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|. INTRODUCTION

Growing evidence in recent research has shown that the error
performance of a channel decoder depends primarily on the decoder's
resources, and only secondarily on the qualities of the error-correcting
code itself, such as its free distance and the state-space size of
its minimal encoder. It is well established, for example, that the
performance of a sequential decoder of the Fano or stack algorithm
type depends on how many code trellis paths the decoder can visit.
The precise choice of the code matters little, so long as the code has
a good distance pro le and a reasonable memory.

In a traditional sequential decoder, the design begins by assuming
a long code and by assuming that the decoding of a data symbol
will be correct with certainty; an analysis then nds the expected
number of code trellis paths (or tree paths, or tree branches) that are
required to do this. So long as the code rate is less than the cutoff
rate, this expectation is nite, but the actual path number outcome
may on occasion exceed any bound, a phenomenon called erasure.
The working storage for these paths and the speed in which they may
be viewed comprise the resources of the decoder, and it is the need
for these that depends weakly on the code.

In more recent times, this design philosophy has often been
reversed. Rather than x the error probability at zero, the storage
of the paths is xed; by means of analysis and measurement, the
error probability or the number of correctable errors is found. Two
examples of this philosophy are the Viterbi algorithm and the
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algorithm (list decoder). In the rst, the storage is xed to the encoder Data-bit errors are caused, of course, by error events, but the BER
state-space size, and depends therefore critically on the code.aim Pey can differ widely, depending on how many data-bit errors
the second, the storage is xed M paths, independently of the occur in the events. After losing the correct path, a reduced-search
code. Decoders of th#l -algorithm type, whose storage is xeal decoder can ounder about for an inde nite number of trellis levels
priori, show a strong independence between error performance &rnghg to nd it again. During this time, the BER is essentially 50%,
code. and the BER is only barely related to th&,, which is de ned

The purpose of this correspondence is to relate the storage #m@ependently of any correct-path loss event. We will show that the
error performance of simple breadth- rst decoding of convolutionalhoice of a feed-forward systematic encoder solves the correct-path
codes, and to investigate how dependent they really are. We wvigBs problem.
show that the important aspect of a code is the early growth of itsAS we have mentioned, much of the recent work in reduced-
distance pro le [1], and that apart from this, the error performancgearch decoding focuses on decoders with xed storage or with some
of M -algorithm type decoders depends to a rst approximatiofther strict limitation to the search. Early work dvi -algorithm
on their storage only. We do this by two methods, for tmast- convolutional decoders was performed by Zigangirov and Kolesnik
QLI [2], and feed-forward systematic encoders. First, we constrddl- Simmons and Wittke [5], Aulin [6], Balachandran [7], and
decoders and test them over a simulated binary-symmetric chan@lenius [8], among others, have applied Mealgorithm to CPM
(BSC); second, we estimate error performance by counting the erfepdulation codes. They all reporsaturationphenomenon, in which
sequences that each decoder corrects. All of these turn out to hH@ Plot of Pey versus Ex=No improves steadily withM only
the same event error performance, so long as the path storage #nd0 @ certain smalM , after which there is little improvement.
their distance pro les approximately match. Conversely, codes wilfl the removal of intersymbol interference with the-algorithm,
markedly different distance pro les have markedly different decodeteShadri and Anderson [9], and Gozzo [10], also nd an even stronger
error rates. saturation effect. The effect appears as well in decoders whose search

As a consequence, an encoding by a feed-forward systeméﬁé:on ned to the range of pat_h metrics, rather tha|_1 by a Ii_mit to the
encoder with a proper distance prole decodes incorrectly abonymber of paths. Aulin has (_jlscussed vector Euclidean distance and
as often as with any other encoder in a xed-storage decodéP™Me other related matters in [11] and [12].

