arguments x1, x2,

. . . xn is given by the formula

F
(

f (x1, x2, . . . , xn)
)

= max
i=1,...,n

F (xi)

This implies that in RTSL the specular term in Blinn-Phong, dot(H , N ), for example,
is computed per-vertex if H and N are supplied per-vertex. Had N been computed
per-pixel, the scalar-product would be computed per-pixel also.

The forward propagation approach works well when restricted to the branch-free
light and surface shaders supported by RTSL. However, when generalizing to arbitrary
GPU programs with conditionals the algorithm will fail since it does not properly take
into account the relative frequencies of the conditional expression and the operations
of conditional block (see Section 4.1 below). Furthermore, it is not conservative and
will sometimes yield numerically incorrect results. Consider the specular term in the
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Blinn-Phong shading equation:

specular ← dot(H , N ).

Computing this term per-vertex or per-pixel will give very different results. The rea-
son for this is that the scalar product does not vary linearly across the primitive. RTSL
solves this by forcing the programmer to explicitly state that the above operation
should be computed per-pixel in this case.

We solve both these problems by using a bi-directional frequency-inference algo-
rithm instead. By analyzing the later uses of specular we can infer whether it should be
computed per-vertex or per-pixel. By using such bi-directional propagation we find
that the possible frequency range FR of an operation f with arguments x1, . . . , xn and
which is used by (i.e. has parents in the data-dependence graph) p1, . . . , pm is given
by

FR
(

f
)

=
[

max
i
{min FR(xi)}, min

j
{max FR(pj)}

]

This implies that operations whose values will ultimately be used at the vertex fre-
quency (such as vertex deformations, tangent-space computations) must be computed
at or below the vertex frequency. Operations which are used to compute pixel data are
computed at or below the pixel frequency. Using this formula we can quickly infer
the possible frequency range of each operation in the shader.

Our implementation work on a intermediate static single assignment (SSA) rep-
resentation [5], and if we disregard loops and conditionals for a moment, it proceeds
as follows: start at the input nodes (the attributes, uniform, and texture parameters
of the shader program) and propagate the minimum of frequency range forward in
the dependency graph. This step is similar to that of RTSL. Then, start at the output
nodes (pixel color and vertex position) and propagate the maximum frequency range
backwards in the dependency graph. This will correctly determine the frequency
range of each operation in the program. However, this naive approach will fail if the
program contains more than one basic block i.e. if it contains loops or conditionals.

4.1 Handling loops and conditionals

If the program contains a conditional, for example, the above algorithm will not
be conservative, meaning that the conditional block might not evaluated at the same
frequency as the conditional expression. Consider using alpha-masking to render parts
of a diffuse object (typically used to render a chain-link fence or similar structure):

alpha = tex2D(maskTex, uv).a
if alpha > threshold:

gl FragColor = dot(N,L)∗diffuseColor
else:

discard()
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Here the naive algorithm may find that the right hand side in the gl FragColor as-
signment can be computed either per-vertex or per-pixel. However, the conditional
expression must be evaluated per-pixel since it involves a texture look-up which by
default are only allowed per-pixel. Hence, the entire conditional must be evaluated
per-pixel in this case. Similarly, if the conditional expression may be evaluated either
per-vertex or per-pixel, and the conditional block must be evaluated per-pixel, then
the entire conditional must be evaluated per-pixel also.

Our algorithm handles this case by propagating the frequency range of the condi-
tional expression e into the conditional block and vice versa. The resulting frequency
range of the entire conditional c is given by

FR(c) = FR(e) ∩
(

⋂

i

FR(opi)
)

,

where opi are the operations of the conditional block. Similarly, for loops the fre-
quency range of the loop iteration variable is propagated into the loop block, and the
frequency range of the entire loop block is propagated to the loop iteration variable.
This implies that a conditional or loop must be scheduled as a unit whose frequency
range depends both on the frequency ranges of the conditional expression or loop
iteration, and the operations making out the conditional or loop block.

4.2 Operation scheduling

Once the frequency range of all operations is known the operations are either pre-
computed (for operations with constant frequency) or assigned to either the CPU or
GPU. Model frequency operations are assigned to the CPU, and vertex and pixel fre-
quency operations to the vertex and pixel processing units on the GPU. The operation
scheduling algorithm is conservative and will, by default, only assign a computation
to a frequency which does not introduce numerical errors. So if an operation can be
performed at either the vertex or pixel frequency, it is assigned the vertex processing
unit only if doing so will not introduce numerical errors. Otherwise it is assigned to
the pixel processing unit. This approach correctly handles the above example of the
specular term.

Some shaders can be uniquely factored across the processing units of the GPU.
For all such shader programs, the unified shader can be directly translated to effi-
cient, native GPU code. In such cases the unified shader approach lets programmers
write shaders without explicitly splitting them, allowing simpler implementation and
debugging. However, most algorithms can, wholly or in part, be computed either per-
pixel or per-vertex. This is indicated by it containing operations that have a frequency
range of [vertex, pixel]. We call such operations approximation sites since they repre-
sent computations which can be performed per-pixel, or approximated by computing
them per-vertex and interpolating linearly.
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Typically, a shader have one or more approximation sites, depending on its type
and complexity. For example, a relatively simple shader such as Blinn-Phong can
contain as many as 11 approximation sites. Deducing which approximation sites we
can compute per-vertex will result in a very large search space (at worst 112 different
combinations) if we use a naive selection method, whether it is based on user-input
or more computationally oriented methods such as Monte Carlo sampling. Thus,
to effectively test for suitable approximations of a shader we must use pruning. To
do this we use a collection of rules which will conservatively reduce the search space.
These rules match the strategies used by shader programmers when writing shaders by
hand, hence showing that it is possible to automate and formalize much of this type
of domain-specific optimization knowledge.

Linear operations Operation which depends linearly on their arguments are ex-
cluded from the set of possible approximation sites. Linear operations are invariant
under linear interpolation so if we, for example, have the operation y← 2× x where
x is computed per-vertex. Then, we may compute y per-vertex as well since, under
linear interpolation by the operator I we have

I (y) = I (2× x) = 2× I (x)

Consequently, an operation which depend linearly will always be computed at the
same frequency as its arguments and, hence, it is excluded from the set of approxima-
tion sites. Note however, that an operation such as

z ← dot(x, y)

may or may not be linear depending on the frequency of x and y. If x and y are
computed per-vertex, then z is not linear since

I (z) = I (dot(x, y)) 6= dot(I (x), I (y)).

Hence, such an operation should be assigned to the pixel-frequency by default. Also, it
should not be pruned from the set of approximation sites. However, if x is computed
per-vertex and y per-model, then we have I (z) = I (dot(x, y)) = dot(I (x), I (y)) =

dot(I (x), y) since y does not vary across primitives. Consequently, in this case z can be
computed per-vertex without introducing numerical errors.

Normalization operations Unit length vectors that are computed per-vertex and
used per-pixel also require special attention. To correctly interpolate unit vectors
across a primitive, two methods must be used. For unit vectors such as normals, tan-
gents, bi-normals, etc., the vector is first computed and normalized per-vertex. Then,
after interpolation, the result is normalized again to account for the fact that linear
interpolation does not preserve lengths. However, direction vectors such as light and

59



4. GPU PROGRAM FACTORIZATION

viewer directions in Blinn-Phong should not be normalized per-vertex! Normalization
should only be done after interpolation, in the pixel processor. This is necessary, for
example, to ensure that the correct weighting is obtained for light sources which vary
rapidly across the face of a primitive. Normalization operations are excluded from the
set of approximation sites.

Automatic handling of vector normalization can not be achieved using only the
structural data types (such as float tuples) provided by current GPU languages. In-
stead, it is necessary to have distinct types for different vector quantities. In our type
system we distinguish between points, vectors, unit vectors, and directions.

User-defined rules Our system also allows the user to specify user-defined rules re-
garding how frequencies should be assigned. These rules state whether, for a particular
function (or overloaded version of a function), the algorithm should prefer placing it
at the vertex or pixel processor. Also, it is possible to indicate whether the function
should be included or excluded from the set of approximation sites. An example of
such a user-defined rule is

clamp.canBeApproximated = False
clamp.prefer = PIXEL

that instructs the compiler to exclude applications of the function clamp from the set
of approximation sites. Also, this function should, if possible, be computed in the
pixel processor since it is not length-preserving and will, if computed per-vertex, give
incorrect weighting across a primitive.

4.3 Shader examples

Table 1 lists a few example shaders together with the number of approximations sites
before and after pruning. These examples span a number of commonly used shader
techniques such as normal mapping, bump-mapping, environment mapping, and ver-
tex deformations. In all these examples, texture accesses are restricted to only being
allowed at per-pixel. This is the default behavior of our compiler, but it can be over-
ridden on a per-texture or global basis, to allow vertex texture accesses, for instance.

Analyzing the results we see that shaders which depend on texture look-ups gener-
ally have fewer approximations sites than shaders relying on vertex data. For instance,
variant I of the Blinn-Phong algorithm uses vertex normals and has 5 approximations
sites. Variant II uses a normal map and has only a single approximation site represent-
ing the computation of the half-vector. The reason for this is that variant II must read
the normal at the pixel level and, consequently, cannot perform lighting computations
relying on the value of the normal at a lower level. The same holds for variant III.
The shadow volume extrusion algorithm is a vertex-only algorithm and consequently
has no approximation sites. Similarly, the ray-marching volume renderer does most
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220 fps 600 fps

450 fps 1000 fps

1300 fps 1800 fps

2100 fps 2200 fps

Figure 1: Sphere rendered using simulated glass at successively higher distances (top

to bottom). The rendered results are scaled for easy comparison. The original on-
screen coverage varies between 1.2M pixels and 1.2k pixels. The left column shows
performance and visual results of using full pixel computations, whereas the right

column uses vertex computations to the greatest extent possible. Using more ver-
tex computations at medium distances can result in dramatic performance gains at a
relatively small loss in visual quality. At extreme ranges the number of vertices ap-

proach the number of projected on-screen pixels making the two methods equally
efficient. External control over where computations are performed enables such per-
formance/visual quality “sweet spots” to be found quickly.
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Shader
approx.

sites
vertex
instr.

pixel
instr.

