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|. INTRODUCTION

Growing evidence in recent research has shown that the error
performance of a channel decoder depends primarily on the decoder’s
resources, and only secondarily on the qualities of the error-correcting
code itself, such as its free distance and the state-space size of
its minimal encoder. It is well established, for example, that the
performance of a sequential decoder of the Fano or stack algorithm
type depends on how many code trellis paths the decoder can visit.
The precise choice of the code matters little, so long as the code has
a good distance profile and a reasonable memory.

In a traditional sequential decoder, the design begins by assuming
a long code and by assuming that the decoding of a data symbol
will be correct with certainty; an analysis then finds the expected
number of code trellis paths (or tree paths, or tree branches) that are
required to do this. So long as the code rate is less than the cutoff
rate, this expectation is finite, but the actual path number outcome
may on occasion exceed any bound, a phenomenon called erasure.
The working storage for these paths and the speed in which they may
be viewed comprise the resources of the decoder, and it is the need
for these that depends weakly on the code.

In more recent times, this design philosophy has often been
reversed. Rather than fix the error probability at zero, the storage
of the paths is fixed; by means of analysis and measurement, the
error probability or the number of correctable errors is found. Two
examples of this philosophy are the Viterbi algorithm and #de
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algorithm (list decoder). In the first, the storage is fixed to the encoderData-bit errors are caused, of course, by error events, but the BER
state-space size, and depends therefore critically on the codeaim .. can differ widely, depending on how many data-bit errors
the second, the storage is fixed &k paths, independently of the occur in the events. After losing the correct path, a reduced-search
code. Decoders of tha7-algorithm type, whose storage is fixed decoder can flounder about for an indefinite number of trellis levels
priori, show a strong independence between error performance &ryihg to find it again. During this time, the BER is essentially 50%,
code. and the BER is only barely related to tifé., which is defined

The purpose of this correspondence is to relate the storage #m@ependently of any correct-path loss event. We will show that the
error performance of simple breadth-first decoding of convolutionghoice of a feed-forward systematic encoder solves the correct-path
codes, and to investigate how dependent they really are. We vigis problem.
show that the important aspect of a code is the early growth of itsAS we have mentioned, much of the recent work in reduced-
distance profile [1], and that apart from this, the error performan&garch decoding focuses on decoders with fixed storage or with some
of M-algorithm type decoders depends to a first approximatiéiher strict limitation to the search. Early work ol -algorithm
on their storage only. We do this by two methods, for hist:, convolutional decoders was performed by Zigangirov and Kolesnik
QLI [2], and feed-forward systematic encoders. First, we constrddl- Simmons and Wittke [5], Aulin [6], Balachandran [7], and
decoders and test them over a simulated binary-symmetric chanR@lenius [8], among others, have applied fHealgorithm to CPM
(BSC); second, we estimate error performance by counting the erfapdulation codes. They all reporsaturationphenomenon, in which
sequences that each decoder corrects. All of these turn out to hiie Plot of I, versus E;/No improves steadily withil only
the same event error performance, so long as the path storage @nd0 @ certain small/, after which there is little improvement.
their distance profiles approximately match. Conversely, codes with the removal of intersymbol interference with thé-algorithm,
markedly different distance profiles have markedly different decodgfShadri and Anderson [9], and Gozzo [10], also find an even stronger
error rates. saturation effect. The effect appears as well in decoders whose search

As a consequence, an encoding by a feed-forward Systeméﬁé:onfined to the range of pa_th metrics, rather tha_n by a I_imit to the
encoder with a proper distance profile decodes incorrectly abdmmber of paths. Aulin has (_jlscussed vector Euclidean distance and
as often as with any other encoder in a fixed-storage decode? M€ other related matters in [11] and [12].