Such encoders are easily designed. More important, they address IQ our previous work [13], we treaM -algorithm decoding of

major shortcoming of convolutional decoders that do not search fivolutional codes over the BSC. That work reports the saturation
nomenon, but reports a new one as well. For the QLI convolu-

entire code trellis. These decoders occasionally lose the correct p%

completely from the storage and need a long time to nd it agaillf,onaI encoders tested ard below the saturation value, ey

v%r_susEb=No plot does not depend on the encoder, but onlyMon

an event that leads to a long error burst in the estimated data. fe ) . . .
) . I purpose now is to extend this work and determine what quality
forward systematic encoders make it easy to get the correct path . ) .
a convolutional code, if any, sets tif,, whenM is below the

least back into the storage, and from there, correct decoding raplga/ .
sdturationM .
follows. Consequently, they should perform much better than other_. . . .
. . .Since theM -algorithm and its strict limit to path storage play
encoder types with a reduced-search trellis decoder, and we show in . .
; SR a central role in the correspondence, we summarize the state of

later sections that this is indeed the case.

The oh in thi d iest t h knﬁ)wledge about it here. A practical implementation keeps in storage
€ phenomena in this correspondence are easiest to see whe Saths of lengthtp , wheretp , the decodedecision depthis the

(such as binary PSK) passed through additive white Gaussian N0 bit is released & behind the front
modeled as a BSC. For noise dendity=2, data bit energ¥y,, and
code rateR, the crossover probabilitg in the BSC is given by [3]

, all paths are extended one
trellis level deeper, and the belst survivors are retained. We also
delete any paths that do not correspond to the released data bit and
that represent state duplications of a better path in storage, although

p= Q(v/2RE©=No) (1) these features do not much change the decoder performance. Further
implementation details appear in [3].
with The proper value fotp (see [3] or [14]) for nonbacktracking
decoders and known, concrete codes is approximately
p_— !
QA 2a=2) [ en( VA x 0 @ o 2e=c @®
X

whereR = b=cis the code rateg is the number of errors the decoder

Although the decoder sees a BSC, its error performance is a funCtig%ssumed to correct, ands the GilberttVarshamov parameter, i.e.,
of Ep=No through these formulas, and the performance takes on t{p‘ee solution of

familiar @waterfall® shape when plotted against=No in decibels.
Error performance has two meanings in this correspondence. The
error event probability?ey of a decoder is the probability that a trellis
error begins at a certain trellis level, given that decoding has been
correct so far. Trellis error events begin when the decoded treméierehs () is the binary entropy function. We use this in our

path splits from the correct path and end when it merges agafigcoders, although considerably shorter values may be used without
Events can be short, if for example the decoder chooses a neaf@spromisingPe, very much. Regarding the size o, certain
neighbor in the trellis, or they can be long. The second measutEoperties are known. If the design of the decoder is to guarantee
of decoder error in this correspondence is the overall bit-error rdft€ correction of any errors in the lengthp , a bounded- distance
(BER). Most decoder properties are easiest to see fam Pe, is decoder(BDD) design, therM must satisfy [15]+[17]

thus an important analysis tool, although, of course, BER remains a

measure of practical importance. M @R 1= (5)

he()=1 R 4)
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On the other hand, if the design species that the decoder must
achieve a certairPey, then the path numbers are entirely different;
this is discussed in [3] and [18].

It is well known that a good computational performance for
sequential decoding requires a rapid initial growth of the column
distances. This led to the introduction of tHistance pro le[1]:

De nition: Let C be a convolutional code encoded by a minimal-
basic generato6 [19] of memorym. The (m + 1) -tuple

d” = (d5;di; ;dm)

where d,-°; 0 m; is the j th-order column distance ds, is
called the distance pro le of the code.