Blinn-Phong I 5 (11) 7–16 17–1
Blinn-Phong II 1 (3) 7-15 13–9
Blinn-Phong III 1 (4) 11–21 20–14
Shadow volume extr. 0 (0) 13 1
Volume ray marching 0 (2) 14 12
Refraction 4 (8) 17–34 22–4
Parallax mapping 1 (5) 16–28 22–13
Parallax mapping (LOD) 1 (5) 18–30 24–15
Animated water 9 (41) 24–43 77–59

Table 1: Example GPU programs together with the number of approximation sites

and number of instructions in the resulting GPU vertex and pixel programs: three
variants of Blinn-Phong shading using (I) per-vertex normals, (II) a model-space nor-
mal map, and (III) tangent-space normal perturbation using a bump map, respec-

tively, GPU shadow volume extrusion, volume rendering using ray marching through
a volume texture, simulated refraction using an environment map, parallax mapping
(with and without LOD), and the water effect of Listing 1. The number of approxi-

mation sites before pruning are show in parenthesis.

of its work in the pixel stage marching through the volume texture. The vertex unit is
used to compute clip-space positions and ray directions.

The refraction shader uses an environment map and simulated refraction and
Fresnel terms to give a glass-like effect. Here, the whole or parts of the Fresnel ap-
proximation can be moved to the vertex shader. Parallax mapping simulates fine-scale
surface features using a height-map to compute an offset in texture-space [13]. The
LOD variant uses viewer distance to determine whether to apply parallax mapping or
use simple texturing. The Blinn-Phong half-vector computation is the only approx-
imation site in this case. In the water shader of Listing 1 the tangent and bi-normal
are computed analytically from the wave equations and this can be done in either the
vertex or pixel processing unit. The visual and performance difference of running the
animated water and simulated refraction shaders using different distributions across
the vertex and pixel processors are shown in Figures 1 and 2.

One important aspect to note is that the dependency analysis does not introduce
any extra operations in the resulting shaders (apart from vector re-normalizations re-
quired for correct interpolation). In effect, the algorithm only chooses which values
of a shader should be interpolated and passed to the pixel processing unit. Conse-
quently performance of unified shaders is the same as that of handwritten shaders
which have not been optimized using techniques outside the scope of this work, for
example, lower precision data types, data-packing or texture function caching. The
programmer maintains the same degree of performance control as in separate shader
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100 fps 135 fps

Figure 2: Simulated water using Gerstner waves. The left variant uses exact per-pixel
computations whereas the right uses the maximal amount of vertex computations,

as inferred by our compiler. The visual effect of using the more correct, pixel-exact,
variant can be seen clearly. Performance figures indicate the performance impact of
using the more exact variant.

programming models of Cg/HLSL/GLSL.

5 Controlling approximations

Choosing which approximations should be applied to a particular shader is highly
application and context dependent. For instance, moving the computation of the
half-vector in Blinn-Phong shading from the pixel to the vertex shader is a valid ap-
proximation if both the viewer and light source are relatively far away. If this is not
the case then this approximation will yield clearly visible artifacts. The approximation
sites represent a convenient way of manipulating how parts of a program’s computa-
tions should be distributed across the vertex and pixel processing units of the GPU.

We have implemented a basic artist’s tool for quickly exploring the visual and
performance impact of a given set of approximations. The tool lets the programmer
or artist apply a unified GPU program to a model. The artist can then manipulate
the shading algorithm by moving approximation sites between the vertex and pixel
shader and getting direct visual feedback in a preview window. Additionally, numeri-
cal information such as peak signal-to-noise ratio, and max, average, and median pixel
error, compared to the most accurate shader variant can optionally be displayed. This
allows a shader to quickly be adapted to a particular mesh or application. The result
of using this tool to generate shaders for discrete levels of detail (LODs) can be seen
in Figure 1.

Using an algorithmic selection approach instead is another approach. With the
pruned set of approximation sites, the Monte Carlo approach of Pellacini [24] or the
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affine arithmetic approach of Heidrich et al. [11] can be used to select approximation
sites with minimal visual impact. Note however, both these approaches are sensitive to
the conditions of a particular application. For example, variable such as the distances
of the observer and light sources can greatly affect the final visual result. Consequently,
giving error bounds of the resulting shader is difficult without tight bounds on input
parameters. This is therefore an area of research which is separate to our work. It is
however complementary in the sense that different algorithms can easily be plugged
in to our system.

6 Summary and discussion

We have shown that it is possible to write arbitrary GPU programs in a unified man-
ner, without explicitly separating vertex and pixel computations. This includes sup-
port for current GPU features such as loops, conditionals, vertex texture fetches, etc.
Our algorithm factors unified programs into vertex and pixel programs running on
the GPU. By construction, the run-time performance of unified GPU programs is
equal to that of programs written by hand using current high-level GPU languages.
Unified shaders which only use vertex or pixel computations are automatically han-
dled. For algorithms which require both vertex and pixel computations, the algorithm
identifies computations that can be approximated by moving them from the pixel to
the vertex processing stage. These approximation sites can be used by an artist to
adapt and optimize a shader for a particular mesh or a particular set of application
demands such as performance or hardware limitations.

Unified GPU programming enables truly high-level programming of the GPU
where implementation details such as interpolation methods, vertex/pixel unit alloca-
tion, and CPU pre-computations are automatically handled by the compiler. This has
several advantages. For example, modifying a shader to use a normal map instead of
vertex normals is typically a two line change, whereas the same change using current
GPU languages involves rewriting major parts of the vertex and pixel programs. Fur-
thermore, since current restrictions and performance characteristics of the rendering
pipeline are not explicitly encoded, the unified approach should be stable with respect
to future architectural changes in the GPU.

An interesting future research direction is investigating how the unified GPU pro-
gramming approach may be combined with the recently introduced geometry shading
units [2]. Other interesting research areas, such as automatically compiling unified
shaders to handle non-standard rendering techniques, image post-processing, or gen-
eral purpose GPU computations, merits further investigation. Also, since our al-
gorithm does not split loops or conditionals (see Section 4.2), adapting common
compiler loop analysis techniques (such as dependency matrices) to GPU program
frequency analysis is an area for future work.
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1 uniform(environment, samplerCUBE)
2 uniform(bumpmap, sampler2D)
3 uniform(t, Float) # time
4 uniform(cameraPos, Point) # camera in model space
5 uniform(lightPos, Point) # light position in model space
6 uniform(deepColor, RGB, rgb(0,0,0.1))
7 uniform(shallowColor, RGB, rgb(0,0.5,0.5))
8 uniform(sunColor, RGB, rgb(1.0,0.5,0))
9

10 r0 = 0.02
11 ri = 1.0/1.33
12 waves = [(0.1, 3, 0.2, (0, −1)), (0.3, 1, 0.3, (−0.7, 0.7))]
13 bumpScales = [3,4]
14

15 # Helper functions
16 def gerstnerWave(A, Dx, Dz, f, p, k): # −> (dy, dydx, dydz)
17 ...
18

19 def rescale(vec): return (vec − 0.5)∗2.0
20

21 def main():
22 x,z = gl Vertex.xz
23 y, dydx, dydz = 0, 0, 0
24 for f,A,p,(dx, dz) in waves:
25 y, dydx, dydz += gerstnerWave(A, dx, dz, f, p, 2)
26 pos = point(x,y,z)
27 uv = gl MultiTexCoord0.xy
28 V = dir(cameraPos−pos)
29 L = dir(lightPos − pos)
30 N = normalize(vector(−dydx, 1, −dydz))
31 T = normalize(vector(1, dydx, 0))
32 B = normalize(vector(0, dydx, 1))
33 for n in bumpScales:
34 offset = rescale(tex2D(bumpmap, (2∗∗n)∗uv).xyz)∗∗(3−n)
35 N += offset[0]∗T + offset[1]∗N + offset[2]∗B
36 N = normalize(N)
37 R = reflect(N, V)
38 facing = 1−max(dot(V, N), 0)
39 fresnel = r0 + (1−r0)∗pow(1−dot(V,N), 5)
40 refl = texCUBE(environment, R)
41 refr = texCUBE(environment, −refract(N, V, ri))
42 specular = max(pow(dot(R,L), 100), 1)
43

44 gl Position = gl ModelViewProjectionMatrix∗pos
45 gl FragColor = lerp(deepColor, shallowColor, facing) + \
46 lerp(refr.rgb, refl.rgb, fresnel) + \
47 sunColor∗specular

Listing 1: A single water shader program combining vertex deformations using Ger-
stner waves with per-pixel normal-perturbation using bump-mapping
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ABSTRACT

Modern GPUs require separate programs to be written for the three different

stages of the rasterization pipeline. This gives the programmer a high degree of
control of the computations, but since the three programs are highly dependent
on each other they are fragile and not easily changed or reused. In this paper

we present a real-time shading language and compiler which allow the program-
mer to write geometry generation code and surface shading code in separate and
composable modules. In neither of the two modules does the programmer spec-

ify a split between stages. This allocation is instead inferred and optimized by
the compiler. For fine-tuning, an external interface makes it possible to tweak
performance and visual quality through, for example, an interactive artist’s tool.

In experiments, the performance of our approach is equal to that of using hand-
written optimized shaders.
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1. INTRODUCTION

1 Introduction

Programmable real-time graphics processing units (GPUs) have evolved tremendously
since their introduction in 2001 [9]. Performance has increased by several orders of
magnitude and the level of programmatic control advanced from only allowing simple
shaders consisting of a few assembly instructions, to complex programs spanning hun-
dreds of lines of high-level code. Furthermore, the original rasterization pipeline has
been extended to support procedural geometry construction and manipulation [3].

A modern GPU consists of three programmable stages and to implement a shader,
the programmer must write up to three separate programs that each implements a part
of the shader. This gives great control over the GPU and enables a large number of
complex effects to be implemented and combined.

However, these GPU programs are highly dependent on each other and typically
contain code related to both geometry processing and shading. This makes GPU
programs very fragile since changing one program (for example, by changing from
per-vertex normals to normals maps) typically requires rewriting the other programs
as well. Also, since geometry processing and shading are entangled, reusing GPU
programs is difficult. This quickly leads to applications containing very many shaders
that are only small variations of each other. This needless repetition is a problem in
today’s graphics applications [12, 2].