Such encoders are easily designed. More important, they address IQ our previous work [13], we treaf/-algorithm decoding of

major shortcoming of convolutional decoders that do not search finvolutional codes over the BSC. That work reports the saturation
Iﬁgnomenon, but reports a new one as well. For the QLI convolu-

entire code trellis. These decoders occasionally lose the correct p% | d tested and below th turati | the,
completely from the storage and need a long time to find it agai%c,ma encoYers ested a elow the saluration value,
v%r_susEb/A'o plot does not depend on the encoder, but onlylén

an event that leads to a long error burst in the estimated data. fe ) . . .
) . I purpose now is to extend this work and determine what quality
forward systematic encoders make it easy to get the correct path . . .
. . .Qf a convolutional code, if any, sets tlie,, when M is below the
least back into the storage, and from there, correct decoding rapi Iy .
Sdturation M .
follows. Consequently, they should perform much better than other_. . . .
. . .Since theM-algorithm and its strict limit to path storage play
encoder types with a reduced-search trellis decoder, and we show in . .
; SR a central role in the correspondence, we summarize the state of
later sections that this is indeed the case.

knowledge about it here. A practical implementation keeps in storage

(such as binary PSK) passed through additive white Gaussian NOS&a bit is released &b behind the front
modeled as a BSC. For noise densify/2, data bit energy,, and
code rateR, the crossover probability in the BSC is given by [3]

, all paths are extended one
trellis level deeper, and the be3f survivors are retained. We also
delete any paths that do not correspond to the released data bit and
that represent state duplications of a better path in storage, although

p = Q(v/2RE}/Ny) (1) these features do not much change the decoder performance. Further
implementation details appear in [3].
with The proper value fortn (see [3] or [14]) for nonbacktracking
decoders and known, concrete codes is approximately
Qx) £ (1/V 27r)/ exp(—u®/2) du, x> 0. 2 tp = 2e/pec (3)

whereR = b/c is the code rate: is the number of errors the decoder

Although the decoder sees a BSC, its error performance is a fLm(:tigrélssumed to correct, apds the Gilbert—-Varshamov parameter, i.e.,
of Fy/Ngy through these formulas, and the performance takes on t{p‘% solution of

familiar “waterfall” shape when plotted again&t /Ny in decibels.
Error performance has two meanings in this correspondence. The
error event probability’.. of a decoder is the probability that a trellis
error begins at a certain trellis level, given that decoding has been
correct so far. Trellis error events begin when the decoded tremdiere ks (-) is the binary entropy function. We use this in our

path splits from the correct path and end when it merges agafigcoders, although considerably shorter values may be used without
Events can be short, if for example the decoder chooses a neaf@sppromising P, very much. Regarding the size &ff, certain
neighbor in the trellis, or they can be long. The second measutEoperties are known. If the design of the decoder is to guarantee
of decoder error in this correspondence is the overall bit-error rdft€ correction of any: errors in the lengthip, a bounded- distance
(BER). Most decoder properties are easiest to see fom P., is decoder(BDD) design, theml/ must satisfy [15]-{17]

thus an important analysis tool, although, of course, BER remains a

measure of practical importance. M2V —1)" (5)

he(p)=1-R (4)
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On the other hand, if the design specifies that the decoder must

10- T T T T T
achieve a certainP.., then the path numbers are entirely different;
this is discussed in [3] and [18]. — G,y Systematic
It is well known that a good computational performance for === G,y nonsystematic

—— G,

sequential decoding requires a rapid initial growth of the column

distances. This led to the introduction of tHistance profile1]:
Definition: Let C be a convolutional code encoded by a minimal- 10° |

basic generato& [19] of memorym. The (m + 1)-tuple

& = (d5.di. . dy,)

whered;, 0 < j < m, is the jth-order column distance dF, is P
called the distance profile of the code v 100 ¢

A generator matrix of memory. is said to have a distance profile
d’ superior to a distance profi#”’ of another generator matrix of

the same ratd&? and memorym, if there is somd such that

f=df, j=0,1,---,1-1 10° L ]
4 {> &, G =1 ©)
. L . : A\
Moreover, a convolutional code is said to haveoatimum distance M=128

profile (ODP) if there exists no generator matrix of the same rate and

memory whose code has a better distance profile. An ODP generator

causes the fastest possible initial growth of the minimal separation 1¢*® . . x

between the encoded paths diverging at the root in a code tree. 3.0 85 4.0 45 50 55 6.0
Furthermore, it has been shown [20] that there exists a binary, rate E/N, [dB]

R = b/c, time-invariant convolutional code with a generator matrixig. 1. Event error probabilities observed in tests of three different types of