A generator matrix of memorn is said to have a distance pro le
d® superior to a distance pro l&P° of another generator matrix of
the same rat® and memorym, if there is somd such that

|
o
=
[EnY

NE d]cOy J -0 .
dj {> af% j =1 ©)

Moreover, a convolutional code is said to haveogtimum distance
pro le (ODP) if there exists no generator matrix of the same rate and
memory whose code has a better distance pro le. An ODP generator
causes the fastest possible initial growth of the minimal separation
between the encoded paths diverging at the root in a code tree.
Furthermore, it has been shown [20] that there exists a binary, rate
R = b=¢ time-invariant convolutional code with a generator matrixig. 1. Event error probabilities observed in tests of three different types of

of memorym whose column distances satisfy the inequality encoders with approximately the same distance pro les.
G11 = (4000000 7144655) ;m = 20 ; dfree = 13;
djc c(j+1) (7) Giz2 =(60550514547537) ;m = 20 ;dfree = 22;
G13 =(74041555404155) ;m = 20 ;dfee =18:

for0 | m, and where is the GilberttVarshamov parameter.
From (7) it follows that at lengthp = j +1 we can have a distanck
between paths out of a trellis node that is at leetss , or equivalently p = 0:037 and 0:033, the numbers of frames were respectively
250000 and 500000 or more. In addition, there were selected tests
to d=c: (8) of very long frames to conrm that catastrophic events occur with
negligible probability.)

Fig. 1 plots the observed., againstE,=N; for a systematic and a
r“)nsystematic encoder that have the same distance pro le, as well as
a bestdiee QLI encoder, whose distance pro le is approximately the
§ame. All encoders have the same memory, which means that they all
use the same resources. At thi€'s in the gure (16; 32; 64; 128)
the difference in the measur&d, is statistically insigni cant across

This again suggests rule (3) for the decoder decision depth.

The organization of the correspondence is as follows. In Section
we give the observeBe, versusE,=Ng for anM -algorithm decoder
with bestésee , QLI, and feed-forward systematic encoders, and n
that Pey depends only on the distance pro les aMl. In Section

lll we estimatePe, by an ©rror sequence countingp argument, @Mfe three encoders. This occurs despite the fact that varies
come to th_e same conclusion. _Sectlon IV compares*thent the M . widely among the three encoders. We have noticed similar behavior
and Viterbi algorithms. In Section V we turn to the BER, a quant|t¥ L .

ot smallerM's in our earlier work [13].

that depends critically on how the decoder recovers from losses 0 . . . .
the correct path; we conclude that only the systematic encoder caﬁo‘ very different result occurs whe_n encoders with widely varying
improve upon the Viterbi BER. early distance pro les are tested. Fig. 2 compares th_e obsdryed
for the memory 12 beddree QLI encoder, decoded witM = 32,
to Pey for the encoder with both generators reversed. This reversal
. DISTANCE PROFILE AND M : creates an encoder with the samg., but with a distance pro le
SIMULATIONS that develops late in the trellis rather than early. Despite the identical
In this section we will establish by tests of an actual erfree distancePe, for the reversed encoder is nearly tenfold worse.
coder/decoder that the error event performance oMamlgorithm Fig. 3 comparesP., tests atM = 32 for a sequence of ve
type decoder depends for the BSC almost entirely on the distaremecoders, all withdree = 10, each of whose distance pro le
pro le and apparently not on the details of the code generators successively underbounds the others. The result is a sequence of
on the free distance. The tests measure the error event frequemdgely varying Pey curves arranged in the same order.
as discussed in Section |, and thus do not measure the ef ciency ofAlmost all the variation in decodd?., for the encoders that we
recovery from an error event (this is studied in Section V). (In thiested can be traced to variations in the early distance pro le. It is
following simulations we used frames consisting of 1024 informatioreasonable that variation later in the distance pro le might affagt
bits. The number of simulated frames was chosen such that at IdastargeM , but theseM are of less practical interest. The following
100 distinct error events occurred; for example, with BSC crossovérardly affectPey: The type of encoder (systematic or not, QLI or
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Fig. 2. Event error probabilities observed in tests of a QLI encoder and thég. 3. Simulated event error probabilities observed in tests of a set of

corresponding reversed encoder when decoded Mitk 32 . systematic encoders, each of whose distance prdPlesuccessively under-
bounds the others, when decoded with= 32 . The heavy line is the ODP
Go1 = (76414 56414) im = 12 dfree = 14; feed-forward systematic encodér; which always performs best.