To handle this complexity, several approaches have been proposed [1, 11, 12].
By allowing shaders to be composed from existing shader fragments, they can be
constructed and managed in a more modular fashion. As demonstrated by McGuire et
al. [12], this makes developing shaders faster and easier, even to the point of allowing
non-programmers to construct new shaders. However, these approaches are restricted
to programming single stages in isolation, requiring the programmer to explicitly split
the computations across the GPU. Also, none of these approaches supports procedural
geometry construction.

In this paper we present a first step towards applying the modular approach to
the full modern GPU pipeline. By extending the work on unified shaders [14, 7], we
present a real-time shading language and compiler that separates geometry generation
from surface shading. Both the geometry generator and surface shader are written as
single programs with no explicit separation into GPU processing stages. Our compiler
then combines a generator with a surface shader to efficient GPU programs. The main
contributions made in this paper are:

• a compiler that enables modular programming of the modern GPU pipeline by
allowing geometry generation to be separated from shading.

• an optimization algorithm that can optimize a combined geometry generator
and surface shader across all stages of the GPU pipeline.

Furthermore, our code generation can be fine-tuned to control the exact performance
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Figure 1: An overview of the pipeline of a modern GPU. White boxes represent the

user-programmable stages and grey boxes represent fixed functionality.

and visual quality of the generated GPU code. This enables the programmer to use
knowledge of the target application or hardware platform to optimize shaders just as
when writing GPU programs by hand. We demonstrate how this ability can be used
efficiently through a graphical user interface. In experiments, the GPU programs
generated by our compiler are shown to be as efficient as hand-written code.

This paper is organized as follows; In Section 2 we give an introduction to modern
GPU programming and previous work. In Section 3 we introduce our approach and
in Section 4 we describe our analysis algorithm. In Section 5 we describe a number
of examples with associated performance figures. Last, in Section 6 we conclude our
paper with a discussion and some future work.

2 GPU programming

The current programming model for the GPU, exposed by programming interface
such as OpenGL [16] and DirectX [3], closely reflects the actual hardware structure
of the rasterization pipeline. Input vertex data is processed by the vertex shader after
which it is combined into primitives that are passed to geometry shader. This stage uses
the input primitive to output zero or more output primitives which are then clipped,
rasterized, and finally passed to the pixel shader that computes the final per-pixel color.
For a schematic overview of the rasterization pipeline see Figure 1.

A programmer controls this pipeline by writing programs that execute at the
different programmable pipeline stages. These programs are written in either as-
sembly languages, or more commonly, in dedicated C-like shading languages (e.g.
GLSL [15], Cg [10], or HLSL [5]) that provide specialized data-types and operations
that can be translated to efficient GPU code.

To simplify the construction of complex GPU shaders two major approaches have
been proposed. The unified approach [14, 7] allows shaders to be written as sin-
gle programs (just as in off-line systems such as RenderMan [6]), without explicitly
splitting them across the programmable stages of the GPU. Instead, that is handled
automatically by the compiler. The unified programming model simplifies shader
programming and reduces fragility since the programmer need not explicitly move
parts of a shader between the processing stages of the GPU, for example. However,
support for modular development is limited to simple, procedural functions. Also,
support for modern GPU features such as the geometry processing unit is lacking.

The second approach is a “building block” model [1] of programming, where
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existing shader fragments are combined to construct new shaders. This encourages
modular development and facilitates rapid construction and evaluation of shaders.
For example, the shader algebra of McCool et al. [11] lets shaders be constructed using
template meta-programming in C++. The abstract shade trees [12] allow designers to
easily create effects by connecting primitives such as cube mapping and modulation
using a GUI tool. However, both these approaches are limited to constructing shaders
for a single pipeline stage and does not perform any analysis to exploit that parts of a
shader can be moved to an earlier pipeline stage. This is an important optimization
that can, for example, reduce computational pressure on the pixel processing unit
significantly. Furthermore, none of these approaches support geometry shaders.

3 Modular unified GPU programming

The development model provided by the building block approach makes develop-
ing shaders faster and easier. However, the technique is restricted to programming
only single pipeline stages in isolation. This makes it difficult to extend to handle
the GPU’s ability to dynamically construct and manipulate geometry (where simulta-
neous control over multiple stages is required). The unified programming approach
allows flexible programming of multiple stages, but the support for modular develop-
ment is limited.

We argue that the benefits of both methods can be combined by separating the
responsibilities of the GPU into two distinct areas: geometry generation and surface
shading. These areas can then be programmed separately, allowing GPU shaders to
be constructed by combining different geometry processing algorithms with different
shading algorithms. Both the geometry generators and surface shaders are specified
as single programs, with no explicit separation into different pipeline stages. Then,
using inter-stage optimization, the resulting GPU programs can be made very effi-
cient. Furthermore, by allowing the user to interactively guide the code generator,
performance equal to that of hand-written shaders is achieved.

In this paper we present a compiler and shading language that implements this
modular unified GPU programming model. Our system lets the programmer write
separate geometry generators and surface shaders that can be combined to form effi-
cient GPU shader programs.

3.1 An embedded GPU language

We have implemented our shader programming approach as a embedded language [4]
in Python, an object-oriented, dynamically typed, language. Using language embed-
ding lets us avoid the added work of implementing a complete language front-end
and enables us to quickly experiment with different features and implementation ap-
proaches.
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uniform(Float, phi)
uniform(Float, width)
varying(UnitVector, ViewSpace, viewN)
varying(Point, ViewSpace, viewPos)

def geometry():
Ps = gl ModelViewMatrix∗gl PositionIn
Ns = normalize(gl NormalMatrix∗gl NormalIn)
T = direction(Ps[1] − Ps[0])
Bs = cross(T, Ns)
offsets = width∗(cos(phi)∗Bs + sin(phi)∗Ns)
for i in xrange(2):

viewPos, viewN = Ps[i] − offsets[i], Ns[i]
gl Position = gl ProjectionMatrix∗viewPos
EmitVertex()

viewPos, viewN = Ps[i] + offsets[i], Ns[i]
gl Position = gl ProjectionMatrix∗viewPos
EmitVertex()

Listing 1: A geometry generator that uses a line with additional normal information

to construct a ribbon. The twist of the ribbon can be controlled by the phi parameter.
This can be combined with a surface shader to obtain a full GPU shader.

The shading language is based on GLSL [15] but provides a richer type system.
The compiler uses forward type inference to track and infer the types of expressions
in the shader. We use a type system similar to the semantic types of McGuire et al. [12]
that enables the compiler to also track the space and intended usage of a vector quan-
tity. Semantic types encode that, for example, a vector is expressed in model space and
that it is used to encode a direction. This information can then be used to improve
error detection (e.g. by catching inconsistent space usage) and to correctly interpolate
vector data.

Geometry generators are written just as geometry shader programs where no com-
putations have been performed in the vertex program; they accept input primitives
expressed in model space and outputs zero or more primitives (possibly of another
type) in clip space. These primitives can be either points, lines, or triangles, and
may optionally contain adjacency information (adjacent line segments, or triangles
that share edges with the input triangle). The input data is provided in the arrays
gl PositionIn, gl NormalIn, etc., named like their GLSL counterparts. Output data that
should be interpolated across the output primitives are declared varying. User-defined
varying data and the clip-space position must be written for each output vertex before
it is emitted. Parameters that do not vary across the mesh, such as light positions or
textures, are declared uniform.

Shaders are written like GLSL pixel shader programs; they accept varying data
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uniform(Point, ViewSpace, lightPos)
varying(UnitVector, ViewSpace, viewN)
varying(Point, ViewSpace, viewPos)

def surface():
L = direction(lightPos − viewPos)
V = direction(−viewPos);
H = direction(L+V)
diffuse = clamp(dot(viewN, L), 0.0, 1.0)
specular = clamp(pow(dot(viewN, H), 32.0), 0.0, 1.0)
gl FragColor = diffuse∗rgb(1,0,0) + specular∗rgb(1,1,1)

Listing 2: A Blinn-Phong surface shader implemented in our language. This shader

accepts surface positions and normal in view space and computes the incident light
in each pixel. The final pixel color is, just as in GLSL, written to the dedicated
gl FragColor output variable.

provided by the geometry generator and, together with uniform information, com-
putes the final per-pixel color that is written to the dedicated gl FragColor variable.
The shader can use the varying output data computed by the generator to compute
the per-pixel color of a mesh. To be able to combine a shader with a geometry gen-
erator, the varying data computed by the generator must match the varying inputs
required by the shader. Here, semantic types are used to ensure that varying data is of
the correct type and is expressed in the appropriate space.

For an example of a geometry generator, consider Listing 1. This generator uses
a line strip with additional normal information to construct a twisting ribbon along
that line. This can be used, for example, in a special effects system to dynamically
construct streamers or trailers that follows an object. The generator constructs a local
frame from the direction of the line and the normal. This frame is then used to
construct a triangle strip representing the tessellated ribbon. To animate the ribbon,
we twist it around itself by the angle phi. This generator computes the view space
position and normal for each vertex (declared as varying) which can be used by the
surface shader to compute the final per-pixel color. An example Blinn-Phong surface
shader is shown Listing 2. The result of combining the ribbon generator with the
Blinn-Phong surface shader is shown in Figure 2.

To allow transformations to be applied in parallel to several objects, our language
provides array programming facilities [13]. This enables, for example, in the rib-
bon generator above, both input vertices of the line segment to be transformed to
view space in a single line. Similarly, the normals, and offset vectors are computed
using array operations. Also, just as the host language Python, our embedded lan-
guage supports parallel assignment (e.g. a,b = b,a). Together, these features provide a
convenient and concise syntax. Using these features incurs no extra overhead in the
resulting GPU programs, as all such operations are inlined by the compiler.
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4 Operation scheduling and analysis

The task of the compiler is to analyze the combination of a geometry generator and a
surface shader to determine at which GPU processing stage each operation should be
scheduled. This should done in a way that gives the best performance possible without
introducing numerical errors. In general, it is more efficient to do computations
earlier in the rendering pipeline. This heuristic is based on the fact that the number of
on-screen pixels usually far greater that the number of vertices created by the geometry
shader. Similarly, for geometry shaders, using the vertex shader is typically more
efficient since vertices are often shared between multiple primitives. Also the vertex
shader can be more efficiently executed in parallel [3].

