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Adaptive QRS Detection Based on Maxim'um
A Posteriori Estimation

PER OLA BORJESSON MEMBER, IEEE, OLLE PAHLM, LEIF SORNMO STUDENT MEMBER, IEEE,
AND MATS-ERIK NYGARDS

Abstract— A mathematical model for the occurrence of nonoverlap-
ping pulse-shaped waveforms corrupted with colored Gaussian noise is
considered for the purpose of QRS detection. The number of wave-
forms, the arrival times, amplitudes, and widths are regarded as random
variables. The joint MAP estimation of all the unknown quantities con-
sists of linear filtering followed by an optimization procedure. A class
of filters is introduced which is easy to implement. The mismatching
obtained by using this class for detection of model QRS complexes
is investigated. The optimization procedure is time-consuming and is
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modified so that a threshold test is obtained. The model formulation
with nonoverlapping waveforms leads to an “eye-closing” procedure
covering a segment before as well as after an accepted event. Adaptivity
of the detector is gained by utilizing past as well as future sngnal prop-
erties in determining thresholds for QRS acceptance.

I. INTRODUCTION

RS detection in ambulatory ECG recordings presents a

difficult problem. The signal is sometimes disturbed by

nonstationary noise, and it is also subject to variations
in amplitude due to time-varying impedance at the electrode-
skin interfaces. Another problem arises from the fact that the
morphology of “normal” QRS complexes may change during
the time of recording due to changes in heart position relative
to the electrodes. Such changes can be rapid, ie., occur
almost from one QRS complex to the next, due to rapid
positional changes of the patient (e.g., a rapid change from
recumbent to standing position). Further, QRS complexes of
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quite different morphology, such as aberrantly conducted
beats or beats of ventricular origin, may be intermingled with
the “normal” QRS complexes.

During the last decade, the problem of detecting QRS com-
plexes has been treated by several authors. Reliable QRS
detection is of fundamental importance, whether the purpose
is to locate tentative QRS complexes for further morphological
analysis [1], [2], or to obtain a table of R-R intervals [3],
[4]. Most recent detectors are intended for software imple-
mentation, which allows a more complex structure than reali-
zation in hardware. Since the R wave portion of the complex
usually is easy to distinguish due to its relatively sharp peak,
several algorithms incorporate simple slope criteria [5], [6].
Commonly, the peaks in the differentiated signal and the
duration between these peaks are compared to thresholds,
which are successively updated from past signal properties. To
avoid power line interference and to reduce the influence of
muscle artifacts and baseline shifts, simple digital filters are
used [1], [71, [8]. Application of matched filters is discussed
in [8], [9], where the problem of defining an accurate fiducial
point is also considered.

Little theoretical work has been presented in the field of
QRS detection. In the early seventies Haywood et al. con-
sidered a mathematical model for the purpose of detecting
ventricular extrasystoles [10], [11]. In that work, the number
of waveforms in the observation interval was known and the
amplitude and arrival time were considered random quantities.
We have in this paper started with a model formulation which
has similarities to the problem of resolving different targets, as
treated in radar theory [12]-[14]. In that case the object is
to detect or estimate an unknown number of received wave-
forms and their arrival times. v

In the first part of this paper, the signal model and the esti-
mation procedure are presented. In Section IV, different
aspects of the model, such as the effect of using filters mis-
matched to the input signal, are discussed in relation to
ECG’s. Further, the observation interval is delimited by means
of two “significant” waveforms. By letting the properties of
these waveforms determine the acceptance criteria within
the interval, the detector adapts quickly to changes in QRS
morphology. Also, such a delimitation is a means for utilizing
both past and future signal properties. Since the detector is
based on MAP estimation, the concepts “detector” and “esti-
mator” are used interchangeably.

II. JoINT ESTIMATION OF THE NUMBER OF WAVEFORMS
AND THEIR ARRIVAL TIMES

Signal Model and MAP Estimation

In this section we consider the following discrete-time model
formulation; a finite sequence of variables r(k),k=1,2,- - -, N,
also denoted by the N-dimensional vector r, is observed, con-
taining an unknown number q of pulse-shaped waveforms,
corrupted by additive, white Gaussian noise w(k) with the
spectral density Ny /2,

q
Z B;s(k - 6;, T;) + w(k) I<g<n

i=1

w(k)

r(k) = 6]

q =0.
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Fig. 1. The probability density for B;.