G2 = (60574 60564) ;m =12 ;dgee = 14:
Ga1 = (400000 714474) ;m = 15 ;dgee = 10;
d? =(2;3;3;4,4;5;5;6;6;6;7,7;8;8;8;8);
not), the free distance, the encoder memory. Dependinlylorthe 32 = (400000552234):m =15;dee =10; =
L dP =(2,2;3,4,4,4,5,5,5,6;6,6,7,7,8,8);
last two must exceed a minimum threshold. _ Gas = (400000 447254) ;m = 15 ; diree = 10 ;
As a nal example, we compare a nonsystematic encoder to its d° =(2;2;2;3;3;3;3,4,5,6,6,6,6,7;7,7); "
equivalent systematic encoder. Consider the memory 31 QLI Gz = (400?)00 427654) ;m =15 ;dfree = 10;
ODP nonsystematic convolutional generator matrix (octal notation) —_ (40(‘)1008 ‘(1217552)23_31% '.585? 5?5’?150?.5? 6.6:6);
_ : — 35 — ’ = » Uf - ’
Gronsys = (74041567512 54041567512)with diee = 25. By long @ =(2:222234556 666667
division of the generator polynomials and truncation after degree
m, we obtain the memoryn = 31 ODP systematic convolutional
generator matrixGsys = (40000000000 67115143222)with dee =  overbounded by

16. These two generator matrices are equivalent over the rst memory

N"p
length, and consequently they have the same distance pro le. In Fig. 4 Pey Z N (d) pd @ p"e d, ©)
we compare for variouM the error event probabilitPey observed d= el

at the root of the code tree for these two encoders. The outcome

f . .
the two simulations are virtually identical at eakh. sI'ﬂe remaining task is to count the sequences that can lead to decoder

error. This is done by a search of the decoder trellis Withpaths
retained, once for each candidate error sequence. As the search
progresses, at each level there will be a certain number of trellis
IIl. DISTANCE PROFILE AND M : paths at or below the Hamming distance of the correct path. If this
COUNTING ESTIMATE number never exceedd , the correct path cannot be dropped, it
Because the error rates among different encoders with the sagwentually is closer to the received path than any incorrect-subset
distance prole are so close, a more accurate measurement thath, and decoding of the rst trellis branch is correct with certainty.
experimental observations is needed Ry, . Also, experiments do If the number exceedd , the correct path can be worse thigh
not give accurate estimates at smdl,. We therefore estimatB.,  paths at some trellis level, or it can be tied for worst amonghthe
combinatorically by counting the number of channel error sequendeseither case, we count the error sequence in the total), which
that can lead to a decoding error in the rst data symbol. Let thmakes (9) an overbound.
BSC crossover probability bp, the decoder decision depth bg It can happen that the errors in a sequence concentrate later in the
trellis levels, ornp = ctp bits, and suppose the encodkt, and sequence, and because the decoder keepswbnpaths, all incorrect
tp are suf cient to guarantee the correction of all combinatione of subset paths are dropped before the errors are reached. In this case,
or fewer channel errors. Furthermore, for tMs-algorithm decoder correct decoding of the rst symbol is certain; the reduced search has
suppose thalll (d) channel error sequences of Hamming weigloan  in fact rescued the decoder, so far as the rst branch is concerned. If
potentially lead to decoder error. Then the error event probability ise candidate error sequences are tested in the right order, most can
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Fig. 5. Counting estimate of the event error probabilities for a set of encoders
with different memories but with similar early ranges of the distance pro les.

BDF10 = Gs; =(46727542); m =10; dfee = 14;
BDF6 = Gsp = (554 744) ; Mm=6; diee = 10;
BDF4 = Gs3 = (46 72) ; Mm=4: diee =7;
ODP-FFS= Gs4 =(40007153); m =11; dfee =9:

Fig. 4. Event error probabilities observed in tests of a systematic and
nonsystematic encoder that are equivalent over the rst memory length.

