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Preface 

One of the major concerns in the design of steel bridges is the global and local 
instability of structural members, both during construction and in service. 
Catastrophic failures resulting in fatalities have occurred at times when stability 
principles have been violated during construction. The stability of steel-bridges 
during construction is highly dependent upon the adequacy in terms of both 
stiffness and strength requirements of the bracings that are provided. Winter [1] 
presented a dual brace criterion, his showing experimentally that the load-carrying 
capacity of an approximately 3.5	m long I-shape column (having a depth of 100 
mm, a width of 50 mm and a thickness of 1.6 mm) was enhanced by a factor of 
fifteen by use of bracings as weak as cardboard strips. The efficiency of such 
slight bracings was impressive. It is possible that some of the bridge tragedies that 
have occurred could have been avoided by use of very inexpensive bracings. I 
decided here to investigate how common bracings function in bridge applications 
during what is the most critical stage in terms of possible instability, namely the 
construction phase. 

The thesis is being submitted for a degree of Doctor of Philosophy at the Division 
of Structural Engineering of Lund University. It is based on research carried out 
by the author between May 2011 and December 2015. The thesis itself, the 
appended papers excluded, is 121 pages in length. No part of the dissertation work 
has been submitted for a degree at any other university. The research work was 
supervised primarily by Prof. Roberto Crocetti, to whom I am extremely grateful. I 
would also like to thank Dr. Eva Frühwald Hansson for her assistance. Special 
thanks go as well to Dr. Miklos Molnar, the Head of the Division, for his endless 
support and his kindness. I appreciate too the assistance provided by Per-Olof 
Rosenkvist (from LTH) and Göran Malmqvist (from SP) during the conducting of 
the tests. Jamie Turner (from SMD Ltd in the U.K.) and Thomas Lindin (from 
Britek AB) provided the corrugated metal sheets and scaffoldings that were 
required during the tests that were employed, I am highly appreciative of their 
support. I would also like to thank Fredrik Carlsson (from Reinertsen Sverige AB) 
and Ola Bengtsson (from Centerlöf & Holmberg AB) for the consultancy advice I 
received from them in our meetings and the discussions we had. I take this 
opportunity as well to thank my fellow researchers for the great times and the 
discussions we have had. 
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Most importantly, thank you Parvaneh for your patience and encouragement. 
Thanks for believing in me more than myself, and being there supporting me 
unconditionally. 
 

Hassan Mehri 

December 2015 



  

iii 

Abstract 

A number of steel bridges have suffered lateral-torsional failure during their 
construction due to their lacking adequate lateral and/or rotational stiffness. In 
most cases, slight bracing can be of great benefit to the main girders involved 
through their controlling out-of-plane deformations and enabling the resistance 
that is needed to be achieved. The present research concerned the performance of 
different bracing systems, both those of commonly used types and pragmatic 
alternatives. The methods that were employed include the derivation of analytical 
solutions, full-scale laboratory testing, and numerical modeling.   

The results of a part of the study showed that the load-carrying capacity of The 
Marcy Bridge that collapsed in 2002 could be improved by adding top flange plan 
bracing at 10-20% of its span near the supports. Theoretically, according to 
Eurocode 3, providing each bar of an X-type plan bracing having cross-sectional 
area as small as 8	mm  serves to enhance the load-carrying capacity of the bridge 
by a factor of 1.28, which is sufficient to prevent failure of the bridge during the 
casting of the deck.  

The research also included the derivation of a simplified analytical approach for 
determining the critical moment of the laterally braced steel girders at the level of 
their compression flange, which otherwise can usually not be predicted without the 
use of finite element program. The model employed related the buckling length of 
the compression flange of steel girders in question to their critical moment. An 
exact solution and a simplified expression were also derived for dealing with the 
effect of the rotational restraint of the shorter segments on the buckling length of 
the longer segments in beams having unequally spaced lateral bracings. The 
effects of this sort are often neglected in practice and the buckling length of 
compression members in such systems is commonly assumed to be equal to the 
largest distance between the bracing points. However, the present study showed 
that this assumption can provide an unsafe prediction of buckling length for 
relatively soft bracings and can also lead to a significant overdesign in regard to 
most bracing stiffness values in practice.  

Full-scale experimental study on a twin-I girder bridge together with numerical 
works on different bridge dimensions were carried out on the stabilizing 
performance of a type of scaffolding that is frequently used in the construction of 
composite bridges. Minor improvements were discussed which found to be needed 
in the structure of the scaffoldings that were employed. Findings showed the 
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proposed scaffoldings to have a significant stabilizing potential when they were 
installed on bridges of differing lateral-torsional slenderness ratios. Axial strains in 
the scaffolding bars were also measured. Indications of the design brace moment 
involved were also presented which was approximately between 2 and 4% of the 
maximum in-plane bending moment in the main girders. 

Three full-scale experimental studies were also performed on a twin I-girder 
bridge in which the location of the cross-beam across the depth of the main girders 
was varied. The effects of several different relevant imperfection shapes on the 
bracing performance of the cross-beams were of interest. It was found that the 
design recommendations currently employed can provide uncertain and incorrect 
predictions of the brace forces present in the cross-bracings. Both the tests and FE 
investigations carried out showed the shape of the geometric imperfections 
involved to have a major effect on the distortion that occurred in the braced bridge 
cross-sections. It was also found that significant warping stresses could develop in 
cross-beams having asymmetric cross-sections, the avoiding of such profiles in the 
cross-beams being recommended.  

Finally, seven full-scale laboratory tests of the end-warping restraints of truss-
bracings and of corrugated metal sheets when they were installed on a twin I-
girder bridge were also performed. The load-carrying capacity of the bridge was 
found to be enhanced by a factor of 2.5-3.0 when such warping restraints were 
provided near the support points. Relatively small forces were developed in the 
truss-bracing bars in order to such significant improvements in the load-carrying 
capacity of the bridge to be achieved. Moreover, bracing the bridge in question by 
means of the metal sheets that were employed was found to result in a 
significantly larger degree of lateral deflection at midspan than use of the utilized 
truss bracings did.  
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Notations 

The following symbols are used in the present report: 
 

 Area	of	a	cross‐section;
 The	enclosed	area	defined	by the	wall‐midline	in	a	thin‐walled	

closed	section;

, , , , 	  Cross‐sectional	area	of	a	single	top	flange,	a	bottom	flange,	and	
the	web of	a	steel	girder;

 , /4 2 ;

, 	  Cross‐sectional	area	of	a	diagonal	and	transversal	 strut 	bar;	
	 Distance	between	the	struts	in	a	truss	bracing	system;	
 Thickness	of	a	web	stiffener;
, , 	 	 , 	 Moment	gradient	factors	of	a	beam	in	its entirety,	and	of	the	

unbraced and	the	braced	spans,	respectively;

		 Top	flange	loading modification	factor;
	 Warping	constants;	 1 for	I	sections.	For	

trapezoidal	cross‐sections	see	 3 ;
 Depth	of	a	cross‐section;
	 Modulus	of	elasticity;
	 	  Tangent	and	reduced	modulus	of	elasticity;

 Distance	between	the	mid‐height	of	a	beam	cross‐section	and	
the	plane	of	a	corrugated	metal	sheet;

 Destabilizing	force	of	a	compression	flange;
 Brace	design	force;

 Shear	modulus;
	 Effective	shear	modulus	of	a	corrugated	metal	sheet;	
, 	  Self‐weight	of	steel	girders	and	the	fresh concrete	per	unit	span	

length;
 Distance	between	the	centroids	of	the	top	and	the	bottom	

flanges of	a	steel	girder;	
 Depth	of	a	cross‐diaphragm;
 Depth	of	a	web	stiffener;
 Strong	axis	moment	of	inertia	of	a	cross‐beam;
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., 	 . Moment	of	inertia	of	the	elastic and	the	inelastic portions	of	a	
cross‐section;

, 	  Moment	of	inertia	of	the	entire	cross‐section,	and	of	the	core	
portion	of	a	hybrid cross‐section;

 Bending	stiffness	of	vertical	web	stiffeners	and	a	girder's	web;	
, 	 	 Moment	of	inertia	of	a	cross‐section	with	respect	to	the	" "	

strong 	and	the	" " weak 	axes;

, 		and	 , 	 Moment	of	inertia	of	the	compression	and	the	tension	flanges,	
respectively,	with	respect	to the	weak	axis	of	a	monosymmetric	
section;

, 	 , ⁄ , 4 ,

	 Torsional	constant;	 ∑ /3 in	open	cross‐sections	and	
4 / ∑ / in	closed	cross‐sections.

