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Distance Bounds for Periodically Time-Varying

and Tail-Biting LDPC Convolutional Codes

Dmitri Truhachev,Member, IEEE, Kamil Sh. Zigangirov,Fellow, IEEE, and

Daniel J. Costello, Jr.,Fellow, IEEE

Abstract

Existence type lower bounds on the free distance of periodically time-varying LDPC convolu-

tional codes and on the minimum distance of tail-biting LDPCconvolutional codes are derived. It is

demonstrated that the bound on free distance of periodically time-varying LDPC convolutional codes

approaches the bound on free distance of general (non-periodic) time-varying LDPC convolutional codes

derived in [1] as the period increases. The proof of the boundis based on lower bounding the minimum

distance of corresponding tail-biting LDPC convolutionalcodes, which is of interest in its own right.

Index Terms

Free distance, minimum distance, lower bounds, low-density parity-check (LDPC) codes, LDPC

convolutional codes, tail-biting LDPC convolutional codes.

I. INTRODUCTION

LDPC block codes were invented by Gallager [2] in the 1960s. The construction of the

corresponding convolutional counterparts, LDPC convolutional codes (LDPCCCs), was first
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presented1 in [3]. While minimum distance bounds for block LDPCs were derived in Gallager’s

original work [2], the first analytical lower bound on the free distance of LDPCCCs was only

derived recently [1]. The proof presented in [1] holds for anensemble of general (non-periodic)

time-varying LDPCCCs and must employ a special expurgationtechnique to compensate for the

non-periodic structure of the ensemble.

In this paper, we derive an existence type lower bound on the free distance of periodically time-

varying LDPCCCs. We show that, as the period increases, the new bound approaches the bound

on free distance of non-periodic LDPCCCs derived in [1]. Theproof presented for the new bound

is based on considering the minimum distance of tail-bitingLDPCCCs (TB-LDPCCCs) [8].

In particular, we lower bound the minimum distance of TB-LDPCCCs constructed from an

ensemble of periodically time-varying LDPCCCs and use thisto lower bound the free distance

of the original ensemble.

Tail-biting was introduced by Solomon and van Tilborg [9] and independently by Ma and

Wolf [10] as a method of terminating a convolutional code without the rate loss caused by

standard termination. The resulting tail-biting codes have a dual nature, i.e., they simultaneously

have the properties of both block and convolutional codes. As a consequence, their minimum

distance depends both on the block length of the tail-bitingcode and the constraint length of

the convolutional code.

The minimum distance of conventional (non-LDPC) tail-biting codes equals the minimum of

two related distance measures,dintra and dinter [11]. The intra minimum distance dintra reflects

the convolutional code properties of the tail-biting code and is lower bounded by the Costello

bound [6] on the free distance of convolutional codes. Theinter minimum distance dinter reflects

the block code properties of the tail-biting code and is lower bounded by theVarshamov-Gilbert

bound [4], [5] on the minimum distance of block codes. Analogous toconventional tail-biting

convolutional codes, the minimum distance of TB-LDPCCCs islower bounded by the minimum

of dintra and dinter, wheredintra is lower bounded by the bound on free distance of LDPCCCs

derived in [1] anddinter is lower bounded by Gallager’s bound on minimum distance of LDPC

block codes [2].

The paper is organized as follows. Section II presents the definition of the LDPCCC code

1The basic idea of LDPCCCs was first described in Tanner’s patent application [7].
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ensemble considered. Section III is devoted to lower bounding the minimum distance of TB-

LDPCCCs, and a lower bound on the free distance of periodically time-varying LDPCCCs is

proved in Section IV. Numerical results are given in SectionV, and Section VI concludes the

paper.

II. A N LDPC CONVOLUTIONAL CODE ENSEMBLE

In [3], a rateR = b/c binary convolutional code was defined as the set of sequences

v[0,∞] = (v0, v1, . . . ), vt ∈ F
c
2, satisfying the equalityv[0,∞]H

T
[0,∞] = 0, where the semi-infinite

syndrome former (transposed parity-check) matrixHT
[0,∞] is given by

HT
[0,∞] =

















HT
0 (0) . . . HT

ms
(ms)

. . . . . .

HT
0 (t) . . . HT

ms
(t + ms)

. . . . . .

