Each waveform belongs to a known class of signals [~s(k, )],
but with unknown arrival time 6, amplitude B;, and width T;.
The waveform s(k, T;) has a duration of less than D and is
composed of two equal waveforms v(k),

{v(k)~v(k+T,-) 0<k<D-1

s(k,T;) = 2
(k. 7o) 0 otherwise. @

The parameters g, @, and T are discrete-valued and B, con-
tinuous-valued random variables. The joint a priori probability
density is denoted by p(q, 0, B, T). Since g is constrained to
the interval 0 < g < n, it is sufficient with » components in
each of the vectors 0, B, and T.

The arrival times 6,, 0,, - - -, 0, are separated by at least the
distance D, i.e.,
|9i—9i|>D for i#]. (33)

Thus, the pulse-shaped waveforms are nonoverlapping. To
guarantee that all waveforms are completely contained in the
observation interval 1 <k <N,

1<, <N-(D-1) i=1,---,n (3b)
We require that ¢ fulfills
N-D
<n< +1
q<n lw_l J C))

where [-] denotes the integer part. With the constraint (4) it
is possible to assume that g and @ are independent. In our
model all the random variables are independent, apart from
an interdependence between the components of 8. Then the
joint probability density can be written

p(a,9, B, T)=Pr(q) Pr(6) [] p(B) Pr(T)

i=1

®)
for
(q,0,B,T) €< 9(73,3,1‘

where QE,':Z-,, g, defines a sample space such that p(q,0, B, T)
is zero outside this space as follows. The probability for
q waveforms,

Pq
P = 6
@ { 0 otherwise. ©)

The joint probability of the arrival times Pr(0) is uniform over
those @ which fulfill (3). The probability density p(B;) for
the amplitude is “double-sided”” uniform for B; € [-1,-8] or
[8,1]; see Fig. 1. Finally, the probability Pr(7}) is uniform
for T; € [y, 7, ], where 7; and 7, are positive integers.

Based on the a priori knowledge p(g,0, B, T) and the ob-
served signal vector r, we want to estimate the number of
pulses g in the observation interval and their arrival times
01,0, ,0,. To do this, we use the joint “maximum a

q=0’ 19"')”
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Fig. 2. Preprocessing of the ECG to calculate the function defined by (15). In the figure, the width T} is constrained to
the values 2, 3, or 4.

posteriori” (MAP) estimates of all the unknown parameters
q,0,B, and T. These joint MAP estimates are given by any
(3,8, B, T) that maximizes the log likelihood function [15],

2 N q
V(r,q,0,B, ﬂ=N—0 > r(k) 3 Bis(k-6;T))
k=1 i=1 \

1 N 4 2
RN z(B,-s(k- o T,-))
NO k=1 i=1

+Inp(q,0,B,T) Q)

where the sums over i equal zero for g =0. The first term in
(7) can be obtained as a weighted sum of outputs from a linear,
time-invariant filter with the impulse response

v(-k)
2E,

ho(K) = (®)
where E,, is the energy of v(k), i.e., the sum of v?(k) over k.
The output of the filter at the discrete time 6; is given by the
convolution sum

2O)= 35 rEho(6; - ). ©

k=1

In order to arrive at a convenient form for V(r, q, 0, B, T),
we introduce the following notation. The signal-to-noise ratio
(SNR) for B; = 1 is given by

2 N
d*(T) = N s*(k, T;)=d3(1 - p(T})) (10)
0 k=1
where
4F
§=—+ 11
@i = an
and p(T;) is the normalized correlation sum for v(k),
1 D-1
pT)== 3 v®ok+T). (12)
V k=0

By means of the new notation and the a priori probabilities,
the log-likelihood function is reduced to

q
V(r,q,0,B,T)= > d%T))

i=1

y6)-y06;-T) _fﬁ]
1-p(T) 2

g

7. In (13) we have omitted an addi-

+Inp, (13)
for (¢,0,B, TV €QY) 5,
tive constant.

We now maximize (13) with respect to B, T, and 0. First, we
maximize over the vector-components in B, T, and 0 with in-
dex g +1<i<n, which is done by simply choosing these
components in ngg p.r- In Appendix A, (13) is maximized
with respect to B;, ’résulting in a function §,-(0,-, T;) which
is then substituted for B; in (13). The joint MAP estimates
3,0,7 and §(§i=Bi(§,-, T;)) are obtained by maximizing
the log-likelihood function

14
over the sample space Qf,‘,’g,T. The function F(x) is given in
Appendix A, see Fig. 7. Further, to eliminate T; in an analo-
gous manner, we introduce the function M(6;), defined by

y(6:) - y(0; - Ti))
1-p(T)
(15)

B

V(f, q, 09 T)= Zq: dz(Tl)B 2

i=1

y(6:) - ¥6;- Ty
[F ( 1-p(T)

+1Inp,

max
n<Ti<T,

M(6;) = [(1 -p(T)F <

+0(T) %] :

In this case we cannot find an explicit expression for the
T; that maximizes (15). The calculation of M(6;) is illus-
trated in Fig. 2 for T; € [2,4]. Now, with (15) we can
maximize
25 o B
Ve.0.6)=dis 3 |MO) -7 |+Inpg (16)
i=

over the sample space Qg,’g to obtain the joint MAP estimates.