I L

of memorym whose column distances satisfy the inequality encoders with approximately the same distance profiles.
G11 = (4000000 7144655), m = 20, dgree = 13;
d5 > pe(j+1) (7)  Gia = (6055051 4547537),m = 20,dfree = 22;

Ghs = (7404155 5404155),m = 20, dpree = 18.

for 0 < j < m, and wherep is the Gilbert—-Varshamov parameter.
From (7) it follows that at length;, = j+1 we can have a distance
between paths out of a trellis node that is at lgash, or equivalently p = 0.037 and 0.033, the numbers of frames were respectively
250000 and 500000 or more. In addition, there were selected tests
tn < d/pe. (8) of very long frames to confirm that catastrophic events occur with
negligible probability.)

Fig. 1 plots the observeR., againstE: /N, for a systematic and a
q?nsystematic encoder that have the same distance profile, as well as
a bestdy... QLI encoder, whose distance profile is approximately the
Spme. All encoders have the same memory, wh’ich means that they all

use the same resources. At th€'s in the figure(16, 32, 64, 128)
the difference in the measurdd, is statistically insignificant across

This again suggests rule (3) for the decoder decision depth.

The organization of the correspondence is as follows. In Section
we give the observed., versusE, /N, for an M -algorithm decoder
with bestds..., QLI, and feed-forward systematic encoders, and fi
that P., depends only on the distance profiles ahd In Section

Il we estimate F.y by an error sequence counting argument, @Mfe three encoders. This occurs despite the fact #hat varies
come to th_e same conclusion _Sect|on IV comparestheof the _widely among the three encoders. We have noticed similar behavior
and Viterbi algorithms. In Section V we turn to the BER, a quant|t¥ L .

o1 smaller M’s in our earlier work [13].

that depends critically on how the decoder recovers from losses 0 . . . .
the correct path; we conclude that only the systematic encoder car'?‘ very different r_esult oceurs whe_n encoders with widely varying
improve upon the Viterbi BER. early distance profiles are tested. Fig. 2 compares the obsé:tved
for the memory 12 best:... QLI encoder, decoded with/ = 32,
to P., for the encoder with both generators reversed. This reversal
creates an encoder with the same.., but with a distance profile
SIMULATIONS that develops late in the trellis rather than early. Despite the identical
In this section we will establish by tests of an actual erfree distancel., for the reversed encoder is nearly tenfold worse.
coder/decoder that the error event performance of\&mlgorithm Fig. 3 comparesF.. tests atM = 32 for a sequence of five
type decoder depends for the BSC almost entirely on the distarereoders, all withds.. = 10, each of whose distance profile
profile and apparently not on the details of the code generatorssoccessively underbounds the others. The result is a sequence of
on the free distance. The tests measure the error event frequemddely varying P, curves arranged in the same order.
as discussed in Section |, and thus do not measure the efficiency oflmost all the variation in decodeF... for the encoders that we
recovery from an error event (this is studied in Section V). (In thiested can be traced to variations in the early distance profile. It is
following simulations we used frames consisting of 1024 informatioreasonable that variation later in the distance profile might affect
bits. The number of simulated frames was chosen such that at Idastarge M, but thesell are of less practical interest. The following
100 distinct error events occurred; for example, with BSC crossovérardly affectP..: The type of encoder (systematic or not, QLI or

Il. DISTANCE PROFILE AND M
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10° ; ; . ; { 10° . ; . x . . :
— G, QU
oo G,,, QUi reversed 1
107 — G, .
PR G82
---G
10° | | Tl
= Gy
10% .
Po 10* | . Pe 10° | _
10* + E
10° —
10° | .
10‘5 L I 1 L L 10‘6 L I L L L 1 L
3.0 3.5 4.0 4.5 5.0 55 6.0 3.0 3.5 4.0 45 5.0 5.5 6.0 6.5 7.0
E,/N, [dB] E,/N, [dB]
Fig. 2. Event error probabilities observed in tests of a QLI encoder and thég. 3. Simulated event error probabilities observed in tests of a set of
corresponding reversed encoder when decoded Mith= 32. systematic encoders, each of whose distance prdfilsuccessively under-
. . bounds the others, when decoded with = 32. The heavy line is the ODP
G = (76414 56414). m = 12, dfree = 145 feed-forward systematic encodéf;; which always performs best.