(1)

and each entryHT
i (t + i) is a c × (c − b) binary matrix. To satisfy an easy encoding property

(see [3], [13]), the matricesHT
0 (t) must have full rank for all time instantst, and hence we

assume that the last(c − b) rows of HT
0 (t) are linearly independent for allt. Then the firstb

symbols ofvt at each time instantt are information symbols and the last(c−b) symbols are parity

symbols. The largesti such thatHT
i (t+i) is a non-zero matrix for somet is called thesyndrome

former memory ms. A (J ,K ) regular LDPCCC is defined by a syndrome former that contains

exactly J ones in each row andK ones in each column (starting from the((c − b)ms + 1)th

column).

Now we define a special sub-class of(J, K) regular LDPCCCs, where the component sub-

matricesHT
i (t) are composed ofM × M binary permutation matrices2. Let a = gcd(J, K)

denote the greatest common divisor ofJ and K. Then there exist positive integersJ ′ and K ′

such thatJ = aJ ′ andK = aK ′ and gcd(J ′, K ′) = 1. For i = 0, 1, . . . , a − 1, theK ′M × J ′M

2This subclass was considered in [1] in order to prove a lower bound ondfree for non-periodic LDPCCCs.
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sub-matricesHT
i (t + i) of the syndrome former are

HT
i (t + i) =















P
(0,0)
i (t + i) P

(0,1)
i (t + i) . . . P

(0,J ′
−1)

i (t + i)

P
(1,0)
i (t + i) P

(1,1)
i (t + i) . . . P

(1,J ′
−1)

i (t + i)

. . . . . . . . . . . .

P
(K ′

−1,0)
i (t + i) P

(K ′
−1,1)

i (t + i) . . . P
(K ′

−1,J ′
−1)

i (t + i)















, (2)

where eachP (k,j)
i (t + i), k = 0, 1, . . . , K ′ − 1, j = 0, 1, . . . , J ′ − 1, is anM × M permutation

matrix. All other entries of the syndrome former areK ′M × J ′M zero matrices. We assume

that the matrixHT
[0,∞] is periodically time-varying with periodT , i.e.,

HT
i (t + i) = HT

i (t + i + T ) ∀i, t . (3)

In this case, a code is characterized by a sectionHT
[0,T−1] of the semi-infinite syndrome former

HT
[0,∞].

A syndrome formerHT
[0,T−1] for a periodically time-varying(3, 6) regular LDPCCC is shown

in Fig. 1. In this case, the code construction parameters areK = 6, J = 3, a = 3, c = 2M , and

b = M . Each matrixHT
i (t + i) consists of twoM × M permutation matrices, i.e.,

HT
i (t + i) =





P
(0)
i (t + i)

P
(1)
i (t + i)



 , (4)

where (4) has full rank equal toM . Therefore the code rate isM/2M . Note that by permuting

rows of the syndrome former, an equivalent rate1/2 (3, 6) regular LDPCCC with syndrome

former memory at most3M − 1 can be obtained (see [1]).

Now suppose that theM × M permutation matrices comprising the sub-matrices (2) of the

syndrome formerHT
[0,T−1] are chosen independently and such that each of theM ! possible

permutation matrices is equally likely. Then we obtain a random ensemble of(J ,K ) regular

T -periodic LDPCCCs, which we designateC(J, K, M, T ).

The syndrome formers in the ensembleC(J, K, M, T ) have memoryms = a−1, independent

of M , while b and c depend onM . This ensemble of codes is different from the LDPCCCs

considered in [3], [12], and [13], where the codes have varying syndrome former memoriesms,

while the rate parametersb and c are fixed. For the ensembleC(J, K, M, T ), asM increases,

i.e., asb andc increase, the syndrome formers become increasingly sparse.

During the encoding process, the information sequences aredivided into blocks ofb =

(K ′ − J ′)M symbols, which are input to an LDPC convolutional encoder ateach time instant

January 5, 2008 DRAFT
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2TMHT
[0,T−1] =

...

matrices
M × M permutation

J = 3

K = 6

Fig. 1. One period of a syndrome former for a code in the ensemble C(3, 6, M, T ).

t, and a block ofc = K ′M encoded symbols is generated at the output. For any code in

C(J, K, M, T ), an equivalent systematic LDPC convolutional encoder can be constructed such

that the computational complexity per encoded parity-check symbol depends only onK and is

independent of the permutation matrix sizeM (see [3]).

Since there are at leastJ ′ linearly dependent columns inHT
0 (t) for any code inC(J, K, M, T ),

HT
[0,T−1] defines a rateR ≥ 1−J ′M−(J ′

−1)
K ′M

code. The constraint length of codes fromC(J, K, M, T )

is defined3 as ν = (ms + 1) · c = a · K ′M = KM . For example, the codes in the ensemble

C(3, 6, M, T ) have constraint lengthν = 6M .