When maximizing (16), which contains the quantities of pri-
mary interest ¢ and @, one could first look at a fixed g and

determine those @ that yield the maximum. Then, we take

that g which gives the overall maximum.
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Approximate MAP Estimation

The calculation of the estimates (g, &) described in the pre-
vious section is tedious (particularly for large n), since it is a
multidimensional optimization problem. We do not intend to
find the optimum, but will be satisfied in finding the estimates
?1,51, -e ',5;, defined by the maximum V= maxo<q<n Vg-
The function ¥, is defined by the recursion

V():O
Vq=V(’;q,5l,§2,"',5q)

=n;ax V(r’q”él’§2, e sgq—l’eq)
q

1<g<n (17

where V(r,q,0) in (16) from now on is redefined by omitting
the additive constant In py. Thus in each step we only have to
determine one parameter, §q, which equally is obtained by
maximizing the difference

AV(r’q’oq)=V(r’qs§1552s.“aeq)
_V(r,q_1a51a52,".9§Qfl) 1<q<n

(18)
The maximum is denoted by 4,
Dg=Vq-Vqoy =maxAW(r,q,0,) 1<q<n. (19
bq
In terms of A4, ¥, can be written
q
V=3 A 0<gqg<n (20)
i=1
with the sum defined as zero for ¢ = 0.
By using (18) and (16) in (19) we obtain
A;=d3B max [M(6;) - @;(6))] 1)
i
where
B 1 Di-1
o;(0)==—+—=In— 22
(09 =5 + a5 o @

for (81,05, ,0;-1,0,) € sz,(;). Equation (21) shows that any
M(6;) which is larger than o;(6;) gives a positive contribution
to V. With equal a priori probabilities for g(p; = 1/(n + 1), i =
0,1,---,n),a;(0;) is independent of g and the procedure is
analogous to a threshold test. In this case, we simply choose
the maxima in turn starting with the largest one, while observ-
ing the cancelling operation of segments within the distance
D from each picked maximum. This scheme is continued until
no further maximum exceeding B/2 exists. Note thatifg =1,
then §; =6,. Some examples of the approximate MAP esti-
mation are found in Appendix B.

III. MODIFICATIONS OF THE MODEL

From a mathematical model, a method has been developed
for estimating the number of pulses in an observation interval
and their arrival times. Only the white noise case was studied.
We will here generalize the model to a continuous-time situa-
tion for band-limited waveforms corrupted with band-limited
colored noise. A family of simple power spectra for the noise
is used.

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. BME-29, NO. 5, MAY 1982

In general, estimation in colored noise is more complex than
estimation in white noise. However, for an infinite observation
interval and stationary noise, the increased complexity is es-
sentially restricted to exchanging the matched filter. In the
band-limited case, a discrete-time formulation leads to the
same result as a continuous-time one, if the observed signal
r°(¢) (c denotes continuous time) is sampled with at least the
Nyquist rate. We now allow continuous-valued arrival times
0; for the waveforms in the observed signal (1). By constrain-
ing the estimator to produce only discrete-valued @,-, a degrada-
tion in performance is obtained.

The impulse response of the matched filter will depend not
only on the configuration of the input signal, but also on the
power spectrum of the colored noise. Alternatively, if we
specify a certain filter and a certain noise spectrum the filter
will be matched to a certain input signal. We will investigate
a class of filters with finite impulse response, described by
two integer parameters.

Estimator for Sampled Signals Corrupted with Colored Noise
We assume that the noise is Gaussian with the power spectrum
1 - pe iAW) 2
Ru(f)~ ’1 - ae7mIIW)

0 lf1>w

where the bandwidth W is so large that the signal energy for
|f1= W is zero. The family of noise spectra (23) enables us
to roughly model disturbances of low-pass character. Three
spectra in this family are shown in Fig. 3 for various choices
of the parameters @ and b. Note that a =b gives the white
noise treated in Section II. » ‘

Despite the infinite observation interval (i.e., the observed
signal r°(f) is given for -oo < ¢ < o0) we restrict 6 to be such
that the waveforms are completely contained in a finite inter-
val, just as in Section II. Since 7°(7) is band limited and given
in an infinite interval, the sampled signal r(k) = r(k/f;) will
contain the same amount of information (as long as the sam-
pling rate f; > 2W). Then, in the colored noise case the log-
likelihood function is given by [15]