 Stiffness	of	a	translational	spring;
 Actual	 or	provided 	brace	stiffness	of	a	lateral	brace;	

 Ideal	brace	stiffness	of	a	lateral	brace;
 Design	brace	stiffness	of	a	lateral	brace;

, 	  Effective	buckling	length	factors with	respect	to	the	
longitudinal	or	the	weak	axis;

	 Longitudinal	span;
	 Distance	between	the	brace	points;

	 Distance	between	points	of	zero	twist	 or	lateral	
displacement ;	the	central	span	length;

, , 	  Effective	buckling	length	of	a	structural	member	between	
immovable	restraints;

, , 	 ,  Effective	buckling	length	of	a	system	having translational	or	
rotational	bracings between	the	end‐supports;

, ,  Critical	in‐plane	moment of	a	beam	restrained	by	means	of	
metal	sheets;

, , 	 Critical	in‐plane	moment of	a	beam	restrained	by	means	of	
torsional	bracings;

, , 	 Critical	in‐plane	moment of	an	unbraced	beam;

, , 	 ,  Critical	in‐plane	moments	corresponding	to	lateral‐torsional	
buckling	between	the	brace	points,	and	to	system	buckling,	
respectively;

	 Warping	brace moment	per	length	of	a	beam;
	 Maximum	applied	in‐plane	bending	moment;

	 Theoretical	plastic	bending	capacity	of	a	beam	cross‐section;	
, , 	 	 Bending	moments	with	respect	to the	 , , axes	in	an	un‐

deformed	configuration;
, , 	  Bending	moments	with	respect	to	local	coordinate	axes	
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, , in	a	deformed	configuration;
	 Diaphragm	effectiveness	factor;
	 Number	of	intermediate	bracings;
	 Number	of	half‐sine	waves	in	a	buckling	mode;

 Number	of	main	girders;
 Axial	compressive	point‐load;

, , 	 ,  Critical	load	of	a	braced	or	an	unbraced	column;
kN/rad 	 Shear	rigidity	of	a	metal	sheet	 equal	to	 / 2 in	an	

equivalent	truss	bracing ;
	 Shear	flow;
 Equivalent	uniform	load	for	geometric	imperfections;	
 Transversal	load	per unit	span	length;

 Radius	of	curvature	in	an	in‐plane‐curved	bridge;
	 Radius	of	gyration;
	 Transversal	span	of	a	bridge;
	 Tributary	width	of	metal	decks per	girder	 1 / 	

where	ng	is	the	number	of	girders;

, 	 Maximum	torque	along	the	span	due	to	the	self‐weight	of	the	
steel	girders;

/  Distance	ratio	of	the	centroids	of	the	top	and	bottom	flanges	
from	the	neutral‐axis	of	a	beam	cross‐section;

 Thickness	of	the	plate	of	a	cross‐diaphragm;
 Equivalent	plate	thickness;

	 Thickness	of	web‐stiffeners;
	 Web	thickness of	a	girder;
, 	  Lateral and	vertical	deformations	of	a	beam	cross‐section;	
 Center‐to‐center	distance	between	the	centroids	of	top	flanges	

in	trapezoidal	girders;
 Lateral	deformation	of	a	column;
, , 	 	 Longitudinal,	horizontal,	and	vertical	coordinates;	
	 Distance	of	the	shear	center	 S.C. 	from	the	centroid.	
 The	length	of	the	side	segments;
	 Torsional	stiffness	of	a	cross‐beam/‐frame/‐diaphragm;	
 Girder	system	stiffness;

 Torsional	stiffness	contribution	of	web	stiffeners;	
	 Effective	torsional	brace stiffness 4 ;
̅ 	 / ;	for		bridges	with	single	brace, replace	L	by	0.75L	 4 ,	

, 	 Actual	 provided 	brace	stiffness	of	a	torsional	brace;	
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, 	 Ideal	brace	stiffness	of	a	torsional	brace;
 A	cross‐sectional	property	that takes	account	of the	effects	of	

cross‐sectional	mono‐symmetry;
∆ lateral	displacement	of	a	brace	point;
∆ 	 Magnitude	of	initial	out‐of‐straightness	of	a	compression	

member;
∆ 	 ∆ ∆ total	lateral	displacement	of	a	brace	point;	
	 Sip	in	a	bolted	connection;

 Normal	strain;
 twist	at	a	torsional	brace	point;
	 Initial	twist	of	a	beam	cross‐section;
	 total	twist	at	a	torsional	brace	point;

 Shear	stress;
	 Radius	of	curvature	in	a	bent	member;

 Relative	slenderness	ratio;
 ;	total	potential	energy	 Internal	work‐	external	

work ;
	 , / ;

 Normal	stress;
∅ Twist	of	a	beam	cross‐section;
	 Skew	angle	of	a	cross‐brace	with	respect	to	the	vertical	axis.	
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1 Introduction 

Bridges are an important part of a country's road network. New bridges are often 
built over busy roads or railways. Traditionally, bridge construction involves the 
in-place casting of concrete, this requiring both time and a large of space, this 
often causing serious traffic problems. The economic losses of the traffic delays 
thus brought about are very difficult to estimate. These include travel disturbances, 
longer travel times, and the unavailability of transportation, all of which lead to 
lesser income, and consequently to lesser tax income and social welfare. There are 
often major losses as well in the form of indirect effects, and the clear negative 
environmental impact of the traffic jams that take place. To reduce disruptions of 
this sort, it is extremely important that a bridge's assembly be performed as 
quickly, smoothly, and as safely as possible.  

Developments in the fabrication of steel girders of high strength steel, weldable, 
and able to achieve a high ratio of the moment of inertia to the cross-sectional area 
have made the use of steel in the bridge industry attractive. A type of bridge that 
makes smooth and relatively quick installations possible and that during the last 
few decades has taken over a large part of the bridge market, is that of the so-
called composite steel-concrete bridge. A bridge of this type consists of one or 
more steel girders in a composite action with a reinforced concrete deck, this 
serving to optimize use of the materials by the steel girders being subjected 
predominately to tension, whereas the concrete is subjected mainly to 
compression. An overall benefit in the use of steel-concrete composite bridges is 
also the fact that during construction of them the steel girders can be erected 
rapidly, which ultimately reduces the traffic disturbances brought about. More 
importantly, the steel girders bear the construction loads of the scaffoldings while 
construction is taking place, transferring these loads to the abutments. This reduces 
significantly the amount of scaffoldings that are required.  

The installation of steel-concrete composite bridges is, however, a critical matter 
in the designing of such bridges, it is often controlling the size of both the steel 
girders and the bracings. Altogether 105 out of the 440 cases of bridge failure dealt 
with in the report “Failed Bridges, case studies; causes and consequences” [10] 
occurred during construction of the bridges. This highlights the importance of 
more detailed investigations at this stage. In recent years, a number of accidents 
during the construction of steel bridges have occurred due to various instability 
phenomena during the lifting, launching, or concreting phases in bridge 
construction. An example of such accidents is the collapse of Bridge Y1504 over 
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the Gide River in Sweden that occurred in 2002; see section (2.2.1). The 
investigations that took place following the accident required considerable costs 
and efforts in themselves, and replacing the bridge cost approximately twice the 
original budget for building of the bridge. Although two workers dropped down to 
the ground when the bridge collapsed, there were fortunately no fatalities, since 
the bridge was not particularly high. There have also been failures in the 
construction of composite bridges due to problems caused by the instability of 
their falseworks. The falsework failure in connection with the Älandsfjärden 
Bridge in Sweden in 2008 is an example of such an accident, five construction 
workers there falling 20 meters down to the ground, two of them being killed, and 
two severely injured [11]. The author is also aware of the recent bridge collapses 
in Norway (Trondheim Bridge on May 8, 2013, two persons killed) and in 
Denmark (in Aalborg in June of 2006, one person killed; and in Helsingør in 
September of 2014) all of which occurred during concreting of their deck. The 
author had no access to the failure reports of these accidents at the time of writing 
the thesis.  