For T ≥ J , a syndrome former̃H
T

[0,T−1] for a (J ,K ) regular TB-LDPCCC can be constructed

from one period of a syndrome formerHT
[0,T−1] for a (J, K) regularT -periodic LDPCCC. This

can be done by wrapping back the lastJ −1 blocks of columns ofHT
[0,T−1]. For the(3, 6) case,

H̃
T

[0,T−1] can be constructed fromHT
[0,T−1] (see Fig. 1) for anyT ≥ 3, as illustrated in Fig. 2.

TB-LDPCCC’s created in this way form an ensemble which we denote by C̃(J, K, M, T ). The

block length of these codes is2TM . In the following section we will use this ensemble to derive

a lower bound on the minimum distance of TB-LDPCCCs.

3A discussion of the definition of constraint length for LDPCCCs is given in [1].
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2TMH̃
T

[0,T−1] = ...

Fig. 2. Syndrome former of a TB-LDPCCC in the ensembleC̃(J,K, M, T )

III. A L OWER BOUND ON THE M INIMUM DISTANCE OFTB-LDPCCCS

To avoid cumbersome notation, we focus on the(3, 6) regular TB-LDPCCC case, i.e., we

consider the ensemblẽC(3, 6, M, T ), although the same technique can also be applied more

generally.

Consider a length2TM vector ṽ[0,T−1] = (ṽ
(0)
0 , ṽ0

(1), . . . , ṽ
(0)
T−1, ṽ

(1)
T−1), v

(h)
t ∈ F

M
2 , where

ṽ
(h)
t = (ṽ

(h)
t1 , ṽ

(h)
t2 , . . . , ṽ

(h)
tM), t = 0, 1, . . . , T − 1, h = 0, 1. A vector ṽ[0,T−1] is a codeword

in a (3, 6) regular TB-LDPCCC iff it satisfies theTM equations (constraints) defined by the

syndrome formerH̃
T

[0,T−1], i.e.,

ṽ[0,T−1]H̃
T

[0,T−1] = 0 . (5)

For the ensemblẽC(3, 6, M, T ), theseTM parity-check equations can be divided intoT sets

where thetth setS(t), t = 0, 1, . . . , T − 1, consists of theM parity-check equations determined

by the six permutation matrices located in thetth block of columns of the syndrome former

H̃
T

[0,T−1].

Let d̃
(h)
t be the Hamming weight of the vectorṽ

(h)
t , h = 0, 1, t = 0, 1, . . . , T −1. We then say

that ṽ[0,T−1] has weight compositioñd[0,T−1] =
(

d̃
(0)
0 , d̃

(1)
0 , . . . , d̃

(0)
T−1, d̃

(1)
T−1

)

, and the Hamming

weight of the vector̃v[0,T−1] with weight compositioñd[0,T−1] is d̃[0,T−1] = d̃
(0)
0 + d̃

(1)
0 + · · · +

d̃
(0)
T−1 + d̃

(1)
T−1. Now note that there exists

∏T−1
t=0

(

M

d̃
(0)
t

)
∏T−1

t=0

(

M

d̃
(1)
t

)

vectors ṽ[0,T−1] with weight

compositiond̃[0,T−1]. Our goal is to calculate the average number of codewordsṽ[0,T−1] with

weight compositioñd[0,T−1] for a code in the ensemblẽC(3, 6, M, T ). Finally, in the asymptotic
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case, asM → ∞, it is more convenient to operate with the normalized weightcomposition

ρ̃[0,T−1] =
(

ρ̃
(0)
0 , ρ̃

(1)
0 , . . . , ρ̃

(0)
T−1, ρ̃

(1)
T−1

)

, whereρ̃
(h)
t = d̃

(h)
t /M .