IfI<SW,0<ab<1

(23)

oo

r,q,0,B,T)= >

k=-00

q
r(k) > Bigo(0;- k,Ty)
iz1

Ms

q
B;is(k - 0;,T))

1

1
2

k=-o i

q
: Z B]go(ej - k’ T])+lnp(q,0, B: T)'
j=1

24
Note that (24) differs from (7) not only in that the matched
filter s(k, T;) is replaced by go(k, T;), but also that 6; is now
continuous-valued. The matched filter go(k, T;) is given by
the inverse Fourier transform

S*®v, T) V2 §%, T
gk, T)=3" {—"}=f —2 B p2mk gy
0( l) Rn(V) -1/2 Rn(v)

(25)
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Fig. 3. Noise spectra for three choices of 4 and b.

where S(v, T;) is the Fourier transform of s(k, T;),

S, T)=F{s(k, T)} = Z s(k, Ti)e-jzﬂ'vk

KkK=-o0

(26)

and R,(v) is the power spectrum for the sampled noise. Since
fs>2w

R,(v) = fiRA(fsv) @27

with Ry(f) given by (23). For the purpose of utilizing the re-
sults in Section II, we will redefine some of the quantities de-
fined there. Due to the colored noise situation, (8)is changed to

V*®)
ho(k)=F 1 {————— 28
0( ) {‘Lg]zn(v) } ( )
where d is such that
e
d2=2 f 2 . (29
=2 ). R )
Furthermore, p(T;) in (12) is replaced by
(30)

p(Ty)=2 Zk: v(K)ho(T; - k).

We neglect the energy outside the duration D of the wave-
form s(k, T;) and the matched filter go(k, T;). Then, with
the quantities (25)-(30) inserted into (24), the estimator is
almost the one in Section II. The difference is that 6; in (24)
is continuous-valued, so (28) should be evaluated for continu-
ous k. The estimator could be implemented by using a num-
ber, P, of filters in parallel, ho(k), ho(k + 1/P),- - -, ho(k +
(P - 1)/P). For a sufficiently large P we have then implemented

an estimator for continuous-valued ;. In the following we use

P=1, ie., the estimator produces only discrete-valued ;.
This choice leads to two types of errors.

1) An extra error in the estimate of the arrival time is
introduced.

2) The maximal possible signal magnitude after the
“matched” filter is reduced (loss in SNR).

The first error is at most equal to 1/(2f;). The second error
is investigated in the next section.

A Class of Filters

We will now treat the case when the filter ho(k) and the
power spectrum of the colored noise in (27) are given. The
matched filter go(k, T;) in (24) is then determined by (25),

345
RA(£)
a = 0.9999
> f f
W 0
(©)
(28), and (2). Thus,
&o(k, T;) =dg {ho(k) - ho(k - T))}. (1)

Utilizing this filter and the power spectrum (27) in (25),
we obtain a unique waveform s(k, T;) to which go(k, T}) is
matched. Since the continuous-time signal is band limited, it
is uniquely determined as

1/2 ]

R,(v)GEw, T)el>™ st gy, 32)

-1/2

To evaluate (31) we specify the filter #y(k). We will here
treat a class of filters for (k) defined by two integer param-
eters K(=1, 2,3, 0or4) and L(=0, 1, 2 or 3)

hgr(K) =27 {(1- z7%)(1 +27H)E2 P} (33)

where Z ™! {.} is the inverse Z-transform. In the time domain,
the first part (1 - z7X) forms a difference between the input
and the delayed input (K samples). For example, for K = 1 the
result is the first-difference signal of the input. The second
part (1+z71)L is a low-pass filter with decreased bandwidth
for increased L. Finally, the factor z2 is included in the filter
to fit the structure in Section II. When implementing the filter,
zP could be left out with the consequence that the output will
be delayed by D samples. Filters within the structure (33)
have been used in [1] and [7]. Using hg; (k) for ho(k) in
(31) we obtain the filter :

gxr(k, T)) =dg {hgr (k) - hgr(k - T))}. (€2

Since hgy (k) is antisymmetric, gxz (k, T;) is symmetric. The
signals s(t, T;) of Fig. 4 have been obtained by replacing
8o(k, T;) in (32) with gg;(k,T;). Once K, L and the noise
spectrum [a and b in (23)] have been chosen, the filter will be
matched (apart from the first error) to the sampled versions
of waveforms given by varying the parameter T; (one time axis
in the figure). In spite of the simple parametric structure of
the filter gy (k), we can model a fairly wide class of signals.
One constraint is that only symmetric signals can be modeled.
In the next section, we will further study the filters in the given
class, when they are used on symmetric and antisymmetric
sampled signals.