Ga1 = (40000000000 67115143222); m = 31 ; diree = 16;
Ga2 = (74041567512 54041567512):m = 31 ; diree = 25

be skipped over for this reason and the counting becomes a relatively
ef cient procedure.

If the correct path fails to be unquestionably within the bist
paths, the most likely event is that it is one Hamming unit too heavy
and that it is therefore tied with others as a candidate to be dropped.
We assign a probability of=2 to the event that the tie-break keeps
the correct path; we thus apply a factor Bf2 to (9). Finally, the
tail of (9) beyond, say, weightv is easy to compute, if we assume
a decoder error is certain

o - np! d np d.
Ptall =1 (; (nD d),dlp (1 p) . (10)

Beyond a certainv, this expression decays rapidly. In order to reduce
the calculation oN (d), it can be substituted for the tail in (9) at the
earliest convenient moment; the effect will make (9) a little more of
an overbound.
We turn now to results obtained with (9). Fig. 5 plots the counting
estimate ofP., for another collection of encoders with similar good
distance pro les and relatively smdill . This time, the encoders are
the bestdr.. encoders of memorie4, 6, and 10, in addition to an
ODP feed-forward systematic encoder, denoted ODP-FFS.PEhe
estimates are almost identical for the sdvheand in fact the traces of
the encoders resemble the intertwined strands of a rope. We claim this ) ) .
is because the early ranges of the distance pro les are very simila{:r'.g' 6. Coun_tlng_ estimate of the event error probabilities for the same
. . encoders as in Fig. 3.
The same progression occurs for these encoders in the counting
estimate, as shown in Fig. 6, which tredfs = 4;8;16;32. Oc- a= Ga1; b= Gazy; c= Ga3; d= Gas;ande = Gas:
casionally, the ordering of a single pair of encoders reverses at a
particularM (e.g., atM = 4, the order isacbde). Overall, however,
the pattern is clear: A nested set of distance pro les leads to a nested’he object of a reduced-search decoder is to reduce the survivor
set of Pey curves. numberband hopefully, the computationbfor the same error perfor-

IV. COMPARISON OF THEM AND VITERBI ALGORITHMS
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Fig. 7. Observed event error probabilities for a nonsystematic encdger
with the M -algorithm and three different bedfe nonsystematic encoders
G71;G72; G73 with Viterbi decoders.

G71 =(47346624) ; m =9; diee = 12;
G72 =(712476) ; m =7; diee = 10;

G7s =(561753); mM=8: dyee =12 Fig. 8. Counting estimates of the event error probabilites for the

M -algorithm decoding of the ODP feed-forward systematic encdslgr
with M = 4;16;32, and 64 and for the four-fold larger Viterbi decoder
. of sizes 16;64;128; and 256. The Viterbi algorithm (VA) encoders are
mance. We have shown thBt, for a decoder of theM -algorithm  opp feed-forward nonsystematic with memary = 4:;6;7, and 8. The
type will depend almost entirely on the distance pro le, but we havguarter-sizeM -algorithm has lower error probabilities above VA si¥28.

not shown how much better it might be than the Viterbi algorith (400000 671166) ; m =17; dgee = 12;

(VA) for a given number of survi\_/org. A_ctually, the answer dependsg, = (62 56) ; m=4: dgee =7,

strongly on whether the error criterion is bounded distance or errGg; = (634 564) ; m =6; dfee = 10;

rate. Gas = (626 572) ; m=7; dfee =10;
We have already explored the BDD criterion for all rates in affes = (751557) m=8; diee =12:

earlier paper [15]. At raté=2, for example, convolutional Eodes that

e
8 spany n S5 it = 16 0D ystematic ancadi00000 671166
su'rvivoré grows exponer?tially as (1:7)° T parity For the combination (VA siz&6)/(MA size 4), for which the VA uses
) . = . . anm =4 ODP encoder, the VA is 0.5 dB better. For the combination
If the decoder is to be judged by iRy, the disparity turns out to (VA size 64)/(MA size 16), the VA gain drops to about 0.2 dB. By

be much Iess_. At very IargEb=N9, the comparison must track thetlhe time (VA size256)/(MA size 64) is reached, the MA is actually
BDD result, since the lightest weight uncorrected error sequence wi