Letting ρ̃
(h)
−2 = ρ̃

(h)
T−2 andρ̃

(h)
−1 = ρ̃

(h)
T−1 for h = 0, 1, the probability that a vector̃v[0,T−1] satisfies

the tth set of constraints,S(t), t = 0, 1, . . . , T − 1, in the ensemblẽC(3, 6, M, T ) can be upper

bounded (see [1], Appendix I) as

P (ρ̃[0,T−1],S
(t)) ≤

exp
[

MF̃
(

λ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
6 , ρ̃

(0)
t−2, ρ̃

(1)
t−2, ρ̃

(0)
t−1, ρ̃

(1)
t−1, ρ̃

(0)
t , ρ̃

(1)
t

)

]

t
∏

i=t−2

1
∏

h=0

(

M

ρ̃
(h)
i M

)

, (6)

whereλ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
6 are arbitrary constants,

F̃ (λ1, λ2, . . . , λ6, ρ1, ρ2, . . . , ρ6)
def
= g(λ1, λ2, . . . , λ6) −

6
∑

k=1

λkρk (7)

and

g(λ1, λ2, . . . , λ6)
def
= ln

∏6
k=1(1 + eλk) +

∏6
k=1(1 − eλk)

2
. (8)

We notice that there areT independent constraint setsS(t), t = 0, 1, . . . , T − 1, and the number

of vectorsṽ[0,T−1] having normalized weight compositioñρ[0,T−1] is

N(ρ̃[0,T−1])
def
=

T−1
∏

t=0

(

M

ρ̃
(0)
t M

)T−1
∏

t=0

(

M

ρ̃
(1)
t M

)

. (9)

Thus the expected number of vectors with normalized weight compositionρ̃[0,T−1] satisfying

all T sets of constraints, i.e., vectors that are codewords in theTB-LDPCCCC code defined by

H̃
T

[0,T−1], is given by

E(ρ̃[0,T−1])
def
= N(ρ̃[0,T−1])

T−1
∏

t=0

P (ρ̃[0,T−1],S
(t)) . (10)

Substituting (6) into (10), we obtain the upper bound

E(ρ̃[0,T−1]) ≤

exp

[

M
T−1
∑

t=0

F̃
(

λ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
6 , ρ̃

(0)
t−2, ρ̃

(1)
t−2, . . . , ρ̃

(1)
t

)

]

(

T−1
∏

t=0

(

M

ρ̃
(0)
t M

)

T−1
∏

t=0

(

M

ρ̃
(1)
t M

)

)2 , (11)
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where we recall that̃ρ(h)
−2 = ρ̃

(h)
T−2 andρ̃

(h)
−1 = ρ̃

(h)
T−1, h = 0, 1. Now using Lemma 1 and Appendix II

from [1], we can further upper boundE(ρ̃[0,T−1]) as

E(ρ̃[0,T−1]) ≤

[

T−1
∏

t=0

σ(ρ̃
(0)
t , M)

T−1
∏

t=0

σ(ρ̃
(1)
t , M)

]2

· exp

[

M

T−1
∑

t=0

F
(

λ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
6 , ρ̃

(0)
t−2, ρ̃

(1)
t−2, . . . , ρ̃

(1)
t

)

]

, (12)

where

F (λ1, λ2, . . . , λ6, ρ1, ρ2, . . . , ρ6)
def
= F̃ (λ1, λ2, . . . , λ6, ρ1, ρ2, . . . , ρ6) −

2

3

6
∑

k=1

H(ρk), (13)

σ(ρ, M)
def
=







1, if ρ = 0,
√

12Mρ(1 − ρ), otherwise,
(14)

and

H(ρ)
def
= −ρ ln ρ − (1 − ρ) ln(1 − ρ) . (15)

Now suppose that for a particular normalized weight composition ρ̃[0,T−1], there exists a set

{λ
(0)
1 , λ

(0)
2 , . . . , λ

(0)
6 , . . . , λ

(T−1)
1 , λ

(T−1)
2 , . . . , λ

(T−1)
6 } of 6T coefficients such that the sum of the

functions
∑T−1

t=0 F (λ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
6 , ρ̃

(0)
t−2, ρ̃

(1)
t−2, . . . , ρ̃

(1)
t ) is negative. Then the average number

of codewords having normalized weight compositionρ̃[0,T−1] goes to zero exponentially asM

tends to infinity. The tightest bound onE(ρ̃[0,T−1]) can be obtained by minimizing each function

F (λ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
6 , ρ̃

(0)
t−2, ρ̃

(1)
t−2, . . . , ρ̃

(1)
t ), t = 0, 1, . . . , T − 1, with respect to its parameters

λ
(t)
1 , λ

(t)
2 , . . . , λ

(t)
6 .