Sc(t, T)=

IV. APPLICATION OF THE ESTIMATOR TO SAMPLED ECG’s

In Sections II and III we have developed an estimator which
works on a sampled signal. No reference was made to ECG’s.
Here, we will apply our estimator to ECG’s sampled at f; = 100
Hz. It is appropriate at this point to relate certain properties
of the model that we used for determining the estimator to
the corresponding ECG properties (see Table I).
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Fig. 4. Waveforms to which the filter gx 7 (k, T) is matched for three different noise spectra. (@a=>b. (b)a=3/4,b=1/4.
(c)a=0.9999, b =0.

The discrepancy in property 1 is taken care of by prefiltering
and sampling. The prefiltering implies that we lose some of
the high-frequency characteristics of the signal. Since we can
model low-frequency noise, cf. (23), important aspects of
properties 2 and 3 can be taken care of, namely baseline wan-
dering and T waves. These are in general more low-frequent
than QRS complexes. High-frequency noise due to, e.g., mus-
cular activity will be attenuated by the prefilter. Our model
does not include any high-frequency noise above the white-
noise level. In the subsections below we consider properties
4-6.

Assumptions of Rhythm

Most often QRS complexes are fairly regularly spaced along
the time axis. Assuming a regular rhythm in the model would
probably improve the performance in normal ECG’s with
sporadic artifacts. However, in our opinion, one should not
impose a rigid structure on the timing of events since one of
the most important qualities of a good QRS detector is to
reliably detect changes in thythm. These often are clinically
important.

Our assumption of a uniform Pr(@) leads to an estimator
which favors no particular locations of QRS complexes in the
observation interval. However, we have postulated that they
cannot overlap. Unequal a priori probabilities for the number
of complexes in the observation interval Pr(q) may be used.
This allows the estimator to favor a certain heart rate.

Mismatched Filters

In Section III we suggested a class of filters characterized by
two integer parameters. Signals to which these filters could
be matched were shown in Fig. 4. It is seen in this figure that,

TABLE 1
PRrOPERTIES OF ECG’s VERSUS MODEL

ECG Model
1. not strictly bandlimited strictly bandlimited
2. non-stationary, complex bandlimited, coloured sta-

noise situation tionary Gaussian noise

3. P waves, T waves and P waves, T waves and arti-

artifacts occur facts not directly modelled

4. rhythm most often regular weak assumptions as regards
rhythm

5. wide class of waveforms assumes waveforms of type
depicted in Fig. 4.

6. observed waveforms most assumes positive and nega-

probably have the same tive polarity with equal

polarity probability

in many cases, essential properties of QRS complexes are mod-
eled. It is well-known from signal theory [15] that matched
filters are often rather insensitive to moderate variations in
signal and noise properties. - In the present section, we want
to study the reduction in performance that results from using
filters in the given class (2 (k)) to input signals that are not
matched to the filter. We will investigate some of the combi-
nations of K and L used in Fig. 4. As input signals, we have
chosen two model QRS complexes with variable widths, s{(7)
and sf;(7) given by

sf(f)~ et 20" (35a)

s5(8) ~ te™t 1297, (35b)
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Linear combinations of these waveforms have been used by
some authors to describe essential characteristics of QRS
complexes [1], [16], [17]. QRS waveforms with mono- and
biphasic configurations can be modeled. The width is easily
controlled by o.

We have used the reduction in signal-to-noise ratio that
results from mismatching as our measure of performance. We
use the definition

max {Z s(Dg(k - l)}2
k 1

1/2
{ f IG@)* Ra() dV}

1/2

SNR (g(k)) = 10 - °log (36)

where g(k) is the impulse response of any receiving filter and
s(k) is the input waveform under study, not necessarily in the
class given by (2). The maximum SNR is obtained when g(k)
is matched to s(k), ie.,

1/2 S 2 .
SNR ay = 10 - Plog f SO 4, (37

_1/2 n(V)

In our case the signal s(k) is obtained by sampling one of the
continuous time signals, given by (35)

w5

where |e]| < 2 The filter g(k) is in our case gg ;. (k, T;), given
by (34). For the corresponding reduction in SNR, given by
the difference between (36) and (37), we use the notation
R(K,L,e,T;). If, for given K, L, and €, we could choose T;
such that R(K,L, €, T;) =0, (i.e., no mismatching), the filter
gx1(k, T;) would be matched to the input in the sense given
by Sections II and IIl (unknown parameter T;). For each
K and L and each input signal under study the optimum T; is
used, i.e., we only use the maximum of R(K, L, €, T;) over
T;, which we denote

R(K,L,€)=10

(33)

max {Z s(Dgxr(k -1, Ti)}»

1

- 1%10g max

r, (M f"’ IS@)P?
! G ,THI? Ru(v)d -
J‘llz ‘ KL(V )l (V) v i Rn(V)

(39)

where s(k) now is given by (38). The maximal reduction in
SNR due to the choice of arrival time of the input signal is
given by

Ryax(K,L)= max R(K,L,e)

lel<1/2

which is our measure of mismatching. Even if this quantity is
zero, another set of samples from the continuous-time wave-
form (another €) will degrade the performance of the KLT
filter, i.e., an extra error in the arrival time will occur. We
measure this error as the difference

AR(K,L) = Rpax(K,L) - 1&1111/ RK,L,¢).