The failure mode of lateral-torsional buckling plays an important role in 
determining the size of the steel bridge girders to employ. The lateral-torsional 
instability of steel girders involves the possible twisting of the cross-section of 
them and lateral movement of the compression flange. The lateral-torsional 
resistance of such slender beams can be improved by either increasing the size of 
girders, or providing proper bracings so as to reduce the buckling length of the 
compression flanges. In composite bridges, the top flanges are needed mainly to 
provide sufficient space for the shear studs when a composite action takes place; 
their contribution to resisting out-of-plane deformations being negligible once the 
concrete deck has hardened. On the other hand, providing slight bracings can 
effectively enhance the resistance of steel girders. Without bracing, too large a 
lateral deflection of the compression flange could easily occur. A number of 
bracing options for controlling out-of-plane deformations of the main steel girders 
are feasible. An effective bracing system should possess adequate stiffness and 
strength so as to enhance both the load-carrying capacity of the main girders to a 
desired level and to withstand the forces induced in the bracings. 

The present study as a whole involves analytical, experimental, and computational 
investigations of the bracing requirements of steel bridges during construction. 
Current knowledge and related design recommendations concerning bracing 
requirements for steel bridges during construction of them are also discussed.  

1.1 Objectives 

The main objective of the PhD study was to evaluate the stabilizing performance 
of the typical bracings (cross-bracings, plan bracings, and corrugated metal sheets) 
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that are commonly used in steel bridge applications during the construction stage. 
Investigations of possible brace alternatives such as stabilization by means of 
modified scaffoldings were also of interest. The research includes the derivation of 
analytical solutions, the carrying out of full-scale laboratory tests, and the 
performing numerical simulations.   

1.2 Limitations 

The effects of different loading and boundary conditions, bridge curvature, skewed 
supports, and the like, on brace forces and/or on load-carrying capacities have 
been investigated by other authors. Studies concerning the effects of such 
variations were beyond the scope of the present study. The present study is also 
concerned mainly with straight bridges. Although in paper III two-span bridges 
were investigated, for the most part of the present study simply supported bridges 
were the dominant case studies. However, roughly the same rules as those that 
apply for the types of bridges studied here apply to the curved, skewed, and 
continuous bridges as well. Although the effects of the concreting sequence and of 
launching process on the brace requirements are also relevant to the phenomena 
investigated here, they were not examined in the present study. The bridges that 
were studied here were subjected to uniform transversal loads applied to the top 
flanges, which is a situation very commonly encountered in practice during the 
concreting stage. Finally, twin girders and trapezoidal girders were selected for the 
case studies, since these are the girders used most commonly in steel bridges in 
Sweden.  

1.3 State-of-the-art 

Although a large number of scientific contributions to study of the stability of steel 
beams and columns were reviewed in the literature study presented here, only the 
most relevant references are cited in the thesis. Also, the major contributions of 
previous research are explained for the most part within the contexts to which they 
apply. However, in order to classify them in terms of the method that have been 
employed, a brief account of the state-of-the-art within this context is provided in 
the following: 

Winter [1] developed a simple rigid bar model involving fictitious hinges at the 
brace points for determining lower-bound stiffness of the bracings that are 
employed in laterally braced columns, their values corresponding to “ideal” brace 
stiffness serving as immovable supports. Introducing initial imperfections, Winter 
also obtained the magnitude of forces present in the bracings. Introducing a 
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rotational spring representing the flexural stiffness of a given column, Pincus [12] 
extended Winter's model in order to determine the bracing requirements of 
inelastic columns. Obviously, the main difference between the two models 
mentioned above is the load-carrying capacity of the unbraced column, which is 
neglected in Winter's model.  

Numerous analytical studies of critical load values or of the required stiffness of 
bracings in perfect columns or beams under a variety of loading and boundary 
conditions and of bracing configurations have been carried out, (e.g. [13-22]). 
Some of the studies resulted in closed-form solutions, but most of them made use 
of numerical analyses instead. Some of the researches concerned the effects of 
imperfections on the load-carrying capacity of simple beams and/or on the 
magnitude of brace forces (e.g. [23-25]). There have also been numerous 
numerical studies of brace design requirements for imperfect steel bridges (e.g. 
[26-35]). Few studies, however, have been concerned with software development 
for the analysis of bridges during their construction (e.g. [36]). Various studies 
have been carried out on the derivation of simplified solutions for obtaining 
critical load values or the magnitudes of bracing forces (e.g. [37, 38]). Very few 
studies, however, have dealt with the bracing performance of steel bridges while 
taking account of different imperfection shapes that can be involved (e.g. [39]). 
Similarly, relatively few full-scale experimental works (e.g. [40-44]) were to be 
found on the performance of bracings in steel bridges.  

1.4 Terminology 

Some important terms will be explained here to assist readers: 
- Instability is a condition in which sudden sideway failure occurs in the case 

of a member subjected to high compression stresses, typically less than the 
ultimate capacity of the material involved. 

- Critical load is the load at which a structure passes from a stable to an 
unstable state [45]. After this particular load level (bifurcation point) has 
been reached, two equilibrium paths are possible. The critical load can be 
obtained by examining the equilibrium (either an algebraic equilibrium in 
the case of discrete systems having rigid members or a differential 
equilibrium in the case of continuous systems having elastic or inelastic 
members) or by utilizing the principle of minimum potential energy in the 
case of a virtually deformed system. Bifurcation is a branch point in a load-
deflection curve after which when further load is applied two equilibrium 
states are possible  the one with zero deflection that can only occur 
theoretically in perfect bars, and the other with large deflections.  
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- Post-buckling behavior of structural systems can be studied through 
adopting the large-deflection assumption in the case of either perfect or 
imperfect members. Three post-buckling situations can theoretically occur: 
either a hardening or a softening post buckling, or a transitional case. Plates 
and the web of a built-up girder for example, can exhibit considerable 
strength enhancement when the critical load has been exceeded. Whereas 
shells are imperfection-sensitive, they reach their ultimate resistance values 
after partial yielding of the cross-section has occurred, this resulting in a 
softening post-buckling. Slender columns reach their critical load value 
after only small deformations have occurred.    

- Small-displacement (or small-strain) theory: Here the occurrence of 
displacements is assumed being very small, this allowing the 
approximations of , , and 1.0 to be used to 
simplify the mathematical equations involved. Employing small-
displacement theory enables the critical load to be obtained. The assumption 
of large-deflections occurring can provide information regarding post-
buckling.  

- Principle of minimum potential energy: The total potential energy of an 
elastic system consists of the internal work,   i.e. the strain energy 
absorbed by the elastic structural members and by the bracings  and the 
external work, , i.e. the work performed by the loads applied along the 
path traveled from the original un-deformed reference point. According to 
the principle of minimum potential energy, the deformations corresponding 
to the maxima and the minima of the total potential energy are the 
equilibrium positions, the minima corresponding to the stable state. 

- Initial imperfections: In practice, all structural members are imperfect in 
terms of initial geometry, load eccentricities, and residual stresses. The 
large deflection theory of imperfect systems provides a deformation history 
including e.g. the loss of stiffness prior to a bifurcation point. 