Gao = (60574 60564),m = 12, dfree = 14.

Gy = (400000 714474),m = 15, dgee = 10,

d® =(2,3,3,4,4,5,5,6,6,6,7,7,8,8,8,8);
. . 739 = (400000 52 e = 1¢ 3 =
not), the free distance, the encoder memory. Dependindforthe 32 (40319“3 ?;2223342”; . é5’5df5f°g 5 é T T8.8):
last two must exceed a minimum threshold. _ Gas = (400000 447254),m = 15, dgee = 10,
As a final example, we compare a nonsystematic encoder to its d’ =(2,2,2,3.3,3,3.4,5,6,6,6,6,7,7,7);
equivalent systematic encoder. Consider the memoryg: 31 QLI Gza = (400000 427654),m = 15, dfre. = 10,
1 H . - P — € ‘ A 5 5 & K <
ODP nonsystematic convolutional generator matrix (octal notatio & =(2,2,2,2,3,3,4,5,5,5,5,5.5,6,6,6);

Ghonsys = (74041567512 54041567512) with diee = 25. By long
division of the generator polynomials and truncation after degree

m, we obtain the memoryr = 31 ODP systematic convolutional

generator matrixGsys = (40000000000 67115143222) with dgee =  overbounded by
16. These two generator matrices are equivalent over the first memory

3 5,
735 = (400000 417354),m = 15, dgee = 10,
3 t

x
Il
e
e
[N
-
™
.
-
>
o
QUB
D
(@)
=1
o

np
length, and consequently they have the same distance profile. In Fig. 4 P, < Z N(d)pl(1—p)"r. )
we compare for varioud/ the error event probability>., observed ey

at the root of the code tree for these two encoders. The outcome

f . .
the two simulations are virtually identical at eagh. sI'ﬁe remaining task is to count the sequences that can lead to decoder

error. This is done by a search of the decoder trellis withpaths

retained, once for each candidate error sequence. As the search

progresses, at each level there will be a certain number of trellis

paths at or below the Hamming distance of the correct path. If this

COUNTING ESTIMATE number never exceeddl, the correct path cannot be dropped, it

Because the error rates among different encoders with the sagwentually is closer to the received path than any incorrect-subset

distance profile are so close, a more accurate measurement thath, and decoding of the first trellis branch is correct with certainty.

experimental observations is needed fé. Also, experiments do If the number exceed3/, the correct path can be worse thah

not give accurate estimates at sm&ll.. We therefore estimat&,,  paths at some trellis level, or it can be tied for worst amongithe

combinatorically by counting the number of channel error sequendeseither case, we count the error sequence in the fo{al), which

that can lead to a decoding error in the first data symbol. Let theakes (9) an overbound.

BSC crossover probability bg, the decoder decision depth bg It can happen that the errors in a sequence concentrate later in the

trellis levels, ornp = ctp bits, and suppose the encodéy,, and sequence, and because the decoder keepsidnpaths, all incorrect

tp are sufficient to guarantee the correction of all combinations ofsubset paths are dropped before the errors are reached. In this case,

or fewer channel errors. Furthermore, for tiis-algorithm decoder correct decoding of the first symbol is certain; the reduced search has

suppose thal (d) channel error sequences of Hamming weiglbin  in fact rescued the decoder, so far as the first branch is concerned. If

potentially lead to decoder error. Then the error event probability ise candidate error sequences are tested in the right order, most can

I1l. DISTANCE PROFILE AND M
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3 . . , ; BDF 10
10 10 BDF 6
BDF 4
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—— G,,, systematic
167 --- G, aLl |

10744

107°¢
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T
ES
L}
>
L
&
—
—
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M= 32 1076
1
10 | M- 64 | Ey/Ng (dB)

M=128 Fig. 5. Counting estimate of the event error probabilities for a set of encoders
with different memories but with similar early ranges of the distance profiles.
BDF10 = Gs1 = (4672 7542), m =10, dpee = 14;

. ! . . BDF6 = Gs2 = (554 744), m =206, dfe = 10;
35 4.0 45 5.0 5.5 6.0 BDF4 = Gs3 = (4672), m=4, dge=T;
E,/N, [dB) ODP-FFS= G54 = (4000 7153), m =11, dfee = 9.