; . . - a little better. Note that all the codes in the gure have nearly the
dominate thd®e, calculation. At relatively highPey , we show the test same early distance pro le.

results in Fig. 7. Nonsystematic bakt=. encoders are compared; the As one would expect, we are seeing here that the VA/MA com-

M -algorithm decodes then = 9 encoder aM = 16; 32; 64; 128, . . . ;
hile the VA ks with the th d f - 49 parison begins to feel the in uence of the bounded distance case as
while the WOrks wi e three encoders of memary8, ands, P, drops. We can predict that the VA will require 2+4 times the

whose survivor numbers are 128, 256, and 512. Some study of {ffvivors that thevi algorithm does, depending on the decoder error

gure will show that the VA requires somewhat more than twice th(reate. It is widely acknowledged that the MA executes 1.5+2 times
survivors for the samée, .

. : ) . ._the calculations of the VA per survivor kept, so that this rate of 2+4
Fig. 8 aims at relatively lowPey and is based on the counting P P

. I eeds to be reduced somewhat. We can claim that overall the MA
estimate. The VA error event probability is computed from [3, p. zzﬂas up to half the cost of the VA, whd, is the criterion
1 Vv .
Pevva = Y (di4p(l p)*? (12)

d dfree V. THE PATH LoOSs ISSUE

in which (d) is the number of paths of weigltin the trellis. The With the probability of error design criterion, more errors than are
gure works by comparing the VA with nonsystematic ODP encoderguaranteed corrected by the list sie may occur sometimes, or
to anM -algorithm (MA) that retaind=4 the survivors; the MA works even often. These errors may lead to loss of the correct path from
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. . . Fig. 10. C i f the bit error probabilities observed indecoder tests.
Fig. 9. Bit error probabilities observed in tests of the three types of encoderég,] omparisons ot the bit & P

all of memorym = 20. G101 = Gi1;
G102 = (712 476) ; m =7; diee =10;
Go1 = G11; Ggz2 = G12;andGoz = Gia. Gioz3 =(561753); m =8; diee =12;

Gios =(47346624); m =9: diee = 12:

the decoder memory, an event that the decoder must deal with. Tests

show that the overall bit-error rate of &t -algorithm decoder with does it change thé1 needed to correct errors, so long as falls

a nonsystematic encoder is much worse than the same decoder Wihin the powers of the systematic encoder.

a systematic encoder having a similar distance pro le. Yet the errorA Suggestion of why systematic encoders offer rapid recovery of
event rate is almost identical. The reason is that once the error ev@dpst correct path may be found by considering the trellises of rate
occurs the rest of the frame almost always follows an incorrect trelfs = 1 =2 random systematic and nonsystematic encoders. Suppose
path. This is the correct-path loss problem. Tests show that withe correct path .is the all-gero one and no errors occur for atime, and
systematic encoders thd decoder quickly recovers a lost correctconsider an arbitrary trellis node. Thebranch (the one that inserts
path, and can even outperform the Viterbi decoder that works wittPaZ€r0 into the encoder shift register) is the one leading back to the
matching nonsystematic encoder. An example is shown in Fig. @rect path. For.a systematic encoder, t.he dlst.ance increment of this
which compares the BER of systematic, nonsystematic, and QloPrrect’ branch i€©:5 on the average, while the incorrect brgnch has
encoders aM = 16 and 128. All have approximately the same incrementL:5. For a nonsystematic encoder, these average increments

initial distance pro le. The free distance of the systematic encoder &€ P0thl, and give no particular direction of the search back to the
by far the least, yet its BER is more than ten times better. correct path. Finally, we should use a feed-forward, rather than a