We begin by defining

G(ρ1, ρ2, . . . , ρ6)
def
= min

λ1,λ2,...,λ6

F (λ1, λ2, . . . , λ6, ρ1, ρ2, . . . , ρ6). (16)

Then from (12) we obtain

E(ρ̃[0,T−1]) ≤

[

T−1
∏

t=0

σ(ρ̃
(0)
t , M)

T−1
∏

t=0

σ(ρ̃
(1)
t , M)

]2

exp

[

M
T−1
∑

t=0

G(ρ̃
(0)
t−2, ρ̃

(1)
t−2, . . . , ρ̃

(1)
t )

]

,

or alternatively

E(ρ̃[0,T−1]) ≤

[

T−1
∏

t=0

σ(ρ
(0)
t , M)

T−1
∏

t=0

σ(ρ
(1)
t , M)

]2

exp
[

MG(ρ̃[0,T−1])
]

, (17)

January 5, 2008 DRAFT
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where

G(ρ̃[0,T−1])
def
=

T−1
∑

t=0

G(ρ̃
(0)
t−2, ρ̃

(1)
t−2, . . . , ρ̃

(1)
t ) (18)

is a function of the2T -dimensional normalized weight vectorρ̃[0,T−1] =
(

ρ̃
(0)
0 , ρ̃

(1)
0 , . . . , ρ̃

(0)
T−1, ρ̃

(1)
T−1

)

.

We now let ρ̃[0,T−1] = 1
2T

(
∑T−1

t=0 ρ̃
(0)
t +

∑T−1
t=0 ρ̃

(1)
t ) be the normalized Hamming weight

of the vectorρ̃[0,T−1]. If the function G(ρ̃[0,T−1]) is negative for allρ̃[0,T−1] with normalized

weight ρ̃[0,T−1] = ρ0, then the corresponding mathematical expectationE(ρ̃[0,T−1]) goes to zero

exponentially withM asM tends to infinity4.

The total number of weight compositionsd̃[0,T−1] = M ρ̃[0,T−1] is upper bounded by(M+1)2T .

Hence, ifG(ρ̃[0,T−1]) < 0 for a ρ̃[0,T−1] having normalized weight̃ρ[0,T−1] ≤ ρ∗, andT is finite,

the average number of nonzero codewords having weightd̃[0,T−1] ≤ 2ρ∗MT tends to zero asM

tends to infinity4.

Note that any code iñC(3, 6, M, T ) always has codewords̃v[0,T−1] = (ṽ
(0)
0 , ṽ

(1)
0 , . . . , ṽ

(0)
T−1, ṽ

(1)
T−1)

with ṽ
(0)
t = ṽ

(1)
t = 1 for some t, where 1 is the M-dimensional all-ones vector, and the

remaining2T − 2 components of̃v[0,T−1] equal to theM-dimensional all-zero vector. Such a

codewordṽ[0,T−1] has weight2M , and this is an upper bound on the minimum distance of codes

in C̃(3, 6, M, T ). Hence, it is sufficient to look at weight compositions with Hamming weight

d̃[0,T−1] < 2M , i.e., ρ[0,T−1] < 1
T

.

We now summarize the arguments above in the following theorem:

Theorem 1: Suppose that the functionG(ρ̃[0,T−1]) is negative for allρ̃[0,T−1] of normalized

weight ρ̃[0,T−1] ≤ ρ∗. Then, in the ensemblẽC(J, K, M, T ), there exists a TB-LDPCCC with

minimum distancẽd[0,T−1] lower bounded by

d̃[0,T−1] ≥ min{2MTρ∗, 2M}. (19)

The parameterρ∗ can be calculated numerically. The results of this calculation are presented

in Section V. There we will see that, analogous to conventional tail-biting convolutional codes,

for relatively smallT the inter minimum distancedinter determines the minimum distance of the

TB-LDPCCC, while for largerT the intra minimum distancedintra, i.e., the free distance of the

T -periodic LDPCCC, determines the minimum distance of the TB-LDPCCC.

4See [1] for a mathematically precise formulation of this result.
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In the following section, we show how this existence bound onthe minimum distance of

TB-LDPCCCs leads to an existence bound on the free distance of the T -periodic LDPCCCs.