- Falsework or scaffolding: In the thesis, both terms consist of temporary 
structures used for construction purposes to mold the concrete deck of steel-
concrete composite bridges and to support fresh concrete until it has 
hardened. Two types of such temporary systems tend to be used in practice. 
In the present text, the term falsework is used when such temporary 
structures are only built up with use of timber-frames/trusses, the term 
scaffolding being used when their structure also includes steel-pipe bars.   
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1.5 Outline 

The present chapter includes a short description of the problem, the main 
objectives of the study, the limitations of the study, and an overview of the 
terminology used in the context.  

The second chapter reviews a number of steel bridge collapses reported in the 
literature associated with problems of instability. 

The term lateral-torsional buckling is frequently used in this context. One of the 
papers included here, Paper II, involves a number of analytical investigations 
concerning the derivation of solutions regarding the buckling capacity of 
unequally spaced lateral bracings placed at the level of compression flanges in 
steel girders. Accordingly, a brief introduction to the theory of beam instability is 
provided in the third chapter. The information contained in Chapter 3 
demonstrates the limitations and the difficulties in deriving closed-form solutions 
in instability analyses, even in the cases of very simple structural systems.  

The fundamentals of beam bracing, lateral-torsional instability considerations 
during the construction of steel-concrete composite bridges, as well as the typical 
bracing systems commonly used in such bridges are taken up in Chapters 4-6. The 
stabilizing potential of corrugated metal sheets and of precast concrete decks here 
are also discussed. The bracing performance of scaffolding of types frequently 
used in Sweden is considered in Chapter 6. The results of experimental and 
numerical investigations of the bracing performance of such scaffoldings are 
presented in Paper III.  

The shape and the magnitude of initial geometric imperfections have significant 
effects on the load-carrying capacity of the steel bridges and on their bracing 
forces in particular. This was the main concern in Paper IV. Certain basic 
information and discussions that could not be provided in Paper IV are presented 
in Chapter 7.  

Relatively little information concerning bridge bracing based on laboratory tests is 
available. It is highly important that details of the test-setup employed in such 
works be available for use by other researchers, for example for the purpose of a 
calibration. In Chapter 8, the test setup designed and employed in the present 
study is elaborated. The drawing sheets used to build the specimens and the test 
setup are also shown in Appendix I.  

Commercial programs are valuable tools for research engineers, helping them to 
initiate ideas and to expand parametric studies on models that are already 
calibrated against test data. In Chapter 9, various concerns regarding the use of 
finite element program are discussed. In addition, the techniques used in the 
present study to import geometric imperfections into nonlinear analyses are 
explained.  
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Finally, in Chapter 10, a summary of the findings and some suggestions for 
possible future research are presented. Appendices at the end of the dissertation 
provide the opportunity for further test-setup details and test data to be presented. 
Appendix III, summarizes the bracing requirements that have been adopted in the 
current design specifications both in the U. S. and in Europe.  

Five papers written by the author during his Ph.D. study are also appended to the 
thesis. 
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2 Examples of bridge failures during 
construction associated with 
instability 

Bridge accidents during construction involving the failure of timber falseworks or 
the overall collapse of a bridge often have had tragic consequences. In recent 
decades, many bridges have collapsed and many people have lost their lives or 
been severely injured as the result. In bridge construction with the huge costs and 
the large numbers of workers it involves, safety should be regarded as being more 
important than matters of overall construction costs and holding to a time 
schedule. The bridge disasters recorded in history should remind engineers of the 
consequences of their mistakes; when mistakes are made, the structure tends to 
find them. Failure evaluations often report an ignored, underestimated, or unseen 
engineering approach one that could easily have been avoided. Valuable lessons 
can be learned, however, in reviewing the history of such errors, this enhancing 
our understanding of structural responses of this sort under real conditions. In the 
present chapter, a number of bridge failures that have occurred during bridge 
construction  due either to instability of the bridge itself or to problems in their 
falseworks  are summarized and their causes briefly described. There have also 
been problems of instability during the construction of bridges having concrete 
girders due to the bracings being inadequate. This can be seen for instance, in the 
failure of the four-span Souvenir Boulevard Bridge in Laval, Canada, in the year 
2000, in which four outer precast pre-tensioned girders slid off their bearings in 
each of the interior spans due to inadequate bracing of the precast girders prior to 
the concreting of the deck [46]. Emphasis in the present chapter is placed, however 
on the instability of steel bridges and their falseworks. 

It should be noted that many bridge accidents and the failure reports regarding 
them are often not made public in cases in which no fatalities occurred, for fear of 
possible legal consequences for the firms involved or harm to their reputations. 
The author faced difficulties at times in obtaining basic technical information as 
simple as regarding the cause of failure in cases that involved fatalities. Except for 
the bridge failure discussed in Section (2.2.1), in which the author had access to 
the failure reports, the information regarding other failure cases are from sources 
of other types that are referred to.  
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2.1 Examples of steel-truss bridge failures during 
construction associated with problems of instability 

There have been a number of truss bridge failures due mainly to buckling of their 
compression chords or diagonals [10]. These include for example, the following: 

- Total collapse of a semi-parabolic truss bridge in Switzerland between 
Rykon and Zell, 21 m in overall length that occurred in 1883, a collapse due 
to buckling of the upper chord because of inadequate lateral stiffness, one 
person being killed;  

- Total collapse of a semi-parabolic truss bridge, called the Mountain Bridge, 
having a total length of 28 m, that occurred in Austria in 1891, due to the 
buckling of compression members because of inadequate lateral stiffness;  

- Total collapse of a parallel truss bridge over Cannich in Scotland, 40 m in 
total length, that occurred in 1892, due to the buckling of the top chord 
because of inadequate lateral stiffness;  

- Partial collapse of a semi-parabolic truss bridge, over the Morava River near 
Ljubicevo in Serbia, 85 m in total length, that occurred in 1892 due to 
buckling of the compression chord;  

- Total collapse of a cantilever truss bridge over the St. Lawrence River near 
Quebec in Canada, 853 m in total length and having an inner span of 550 m, 
that occurred in 1907 due to failure of the under-dimensioned compressed 
bottom chord during construction, killing 74 persons. The cross-section of 
the chord was built-up of four non-compact web plates.  

- Partial collapse of a six-span semi-parabolic truss bridge with a total length 
of 554 m near Ohio Falls in Mississippi, U.S., that occurred in 1927, due to 
lack of under-water bracings, killing one person. 

There were no further reports that the author found of failure of steel-truss bridges 
due to problems of instability. This probably indicates that the buckling of 
compression chords as well as the lateral bracings they require are now well 
understood by engineers, resulting in better production of bridges of this type.  
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2.2 Examples of failures of built-up steel girder bridges 
during the non-composite stage associated with their 
instability  

A number of bridge failures associated with problems of instability in the main 
girders are listed below, a brief description of each case being provided. Most of 
the failures occurred during erection of the bridges, although in some of the cases 
failure occurred during demolition.   

- A five-span twin I-girder motorway Bridge with a total length of 272 m 
collapsed near Kaiserslautern over the Lauterbach Valley in Germany in 
1954. Total collapse of the inner span together with a lateral buckling of the 
bottom flange of the side span occurred during erection of the bridge. The 
compressive stresses in the bottom flanges of the side span were generated 
through deliberate lifting of the internal supports and the applying of an 
extra temporary gravity load to the suspended inner span, in order to induce 
a pre-stressed condition in the finished concrete deck. The spacing of the 
braces was increased from 4 m in the design of the bridge to 8-12 m in the 
construction phase without any plan bracings being placed at the level of the 
bottom flanges near the supports [10]. 