(40)

41
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X(K,L)

R
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Fig. 5. Reduction in SNR due to mlsmatchmg, Rmax(K L), using the
filter gKL(k T) for the input signals s (t) or sH(t) in the three dif-
ferent noise situations. Rp,x (K, L) is shown as a function of the
width parameter ¢. Diagrams Ia and Ila correspond to the noise spec-
trum with ¢ =5, Ib and IIb to a=3/4, b=1/4, and Ic and IIc to
2=0.9999, b =0. The two numbers at each curve are the filter pa-’
rameters KL. The range of normal QRS width (0.06-0.1 s) is indi-
cated by a broader line along the ¢ axis.

Fig. 5 shows R (K, L)! for various ¢ and for the three noise
spectra of Fig. 3. It is evident that the case whenK=1,L =0
does not need further consideration. This is also indicated in
Fig. 4, where many of the cases with L = 0 are not very similar
to QRS complexes. For small ¢ (“normal” QRS width) and
the colored noise situation [Fig. 5(b) and (c)] the best per-
formance is seen for sf(z). The reason is that the receiver is
matched to signals which are essentially monophasic (see Fig. 4
for small T;). The antisymmetric signal s;(f) almost represents
a “worst case” for the present filter structure, since the filter
essentially “sees the main peak™ of the input signal.

In the cases of Fig. 5, the reduction AR(K, L) was always
less than 1.5 dB for signal I and 2.6 dB for signal II. Disregard-
ing the case K=1,L =0, AR(K, L) was less than 1 dB for all
cases. As expected AR(K, L) decreases with increasing g. For
0>2, AR(K, L) was less than 0.5 dB.

With the KLT filter and our assumption of a two-sided a
priori probability density for the amplitude, the estimator can

1The optimization in (40) and (41) is approximately performed by
varying e in steps of % Since the signals (35) are not band limited,
aliasing will occur in (38). This means that SNRp,,x in (37) will de-
pend on e. The greatest variation was only 0.05 dB.
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Fig. 6. Delimitation of the observation interval. The time kg denotes
the arrival time of a type-event. The signal is inspected in the primary
interval of length N’ starting at (ko + D). The next type-event is
found at ky. The detector now uses (kg + D, k; — D) as an observa-
tion interval for the estimation procedure. Next, a new primary in-
terval of length N’ starts at (k; + D) and the type-event is found at
ko and so on.

“follow” changes in width and shape. Such changes may be
due to position changes of the patient or to aberrant conduc-
tion and ventricular extrasystoles (VES’s).

Delimitation of the Observation Interval

The estimator works in an observation interval of known
length N. When applying the estimator to real ECG’s, an obser-
vation interval must first be defined. In Section II it was also
assumed that all the waveforms in the interval were completely
contained in it. One approach to defining such an interval is
to let two “significant” waveforms delimit it. If these wave-
forms, which we denote “type-events,” are actually QRS com-
plexes, an interval has been delimited which completely con-
tains all QRS complexes in between (a certain time must elapse
between two consecutive QRS complexes). To determine a
type-event, the estimator is used in the same way as before
(cf. Sections II and III), but the procedure is finished after
estimating the first arrival time, which thus becomes the loca-
tion of the new type-event. Now, the observation interval is
of length N' (>N) and starts at the “distance” D from the last
detected type-event. The choice of this “primary” interval
length N' depends on the environment in which the detector
should work. If the interval is too short, it may contain noth-
-ing; if it is too long, the signal properties may have changed
quite drastically. The detector was implemented with N' equal
to 3 s. In real-time applications, e.g., in a CCU the length N is
upwards limited by the size of the data buffer, or by the maxi-
mum acceptable delay, without serious medical consequences.