IV. A L OWER BOUND ON THE FREE DISTANCE OFT -PERIODIC LDPCCCS

We begin by considering TB-LDPCCCs of length2κTM , whereκ is an integer satisfying

κ ≥ 1. Any codewordṽ[0,κT−1] in this code satisfies

ṽ[0,κT−1]H̃
T

[0,κT−1] = 0, (20)

where the transposed parity-check matrixH̃
T

[0,κT−1] of the TB-LDPCCC is constructed from a

syndrome formerHT
[0,κT−1] of a T -periodic LDPCCC by wrapping back the last two blocks

of columns (see Section II). The product of a codewordṽ[0,κT−1] in the length2κTM TB-

LDPCCC and the syndrome formerHT
[0,κT−1] of theT -periodic LDPCCC defines anM(κT +2)-

dimensional syndrome vector

s[0,κT+1] = ṽ[0,κT−1]H
T
[0,κT−1] , (21)

where the syndrome vector

s[0,κT+1] = (s0, s1, . . . , sκT+1) (22)

is a concatenation ofM-dimensional subvectorsst = (st1, st2, . . . , stM), t = 0, 1, . . . , κT + 1.

Since ṽ[0,κT−1] satisfies (20) andH̃
T

[0,κT−1] is constructed fromHT
[0,κT−1] using the wrapping

back procedure of Fig. 2, the subvectorsst satisfy the conditions

s0 = sκT , (23)

s1 = sκT+1, (24)

and

st = 0, t = 2, 3, . . . , κT − 1. (25)

Therefore (20), which defines the codewords of the TB-LDPCCC, is equivalent to (21), where

the syndrome vectors[0,κT+1] satisfies conditions (23)–(25).

Lemma 1: Let d̃[0,κT−1], for any integerκ ≥ 1, be the minimum distance of the TB-LDPCCC

defined by (20). Then there existsκ0 > 0 such that for anyκ ≥ κ0 the free distancedfree of the

T -periodic LDPCCC with syndrome formerHT
[0,κT−1] is lower bounded by

dfree ≥ d̃[0,κT−1]. (26)
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Proof: The proof follows from the definitions of free distance and row distance. TheLth

order row distancedr
L of a periodically time-varying convolutional code is defined [11] as the

minimum weight of all code sequences having a nonzero segment of length at mostL + m + 1

(in this case, the code sequences are composed of blocks of length2M), wherem is the encoder

memory. In turn, the free distancedfree is defined as

dfree = min
L

dr
L , (27)

wheredr
L is monotonically decreasing withL and there exists an integerL0 such that

dr
L = dr

L0
= dfree (28)

for any L > L0.

Thus, we can find a sufficiently largeκ0 such that, for anyκ ≥ κ0, the code sequences of

the length2κTM tail-biting code include all possible nonzero segments of lengthL0 + m + 1

blocks of theT -periodic convolutional code. This implies that

dr
L0

≥ d̃[0,κT−1] , (29)

which, along with (28), leads to (26).

Now let ṽ[0,κT−1] = (ṽ
(0)
0 , ṽ0

(1), . . . , ṽ
(0)
κT−1, ṽ

(1)
κT−1) be a codeword in the length2κTM TB-

LDPCCC, i.e., it satisfies (20). Note that this codeword can be represented as

ṽ[0,κT−1] = (ṽ[0,T−1], ṽ[T,2T−1], . . . , ṽ[(κ−1)T,κT−1]), (30)

where

ṽ[(i−1)T,iT−1] = (ṽ
(0)
(i−1)T , ṽ

(1)
(i−1)T , . . . , ṽ

(0)
iT−1, ṽ

(1)
iT−1), i = 1, . . . , κ . (31)

Then consider the sequence

v̄[0,T−1]
def
= ṽ[0,T−1] + ṽ[T,2T−1] + . . . + ṽ[(κ−1)T,κT−1], (32)

i.e., the modulo-2 sum of the components of the codewordṽ[0,κT−1] given in (30). The following

lemma proves that̄v[0,T−1] is a codeword in the TB-LDPCCC consisting of only one period of

the T -periodic LDPCCC.

Lemma 2: The sequencēv[0,T−1] satisfies

v̄[0,T−1]H̃
T

[0,T−1] = 0, (33)
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i.e., it is a code sequence of the TB-LDPCCC with length equalto one period of theT -periodic

LDPCCC.