- A three-span twin box-girder steel bridge, The Fourth Danube Bridge, 
having a total span of 412 m, approximately 32 m width, and 5 m depth 
failed in Vienna in November 1969 [47]. The top flange of the final section 
was shortened by 15 mm to fit the gap in which the cantilevers met in the 
middle. This change was undertaken to adjust the closing section to the 
cross-sectional rotations of the cantilevers, due to vertical deflections of the 
large cantilevers brought about by their own weight as well as by thermal 
elongations of the cantilevers during the day. The drop in temperature in the 
evening and reversing of the thermal deformations generated tensile stresses 
in the top flange together with compression in the bottom flange. The bridge 
experienced major failures due to buckling at both the side-spans and the 
inner-span near the regions having a zero bending moment. The width-to-
thickness ratio of the bottom flange stiffeners was also relatively large in 
this case. 

- A seven-span single trapezoidal girder bridge, The Cleddau Bridge in 
Wales, UK, with a total bridge length of 819 m, failed in June 1970 [47]. 
The huge cantilever arm with a length of 61 m, a width of approximately  
20 m, and a depth of 6 m fell to the ground during launching due to 
buckling of the cross-girder at a bearing point, killing four people.   

- A five-span three-cell trapezoidal steel bridge, cable-stayed in the three 
inner spans, The West Gate Bridge over the Yarra River in Melbourne, 
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Australia, with total bridge length of 848 m, failed in October 1970 [45]. 
The girders of one span, 112 m in length, buckled after leveling two half-
girders through the self-weight of eleven concrete blocks. Thirty-five 
workers perished, some of them while working on the bridge or inside the 
boxes, and many while on a lunch break beneath the span, where they were 
crushed by the falling span.  

- A three-span trapezoidal girder bridge, the Storm Bridge over Rhine, with a 
total bridge length of 442 m, collapsed in Germany in 1971 [10]. Because of 
buckling of the stiffened bottom flange, the cantilever girder broke off 
causing partial collapse of the bridge, killing 13 persons. The longitudinal 
stiffeners were not welded to the bottom flange at the joint of two cross-
sections, leaving a 400 mm long section of the bottom flange unstiffened.  

- A six-span trapezoidal girder bridge, the Zeulenroda Bridge over the Weida 
Reservoir in Germany having a total bridge length of 362 m, failed in 1973 
[10]. The 31.5 m cantilever arm of the second span of the bridge collapsed 
due to buckling of the stiffened bottom flange (the critical load value, 
instead of the design value, had been used to determine the size of the 
stiffeners), killing four persons.  

- A two-cell steel box girder of a composite bridge at Bramsche over the 
Mittelland Canal in Germany having a total bridge length of 60 m, failed in 
1974 [10]. The concrete deck had been removed during demolition, leaving 
the top flanges without lateral restraint, one person was killed.   

- A 97 m long steel girder 2.4-3.65 m in depth collapsed during the erection 
of the Syracuse Bridge (with a total bridge length of 670 m) in New York in 
1982 [10] due to inadequate bracing, one person being killed.  

- Lateral-torsional buckling of a girder weighing 120 tons occurred during the 
demolition of a bridge near Dedensen over the Mittelland Canal in Germany 
in 1982 [10] after the lateral connections of it had been removed.  

- A single steel girder weighing 43 tons fell down during construction of the 
Astram Line Metro Railway Bridge in Hiroshima, Japan in 1991 [48] due to 
problems of instability, killing 14 persons.  

- A three-span triple I-girder bridge, The State Route 69 Bridge over the 
Tennessee River, having a total bridge length of 367 m, collapsed in 
Tennessee on May 1995 [10]. The bottom flanges were braced substantially 
by means of relative lateral bracings, but no lateral bracing was specified 
for the top flanges. Cross-frames had been built up by use of double angle 
profiles. Total collapse occurred during erection of the bridge when a cross-
frame had been removed in order to fix the connection, one person being 
killed.  
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- A steel girder weighing 50 tons dropped onto the road during a demolition 
in Harrisburg, Pennsylvania in 1996 [10]. The failure occurred because of 
the girder's flange being cut at two points, causing a reduction in lateral 
stiffness, one person being killed.   

- Bridge Y1504 in Sweden, with a trapezoidal girder and a total bridge length 
of 65 m experienced global lateral-torsional buckling on June 2002 during 
concreting of the deck [11]. The stay-in-place metal decks were designated 
to also provide lateral bracing of the compression top flanges, yet the type 
of corrugated sheets and the number of fasteners had been reduced during 
construction. Fortunately, although a few workers fell to the ground below, 
the accident had no fatalities because of low height of the bridge. 

- The Marcy Bridge in New York with a trapezoidal girder and a total bridge 
length of 52 m experienced global lateral-torsional buckling during 
concreting of the deck in October 2002, one person being killed [49]. No 
plan bracing between the two end supports had been used in this pedestrian 
bridge.  

- A single steel I-girder (30 m long weighing 40 tons) of the Interstate 70 
Bridge in Denver dropped from a freeway bridge into the traffic below in 
2004 causing a car to crash, killing three persons [48]. The accident 
occurred during the widening of the existing bridge. The girder was 
temporarily braced to the existing bridge at five points. However, the 
expansion bolts that attached the bracings to the existing concrete deck were 
not sufficiently embedded in the deck. 

- Three out of seven I-girders of 102nd Avenue over Groat Road Bridge in 
Canada buckled in 2015 due to lack of permanent bracings while the girders 
were being erected [50]. The subcontractor (the largest private firm in 
Canada, with 40 years of experience) misread the specifications regarding 
the required bracings. For the one year delay this brought up, the contractor 
is required to pay almost $4.2 million in penalties. 

2.2.1 The collapse of Bridge Y1504 in Sweden 

In this section the original report issued after evaluation of the Bridge Y1504 
accident [9] by both the firms involved and the independent parties are reviewed. 
Bridge Y1504 over the Gide River in Sweden, located 90	km west of the city of 
Umeå, collapsed on June 12, 2002. The bridge had a 65	m long trapezoidal cross-
section provided with nine intermediate cross-diaphragms to control distortion. 
Corrugated metal sheets served both as lateral restraints to the top-flanges and as a 
stay-in-place formwork for the fresh concrete while the bridge was being built. 
The average self-weight of the fresh concrete, including both the reinforcement 
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and the metal sheets was approximately 55	kN/m. The steel girders had an 
average weight of 17	kN/m. It was planned the concreting would be carried out in 
two steps; first, by covering approximately half of the span symmetrically through 
pouring at the mid-span. The cross-section of the bridge suddenly rotated by 90° at 
mid-span, after only a quarter of the volume planned for the first step had been 
poured. The end-bearings were also severely damaged due to warping of the cross-
section. According to witnesses, the entire accident took place within just several 
seconds. Six workers fell into the river, but fortunately were not injured. 

A site visit revealed that both the size of fasteners and the type corrugated sheets 
employed were altered from the prescribed design in the following ways: The type 
of sheets involved changed from TRP45 to PEVA 45 (see Fig. 2.1), the diameter 
of the seam fasteners being changed from 6.3	mm to 4.8	mm, the spacing between 
the seam fasteners being changed from 150	mm to 300	mm. The diameter of edge 
nails placed at each valley was 4.5	mm. Apparently, assuming the stay-in-place 
sheets were to function as a formwork only, the constructor replaced the 
prescribed sheets by an equivalent or better alternative, which was either available 
or cheaper on the market than what had been planned originally. Although such 
changes can occur in virtually any project as a routine matter, the failure of the 
design and the construction sector to inform each other of the changes made, 
created an unsafe working environment, one that could have consequences that 
could be tragic. 

 

Figure 2.1 
The prescribed (TRP 45) and the corrugated metal sheets (PEVA 45) used for the construction of 
Bridge Y1504.    

Prior to the concrete pouring commencing, a relative vertical deflections of 18	mm 
between the top flanges at mid-span was observed, although this was considered to 
be within acceptable tolerance limits. This measurement gave an approximate 
initial twist value of 0.005	Rad at mid-span. Calculations regarding system 
buckling of the steel girder and global buckling of the metal sheets were missing 
in the design documents.  