Fig. 4. Event error probabilities observed in tests of a systematic and_,
nonsystematic encoder that are equivalent over the first memory length. 05

Ga1 = (40000000000 67115143222), m = 31, dgyee = 16; Poy
Gaz = (74041567512 54041567512),m = 31, dgee = 25.

r

1073

be skipped over for this reason and the counting becomes a relatively
efficient procedure.

If the correct path fails to be unquestionably within the b&bt 1074
paths, the most likely event is that it is one Hamming unit too heavy
and that it is therefore tied with others as a candidate to be dropped.
We assign a probability of /2 to the event that the tie-break keepsm-s
the correct path; we thus apply a factor bf2 to (9). Finally, the
tail of (9) beyond, say, weight is easy to compute, if we assume

10 1"

] X Ey/Ng (dB)
a decoder error is certain p
107°1
w
np! d np—d
PmuZI—ZmP (1—=p)"2 " (10)
d=0 o

Beyond a certaim, this expression decays rapidly. In order to reducédd”™’t

the calculation ofV(d), it can be substituted for the tail in (9) at the

earliest convenient moment; the effect will make (9) a little more of

an overbound. 10-84
We turn now to results obtained with (9). Fig. 5 plots the counting

estimate ofP., for another collection of encoders with similar good

distance profiles and relatively small. This time, the encoders are

the bests... encoders of memorie$, 6, and 10, in addition to an 1077

ODP feed-forward systematic encoder, denoted ODP-FFS.FThe

estimates are almost identical for the sahieand in fact the traces of

the encoders resemble the intertwined strands of a rope. We claim this ) ) .

is because the early ranges of the distance profiles are very similgjd: 6. Counting estimate of the event error probabilities for the same

. . encoders as in Fig. 3.

The same progression occurs for these encoders in the counting

estimate, as shown in Fig. 6, which treaté = 4,8,16,32. Oc- a=Gs1, b= Gss, ¢ = G33, d = G34,ande = Gss.

casionally, the ordering of a single pair of encoders reverses at a

particularM (e.g., atM = 4, the order isachde). Overall, however,

the pattern is clear: A nested set of distance profiles leads to a nesteihe object of a reduced-search decoder is to reduce the survivor

set of ., curves. number—and hopefully, the computation—for the same error perfor-

IV. COMPARISON OF THEM AND VITERBI ALGORITHMS
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10° ; , : ‘ :
1072
Pev
10—6 '
. 5
10 !
10774
P 4 | | -81
o 10 M= 16 10
—_ 27" \h;l.-a'g'. N M= 32 10_9_
— G,,, Viterbi
—— G, Viterbi V=128
s —-- G,,, Viterbi
10 M= 64 4
V =256
. 107104
N\ M=128
\
V=512
107"
10'6 1 I 1 ] .
3.0 35 4.0 45 5.0 55 6.0
E/N, [dB]
107124
Fig. 7. Observed event error probabilities for a nonsystematic endgger
with the A -algorithm and three different bedf;.. nonsystematic encoders
Gr1,G72, Gz with Viterbi decoders.
Gr1 = (4734 6624), m =9, dpeo = 12; +
Gro = (T12 476), m=7, dfee = 10; . . . -
Grs = (561733), m =8, dye. = 12. Fig. 8. Counting estimates of the event error probabilities for the

M -algorithm decoding of the ODP feed-forward systematic encdeler
with M = 4,16,32, and64 and for the four-fold larger Viterbi decoder
. of sizes 16,64,128, and 256. The Viterbi algorithm (VA) encoders are
mance. We have shown thé&t. for a decoder of thel{-algorithm opp feed-forward nonsystematic with memony = 4,6,7, and 8. The

type will depend almost entirely on the distance profile, but we hawearter-sizell -algorithm has lower error probabilities above VA siz2s.

not shown how much better it might be than the Viterbi algorithrp, — _ 1000

. . = (400000 671166), m =17, dipee = 12;