This means that for surface shaders, operations should, if possible, be scheduled to
the geometry or vertex program. To achieve this, each term is analysed to determine if
it varies linearly over primitives, i.e. if it can be computed per-vertex and then linearly
interpolated without loss of precision. If it does then it can be computed per-vertex,
otherwise it must be computed in the pixel program [7]. To achieve correct results
when computing vector data per-vertex, the interpolation method is chosen according
to the semantic type of the vector.

For geometry generators, our compiler first combines the per-vertex part of the
surface shader with the geometry generator. The result is then analyzed to find which
parts may be computed in the vertex shader and which parts must be scheduled to
the geometry shader. To do this our compiler recursively, breadth-first, checks how
each attribute of each vertex of the input primitive is transformed. Terms that are
computed from input attributes in the same way for every input vertex are scheduled
in the vertex program. Terms that are not computed in the same way for all vertices, or
which depend on data from more than one vertex, are put in the geometry program.

For example, consider the following generator fragment that computes the normal
of an input triangle in view space:

p1 = gl ModelViewMatrix∗gl PositionIn[0]
p2 = gl ModelViewMatrix∗gl PositionIn[1]
p3 = gl ModelViewMatrix∗gl PositionIn[2]
N = cross(p3−p1, p2−p1)

Here, the position of each input vertex is transformed to view space. Our algorithm
will start at the computation of p1 and then check the other uses of gl PositionIn. It
will then find that p2 and p3 are computed using the same sequence of operations as
p1. Hence the model to view space transformation can be performed in the vertex
program. The computation of the normal N must be performed in the geometry
program since it depends on data from more than one vertex.
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Figure 2: A graphical user interface for controlling the placement of speculative and

approximative terms of a generator and surface shader pair. Currently, the ribbon
generator combined with the Blinn-phong shader of Listings 1 and 2 is shown. The
left pane shows the speculative and approximative terms that can be manipulated.

The right pane shows a preview of the current generator and surface shader. Informa-
tion about performance and the number of instructions in the vertex, geometry, and
pixel GPU shaders can optionally be displayed.

4.1 Performance optimization

The heuristic above, that operations should be scheduled as early as possible in the
pipeline, works for most examples (see Section 5). However, there are some cases
where it is difficult to statically estimate the performance of a shader. As an example
of such a case, consider this implementation of a back-face culling geometry generator:

p1,p2,p3 = gl ModelViewMatrix∗gl PositionIn
N = cross(p3−p1, p2−p1)
if dot(p1, N) <= 0:

for i in range(3):
gl Position = gl ProjectionMatrix∗vs[i]
EmitVertex()

Here, our algorithm will find that the transformation to view space should be per-
formed per-vertex. Also, it will determine that the projection could be executed in
the vertex program, but since the conditional must be executed in the geometry pro-
gram, so will the projection. In our test scene, the above shader runs at 149 frames
per second (FPS). But, if the projection is speculatively computed in the vertex pro-
gram (even though this value will not be needed for all vertices) it runs at 241 FPS,
an improvement of more than 60 percent.

To be able to handle cases where the heuristic results in sub-optimal performance,
our code generator can be controlled using an external application programming in-
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Performance (frames per second)
Geometry generator Surf. shader Hand-w. Naive Our appr. w/ opt.

Ribbon Blinn-Phong 13.2 11.8 12.0 13.2
Motion blurred PS Texturing 20.0 19.5 20.0 20.0
Marching cubes Blinn-Phong 44.3 29.3 44.3 44.3
Adaptive tessellation Blinn-Phong 15.5 15.5 13.7 15.5
Fin generator Texturing 7.0 5.5 7.0 7.0
Back-face culling Constant color 241 121 149 241

Table 1: Performance results of a number of combinations of geometry generators
and surface shaders. The naive translation executes the entire geometry generator in
the geometry program, and the surface shader in the pixel program. Our approach

uses the optimization algorithm to schedule parts of the shader earlier in the pipeline.
The optimized variant has been optimized using the external control mechanism.
The hand-written variants are manually optimized to provide the maximal overall

performance for the respective test scenes.

terface (API). Using this interface it is possible to move parts of generator between
the vertex and geometry pipeline stages. Also, it allows parts of the surface shader
to be approximated by performing computation per-vertex rather than per-pixel [7].
This typically results in better performance at the expense of visual quality (since a
non-linear function is approximated by a piece-wise linear one).

This kind of fine-grained control enables the programmer to exploit hard-to-
quantify knowledge about the application (such as expected number of branches takes
for a particular mesh, mesh resolution w.r.t. expected viewing distance, etc.) and tar-
get hardware to adapt the shader just as when writing shaders by hand. Using our
approach, this kind of manipulation can be performed quickly, without rewriting any
parts of the shader.

To demonstrate how the external interface can be used to optimize a geometry
generator and surface shader, we have implemented a graphical user interface (GUI)
that lets the scheduling of speculative or approximative terms be controlled. The
visual quality and performance change resulting from moving a term is shown in real-
time allowing a performance/visual quality sweet-spot to be located quickly. The GUI
is shown in Figure 2.

5 Examples

To evaluate our modular programming approach, we have tested our compiler on
a number of different geometry generators and surface shaders. Both generators and
shaders are developed separately. Table 1 shows some combinations on which we have
applied our compiler.
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The ribbon and back-face culling generators are described above (Sections 3.1 and
4.1, respectively). The motion blurred particle system attempts to simulate the streak-
ing effect caused by rapidly moving objects. It uses a geometry generator to construct
one or more transparent daughter particles along the path travelled by the original
particle during the last frame. When blended into the framebuffer, this gives the ap-
pearance of a quickly moving particle. The transparency of each spawned particle is
available as varying input to the surface shader that can use it to draw each particle
with the appropriate alpha value.

The marching cubes generator extracts a iso-surface from a volume data set. The
normal used by the surface shader is constructed from each generated triangle facet.
Note that this generator can not be combined with a texturing shader since it can
not compute meaningful 2d texture coordinates. The adaptive tessellation example
accepts a point input primitives and dynamically creates a sphere with a tessellation
level dependent on the viewer distance. Last, the fin geometry generator constructs
“fins,” used when rendering fur [8], orthogonal to the mesh’s silhouette.

5.1 Performance comparison

For each pair of generator and surface shader we have compared the performance of
four different versions of the same shader (see Table 1). In all examples the perfor-
mance of the optimized versions of our approach is equal to that of the hand-written
versions. Also, in all but one example our compiler either outperforms or give per-
formance equal to the naive translation. This demonstrates how code hoisting, where
possible, gives a solid speed-up by exploiting the vertex processing unit.

In the adaptive tessellation example, the our compiler actually performs worse
than the naive translation, just like a programmer probably would. The reason is that
the compiler, just like the programmer, will schedule parts of the surface shader to the
geometry program. In this case the overall performance is lower than it would have
been, had the shading been performed entirely in the pixel program. Presumably this
is a result of the geometry shader being slower, and the need to interpolate an extra
varying vector for each triangle. Typically this kind of effect are hard to predict, even
for an experienced programmer.

Together with the back-face culling example of Section 4.1, the adaptive tessella-
tion shows the difficulty of trying predict the performance of a GPU shader that uses
the geometry processing unit. These examples demonstrate the benefit of our exter-
nal interface, which enables finding the optimally performing variants quicker than
rewriting source code.

79



6. DISCUSSION

6 Discussion

We have presented a language, and a compiler and analysis framework that enables
modular programming of the rasterization pipeline of a modern GPU. It enables a ge-
ometry generator to be combined with a surface shader and the result is translated to
efficient code running on the GPU. We have shown that for a number of typical uses
of the geometry shading hardware, the code generated by our compiler performs equal
to that of hand-written, manually optimized GPU programs. We also provide an in-
terface that enables the code generator to be controlled. This lets the programmer
tune and adapt the generated programs to specific hardware or application require-
ments.

The performance results in this paper highlight the difficulty of estimating the
performance of a shader that uses the geometry shading unit. Here, the ability of
our approach to control the code generation, enabling computations to be quickly
moved between the functional units of the GPU, considerably simplifies and speeds
up development and optimization. A natural future extension would be to include
the programmable tessellation units [17] available on AMD/ATI hardware.
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ABSTRACT

The graphics processing units (GPUs) used in todays personal computers
can be programmed to compute the visual appearance of three-dimensional ob-

jects in real time. Such programs are called shaders and are written in high-level
domain-specific languages that can produce very efficient programs. However,
to exploit this efficiency, the programmer must explicitly express space trans-

formations necessary to implement a computation. Unfortunately, this makes
programming GPUs more error prone and reduces portability of the shader pro-
grams.

In this paper we show that these explicit transformations can be removed
without sacrificing performance. Instead we can automatically infer the set of
transformations necessary to implement the shader in the same way as an experi-

enced programmer would. This enables shaders to be written in a cleaner, more
portable, manner and to be more readily reused. Furthermore, errors resulting
from incorrect transformation usage or space assumptions are eliminated. In

the paper we present an inferencing algorithm as well as a prototype space-free
shading language implemented as an embedded language in Python.

Accepted for publication in Proceedings of TPCG ’08, 2008.





1. INTRODUCTION

1 Introduction

The graphics processing unit (GPU) available on modern graphics cards makes it pos-
sible to execute user-defined shader programs in real-time. Using these vertex and pixel
shaders it is possible to control the position and orientation, as well as the per-pixel
color of rendered objects. Programmable shading hardware enables many highly real-
istic graphical effects to be implemented.

Shaders typically makes heavy use of vector calculations to compute the appear-
ance of a mesh. When implement them using current GPU languages [5, 2, 10], it
is necessary to perform several explicit coordinate or space transformations to a com-
mon space in which the appearance of the mesh may be computed. By using that, in
general, there are more projected on-screen pixels than there are vertices in a mesh,
it is possible to get very efficient shaders by performing the majority of these trans-
formations per-vertex. By choosing an appropriate space, it is even possible to avoid
some transformations completely.