The equations regarding the shear flexibility of corrugated sheets given by 
handbooks and guidelines, such as [51, 52], yield considerable discrepancies and 
are difficult to validate for a sheet of a particular type [6]. Despite “strong” 
contradictory statements regarding the adequacy of the prescribed corrugated 
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sheets in stabilizing the girder, and also regarding the responsibility of the firms 
involved, there appeared to be a “general” agreement between the various failure 
reports that were issued for the causes of the accident. A review of the failure 
reports issued by the independent third parties that were involved showed the 
actual shear stress values to probably be greater than the shear resistance of the 
critical edge fasteners. This was probably true, even ignoring the torque that could 
be generated from the wind load. The folded stiffeners in the type of sheets that 
were utilized considerably increases (by a factor of approximately 1.8) the 
warping flexibility of the sheets considerably compared with similar sheets that 
lack such stiffeners. This increase in flexibility led to strong forces being directed 
at the edge fasteners, since the panel was not sufficiently stiff to properly 
distribute the shear stresses between the edge fasteners of each panel. Use of two 
nails instead of one for each stiffener, one on each side, would have been able to 
increase the shear stiffness of the panel appreciably and presumably reduce the 
risk of failure.  

During concreting, in addition to the in-plane bending stresses (which were 
greatest in the mid-span and were zero at the supports), the steel girder with a 
semi-closed-section was subjected to shear stresses created by torsion (which was 
greatest at the supports and “zero” at mid-span). Assuming the steel girder to have 
a thin-walled closed-section, the torque can be assumed to develop shear flows 
of	 ∙ ∑ /2  across the section,  being a modification factor to take into 
account stress concentration effects due to appreciable changes of thickness in the 
cross-section, and  being the enclosed area defined by the wall-midline in a 
closed section. This shear force should be resisted by both the attachments and the 
St-Venant stiffness of the closed cross-section. The torques, , are generated by 
the following: 

- the self-weight of the steel girder, , due to possible lateral crookedness. 
This torque can be approximated by considering, for example, a half-sine-
shape initial crookedness having a maximum value of ∆ /500 at mid-
span, which leads to: 

, ∙
2

0

∆0

2

500
																																																												 2.1 	

- an uneven distribution of the fresh concrete across the deck and the 
eccentricity of the fresh concrete load from the shear center, both of these 
originate from the initial twist of the cross-section. 

- the wind load during concreting. 

The end panels had to be attached all the way around in order to function properly 
as a shear diaphragm. However, the sheets were attached neither to the cross-
diaphragms of the supports nor to the intermediate cross-diaphragms. 
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Consequently, at the support points (i.e. at the location of maximum torque as 
explained earlier) the panel had no attachments except a single fastener at each 
corner of the free edges (see Fig. 2.2). Thus, the corner fasteners of the free edges 
became overloaded, taking shear forces from the sheet. The progressive shear 
failure of the edge fasteners at both ends converted the closed-section to an open 
cross-section. This significantly lower torsional stiffness may not be adequate to 
resist the torque near the support points. Note that the shear center of an open 
trapezoidal section is far below the bottom flange and that the rather small 
equivalent thickness of typical corrugated sheets can barely move the shear center 
towards the centroid. Thus, the difference between the torque arms of an open-
section and a closed-section (utilizing typical thin metal sheets) with respect to the 
shear center is negligible. 

 

Figure 2.2 
An elevation view illustrating the distribution of the shear forces over the fasteners present at the end 
supports, a) representing the case in which the end sheet is properly fastened to the cross-diaphragms 
of the supports utilizing an angle profile for example, and b) representing the case in which the end 
sheet is not attached to the support cross-diaphragm. 

2.3 Steel bridge accidents during concreting that were 
associated with problems of instability in their timber 
falseworks  

A number of accidents have occurred during construction of bridges due to 
problems of instability within the falseworks involved, some of these accidents 
resulting in tragic events. The failure of the falsework of the Älandsfjärden Bridge 
in Sweden in 2008 is an example of such an accident, five construction workers 
there felling 20 meters to the ground, two of them being killed and two severely 
injured [11].   

Among the timber-falsework failures during bridge construction that have 
occurred, some 60 cases described in [10], inadequate lateral stiffness or strength 
was found to have made a large (20%) contribution to bringing about such 
failures. Insufficient bracing or lack of it was also identified as the primary 
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enabling event with respect to the collapsing of bridge falseworks observed in a 
survey of bridge falsework failures reported since 1970 [53].   

2.4 Conclusions 

The author found no information regarding failures of steel-truss bridges being due 
to inadequate lateral bracing or to buckling of their compression members during 
the last few decades. This indicates clearly that the stability requirements of such 
bridges are rather well understood by engineers. 

However, built-up bridge girders still fail due to inadequate bracings, or errors in 
the proper evaluation of the local and global buckling capacity of the steel girders. 
Global lateral-torsional buckling of trapezoidal girders was the failure mode in two 
recent bridge accidents.  

The stabilizing function of corrugated metal sheets is strongly affected by their 
shear stiffness and strength as well as by the shear resistance of their attachments. 
Calculations regarding the shear stiffness of metal sheets are rather complex, and 
the shear stiffness of them depending upon a number of factors, such as their 
geometry, the number of attachments, and warping of the section involved. Further 
studies are needed in order to enhance the knowledge for such members when they 
function both as a stabilizing system and as a stay-in-place formwork during the 
construction of steel bridges.  

The failure of Bridge Y1504 taught us that any major change in common design 
practice should be highlighted in design documents. Lack of proper 
communication between the design and the construction sectors can potentially 
create am unsafe working environment in construction operations.  

Several accidents have occurred during demolition of steel bridges. This shows 
that constructors may well ignore the stability assessments of steel girders during 
demolition. There, the steel girders involved can be vulnerable to lateral-torsional 
buckling once the lateral support, provided by a concrete deck for example, is 
removed. In situations of other types, failures of this sort can occur when the size 
of a compression flange is reduced locally during demolition, resulting in a 
significant loss in lateral-torsional stiffness.  

The recent failures that have occurred during the concreting stage indicate there to 
be a need for further investigations concerning the stability of bridge falseworks. 
Despite the importance of stability assessments of bridge falseworks, guidelines 
regarding the stability requirements of such systems during construction are 
ignored in a great extent both in Eurocodes and in other code specifications. 
Regardless of having sophisticated plans for management, design, construction, 
maintenance, cost analyses, and the like, a simple human error in the design or in 
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the installation of timber falseworks can lead to catastrophic events. Accidents of 
this sort very frequently result in fatalities, considerable delays, and significant 
extra costs for replacement of what has been destroyed and for failure evaluations. 
Despite the elementary techniques used in the structure of bridge falseworks, these 
often represent a considerable portion of the construction costs of a composite 
bridge. Alternative systems of greater efficiency and safety to the currently used 
falseworks can be of great help during construction of steel-concrete composite 
bridges. 
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3 Theory of beam stability 

A stability criterion represents a limit state such that at a certain load a structure 
passes from a stable state, involving a situation in which a small increase in load 
generates only a small increase in displacement, to an unstable state one, in which 
a small increase in load results in a large change in displacement [45]. Generally, 
stability analyses include either studying of the local buckling of a cross-sectional 
component in the presence of compressive stresses, or determination of the critical 
load of structural members of systems (such as a column, beam, frame, arch, or 
truss) that corresponds to their lack of stability. The major concern of the present 
research is the lateral-torsional buckling of steel bridge girders. In line with this, 
basic concepts concerned with the lateral-torsional instability of beams are taken 
up briefly in the present chapter. The text begins with a brief introduction to 
matters of elastic and inelastic buckling followed by a discussion of the effects of 
residual stresses on the critical load values involved. 