From the type-events one could obtain an estimate of the
maximal amplitude B; and normalize the observed signal with
it. This adapts the ECG amplitude to the model with the max-
imal amplitude of B; equal to one. Also the parameters 7, and
72, which define Pr(T7;), could be estimated from the properties
of the type-events. With this structure, the detector adapts
quickly to the prevailing waveform, provided that liberal ac-
ceptance criteria are used in the selection of the type-events.
After having determined the type-event, the QRS detector
works in a noncausal way. Decisions based on signal properties
of the past, as well as the future, seem more reliable to us than
decisions based only on properties of the past. The delimita-
tion and estimation processes are summarized in Fig. 6.

Look-Back for Prolonged R-R Intervals

An indication of where the detector may have missed a QRS
complex is given by observing the sequence of estimated arrival
times, or rather the lengths of the intervals between them (R-R
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intervals). For example, low amplitude extrasystoles may be
hidden in a prolonged interval. To decide if an R-R interval
is prolonged several methods could be used (e.g., [18] -[20]).
One simple method is to compare each R-R interval to a run-
ning average of the preceding intervals. The interval of interest
could be subject to a “look-back,” i.e., letting the estimator
look once more using a more generous choice of the parameters
B, 71, and 7,. Furthermore, the filtering could be performed
with a different choice of filter parameters K and L, in order
to find complexes with aberrant morphology. However, it
should be emphasized that by including a look-back facility
not only the probability of finding every QRS complex in-
creases, but also the risk of detecting large T waves or noise/
artifacts in prolonged intervals.

Computational Considerations

The calculation of MAP estimates, as described in the former
part of Section II, is a time-consuming task. For monitoring
of ambulatory ECG’s, we have implemented a version which
differs from the optimal one, but which requires a modest
amount of computation. That version included the approxi-
mate way of finding estimates §, 6y, - - - , 55; see (17)«(22).

Furthermore, a “peak-picking” strategy is used for an ap-
proximate calculation of the function M(6;). This strategy is
motivated by observing that the choice of the two points y(6;)
and y(0; - T;), see (15), in practice often coincides by simply
picking two adjacent peaks in y(k) with opposite sign. If the
correlation p(T;) is zero for 7, < T; < 7,, then in most cases
the peak-picking yields the estimates (g, 6;, - * - ,55) [21]1,[22].

V. RESULTS AND DiscussioN

Clinical experience from about 600 12-h recordings, and a
study of the performance of our monitoring system as a whole
indicate that the QRS detector works well in the clinical
routine [23]. The performance of the detector has prelimi-
narily been evaluated for a material consisting of several ECG’s
from different patients [21], [22]. We will discuss here some
of the properties of the detector which were indicated by that
study. At present, a more extensive evaluation of the detector
is being carried through.

The false alarms that occurred were most often caused by
the existence of tall and peaked T waves. Since their spectral
properties differ little from those of the QRS complexes, it
seems difficult to suppress such T waves by means of selective
filtering. One way to make the T wave “harmless” is to in-
crease the eye-closing period, i.e., the distance D in (32). How-
ever, such an increase will be at the expense of missing early
VES’s [24]. In the implemented version, the distance D was
equal to 0.16s. A QRS detector described in [25] applies an
eye-closing period after each detected QRS complex. Hope-
fully, our noncausal strategy will also reduce the number of
false alarms in situations where an artifact immediately pre-
cedes a QRS complex, even for a short eye-closing period.
Others claim that by transforming the differenced ECG signal
by means of squaring, windowing, and averaging, it will yield a
single positive peak for each QRS complex, while suppressing
the P and T waves [26].

In situations of a gradual decrease in amplitude with no fast
return to the previous level, the detector behaves very well.
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This behavior is due to the idea of letting type-events delimit
the observation interval. A price to be paid for the adaptivity
of the detector is that small complexes, intermingled with
very large-amplitude ones, may be missed. If such a situation
occurs, the detector adapts itself to the properties of the large-
amplitude complexes, i.e., these are chosen as type-events.

Some attempts have been made to theoretically analyze the
performance of QRS detectors [27], [28]. Such an analysis is
carried through in terms of the accuracy of a fiducial point in
[28], where the detection algorithm consists of a filter and
a single-level, dual-level, or peak detector. In our study, we
have investigated the reduction in performance that results
from using filters mismatched to the input signal. The results
indicate that the loss in SNR when using a first-difference
filter, i.e., (K, L) =(1, 0), is unacceptable (see Fig. 6), while
most other choices of K and L may be appropriate. In order
to make the detector insensitive to disturbances such as high-
frequency muscle noise or baseline shift/wandering, it was
implemented with (K, L) =(2, 1) which has a bandpass char-
acteristic (center frequency 19.6 Hz).

