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CORRESPONDENCE 

Some Rate I,$ and ‘/4 Binary Convolutional Codes with an 
Optimum Distance Profile 

ROLF JOHANNESSON, MEMBER, IEEE 

281 

Abstract-A tabulation of binary ljrstematic convolutional codes 
with an optimum distance profile for rates ‘/3 and ‘/4 is given. A 
number of short rate ‘h binary nonsystematic convolutional codes 
are listed. These latter codes are simultaneously optimal for the 
following distance measures: distance profile, minimum distance, 
and free distance; they appear attractive for use with Viterbi de- 
coders. Comparisons with previously known codes are made. 

Recently [l] we introduced a nepr distance measure for fixed 
convolutional encoders (FCE’s), viz., the distance profile, d = 
[doA, -. - ,dw], where dj is the jth order column distance [2] and 
M is the code memory. When comparing codes of the same rate 
and memory, we say that a distance profile’d is superior to a 
distance profile d’ if di > dffor the smallest index i, 0 I i I M, 
where di * di. The code with the larger d will generally require 
less computation with sequential decoding than will the other 
code [l], [3]. Extensive lists of rate R = $& FCE’s of various types, 
viz., general nonsystematic codes, quick-look in (QLI) [4] codes, 
and systematic codes, with an optimum distance profile (ODP 
codes), i.e., with a di$tance profile equal to or superior to that of 
any other code, have been published [I], [5]. Most of these codes 
have also minimum distance dM and free distance d, equal to 
or superior to those of any other previously published code of the 
same rate, memory, and type. In this correspondence, we report 
an extension of our previous work to rates less than one-half and 
present ODP FCEs of rates 113 and y4. 

In Tables I and II, we list rate $$ ODP systematic convolutional 
codes, for 1 I M I 23. The kenerators are written in an octal form 
according to the convention introduced in [l]. For each value of 
M, we give both the code with the fewest number of weight dM 
paths and, if not the same, the code with the largest d, (ties were 
resolved by using the nun$er of low-weight d m paths as a further 
optimality criterion). The codes in Table I are also optimum 
minimum distance (OMD) codes [6]. The consistent excellence 
as regards dM of the rate 3s systematic ODP codes can be seen 
from Fig. 1 in which we have plotted dil,l for these codes; dM M 
for the codes of Btissgang (M I 6) [6], Lin-Lyne (7 I M I 17) 
[7], and Costello (18 I1 M I 23) [2]; and, for comparison, the 
Gilbert lower bound [Sk [2] on dM. For some memories M, the 
ODP codes have a minimum distance dM superior to that of any 
other known code of thd same rate and memory. 

In Table III, we list iate l/3 ODP general nonsystematic con- 
volutional codes which are also optimum free distance (OFD) 
codes. Ties were resolved first according to low-weight d m paths 
and then according to low-weight dM paths. We have plotted d, 
for these remarkable qpdes, which appear attractive for use with 
Viterbi decoders, and for the ODP systematic codes in Fig. 1. We 
note that for all rates R = l/n, we have 2M nonsystematic ODP 
codes equivalent to each systematic ODP code [6]. Our  empirical 
data suggest that the dumber of systematic ODP codes is inde- 
pendent of the rate. Since the number of potential nonsystematic 
OFD codes, viz:, 2nM, increases exponentially with n, we conclude 
that a reduction of the rate makes the ODP property more re- 
strictive. Hence, it is even more surprising that it can be obtained 
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TABLE I 
ODPSYSTEMATIC CONVOLUTIONALCODESWITF~ RATE KTHATAREALSO 

OMD CODES 

M  &2) &3) $ #paths d, #paths 

16 6 4 1 5 1 

2 5 7 B5 1 6 1 

3 64 74 B 6 1 0 2 

4 56 72 7 2 9 1 

5 57 73 0 3 10 1 

6 564 754 9 5 12 4 

gVd,e: B denotes that this generator ~8s previously 

found by Bussgang. 

TABLE II 
ODPSYSTEMATICCONVOLUTIONALCODESWITHRATE~~~ 

M &2) 

7 626 

0 531 

9 5314 

5314 

10 5312 

11 5312 

5317 

12 51444 

65304 

13 51444 

65306 

14 65376 

65305 

15 653764 

16 514112 

1-f 653761 

653767 

18 6537614 

6530574 

19 5141132 

20 5312071 

6530547 

21 65376164 

65305474 

22 51445036 

23 53176335 

65305477 

,(3) 

736 

676 
6760 

6764 
6766 

6766 

6767 

73254 

71274 

73256 

71276 

71261 

7;273 

712614 

732374 

712611 

712611 

7126104 

7127304 

'1323756 

6766735 

7127375 

71261060 

71273750 

73251266 

67677341 

71273753 

s #paths ?a #paths 

10 7 12 

11 15 13 

11 3 14 

11 5 15 

12 I 16 

13 15 16 

13 18 16 

13 3 16 

13 4 17 

14 6 17 

14 7 18 

15 19 18 

15 21 19 

15 4 20 

16 9 20 

16 1 22 

16 2 22 

17 4 23 

17 6 24 

18 14 24 

18 1 25 

18 5 26 

19' 7 26 

19 0 26 

20 22 26 

20 3 26 

20 7 28 
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- d, for OOP systematic codes 

--- - d, for OOP.OMD and OF0 codes 

l -•-•-0-0 dM for OOP codes 

.......*... dM for codes of Bussgong (OSMS6),Lin-Lyne 
(7 9 MS171 and Costello (18 -(M 5.731 

x-x-x-x-x Gilbert bound 

0 5 10 15 20 

Memory M 

Fig. 1. Minimum distance dM and free distance d, for some rate s convolutional 
codes. 