3.1 Introduction 

In 1729, a Dutch scientist, Pieter van Musschenbroek, performed pioneering work 
on the buckling of compression struts, his discovering that the failure load 
involved is inversely proportional to the square of the length of the struts [54]. 
Adopting the assumption of a proportional relationship between the curvature at 
any point of a bent member and the resisting moment that develops  a 
relationship that Jacob Bernoulli introduced in 1705  the Swiss mathematician 
Leonard Euler presented a formula in 1757 for predicting the elastic critical load 
value of perfect columns: , /  [55]. Euler was uncertain about the 
term , “a dimension constant which seems to be proportional to the square or 
even cube of thickness and should be obtained experimentally” [55]. In the early 
1800's, Euler's formula was widely criticized by engineers and authorities, such as 
Coulomb  who believed that the failure load of a column depends only on the 
cross-sectional area and not the length of the column. This occurred since the 
formula failed in experiments to correctly predict the failure load of columns 
composed of materials in use at the time, i.e. masonry and timber. Materials to 
which Euler's formula has found to be most applicable, such as structural steel, 
first became commercially available some 100 years after Euler's contributions 
within this area. 
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More than a century after Euler presented his formula for elastic buckling of 
columns, Ludwig von Tetmajer [56, 57] carried out experimental investigations 
concerning the causes of the Münchenstein truss railway bridge disaster in June 
1891, which killed over 70 persons. The study revealed that the Euler's formula, 
that had been used to design such bridges at the time, needed to be modified for 
columns having an intermediate slenderness ratio, e.g. one of 0.3 1.4.  

3.2 Effects of material inelasticity on bracing 
requirements 

Euler stated the following: 

“The stiffness moment”, / , “is not limited to elastic bodies, and it concerns 
a bending by means of which any body resists a change in curvature to 
reestablish its original shape” [55].  

For columns that experience a bifurcation of equilibrium above the proportional 
limit, Euler's formula provides a prediction that overestimates the critical load due 
to the regression of strain in the inelastic range, i.e. when / ; where 

 is the tangent modulus, and 	and	  are the normal stress and strain values. To 
expand Euler's concept to be applicable within the inelastic range, Engesser  
proposed a tangent modulus concept in 1889 [45] from which the critical 
slenderness ratio of a column, / , can be calculated using Eq. (3.1), where  
is the tangent modulus obtained from the - /  curve for a given stress value, 
and  being the radius of gyration of the cross-section.  

/ / 																																																																																																										 3.1 	

Performing 32 column tests in 1889, Considere suggested that if buckling occurs 
above the proportional limit, the elastic modulus in Euler's formula should be 
replaced by an effective modulus, , which is a value between the elastic and the 
tangent moduli [45]. This theory is now referred to as the reduced/double modulus 
concept, which improves the tangent modulus concept by considering both 
material and cross-sectional properties, see Eq. (3.2). The double-modulus concept 
makes use of the elastic modulus for the elastic zone of the cross-section, which 
has a moment of inertia of ., and a tangent modulus for the inelastic part, which 
has a moment of inertia of ..  

. . 																																																																																															 3.2 	
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Pincus [12] stated that since the flexural stiffness of a member decreases in the 
inelastic range, its critical load is smaller than the elastic critical load predicted by 
the Euler's formula. Thus, to achieve a desired critical load of a column loaded in 
its inelastic range and to compensate for the loss in stiffness of the column, braces 
stiffer than the “ideal” value for it (= , which serves the brace points similar to 
an immovable support), as predicted by Winter's model (see Section 1.3), should 
be provided. Gil and Yura [58] reviewed Pincus's claim. In their experimental 
studies, artificial inelasticity for a test-column was created through use of high-
strength steel inside of the cross-section and low-strength steel on the outsides. For 
the cases studied, in contrast to Pincus's claim, the results showed that the full 
bracing requirements were independent of the state of material (i.e. whether it was 
elastic or inelastic).  

3.3 Effects of residual stresses on buckling load 

A large number of tests [56] showed that the load-carrying capacity of columns 
having an intermediate slenderness ratio was considerably smaller than the column 
strengths predicted on the basis of Eq. (3.2). This occurs due to the detrimental 
effects of residual stresses combined with the geometric imperfections and 
material nonlinearities that are present. The effects of residual stresses on the 
critical load values and on bracing requirements may in practice not be possible to 
determine for a given case. A number of studies have discussed the effects of 
residual stresses on the strength of very simple column members. For instance, 
Galambos [45] investigated analytically the effects of an assumed residual stress 
distribution on the load-carrying capacity of a column with a rectangular cross-
section with respect to its either the weak or the strong axis. The residual stresses 
were distributed linearly across the cross-section from a tensile stress value 
0.3~0.5 times that of the yielding stress at the center of the cross-section to a 
compressive stress of the same magnitudes at the edges. Such studies, together 
with extensive laboratory tests of varying mechanical properties (such as 
slenderness, and cross-sectional shape) and fabrication processes resulted in the 
development of column and beam design curves in the current code specifications. 
These design curves take account of, for example, the effects of geometric 
imperfections, typical load eccentricities, and residual stresses on the design load 
value of typical columns and beams used for practical purposes.  

In the numerical investigations of the present study, the effects on the performance 
of bracings in steel bridges, of the shape and magnitude of geometric 
imperfections, along with of the material and geometric nonlinearities involved, 
were included in the analyses. Taking account of the effects of residual stresses 
was seen, however, as being outside the scope of the present Ph.D. research. 
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3.4 Lateral-torsional buckling of doubly-symmetric 
simply supported beams subjected to uniform bending  

Lateral-torsional buckling is a failure mode of beams subjected to an in-plane 
bending that can occur along the unbraced length causing both lateral movement 
of the compression flange and twist of the cross-section, see Fig. (3.1).  

 

Figure 3.1 
Lateral-torsional deformation of a doubly symmetric wide-flange beam subjected to a uniform in-
plane bending moment of , where , , and	  are lateral deflection, vertical deformation, and 
twist of the cross-section at the location  along the span; , , and	  are the bending moments 
and torque components of  in the deformed configuration. 

The lateral-torsional buckling of steel beams is of particular importance during the 
erection of a bridge before all the bracings have been set in place. There have been 
many fatal failures in bridge construction due to lateral-torsional buckling 
resulting from improper bracing (see the examples presented in Chapter 2). In this 
section, Timoshenko's approach [59] to predicting the critical bending moment of 
a doubly symmetric beam subjected to uniform bending moment is first described 
briefly. This is followed by various hints of modifications required for the solution 
arrived at, enabling different loading and boundary conditions, cross-sectional 
asymmetry, and inelasticity to be taken account of. It should be noted that the 
lateral-torsional buckling of braced members is rather complex, exact analytical 
solutions only being possible for relatively simple situations involving unbraced 
beams. However, various conservative recommendations are available on the basis 
of numerical studies of different practical demands needing to be met. 

Fig. (3.1) illustrates the lateral-torsional buckling deformation of a doubly 
symmetric beam, together with a plan view of a deferential length of the beam at 
location	  along the span in both a deformed and a non-deformed situation. The 
single span beam in question is subjected to a uniform in-plane bending of . 
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The out-of-plane deformations are represented by centroid lateral and vertical 
movements of  and , and a cross-sectional twist of ∅. The beam is free to warp 
and is restrained against twist at both ends. The material involved is elastic, small 
deformation theory being applied ( ∅ ∅	and	 ∅ 1 , it is being assumed that 
local buckling does not occur in any part of the cross-section. In Fig. (3.1), the 
bending moments and torsional components of  that are applied to the 
deformed cross-section are as follows: 

; 	 ∅;	 																																																																									 3.3 	

An equilibrium of the external and internal forces requires that the followings 
apply [59, 60]: 

																																																																																																																						 3.4 	

																																																																																																																						 3.5 	

																																																																																																 3.6 	

Only Eqs. (3.5)-(3.6) involve lateral-torsional deformations. Substituting  from 
Eq. (3.5) into the equation obtained through a differentiation of Eq. (3.6) with 
respect to  results in the following differential equation: 

0																																																																																							 3.7 	

Substituting the corresponding boundary conditions (where at both ends the lateral 
and vertical deflections, the twist, and the bending moment about  axis are set to 
a value of zero) into the solution of Eq. (3.7) results in the following equation for 
the critical moment value: 

, , ∙ 1 																																																																									 3.8 	

3.5 Modifications required in the basic approach to the 
critical bending moment value 

The basic Timoshenko's approach presented here as Eq. (3.8) was derived on the 
basis of the following assumptions: the beam has a doubly-symmetric cross-
section, simply supported boundary conditions, and is subjected to a uniform 
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bending moment. A closed-form solution is rather difficult or even impossible to 
obtain for most of the other boundary and loading conditions that exist in practice. 
For limited cases, a number of approximate modifications  involving mainly 
numerical studies  have been suggested in the literature. Major concerns 
regarding possible alternative conditions other than those assumed in derivation of 
Eq. (3.8), are explained in the subsections that follow.  