The need to perform explicit transformations put an additional burden on the
shader programmer. Moreover, the choice of space is dependent both on the applica-
tion and the model that is to be rendered. This can result in a shader performing sub-
optimally, or even incorrectly, when used in another application or for another model.
This type of implicit assumptions together with the high performance-sensitivity of
shaders, results in very tight coupling between shader and application. This makes
reusing shaders in other applications, or even for other models, difficult.

In this paper we show that explicit transforms are not required. Instead, it is
possible to automatically infer the same choice of space transforms that an experienced
programmer would make. The basis for our space-free shader programming approach
is a type system that is richer than those provided by other GPU languages and an
inferencing algorithm based on this type system. We have developed a prototype
compiler that implements space-free shader programming. In this language shaders
are written similar to off-line shaders, as though every vector and point is already in an
appropriate space. By removing explicit transforms in this way we increase portability
and reuse, since the code no longer contains application-specific assumptions. Also,
consistent usage of vector quantities is guaranteed.

As an example, consider the Lambertian (diffuse) lighting model where the light
reflected from a point is proportional to cosine of the angle between the surface nor-
mal and the direction of the light source, i.e. the dotproduct of these two unit vectors.
Listing 1 shows this shader written in GLSL and Listing 2 shows the same shader im-
plemented in our space free language. In both versions the vertex function is executed
once for every vertex of the mesh, and the pixel function once for every projected on-
screen pixel. Data that should be interpolated across the primitive and used as input
to the pixel program is declared as varying. The vertex program writes values to the
varying parameters (surface normal N and vector to the light source L in this example)
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varying vec3 L;
varying vec3 N;

void vertex() {
gl Position = gl ModelViewProjectionMatrix∗gl Vertex;
N = normalize(gl NormalMatrix∗gl Normal);
L = (gl LightSource[0].position −

gl ModelViewMatrix∗gl Vertex).xyz;
}

void pixel() {
vec3 Nn = normalize(N);
vec3 Ln = normalize(L);
float diffuse = max(dot(Nn, Ln), 0.0);
gl FragColor = diffuse∗vec4(1,1,1,1);

}

Listing 1: A Lambertian (diffuse) shading algorithm implemented in GLSL using
view space.

and the clip space position of the vertex (written to the dedicated variable gl Position).
The pixel program reads the interpolated result and uses it to compute the final pixel
or fragment color which is written to the variable gl FragColor.

The differences are that in the GLSL version, lighting is computed in view space
and the necessary space transformations are performed explicitly by matrix multipli-
cation. In the space-free version the choice of space and the necessary matrix multipli-
cations are instead inferred and inserted by the compiler. Also, in the GLSL version,
explicit re-normalization of unit vectors is required. In the space-free version this is
automatically handled by the compiler.

In the rest of the paper we describe our prototype shading language and the im-
plementation of our compiler.

2 Automatic space inference

Translating a space-free shader to the GPU consists of finding a set of spaces and
transformations such that the generated program is both correct and gives the highest
possible run-time performance. Here, correctness means that the result of the shading
algorithm must be identical to the result which would have been obtained using a
known, correct choice of spaces. This involves ensuring that each operation in the
shader is evaluated in an appropriate space. For example, consider computing the
dot-product dot(N,L) used in the Lambertian shader in Listing 1. By default, this
quantity should be computed in view space, since we are interested in computing
how a mesh appears to the viewer.
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varying(unitvector, L)
varying(direction, N)

def vertex():
gl Position = gl Vertex
N = gl Normal
L = gl LightSource[0].position − gl Vertex

def pixel():
diffuse = max(dot(N, L), 0.0)
gl FragColor = diffuse∗rgba(1,1,1,1)

Listing 2: A Lambertian shading algorithm in our prototype language. Here no

explicit vector transforms are required. Also, explicit re-normalization of L in the
pixel shader is automatically performed by the compiler.

However, suppose we know that model space and view space are related via a
unitary transform U, i.e. a transform that is both angle and length-preserving. Then,
using the identity for unitary transforms

dot(Nv, Lv) = dot(U∗Nm, U∗Lm) = dot(Nm, Lm)

we find that we may compute the scalar product in model space without introducing
errors. Here the m and v subscripts denote the vector expressed in the view and model
space frames, respectively. So, if N and L are expressed in model space, it is possible to
avoid two transforms in this case.

In order to deduce which spaces are possible for a particular computation we
must first, know what spaces and transforms are available, and how these transforms
behave. Second, we must determine how each operation behaves under these space
transformations. And, third, we must know the type of every expression in the shader
to know how it should be transformed (e.g. unit vector should be transformed to
unit vectors, normals to normals, and so on). Using this information, we may then
deduce every possible space in which the particular shader can be implemented. By
conservatively inferring the possible spaces for each operation the resulting shader can
be guaranteed to be correct from a space usage perspective. Then, analyzing the cost
of the different choices of transforms, we can choose the variant with the highest
run-time performance.

2.1 Spaces and transforms

The spaces and transforms available are in most cases determined by the application.
The application is responsible for placing and orienting the viewer in the world (thus
determining the view-to-world and world-to-view transforms) and also, for placing
each model in world (hence giving the model-to-world transform for each model).
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Some applications do not represent world space explicitly, instead preferring to repre-
sent the model-to-view transforms directly.

Furthermore, some meshes contain information about local spaces, such as tangent
space, used in more complicated shading algorithms (see Section 4). In this case, these
spaces are constructed explicitly in the shader and are available to the space inference
algorithm just as any other space.

Operations can be divided into three classes, depending on how they behave under
space transforms:

• space independent – does not change with changing space. Includes all scalar
operations (such as sine, cosine, exp, max, min etc.) and color operations.

• space dependent – operations which require arguments to be in the same space
(vector addition, subtraction, . . . ) but does not involve angle or length mea-
surements.

• metric dependent – operations which require arguments to be in the same space
and have the same metric (dot-product, normalization, length, etc.).

This classification lets us determine, given that an operations should be computed in
a particular space, the set of possible spaces for that operation.

Space independent For a space independent operation that should be computed in
a space S, the only possible space is S. For example, computing the final pixel color
by multiplying a color by a floating point value

gl FragColor = diffuse∗materialColor

should be performed in view space. This follows by the reasoning above, that the pixel
color should be computed as it appears to the viewer.

Space dependent For a space dependent operation that should be computed in a
space S the set of possible spaces is equal to those spaces from which there exists a
transform to S. For example, suppose we should compute the light vector L in view
space by

L = lightPos − vertexPos

Then we may compute the light position and vertex position in any space for which
there exist a transform to view space. The resulting vector can then be transformed
to view space using this transform. So, if there exist a transform from model to
view space and we have the light and vertex position in model space. Then, we can
compute the light vector in view space by

L = modelToView∗(lightPos − vertexPos)

where modelToView is the transformation matrix from view to model space. This saves
us one transform.
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Metric dependent In the previous section we saw an example of metric dependence
when we argued that we could compute the diffuse term in model space rather than
view space, when these spaces were related by a unitary transform. Generally, if an
operation is metric dependent and should be computed in some space S then it may
be computed in any space from which there exists a unitary transform to S.

It is possible to generalize metric dependence further by considering transforms
which are angle but not length-preserving. For such a transform T we have

dot(T∗v, T∗u) = l2∗dot(v, u)

for arbitrary vectors v and u and where l = det T. However, due to lack of motivating
real-world examples, we restrict ourselves to the unitary case, i.e. when l = 1.

2.2 Typing and vector transforms

How a vector quantity is transformed is dependent on what type of vector it is and
what kind of information it encodes. The type of the transformed vector must be
the same as the original vector’s. For example, transforming a unit vector v using a
transform T must result in a new unit vector. Hence, this transform must be done by

v′ = T∗v/length(T∗v)

Here we can use transform properties to simplify this expression. For example, if
we know that T is unitary, then length(T∗v) = 1 and the division can be skipped.
However, if the vector v is a surface normal, then it should be transformed using the
inverse transpose of T instead. This is necessary to ensure that the result is still a
normal, i.e. orthogonal to the surface.

These examples illustrate the need for a fine-grained type system to be able to
deduce how a vector quantity should be transformed. We use a type system which
is an extensible form of the semantic types of McGuire et al. [6]. This type system
provides types for vectors, points, unit vectors, directions, and normals, in addition to
the vector types provided by GLSL. Similarly, the matrix types of GLSL are extended
to include 4 × 4 unitary and 3 × 3 unitary matrices.

In addition to being used to deduce how vectors should be transformed, type
information can be used to correctly interpolate values between the vertex and pixel
shader. Two methods are interpolation methods are used: unit vectors are normalized
first in the vertex shader, interpolated, and then re-normalized in the pixel shader.
Directions, on the other hand, must not be normalized in the vertex shader, only
in the pixel shader. Our system uses type information to chose the correct method
depending on the type of varying data. In current shader languages, this must be
handled manually by the shader programmer and it is a frequent source of errors.

89



2. AUTOMATIC SPACE INFERENCE

2.3 Shader cost optimization

Selecting the best space choice can be done by estimating the run-time cost of ev-
ery shader variant, and choosing the variant having the lowest cost. However, since
every shader contains code executing per-vertex and per-pixel, the computational fre-
quency [9] at which each operation of the shader executes must be taken into consid-
eration when choosing the best variant. These frequencies are:

• Per-model or instance computations such as transform matrices and light po-
sitions which do not vary across the mesh. Computed on the CPU and then
downloaded to the GPU.

• Per-vertex calculations for computing primitive interpolants and attributes such
as texture coordinates, shadow map coordinates, and, depending in lighting
model, light directions and tangent space transforms. Performed in the vertex
processing unit of the GPU.

• Per-pixel calculations including texture accesses and possible pixel discards per-
formed in the pixel processing unit of the GPU. This step is performed before
alpha, stencil, and depth testing.

It is not possible to a priori determine how many times each part of a shader will
be executed. However, for the majority of applications, the general rule is that the
pixel shader is executed many more times than the vertex shader. This follows since
there generally are many more projected on-screen pixels than vertices of a mesh.
Similarly, the vertex shader is executed more often than the model computations, as
model computations are performed only once for each mesh which typically consist
of several thousand vertices.