(VA) for a given number of survivors. Actually, the answer depends., — EGQ 56). ) m = 4, df;i =
strongly on whether the error criterion is bounded distance or er@g; = (634 564), m =6, die = 10:
rate. Gss = (626 572), m="7, diee = 10;
We have already explored the BDD criterion for all rates in affss = (751 557), m=38, dee =12.

earlier paper [15]. At raté /2, for example, convolutional codes that
correcte or fewer errors closely follow the rulgf ~ (14 /2)° ~

(2.414)°, while the VA requires state size 4°; i.e., the disparity in always with then = 16 ODP systematic encodet00000, 671166).

. tiall L7 For the combination (VA siz&6)/(MA size 4), for which the VA uses
sulrfv;\r/]orsd grO\évs ngogen_ Iz y (?sb ( .é) .th di ity © ft anm = 4 ODP encoder, the VA is 0.5 dB better. For the combination
€ decoder IS to be judged by tsy, the dispanty Wrns out 1o /a oj,6 64)/(MA size 16), the VA gain drops to about 0.2 dB. By

be much Iess_. At very IargEb/zN_, the comparison must track thetlhe time (VA size256)/(MA size 64) is reached, the MA is actually
BDD result, since the lightest weight uncorrected error sequence wi

; . . . a little better. Note that all the codes in the figure have nearly the
dominate theP.. calculation. At relatively higlF.., we show the test same early distance profile.

results in Fig. 7. Nonsystematic be&tz. encoders are compared; the As one would expect, we are seeing here that the VA/MA com-

M -algorithm decodes the: = 9 encoder atM = 16, 32,64, 128, . . : .
hile the VA ks with the th d f o 49 parison begins to feel the influence of the bounded distance case as
while the WOTKS Wi e three encoders of memans, andd, . drops. We can predict that the VA will require 2—4 times the

whose survivor numbers are 128, 256, and 512. Some study of Wvivors that thel/ algorithm does, depending on the decoder error

flgur_e will show that the VA requires somewhat more than twice thr%te. It is widely acknowledged that the MA executes 1.5-2 times
survivors for the samé.,.

. : ) . ._the calculations of the VA per survivor kept, so that this rate of 2—4
Fig. 8 aims at relatively lowP., and is based on the counting P P

. I eeds to be reduced somewhat. We can claim that overall the MA
estimate. The VA error event probability is computed from [3, p. zzﬂas up to half the cost of the VA, whe., is the criterion
Paa 2 >0 a(d)4p(l—p)"? (11)

d>dfrec V. THE PATH LOSs ISSUE

in which «(d) is the number of paths of weightin the trellis. The With the probability of error design criterion, more errors than are
figure works by comparing the VA with nonsystematic ODP encodegsiaranteed corrected by the list siZé may occur sometimes, or
to anM -algorithm (MA) that retaing /4 the survivors; the MA works even often. These errors may lead to loss of the correct path from
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Fig. 9. Bit error probabilities observed in tests of the three types of encoderég,] omparison P

all of memorym = 20. Gio1 = Gi1;
Groz = (712476), m =7, dee = 10;
Go1 = Gi1, G2 = G12,andGoz = Gis. Gios = (561 753), m =38, diyee = 12;

Ghos = (4734 6624), m =9, dpree = 12.

the decoder memory, an event that the decoder must deal with. Tests

show that the overall bit-error rate of a-algorithm decoder with does it change thé/ needed to correct errors, so long as falls

a nonsystematic encoder is much worse than the same decoder WiRin the powers of the systematic encoder.