Proof: Equality (33) is equivalent (see (21)) to the equality

v̄[0,T−1]H
T
[0,T−1] = s[0,T+1] = (s0, s1, . . . , sT+1), (34)

where

s0 = sT , (35)

s1 = sT+1, (36)

and

st = 0, t = 2, 3, . . . , T − 1. (37)

Therefore, instead of proving (33), we can alternatively prove that the syndrome vectors in (34)

satisfy conditions (35)–(37). We begin by defining

ṽ[(i−1)T,iT−1]H
T
[0,T−1]

def
= s

(i)
[0,T+1] = (s

(i)
0 , s

(i)
1 , . . . , s

(i)
T+1), i = 1, 2, . . . , κ . (38)

Then it follows from (21) and (38) that the syndrome vectors[0,κT+1] of the length2κTM

TB-LDPCCC satisfies

(s0,s1,. . . ,sκT+1)=(s
(1)
0 ,s

(1)
1 ,. . . ,s

(1)
T−1,s

(1)
T ,s

(1)
T+1, 0, 0, . . . , 0, 0, . . . )

+ (0, 0, . . . , 0, s
(2)
0 , s

(2)
1 , s

(2)
2 ,. . . ,s

(2)
T−1,s

(2)
T ,s

(2)
T+1,0, . . . , )

+ (0, 0, . . . , 0, 0, . . . , 0, 0, 0, s
(3)
0 , s

(3)
1 , s

(3)
2 , . . . ,s

(3)
T+1, 0,. . .)

+ . . . ,

(39)

where the addition is modulo2.

Since ṽ[0,κT−1] ia a codeword in the length2κTM TB-LDPCCC, conditions (23)–(25) are

satisfied for the syndrome vectors[0,κT+1]. This, together with (39), implies that the vectorss
(i)
t

should satisfy

s
(1)
0 = s

(κ)
T , (40)

s
(1)
1 = s

(κ)
T+1, (41)

s
(i)
0 = s

(i−1)
T , i = 2, 3, . . . , κ, (42)

s
(i)
1 = s

(i−1)
T+1 , i = 2, 3, . . . , κ, (43)
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and

s
(i)
t = 0, t = 2, 3, . . . , T − 1, i = 1, 2, . . . , κ. (44)

From the definition of̄v[0,T−1] in (32), the definition of its syndrome vectors[0,T+1] in (34), and

the definition ofs(i)
[0,T+1] in (38), it follows that

s[0,T+1] = s
(1)
[0,T+1] + s

(2)
[0,T+1] + . . . + s

(κ)
[0,T+1] , (45)

where the addition is modulo 2. It can be checked that (40)-(45) imply (35)-(37), and hence the

lemma is proved.

The next lemma relates the minimum distances of the length2κTM TB-LDPCCC and the

length2TM TB-LDPCCC constructed from the sameT -periodic LDPCCC.

Lemma 3: For any positive integerκ, the minimum distancẽd[0,κT−1] of the length2κTM

TB-LDPCCC defined by (20) is lower bounded by the minimum distanced̃[0,T−1] of the length

2TM TB-LDPCCC, i.e.,d̃[0,κT−1] ≥ d̃[0,T−1].

Proof: For any codeword̃v[0,κT−1] in the length2κTM TB-LDPCCC represented by (30),

wH

(

ṽ[0,κT−1]

)

= wH

(

ṽ[0,T−1]

)

+ wH

(

ṽ[T,2T−1]

)

+ · · · + wH

(

ṽ[(κ−1)T,κT−1]

)

, (46)

where wH(·) is the Hamming weight operator. From (32) and the triangle inequality it then

follows that

wH

(

v̄[0,T−1]

)

≤ wH

(

ṽ[0,T−1]

)

+ . . . + wH

(

ṽ[(κ−1)T,κT−1]

)

. (47)

Since from Lemma 2 we know that̄v[0,T−1] is a codeword in the length2TM TB-LDPCCC, it

follows that

d̃[0,T−1] ≤ wH

(

v̄[0,T−1]

)

. (48)

Combining (46)–(48) we obtain for the codewordṽ[0,κT−1] of the length2κTM TB-LDPCCC

that

d̃[0,T−1] ≤ wH

(

ṽ[0,κT−1]

)

, (49)

which directly implies

d̃[0,T−1] ≤ d̃[0,κT−1] , (50)

and the lemma is proved.

Theorem 2 now follows directly from Lemmas 1 and 3.
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Theorem 2: The free distancedfree of anyT -periodic LDPCCC from the ensembleC(3, 6, M, T )

is lower bounded by the minimum distance of the corresponding TB-LDPCCC of block length

2TM , i.e.,

dfree ≥ d̃[0,T−1] . (51)

The distance properties of convolutional codes are characterized by the ratiodfree/ν. In

Section V, we use Theorems 1 and 2 to numerically calculate the lower boundαLDPCCC =

d̃[0,T−1]/ν on dfree/ν.