This asymmetry can be described by summing the run-time cost of each individ-
ual step and representing them by a tuple (tp, tv, tm) for the pixel, vertex, and model
run-time cost, respectively. These tuples can then be compared using lexicographic
ordering to find a least element. By using another ordering function it is possible to
adapt the choice algorithm to optimize for non-standard applications, such as wire-
frame renderers (where the ratio of pixels to vertices is lower).

2.4 Further optimizations

When constructing shader variants there are two important optimizations that need
to be considered to correctly determine the cost of a shader. The first is that unitary
transforms can be inverted without cost. Using that the GPU does not distinguish
between row and column vectors we may perform the following rewrite:

T−1∗v = Tt∗v = (v∗T)t = v∗T
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using the fact that the inverse of a unitary transform is its transpose. This optimization
is particularly important when transforming surface normals since such vectors should
be transformed using the inverse transpose of the matrix used to transform the surface.
Hence, for a unitary transform U we get (U−1)t

= (Ut )t
= U.

Second, when constructing local frames in the shader, the vectors used to defined
the coordinate system for the space have constant coordinates in that space. For
example, if a shader constructs a local space S from the basis vectors u, v, and w.
Then we may rewrite, for example:

dot(u, l) = l.x

i.e. as the first component of vector l, if the dot product is computed in the space
S. This is possible since in S the coordinates for u, v, and w are (1, 0, 0), (0, 1, 0),
and (0, 0, 1), respectively. Also, if these vectors are used as interpolants, then we can
further reduce computational requirements by not interpolating them, since they are
constant in S.

3 Implementation

Our prototype, space-free shading language is implemented as an embedded language
in Python, an object-oriented, interpreted, dynamically typed, high-level language.
Language embedding allows us to reuse parts of the Python compiler framework to
avoid writing a complete language front-end. This has enabled us to quickly ex-
periment with different features and design choices in our implementation. For an
example Lambertian shader, see Listing 2.

Just as in GLSL, our language provide a number of implicit input and output
parameters (vertex position, pixel color, texture coordinates) named after their GLSL
counterparts. These parameters are prefixed by gl and are provided either in model
or view space. A non-exhaustive list of implicit parameters along with their type and
space is given in Table 1.

3.1 The space inference process

Our space inference compiler is implemented as a constraint solving process. Start-
ing at the output variables gl Position and gl FragColor for which the desired output
spaces are known, it proceeds breadth-first back through the data-dependence graph
of the program. For every operation, a space is chosen from the set of possible space
(using the classification in Section 2.1) and this choice is propagated as a constraint
back through the data-dependence graph. Once spaces have been chosen for every
operation, the shader variant is passed to a backend code generator.

The backend inserts the necessary transforms to implement the shader in the
chosen spaces and then optimizes the shader (in particular using the domain specific
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Parameter Type Space Notes
gl Vertex Point ModelSpace
gl Normal Normal ModelSpace
gl Position Point ClipSpace Must write per-vertex

gl FragColor RGBA ViewSpace Must write per-pixel

gl LightSource[i]
.position Point ViewSpace

Table 1: A non-exhaustive list of implicit variables provided by our prototype lan-
guage. The output variables gl Position and gl FragColor must, as indicated, be com-

puted and written in the vertex and pixel shader, respectively.

optimization in Section 2.4). After this a frequency analysis is performed, any com-
putations which do not vary per-vertex or per-pixel are moved to the CPU to avoid
unnecessary re-computations. Also, as part of this analysis, the shader cost at the
model, vertex, and pixel frequency are estimated. Finally the GPU vertex and pixel
shader programs are generated. The code generator currently targets Python for the
CPU code and GLSL for the GPU code.

3.2 Shader optimization

The space inference process is continued until the set of possible spaces has been
exhaustively searched. Using the estimated shader cost computed by the backend the
shader variant with the lowest run-time cost is found. Currently, the cost ranking is
performed using lexicographic ordering as described in Section 2.3. The cost ranking
function is passed as a parameter to the compiler allowing it to be replaced by a non-
standard ranking method if required.

As it is currently implemented, the running time of our compiler is proportional
to the number of possible space choices in a shader (worst case: exponential in the
number of vector operations). Reducing this search time is not straightforward. Tradi-
tional methods for reducing the run-time for minimization algorithm relies on prun-
ing or cutting down the potential search space. However, due to the potentially large
performance impact of the optimizations in Section 2.4, the run-time cost of a shader
is difficult to reliably estimate before the space for each operation has been chosen.
These optimizations can lead to entire expression being eliminated or replaced by a
simpler one. For example, if T is unitary and v is the first coordinate axis of T then

dot((T−1)t∗v, u) = dot(T∗v, u) = dot((1,0,0), u) = u.x

In this case a dot product computations and a transform has been reduced to a single
vector member access (which can be performed without run-time cost on the GPU).
Compilation times for our examples ranges from sub-second to at most a few seconds
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uniform(sampler2D, bumpmap)
attribute(vector, ModelSpace, tangent)
varying(vector, L)
varying(vector, H)
constant(point, ViewSpace, eyePos, (0,0,0))

def vertex():
gl Position = gl Vertex
gl TexCoord[0] = gl MultiTexCoord0
N = gl Normal
T = tangent
B = cross(N, T)
space(TangentSpace, unitary3(T,N,B))
L = gl LightSource[0].position − gl Vertex
V = eyePos − gl Vertex
H = normalize(L+V)

def pixel():
offset = TangentSpace(tex2D(bumpmap,gl TexCoord[0]).xyz)
N = normalize(offset + N)
diffuse = max(dot(N, L), 0.0)
specular = pow(max(dot(N, H), 0.0), 8)
gl FragColor = diffuse∗rgba(1,0,0,1)+specular∗rgba(1,1,1,1)

Listing 3: A space-free bump mapping shader. The surface normal is perturbed using
a texture to give the impression of fine-scale structure such as bumps or ridges on
a surface. Here, the vertex shader is used to construct a tangent frame which can

be used for shading computations. Note that the space of the offset vector and eye
position must be explicitly specified for the inference algorithm to work.

and we have not found this to be a problem. Nevertheless, reducing compilation
times is an interesting area for further research.

Another item of note is that space inference algorithm will never place a transform
inside a loop. If a transform were to be placed inside a loop, the run-time cost of
the generated shader can not be estimated since the number of loop iterations can
in general not be determined. In some restricted cases, it is possible to statically
determine the number of times the body of a loop will be executed. However, in non-
trivial examples the number of loop iterations can not be determined at compile time.
For example, the presence of flow-control commands such as break, return, or continue

generally makes such analysis impossible. We have found no realistic examples where
this restriction is a limitation, however.
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4 Examples

The Lambertian example given so far is a very simple example of an isotropic lighting
model, i.e. a surface that scatters light uniformly in every direction. Such lighting
models can typically be efficiently implemented in model, world or view space. How-
ever, in most real-world surfaces there is an asymmetry, relative to the local surface
orientation, in how light is reflected. In such anisotropic models, the local orientation
is usually expressed by the tangent space of every point on the surface. Common
examples of such models are bump [1] and parallax mapping [4], that uses tangent
space to compute normal and, in the case of parallax mapping, texture space offsets
to give appearance of surface wrinkles or bulges. Listing 3 gives an implementation of
bump mapping in our language. Note the declaration of the new space TangentSpace,
constructed from the basis vectors T, N, and B. Our compiler can use this space to
infer that, in this case, the best space choice is tangent space.

For performance results of some common isotropic and anisotropic shading al-
gorithms see Table 2. These algorithms demonstrate different levels of complexity,
ranging from just a few scalar products (the Lambertian and Blinn-Phong) to com-
plex, iterative algorithms that perform ray-tracing in texture space (Parallax mapping).
All measurements compare a space-free implementation written in our prototype lan-
guage to an equivalent, manually optimized, version implemented in GLSL. All hand-
written examples contain implicit assumptions (e.g. that the view to model space
transform is unitary) and explicit vector normalization in the pixel shader. All such
assumptions are eliminated in the space-free variants. In all examples, the transforms
and spaces inferred by our compiler precisely matches those used in the hand-written
examples.

We see that the hand-optimized consistently out-perform the space-free shader
variants. However, the performance gains of hand-optimizing a shader is only in the
order of a few percent. This indicates that the space inference approach is useful in
practice. The exact source of the performance disparity is difficult to pin-point since
the GLSL compiler does not allow the generated assembler to be inspected. However,
the most likely source is that hand-writing lets the programmer exploit instruction-
level SIMD parallelism available on the GPU. Presumably, the structure of the code
generated by our backend is less amenable to parallelization by the GLSL compiler.

5 Discussion

We have presented a novel domain-specific language for programming GPUs that
enables shader programs to be written without explicit space transforms. This enables
shading algorithms to be implemented in a more general and portable manner while
allowing optimization to be performed on a per-application or even per-model basis.
Consequently, space-free shaders can be reused in other applications without changes.
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Performance (FPS) Rel.
Shader Space-free Hand-written perf.

Lambertian 1550 1580 98%
Blinn-Phong 1280 1310 97%
Bump mapping 1230 1240 99%
Refraction 917 950 96%
Parallax mapping 568 581 98%
View space bump mapping - 1100 -

Table 2: Performance measurements of a simple synthetic scene running different
shaders. The view space bump mapping is a hand written example demonstrating
the performance impact of using an inappropriate space. Performance figures giving

absolute performance rendered frames per second (FPS) of a synthetic scene. All
measurements were run on an NVIDIA GeForce 8600 GT graphics card using a
C++ rendering engine.

The performance of the generated GPU code is very close to that of hand-optimized
versions which indicates that the approach given in this paper is useful in practice.

Much previous work has been devoted to translating shaders for off-line use, typ-
ically written in the RenderMan shading language [3], to real-time graphics hard-
ware: reducing memory-accesses [7], automatic multi-pass shader factorization [8],
and semi-automatic vertex/pixel factorization of shaders [9]. Our paper represent a
previously unexplored avenue that could be used to further improve on these results.
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ABSTRACT

Programmable graphics processing units (GPUs) have become extremely power-
ful processors, capable of executing complex shader programs with high perfor-
mance. To maximize the utilization of the GPU while maintaining a low CPU

load, several shader-based rendering techniques are currently used. However,
these techniques require shading computations (i.e. colorization computations)
to be explicitly combined with code to handle the rendering technique itself.

This results in code duplication and shader programs that are difficult to reuse
and modify.