a systematic encoder having a similar distance profile. Yet the errof® Suggestion of why systematic encoders offer rapid recovery of
event rate is almost identical. The reason is that once the error ev@dpst correct path may be found by considering the trellises of rate
occurs the rest of the frame almost always follows an incorrect trelf§ = 1/2 random systematic and nonsystematic encoders. Suppose
path. This is the correct-path loss problem. Tests show that wii correct path .is the all-;ero one and no errors occur for atime, and
systematic encoders thel decoder quickly recovers a lost correctconsider an arbitrary trellis node. Tiebranch (the one that inserts
path, and can even outperform the Viterbi decoder that works wittPeZ€r0 into the encoder shift register) is the one leading back to the
matching nonsystematic encoder. An example is shown in Fig. @rrect path. For.a systematic encoder, t.he dlst.ance increment of this
which compares the BER of systematic, nonsystematic, and Q‘_‘,(_:prrect” branch ig€).5 on the average, while the incorrect brgnch has
encoders af\f = 16 and 128. All have approximately the same incremeniL.5. For a nonsystematic encoder, these average increments

initial distance profile. The free distance of the systematic encode/3& Pothl, and give no particular direction of the search back to the
by far the least, yet its BER is more than ten times better. correct path. Finally, we should use a feed-forward, rather than a

Fig. 10, which is a companion figure to Fig. 7, compares Xfie feedback, systematic encoder, because a driving sequence of zeroes

and Viterbi decoders in terms of the BER measure. It shows tH3Res not in general lead back to statwith the feedback encoders.

the M algorithm is again 2—4 times more efficient than the Viterbi

algorithm in terms of survivor numbers, just as it was againstithe VI. CoNcCLUSION

measure, but only when the encoder is systematic. We have given strong evidence that only feed-forward systematic
Fig. 11 shows both thé”., and BER for some systematic andencoders should be used with reduced-search decoders. To review

nonsystematic raté&? = 2/3 encoders whose memories and earlyhe train of logic, we first showed that nonbacktracking decoder error

distance profiles are similar (the nonsystematic encoder has muyehformance depends almost entirely on the number of survivors kept

larger di.). As we saw with rateR = 1/2, the P.,’s for both and on the early part of the distance profile. We then compared tests

encoders are almost identical at the saie but the BER's are of systematic and nonsystematic encoders with the same distance

grossly different. Only the systematic encoder leads to an acceptgblefile, and showed that because the systematic encoder allows quick

decoder BER. recovery of a lost correct path, it has a much better overall error rate
Many other demonstrations of the superiority of feed-forwarthan a nonsystematic encoder has. Since both kinds of encoders have

systematic encoders may be seen in [21]. Apparently, the orthe same error rate in the absence of correct-path loss, systematic

advantage of nonsystematic (and feedback) encoders is the lamyecoders are clearly superior to nonsystematic ones.

dree they offer at a given encoder state-space size. Yet this extraWe have also reached other conclusions. Apparently, the survivor

distance seems to have almost no effect/an or the BER. Nor numbers required in a bounded-distance decoder also depend only
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51630 25240 42050 ,
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(23]

very weakly on free distance, encoder state-space size, and the pregi
digits of the code generators; instead, they are simply and diregtliy
related to the desired error correction.

While we have studied only the performance of thealgorithm
in this correspondence, the estimates of the maximum BDD stordgél
size such as (5) are known to hold for any breadth-first decoder. In
addition, our conclusions about distance profiles in Sections Il anfin
Il are known to apply to backtracking decoders [22]. We can thus
conjecture that our conclusions extend quite widely. [18]

The conclusions here do run counter to much accepted wisdom
about convolutional codes. For instance, much of the search 3]
good codes has focused on maximizing the free distance for a given
encoder memory. Yet we show that the free distance has almost[%)J
effect on the performance of a reduced decoder with a fix&d
survivors, so long as the distance exceeds a certain minimum. Second,
the widespread use of the Viterbi decoder has motivated the desjgm]
of codes with the smallest possible encoder state spaces, but the
complexity of a reduced-search decoder for a given error performance

[15]

depends hardly at all on the encoder state-space size, again so IonB%ls

it exceeds a certain minimum. We have shown that the BER df/an
algorithm decoder is several times better than a Viterbi algorithm, for
the same decoder complexity. There is thus little practical reason to
search at length for encoders, e.g., feedback encoders, with a minimal
encoder state space or with the absolute largest free distance. What
really matters is the early distance profile, and the search for a good
profile can concentrate on systematic feed-forward encoders only.

While we have tested only a handful of code rates, the mechanism
of how decoders perform seems clear and not really difficult. With
just a little prudence in the encoder design, error performance simply
depends on how many survivors are stored in the decoder.
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