TABLE III 
NONSYSTEMATICCODESWITHRATE~STHATARESIMULTANEOUSLYODPAND 

OFD 

M &l) G(2) G(3) s #paths d, #paths 

1 4 6. 6 4 1 5 1 

2 5 7 7 5 2 a 2 

3 54 64 74 6 1 10 3 

4 52 66 76 7 3 12 5 

5 47 53 75 8 3 13 1 

6 - - -* 9 _ 15 - 

7 516 552 656+* 10 9 16 4 

* 
No code which is simultaneously ODP and OFD exists at M=6. The 

values Q%xI d, given are those for an ODP and an OFD code respectively. 

** 
The search for the code with th+ smallest number of weight d, = 16 

paths was not exhaustive ad hence & slightly better code might exist. 
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- d, for OOP systematic codes 
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a.......... dM for codes of Lin-Lyne IOSMd151 

and Costello 1165 M-< 231 

x-x-x-x-x Gilbert bound 

0 5 IO 15 20 

Memory M 

Fig. 2. Minimum distance dy and free distanced, for some rate ‘/4 convolutional 
codes. 
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TABLE IV 
ODP SYSTEMATIC CONVOLUTIONAL CODES WITH RATE l/4 

Y &+2) 

4 6 6 

5 6 7 

54 64 74 

56 66 74 

51 67 73 

514 674 730 

534 634 754 

516 622 744 

516 676 732 

535 637 755 

5350 6370 7554 

5350 6370 7556 

5351 6371 7557 

53514 63714 75574 

51056 63116 76472 

51056 63117 76473 

51057 63117 76473 

510574 631140 764720 

530036 611516 747332 

530037 611517 747332 

5105444 6311614 7647074 

5105446 6311616 7647072 

5105447 6311617 7647073 

51054474 63116164 76470730 

51563362 62735066 74040356 

51054477 63116167 76470731 

41 #path: 

at no sacrifice in free distance for rate lh codes than it is that it 
can be obtained for rate $$ codes [l] . It should also be mentioned 
that we have not found any code of rate y4 which is simultaneously 
ODP and OFD. 
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In Table IV, we list rate y4 ODP systematic convolutional codes 
for 1 _< M _< 23, and in Fig. 2 we have plotted do and d m for these 
codes; dM for the codes of Lin-Lyne (M I 15) [7] and Costello 
(16 I M I 23) [2]; and, for comparison, the Gilbert lower bound 
[6], [2] on dM. We note that the ODP codes as regards dM are as 
good as or superior to previously known codes, except for M = 
13 and 14. 
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In a forthcoming paper [8], a tabulation of ODP FCEs of rate 
y? will be given. 
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Book Reviews 

Signal Processing: Discrete Spectral Analysis, Detection, 
and Estimation-Mischa Schwartz and Leonard Shaw (New 
York: McGraw-Hill, 1975,396 pp., $17.50) 

KUNG YAO 

In the preface of this book, the authors state that, “it is our 
feeling that many of the techniques and algorithms currently 
employed by engineers and scientists in carrying out signal- 
processing tasks are widespread and basic enough to warrant 
introduction into the undergraduate engineering curriculum.” 
Indeed, this textbook has fulfilled that purpose in an excellent 
manner. Despite the existence of various fairly good books at the 
senior-first year graduate level dealing with the topics covered 
here, there is no single book quite like this one. This book is 
written in a casual manner that invites the reader to learn 
something about certain statistical concepts and applications in 
engineering systems. 

Chapter 1 contains a brief introduction and gives the motiva- 
tion for studying signal analysis. A few simple illustrative ex- 
amples are given and a slightly more detailed discussion on the 
air traffic radar and control system is presented. 

Chapter 2, Discrete-Time Signals, consists of a review of basic 
material on Fourier series, Fourier transforms, and linear system 

analysis. In this chapter, the term “discrete Fourier transform,” 
indicates only that the signal sample times are discrete. When 
the frequency values of a “discrete Fourier transform” are also 
discrete, it is then called a “finite Fourier transform.” Unfortu- 
nately, this latter term is called a discrete Fourier transform 
(DFT) in most literatures and books on digital signal processing. 
The treatment of the fast Fourier transform (FFT) is disap- 
pointingly brief for a modern book on signal processing. 

Chapter 3, Random Discrete-Time Signals, consists of a review 
of probability, correlations, and spectral densities. Most dis- 
cussions here are so brief that these materials are meaningful only 
to those already familiar with them. The section on the genera- 
tion and shaping of pseudorandom noise is interesting; this topic 
should be, but is not generally, covered in most elementary 
probability books. 

Chapter 4, Spectral Analysis of Random Signals, deals with 
the first of the three topics in the title of the book. Most com- 
munication theory, estimation theory, and stochastic processes 
books assume certain models of random processes. This approach 
may be convenient for analysts, but not necessarily intellectually 
satisfying to a student, nor necessarily helpful to those who may 
have to deal with real-life random data. Thus a chapter devoted 
to the evaluation of approximate signal statistics, spectra, and 
correlations are meaningful at the level of this book. This chapter 
covers sample autocorrelation functions, periodgrams, window 