In this paper we present a framework for automatically transforming an ex-

isting shader to use any combination of the techniques instanced rendering, de-
ferred rendering, or vertex stream-out caching. This reduces code duplication
and increase code reuse. In experiments, performance of the transformed shaders

is equal to that of hand-written code.
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1. INTRODUCTION

1 Introduction

Modern programmable graphics processing units (GPUs) provides an extremely high
performing computational pipeline capable of producing near photo-realistic visual
results at interactive frame rates. Currently, GPUs outperform CPUs by more than
a magnitude and the relative performance increase is higher, meaning that this gap
will continue to grow. GPUs are programmed using specialized shader programs that
control the different pipeline stages to achieve a wide range of visual effects.

The key to high-performance rendering is efficient utilization of the GPU, typ-
ically with only minimal CPU overhead. In this paper we focus on some relatively
recent rendering techniques for achieving efficient rendering: deferred shading [4], in-
stanced rendering [17], and vertex stream-out caching. These techniques are shader-
based and works by combining a shading algorithm, such as Blinn-Phong [1], with
the chosen rendering technique into one or more shader program. By using pro-
grammable shader hardware in this way, it is possible to achieve very efficient render-
ing with minimal CPU intervention.

However, in all these techniques, the shading method must be explicitly combined
with the rendering method in the shader programs. Hence, if an application to use
both deferred and direct rendering, two or sometimes more different shader variants
must be implemented. Each of these variants implement the same shading algorithm
but using different rendering techniques. Furthermore, the rendering techniques can
be composed, but constructing an instanced, deferred shader requires writing further
variants. This becomes a problem both of managing and implementing these shaders.

In this paper we show that it is possible to automatically construct deferred, in-
stanced and/or cached versions of an existing shader. This enables shaders to be reused
irrespective of rendering method; a single shader can be used both in a direct and
deferred context, using either instancing or not, without requiring any source code
modifications. This reduces development times and results in shaders that are easier
to maintain and modify (since rendering technique is not explicitly woven with the
shading code).

The framework presented is fully configurable, allowing the user to decide whether
data should be stored in a interleaved manner or not, the storage precision to use, etc.
This enables render-method specific information to be kept separate from the shading
algorithm, allowing an application to easily support multiple levels of precision suit-
able for different hardware and performance configurations. We have incorporated
our framework into an existing rendering engine with results equal to that of using
hand-written shaders.

The rest of the paper is organized as follows. In Section 2 we present the rendering
techniques studied in this paper in more detail. In Section 3 we introduce our shader
analysis and rewriting framework. Next, we demonstrate how our framework can be
integrated into an existing renderer (Section 4), and some example shaders (Section 5).
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Last, in Section 6 we summarize and discuss the contributions made in this paper.

1.1 Previous work

The first GPU generations where programmed using assembler languages closely tied
to the underlying hardware. Currently however, GPUs are typically programmed us-
ing specialized shader languages such as Cg [8], HLSL [6], or GLSL [15]. These lan-
guages all provide C-like syntax with data types tailored specifically to the GPU. The
choice of shader language depends on graphics API used: HLSL is tied to Microsoft’s
DirectX [2], and GLSL to OpenGL [16]. Cg may be used with both APIs.

Other systems for programming GPUs have been considered. Some consider
translating Renderman or Renderman-like shaders to programmable hardware [14,
12]. Other take an embedded approach, enabling GPUs to be programmed in the
same language as the rest of the application [9, 5]. However, no work known to
the authors considers the problem addressed in this paper, i.e. that of automatically
transforming shaders to support different shader-based rendering techniques.

2 GPU rendering algorithms

We will begin by giving a brief overview, including pros and cons, of the rendering
techniques considered in this paper.

Instanced rendering Typically, when rendering a model the CPU submits the ge-
ometry information, along with the transformations matrices etc., every time a model
is rendered. For example, suppose we want to render multiple spheres, all having the
same tessellation level and radius, but each its own color and position. Using some
shader this can be accomplished using a simple loop:

shader−>bind();
Sphere∗ sphere = ...
for ( int i = 0 ; i < noSpheres ; i++ ) {

shader−>setUniform(”model2world”, sphere−>modelTransform);
shader−>setUniform(”color”, sphere−>color);
sphere−>render();

}
shader−>release();

However, this is wasteful since there is a CPU overhead for each render call. Also, the
sphere’s geometry information must potentially be sent multiple times across the bus
to the GPU.

Instanced rendering allows the geometry data to downloaded once and then used
multiple times to render the other models. This technique relies on using a shader to
distinguish between the different rendered mesh instances and choose the appropriate
transformation matrix, for example, for that instance. The CPU needs only download
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Figure 1: A pipeline overview of deferred shading

an array model-specific data such as transformation matrices, colors, etc., and then
draw all the instances:

shader−>bind();
shader−>setUniform(”model2worlds”, modelTransforms);
shader−>setUniform(”colors”, colors);
sphere−>renderInstances(noSpheres)
shader−>release();

The CPU overhead is lower than in the example above, and the mesh’s geometry is
only sent to the once the GPU. Instanced rendering can be combined with GPU-
based skinning to draw large crowds of animated models very quickly, for exam-
ple [10].

Deferred rendering In direct rendering each mesh is rendered using a particular
shader to compute pixel color values that are written to the frame buffer. In deferred
shading, instead of writing the resulting color value at each pixel, the information
necessary to perform the shading is stored for each pixel in a data buffer1. Then, once
all objects have been drawn, a shader processes each pixel of the deferred data buffer
to determine the final pixel color. For an overview of deferred rendering see Figure 1.
We will call the shader used in the first pass of deferred shading the deferring shader,
and the shader in the second pass the post-processing shader.

The advantages of this approach is that only pixels that are visible are shaded, thus
saving time when using expensive shaders, or when there is significant overdraw in the
scene. Also, there is no need for CPU intervention to determine which light affects
which meshes and, hence, lighting cost is independent of scene complexity [11]. The
disadvantages are high bandwidth and memory requirements, and that only a single
shader can be used for the whole scene. Also, hardware supported multi-sampling can
not be used with deferred shading. Furthermore, transparent materials are difficult
to incorporate into a deferred rendering framework. One possible technique is to use

1This is sometimes called a “fat” frame buffer since typically more than one 4-tuple of floating point
data is stored per pixel. We will use the term data buffer in this paper, however.
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depth peeling [7] but it is both expensive and complex. Hence, transparent objects are
usually drawn using direct rendering after the deferred shading has been computed.

Vertex stream-out Previous GPU generations had a fixed pipeline where the out-
put of each stage was fed into the next without being accessible to the programmer.
Current GPUs allow the result of a vertex or geometry shader computation to be
streamed to GPU memory before it reaches the pixel shader. This enables, for exam-
ple, skinning computations to be cached to avoid expensive re-computations. This
is particularly useful when the skinned model must be drawn multiple times, for in-
stance, when affected by multiple lights or is casting multiple shadows. Another area
where vertex stream-out is useful is when implementing particle systems and mesh
deformations on the GPU.

3 The framework

The framework we present in this paper is capable of automatically transforming
a shader to use any combination of instancing, deferred rendering, and stream-out
caching. This enables shaders to be expressed irrespective of the rendering method
used. This increases reusability and portability and significantly reduces code dupli-
cation, even in smaller projects.

Note that all the rendering methods studied here requires support in the applica-
tion. The aim of this paper is to present a method to facilitate supporting different
rendering methods at the shader level only. We will, however, discuss integration into
a rendering engine in Section 4.

The framework consists of two parts: dependency analysis and program rewriting.
The dependency analysis stage determines how a shader must be split to ensure that
data dependencies are preserved. This is information is used as input to the rewriting
stage that performs the actual shader transformation. The rewriting part of the frame-
work can create new shaders, insert and remove instructions from existing shaders, as
well as move operations between different pipeline stages.

The framework operates on an intermediate static single assignment representa-
tion [3] of the shader program. The framework was implemented in Python and uses
a embedded shading language [9] that is similar to GLSL. Our language provides a
slightly richer type system that distinguishes between different vector types (points,
vectors, unit vectors, and directions). Having specialized types for directions and
unit vectors enables us to automatically use the correct interpolation strategy for these
quantities (normalize in the pixel shader only for directions, normalize in both vertex
and pixel shader for unit vectors). Using language embedding avoids the additional
work of implementing a full compiler front-end, thus enabling a quicker development
and testing cycle. The back-end code generator creates GLSL code.
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3.1 Instanced rendering

Consider the following vertex shader that computes the clip-space position of a vertex,
using camera and model matrices:

uniform(Mat4, camera)
uniform(Mat4, model)

def main():
gl Position = camera∗(model∗gl Vertex);

This shader can be used to draw objects using the more expensive loop-based method
(see Section 2). Now consider the following shader that performs the same operations,
but that can be used for instanced rendering:

uniform(Mat4, camera)
uniform(Array(Mat4, maxNoInstances), models)

def main():
gl Position = camera∗(models[gl InstanceID]∗gl Vertex);

Here, instead of using the model matrix directly, the shader is supplied with an array
of matrices. It then uses the built-in index gl InstanceID to access the appropriate
matrix, depending on which model instance is currently being rendering.

Our framework can convert the first shader to the second. To do so user declares
that the model matrix contains instance-specific data. Then, the rewriting stage will
then change the declarations and all uses of these variables to arrays and array lookups,
respectively. Hence, it will first replace the uniform declaration to an array instead.
Then every use of the model matrix is replaced by a lookup of the instance-specific
element in the models array. Also, the framework will automatically compute the
maximal number of instances that the hardware can support (i.e. maxNoInstances)
depending on the number of constant registers available.

3.2 Deferred shading

The instanced transformation above does not require complex dependency analysis.
Transforming an existins shader into a deferred one is slightly more involved, however.
Consider the Blinn-Phong shader in Listing 1, page 105. This shader computes the
Blinn-Phong lighting contribution from at most 100 point lights shining on a surface.
If we want to transform this shader to defer the lighting computation (as described
in Section 2) we must deduce what information is necessary to shade a given pixel.
That is, which variables are required by the post-processing shader to compute the
final pixel color.