. APPENDIX A R
CALcULATION OF THE FuNcTioN B;(0;, T;)

Let us denote each term in the first sum on the right-hand
side of (13) with U(6;, B;, T;). The value of this function is
the contribution to the log-likelihood function for one “pulse”
with the arrival time 6;, amplitude B; and width T;. We shall
maximize U(6;, B;, T;) with respect to B;, resulting in a func-

tion ﬁi(oi, T)).
Completing the square in U(6;, B;, T;) yields
d*(T;
U(6;,B;, T)) = “% [x* - (x - B)?] (A1)
for ‘
(.0,B,T)€Q) ;.
where
9) - v(6;: - T;
x=x(0,,Ti)=y( l) y( 1 l) (A2)

1-p(T)

Since B;(8;, T;) should be such that 8 < |B(8;, T;)| <1, the
maximum over B; is given by

(A3)

o 27
UO;,Bi(0;, Ty, T) = @ -8 [F(x) - %}

where the function F(x) is shown in Fig. 7. Further, the corre-
sponding function is given by
B - sign (x)/1x| < B
B0, TH={x B<IxI<1
1 -sign (x)/[x] > 1.

(A4)

Note that for f-values close to one, the function F(x) = |x | for
all x.

APPENDIX B
THREE EXAMPLES OF APPROXIMATE MAP ESTIMATION

In order to reduce the computational load, we have intro-
duced an approximate way of finding the estimates of the
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Fig. 7. The function F(x) shown for g = 0.6.

arrival times. The use of this estimation procedure is illustrated
by means of three examples.

Example 1

Let us consider the case whenn =3 and p; =1/4,i=0,1,2,3
(equal a priori probabilities for q). The function M(k) used in
(21) is shown in Fig. 8(a). The parameter D is shown in the
same time scale. The width (above threshold «;(8;)) of each
peak in the output signal is smaller than D. Using the approxi-
mate MAP estimation described by (17)-(22) we get

Ao=0

~

Ay ~M(ky)-040=0.55; 6, =k,

A, ~M(k3) - 040=0.50; 8, =ks

Az ~M(ks) - 0.40 =-0.10. (B1)
Using (B1) in (20) we get

Vo =0

V: ~0.55

V, ~1.05

Vs <V, (B2)
and thus

(4.6)=(3,0)= (2. k2, k3). (B3)

The strategy is to pick the maxima, starting in turn with the
largest one while observing the cancelling operation of segments
within the distance D from each picked maximum. This
scheme is continued until no further maximum exceeding
B/2 exists. In this case, the result of the approximate strategy
is identical to the optimum one.

Example 2

In this example, the @ priori probabilities for q are unequal,
(Po,P1,p2,p3) =(1/8,1/4,1/2,1/8), but with n still equal
to 3 and d3B =10 - In 2. The output is shown in Fig. 8(b).
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Fig. 8. A stylized example of the function M (k) used in (21), for sim-
plicity plotted as a continuous-time signal, and the threshold «;(6;)
when the a priori probabilities (a) p; are equal; (b) p; are unequal;
(c) p; are equal and a wide peak occurs.

Calculating (20) we obtain
Z&o =0

A, ~M(ks) - (0.4 + 12 3/8) =0.55
| B

In 2/4
d3p

Ay ~ M(ky) - (0.4 + ) =045

8/2
Ay ~M(k,) - (o.4+ 1“2/ )=—o.15 (B4)
dsp
and the estimate is
(0=, 0)=(2, ks, ky). (BS)

The strategy is not so simple now as in Example 1, where
the noncancelled peaks were compared only to a constant
threshold. In the general case, we must calculate all the quan-
tities ¥V and choose the largest. Also in this case, the approxi-
mate strategy yields the same estimates as the optimum one.
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Example 3

We consider n=6 and p;=1/7 for i=0,1,---,6, but in
this case the output signal contains a wide peak as shown in
Fig. 8(c).

We sum up (20) to yield the “log-likelihood function” ¥V,

Vo =dif 3 mex MO - @), ®6)
Then for d¢f =1 we get

Vo=0

V: =M(ky)-04=0.5

Vy =V, +M(ks)-0.4=0.85

Vs <V, (B7)
and 7

(3@,0)=Q2, ks, ka). (B8)

In this case, the result of the approximate strategy differs from
the optimum one. Equation (16) yields for

V(r,0)=0
Wr,1,0,) = M(k,)- 04=0.5
W(r,2,0,,0,) = M(k;) + M(k3) - 2- 0.4
=0.8>Wr,1,0,)
V(r,3,01,04,03) = M(ky) + M(k3) + M(ks) - 3- 0.4
=1.0>¥(r,2,0,,0,)
V(r,4,0,,0,,05,0,)<V(r,3,0,,0,,05)
and
@, a)=(3,k1,k3,k4)-

Note that k; and k3 are not obtained from the peaks in the
output signal.

(B9)
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