Fig. 10, which is a companion gure to Fig. 7, compares Me feedback, systematic encoder, because a driving sequence of zeroes

and Viterbi decoders in terms of the BER measure. It shows tH3R€s not in general lead back to statwith the feedback encoders.

the M algorithm is again 2+4 times more ef cient than the Viterbi

algorithm in terms of survivor numbers, just as it was againsPthe V1. CONCLUSION

measure, but only when the encoder is systematic. We have given strong evidence that only feed-forward systematic
Fig. 11 shows both thé., and BER for some systematic andencoders should be used with reduced-search decoders. To review

nonsystematic rat® = 2=3 encoders whose memories and earlyhe train of logic, we rst showed that nonbacktracking decoder error

distance pro les are similar (the nonsystematic encoder has musérformance depends almost entirely on the number of survivors kept

larger diee ). As we saw with rateR = 1=2, the Pey's for both and on the early part of the distance pro le. We then compared tests

encoders are almost identical at the saWe but the BER's are of systematic and nonsystematic encoders with the same distance

grossly different. Only the systematic encoder leads to an acceptabile le, and showed that because the systematic encoder allows quick

decoder BER. recovery of a lost correct path, it has a much better overall error rate
Many other demonstrations of the superiority of feed-forwarthan a nonsystematic encoder has. Since both kinds of encoders have

systematic encoders may be seen in [21]. Apparently, the orthe same error rate in the absence of correct-path loss, systematic

advantage of nonsystematic (and feedback) encoders is the lamyecoders are clearly superior to nonsystematic ones.

diee they offer at a given encoder state-space size. Yet this extraWe have also reached other conclusions. Apparently, the survivor

distance seems to have almost no effectRap or the BER. Nor numbers required in a bounded-distance decoder also depend only



838

(1]
(2]

(3]
(4]
(5]

(6]

(7]

(8]

(9]

[10]
Fig. 11. Observed bit and event error probabilities RoE 2 =3 systematic
and nonsystematic ODP encoders. 11]
_ {40000 00000 57371\,  _ . . _q
Gu = (ooooo 40000 63225)"“ =14; =28diec =8, [12]
_ (51630 25240 42050\, _ . . -
Guz = (05460 61234 44334)' m=12; =23;dfee =16.
[13]

very weakly on free distance, encoder state-space size, and the pregi
digits of the code generators; instead, they are simply and diresg1
related to the desired error correction.

While we have studied only the performance of Mealgorithm
in this correspondence, the estimates of the maximum BDD stora3él
size such as (5) are known to hold for any breadth- rst decoder. In
addition, our conclusions about distance pro les in Sections Il aﬁqn
Il are known to apply to backtracking decoders [22]. We can thus
conjecture that our conclusions extend quite widely. [18]

The conclusions here do run counter to much accepted wisdom
about convolutional codes. For instance, much of the search 13f]
good codes has focused on maximizing the free distance for a given
encoder memory. Yet we show that the free distance has almost[g&
effect on the performance of a reduced decoder with a *éd
survivors, so long as the distance exceeds a certain minimum. Second,
the widespread use of the Viterbi decoder has motivated the desjgm]
of codes with the smallest possible encoder state spaces, but the
complexity of a reduced-search decoder for a given error performance

y
[15]

depends hardly at all on the encoder state-space size, again so IonB%ls

it exceeds a certain minimum. We have shown that the BER & an
algorithm decoder is several times better than a Viterbi algorithm, for
the same decoder complexity. There is thus little practical reason to
search at length for encoders, e.g., feedback encoders, with a minimal
encoder state space or with the absolute largest free distance. What
really matters is the early distance pro le, and the search for a good
pro le can concentrate on systematic feed-forward encoders only.

While we have tested only a handful of code rates, the mechanism
of how decoders perform seems clear and not really dif cult. With
just a little prudence in the encoder design, error performance simply
depends on how many survivors are stored in the decoder.
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