In the case of the Blinn-Phong shader, the variables that are needed are the viewer
vector V, the surface color gl Color, and the normal N. Together, they provide the
necessary data to compute the lighting contribution.
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1 uniform(Int, noLights)
2 uniform(Array(Struct(viewPos=Vec3, color=Vec3), 100), lights)
3 varying(Vector, N)
4 varying(Point, V)
5

6 def vertex():
7 gl Position = ftransform()
8 N = normalize(gl NormalMatrix∗gl Normal)
9 V = direction(−gl ModelViewMatrix∗gl Vertex)

10 gl FrontColor = gl Color
11

12 def pixel():
13 gl FragColor = RGBA(0, 0, 0, gl Color.a)
14 for i in range(noLights):
15 L = normalize(lights[i].viewPos + V)
16 H = normalize(V+L)
17

18 diffuse = saturate(dot(viewN, L))
19 specular = pow(saturate(dot(viewN, H)), 8)
20 surfaceC = diffuse∗gl Color + specular
21 gl FragColor.xyz += lights[i].color

Listing 1: A Blinn-Phong shader that supports multiple point light sources.

Our framework finds these variables in the following way; First, all operations
that depend, directly or indirectly, on the light source information (i.e. the lights

array) are located. Since the lighting computations are deferred, these operations must
be performed in the post-processing shader. Next, the remainder of the operations
(which can be computed without knowing anything about the light sources) are put
in the deferring shader. Last, all terms that are defined in the deferring shader and
are used at least once by the post-processing shader are found. These terms represent
precisely the information that must be written to the data buffer.

After determining which operations should be put in which shader, and which
terms should be stored in the data buffer, the framework constructs two new shaders
that implement the deferring and post-processing. The name and storage type of
the deferred terms can be queried by the application, allowing the appropriate frame
buffer to be constructed for holding the deferred data. This enables the application to
control the precision of the deferred shader (for more information see Section 4.1).

3.3 Vertex stream-out caching

Caching a vertex computation is a similar problem to the deferred shading above.
The main differences is that information is stored per-vertex rather than per-pixel.
Suppose we wish to cache the computation of the skinned position and normal of the
matrix palette skinning example in Listing 2, page 110. Then, by reformulating, we
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can describe this as the same problem as deferring computations depending on the
gl ModelViewProjectionMatrix, gl ModelViewMatrix, and gl NormalMatrix matrices.

Hence, we can use the above analysis algorithm to find those operations which
should be performed in the caching shader (i.e. the shader responsible for computing
the vertex data to be cached) and those that should be put in the rendering shader (i.e.
the one using the cached data to render the model). Operations that depend on the
above three matrices are scheduled to the rendering shader, the others are put in the
caching shader. Similarly to the deferred shading above, all variables defined in the
caching shader that are used in the rendering shader must be streamed out.

As above, after determining which operations should be put in which shader, our
framework constructs the caching and rendering shaders. The data that should be
cached can be queried by the application to allow the appropriate target buffers to be
constructed.

3.4 Handling conditionals

When analyzing and rewriting shaders, special care must be taken when dealing with
conditionals. For example, when transforming a shader to use deferred rendering,
it is possible to have conditionals which must be split across the deferring and post-
processing shaders. Consider the following code:

if gl FrontFacing:
N = normalize(gl NormalMatrix∗gl Normal)
L = normalize(light.viewPos + V)
color = saturate(dot(N,L))∗vec4(1,1,1,1)

else:
color = vec4(1,0,0,0)

If computations depending on the light parameter are deferred, the color computation
in the if-branch should be deferred also (since it depends on L which depends on light).
However, the color in the else-branch does not depend on light and hence, should not
be deferred.

We handle this case by mandating that every assignment to the same variable in a
conditional must be marked (i.e. deferred or not deferred) in the same way2. Hence,
in this example the generated code is

if gl FrontFacing:
vec3 N = normalize(gl NormalMatrix∗gl Normal);
## write N to data buffer

## write gl FrontFacing to data buffer

for the deferring shader. The post-processing shader will then look like:

2Or, equivalently, we mandate that both arguments to a SSA f-function must be marked in the same
way.
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frontFacing = ## read from data buffer
if frontFacing:

N = ## read from data buffer
L = normalize(light.viewPos + V);
color = saturate(dot(N,L))∗vec4(1,1,1,1);

else:
color = vec4(1,0,0,0);

Notice that we do not write N to the data buffer if the pixel is not front facing. This
is not a problem however, since we also store the whether the pixel is front facing or
not. If it is not, we will never read normal information back from the data buffer.

4 Application integration

As stated above, using deferred or instanced render methods will require some level
of application support. It is not possible to use these techniques efficiently without
providing the necessary structures in the rendering engine. For example, instanced
rendering requires that all instances that should be drawn of a particular mesh be sub-
mitted at one time. This can be simplified using a suitable API, such as that proposed
by Carucci (Chapter 3 of [13]). Similarly, deferred shading requires maintaining the
deferred data buffer as well as implementing and integrating direct rendering in order
to be able to use particle systems and other, transparency-based, effects.

4.1 Performance and precision tuning

When using instanced rendering the performance is roughly proportional to the num-
ber of instances drawn in a single call. Hence, the main performance benefit comes
using as many instances per draw call as possible, to avoid pipeline stalls. When using
deferred shading however, performance and precision becomes important factors to
consider. For instance, the precision of the data buffer will greatly affect both the re-
quired storage and bandwidth requirements, as well as the visual quality of the result.

Our framework gives complete control to the programmer, enabling the precision
and storage method of each item written to the data buffer to be specified. For exam-
ple, consider the shader in Listing 1. If we wish to store the normal ith frame buffer
layer using a scaling transform to map it into the unit cube [0..1, 0..1, 0..1] we do

shader.overrideDeferred(”N”, i, ”0.5∗N+0.5”, ”2∗N+1”);

This will transform the normal to the unit box when writing it to the frame buffer,
and then back to the unit sphere when reading it from the frame buffer. This is useful
when using lower-precision rendering targets that implicitly clamp their values, for
instance.

The ability to override how individual elements are deferred is also useful when
using multiple shaders in a single scene. Then the deferred output of every shader
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Performance (FPS)
Shader Render method w/ method w/ direct
Blinn-Phong (1 light) Instancing 5.9 3.1
Blinn-Phong (100 lights) Deferred 32.6 9.5
Skinning + B-P (1 lights) Caching 43.5 34.4
Skinning +

B-P (100 lights)
Caching +

Deferred
9.0 3.1

Table 1: Performance figures for some example shaders. The direct rendering ap-

proach uses GPU vertex buffer objects for geometry data which are submitted once
for every object. The instancing examples uses the instanced rendering interface pro-
vided by GL EXT draw instanced. Caching shaders uses OpenGL 2.1 buffers, and

deferred shaders uses 128 bit floating-point storage for the intermediary data buffers.
All measurements are made on a OpenGL graphics engine running on a GeForce
8600 GTS card with 512 MB of video memory.

must be matched to allow the post-processing stage to be executed. In this case,
explicit specification of what output should be written to which layer is required.

5 Examples

We have tested our framework by transforming several different shaders to use de-
ferred or instanced rendering, as well as vertex stream-out caching. The performance
results are displayed in Table 1. It shows the measured performance in rendered frames
per second when using the shader constructed by our rewriting framework to use the
indicated rendering method. The result of using direct rendering using the original
shader is also shown. In all examples, hand-written shaders using the same rendering
technique and shading code were implemented in GLSL. The performance of our
generated shaders was, in all cases, identical to their hand-written counterparts.

In the first example we render a test scene consisting a 10000 small objects (11000
triangles each) using Blinn-Phong shading with a single light source. Here, using
instancing results in a speed up of about 2 times. The second example consists of 100
higher tessellated objects (48000 triangles) rendered using 100 point light sources.
Using deferred shading results in a large performance gain (×3.4 times).

Next two examples uses a GPU skinning implementation with a single light
source, and 100 light sources, respectively. Using caching here results in a speed-
up of about 25% in the first example. By combining caching and deferred shading in
the second example, the performance gain is roughly 3 times.

When combining caching with instancing we did not notice any performance
increase compared to only using caching. Presumably, the fact that mesh data already
resided in a GPU-side vertex buffer limits the usefulness of instancing in this case

108



6. DISCUSSION

(where the performance is obtained primarily from avoiding transferring data from
the CPU to the GPU multiple times).

6 Discussion

We have presented a framework for shader data dependency analysis and rewriting
that enables shading and rendering to be separated. We have shown that this frame-
work enables rendering methods such as deferred shading or instanced rendering to
be used without rewriting the original shader. This reduces code duplication signifi-
cantly. Also, reusability and portability is increased since shading is not tangled with
code specific to the render technique used.
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1 attribute(IVec2, weightIndex)
2 varying(Vec4, viewPos)
3 varying(Vec3, viewN)
4 uniform(Float, frame)
5 uniform(Sampler2DRect, weights)
6 uniform(Sampler2DRect, positions)
7 uniform(Sampler2DRect, orientations)
8

9 ## quaternion operations
10 def qmul(q1=Vec4, q2=Vec4): ...
11 def qconj(q=Vec4): ...
12 def qrot(q=Vec4, p=Vec3): ...
13

14 def vertex():
15 position = vec3(0,0,0)
16 normal = vec3(0,0,0)
17

18 start = weightIndex.x
19 end = start + weightIndex.y
20 for i in range(start, end):
21 tmp = texture2DRect(weights, vec2(i, 0))
22 wp = tmp.xyz
23 joint = tmp.w
24

25 tmp = texture2DRect(weights, vec2(i, 1))
26 wn = tmp.xyz
27 value = tmp.w
28

29 jp = texture2DRect(positions, vec2(joint, frame)).xyz
30 jq = texture2DRect(orientations, vec2(joint, frame))
31

32 position += (jp + qrot(jq, wp))∗value
33 normal += qrot(jq, wn)∗value
34

35 p = point(position)
36 gl Position = gl ModelViewProjectionMatrix∗p
37 viewPos = gl ModelViewMatrix∗p
38 viewN = normalize(gl NormalMatrix∗normal)
39 gl TexCoord[0] = gl MultiTexCoord0

Listing 2: A skinning vertex shader program. This program can be used together with

the view-space Blinn-Phong pixel shader in Listing 1, for example.
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