V. NUMERICAL RESULTS

Consider the functionG(ρ̃[0,T−1]) defined in Section III. According to the condition of The-

orem 1, we must find the maximumρ∗

[0,T−1] such thatG(ρ̃[0,T−1]) < 0 for all ρ̃[0,T−1] with

normalized weight̃ρ[0,T−1] ≤ ρ∗

[0,T−1].

The numerical procedure used to findρ∗

[0,T−1] can be outlined as follows. For a giveñρ[0,T−1],

we find the vector̃ρ[0,T−1] with normalized weight̃ρ[0,T−1] that maximizes the functionG(ρ̃[0,T−1])

using numerical optimization. IfG(ρ̃[0,T−1]) > 0 , we decreasẽρ[0,T−1]; otherwise (i.e., if

G(ρ̃[0,T−1]) < 0) we increasẽρ[0,T−1] and repeat the procedure until the functionG(ρ̃[0,T−1])

becomes less than, for example,−10−5. The end result of the procedure is a vectorρ̃∗

[0,T−1] =

(ρ̃
(0)
0 , ρ̃

(1)
0 , . . . , ρ̃

(0)
T−1, ρ̃

(1)
T−1) and its normalized weightρ∗

[0,T−1] = 1
2T

(
∑T−1

t=0 ρ̃
(0)
t +

∑T−1
t=0 ρ̃

(1)
t ).

In Fig. 3, the resulting maximizing vectors̃ρ∗

[0,T−1] are shown forT = 5, 12, 13. In particular,

for T = 5, we have

ρ̃∗

[0,T−1] = (0.023, 0.023, . . . , 0.023). (52)

The normalized weight̃ρ[0,T−1] = 0.023 of this vector is close to Gallager’s lower bound on

the minimum distance to block length ratio of LDPC block codes derived in [2]. This confirms

the general rule that, for relatively small block lengths, the inter minimum distancedinter, which

reflects the block code properties of tail-biting convolutional codes, determines their minimum

distance. Indeed, the same tendency is observed forT = 3, 4, . . . , 11, i.e., each component of the

maximizing vector is approximately equal to0.023, resulting in a normalized weight of0.023.

ForT = 11, we see from (52) that the sum of the components of the maximizing vectorρ̃∗

[0,T−1]

is approximately0.5. The same is also true forT = 12 andT = 13 (even though as shown in
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Fig. 3. Maximizingρ̃∗

[0,T−1] vectors forT = 5, 12, 13.

Figs. 3 (b) and 3 (c), the components of the maximizing vectorare no longer approximately

equal in these cases), and further increases in the period donot lead to higher values of this sum.

It follows that the normalized weight drops asT increases beyond11. This effect is observed

due to the intra minimum distancedintra, which is lower bounded by the bound on free distance

of LDPCCCs derived in [1]. This bound scales asαLDPCCC(3, 6)ν = 6αLDPCCC(3, 6)M ≈ 0.5M

and represents an upper bound on the minimum distance of TB-LDPCCCs. In other words, the

minimum distance to block length ratio of TB-LDPCCCs decreases asT increases beyond11,

since the block length continues to increase while the minimum distance cannot grow beyond

the constantdintra.
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The distance ratios for the various LDPCCC ensembles are presented in Fig 4. We see that

the minimum distance to block length ratio for TB-LDPCCCs isequal to Gallager’s ratio for

LDPC block codes when the periodT is small. For larger periods, however, the ratio drops and

tends to zero, due to the effect ofdintra, as noted above. On the other hand, the free distance to

constraint length ratio forT -periodic LDPCCCs grows with increasingT and approaches the

ratio derived in [1] for general (non-periodic) time-varying LDPCCCs asT increases beyond11.
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Fig. 4. Distance ratios forT -periodic LDPCCCs and TB-LDPCCCs as a function of the periodT .

VI. CONCLUSIONS

In this paper, we derived a lower bound on the free distance ofperiodically time-varying

(J, K) regular LDPCCCs and a lower bound on the minimum distance of the associated TB-

LDPCCCs. Theorems 1 and 2 give analytical expressions for these bounds in the general case.

Using these expressions, we calculated numerically the bounds on free distance and minimum

distance for the practically interesting(3, 6) regular LDPCCC case. In the limiting cases, for

T > 11 the free distance bound corresponds to the bound for general(non-periodic) time-varying
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LDPCCCs derived in [1], and forT = 3 the minimum distance bound corresponds to Gallager’s

bound for LDPC block codes.
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