3.5.1 Effects of different boundary conditions 

A similar mathematical process such as that presented in Section (3.4) can be 
carried out so as to obtain predictions of the critical bending moment for different 
boundary conditions other than the warping-free and twist-restrained situations 
assumed in the derivation of Eq. (3.8). An approximate conservative solution 
based on an extension of the effective length method is given in Eq. (3.9) [61]. 
This equation can be used as a general solution for different boundary conditions. 
Under both-end fixed, both-end free, or one-end-free and the-other-end-fixed 
conditions, the 	and	 	values involved would be equal to 1.0, 0.5, or 0.7 [61].   

, , ∙ 1 																																																																 3.9 	

3.5.2 Effects of different loading conditions 

A variety of loading configurations for a beam prone to lateral-torsional buckling 
are possible to occur in practice. Transverse loads applied to the top or bottom 
flange of the beam shown in Section (3.4), decrease or increase, respectively, the 
critical moment value [4]. Unfortunately, for most practical loading conditions, 
employing an exact analytical solution for determining the critical moment value 
is either impossible or cumbersome. A number of studies (e.g. [62-65]) have 
presented expressions that can modify Timoshenko's basic equation so as to 
account for the benefits of variable bending moment distributions other than the 
uniform bending moment assumed in derivation of Eq. (3.8). Such 
recommendations result in critical moment values that are based on conservative 
fits to the data involved. For example, the following  factor, based on a use of a 
so-called three-quarter-point-moment method (see e.g. [4, 66]) is recommended by 
AISC [67]: 

12.5
2.5 3 4 3

																																																																						 3.10 	
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In Eq. (3.10),  is the absolute value of the maximum in-plane bending 
moment in the unbraced segment, and	 , . . . ,  are the absolute in-plane 
bending moment values at the quarter, at the center, and at the three-quarter points 
of the unbraced segment. 

Loads applied above shear center destabilize and those below stabilize the beam as 
lateral-torsional buckling develops. To determine the load height effects when 
transverse loading is applied to the cross-section at some particular height, Eq. 
(3.10) needs to be multiplied by a 1.4 /  factor [4],  being the location of the 
load that is applied with respect to the midheight of the cross-section and is 
positive for the values below the midheight of the cross-section. Although the 
load-height effect decreases as the length of a member increases [68], the 
modification factor mentioned above provides an upper-bound value for the beam 
spans typically employed. Eq. (3.10) needs to also be multiplied to a modification 
factor of  0.5 2 , /  when the beam is subjected to a double-curvature 
bending along an unbraced segment; where ,  is the moment of inertia of the 
top flange with respect to the weak axis of the cross-section.  

As the result of numerical studies that were performed, Yura et al. [37] showed 
that for twin-I girders that were inter-braced by means of typical cross-bracings, 
the load height had only minor effects on the critical load values. Park et al. [29] 
also developed various modification factors to account for the effects of lateral 
restraints. Those critical moment modification factors have been developed for 
single beams in connection with numerical studies. While for cases encountered in 
practice in which a number of beams involved are inter-connected by means of 
cross-bracings, the results arrived at through such various modification factors 
might not be truly justified.  

3.5.3 Effects of lateral restraints (Paper II) 

Fig. (3.2 a) illustrates a situation in which a simply supported beam is braced 
laterally at one-third and two-thirds of the span locations. The side segments are 
subjected to considerably lesser in-plane bending than the central segment, and 
acting as restraining members at both ends of the central segment. Such a case was 
studied by Galambos [45], who calculated the effective buckling length of the 
central segment as being 0.83 . 

Another case of the restraining effects of the side segments on the effective 
buckling length of the compression flange of the inner segment is that illustrated 
in Fig. (3.2 b). There the side segments, having shorter unbraced lengths provide 
restraints on lateral rotation at both ends of the central segment. This case is a part 
of an investigation reported by the author in paper II [69]. Although the primary 
concern of paper II is the applicability of a simplified method in prediction of the 
critical moment value of laterally braced beams, the study also examines the 
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restraining effects of unequally spaced lateral bracings on the effective buckling 
length of a critical segment having greater unbraced length. This matter was 
investigated analytically by varying the stiffness and the location of the lateral 
bracings placed at the level of the compression flange. The results of that part of 
the study showed that the side segments of which the unbraced length is shorter 
can have a significant impact on reduction of the effective buckling length of the 
compression flange of the central segment (down to 0.5 ).  
 

 

Figure 3.2 
End-restraint effects of side segments in laterally restrained beams on the effective buckling length 
of the central segment, . 

3.5.4 Effects of cross-sectional asymmetry  

Additional twisting moments can be developed along the span in beams of 
different flange sizes. The twisting moment there, is generated by normal stresses 
on each of the differently warped flanges in a mono-symmetric cross-section. Eq. 
(3.6) needs to be replaced there by Eq. (3.11) so as to take into account the 
additional twist referred above [59]. In Eq. (3.11)  is a cross-sectional property 
in mono-symmetric sections that is defined by Eq. (3.12), and  is the distance 
between the centroid and the shear center of the cross-section.  

																																																																										 3.11 	

1
2

	

																																																																							 3.12 	
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Substituting  from Eq. (3.5) into the equation obtained through a differentiation 
of Eq. (3.11) with respect to  results in the following differential equation: 

0																																																																 3.13 	

Applying the corresponding boundary conditions in the solution of Eq. (3.13) 
yields the following equation as a general solution for obtaining the critical 
moment value of beams having mono-symmetric cross-sections. A positive sign 
should be employed there when the top flange is in compression, and a negative 
sign is when the bottom flange is in compression. 

, , 2
1 1

4
																																					 3.14 	

The following approximate formula, obtained on the basis of numerical parametric 
studies that have been carried out is also given in the literature [70] for  in the 
case of wide-flange beams being involved, its providing relatively accurate results 
as long as / 0.5, where , / , and  is the moment of inertia of the 
compression flange with respect to the weak axis of the cross-section. 

0.9 2 1 1 																																																																															 3.15 	

3.5.5 Effects of inelasticity on lateral-torsional buckling 

Although a number of parametric studies of the inelastic lateral-torsional buckling 
of simple beams have been carried out (e.g. [21, 71, 72]), investigating critical 
moment values for the inelasticity of wide-flange members here is not a simple 
task. For a beam with a relatively simple cross-section (such as a rectangular 
beam) that is subjected to a uniform bending moment the analysis can be divided 
into three regions based on yielding of the farthest tension and/or compression 
fibers of the cross-section. In approximating the material properties involved 
through use of a bi-linear stress-strain model, the elastic modulus of the yielded 
regions can be assumed to be “zero”. Thus, the remaining cross-section which 
resists the lateral-torsional deformation would only be the elastic core in an 
elastoplastic stress distribution across the cross-section. Substituting the cross-
sectional properties obtained on the basis of assumptions referred to above into the 
critical moment formula, the critical lateral-torsional bending moment can be 
obtained for various lateral-torsional slenderness ratios. However, under non-
uniform-bending conditions in which the maximum bending moment along the 
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unbraced span generates elastoplastic stresses in the cross-section, yielding 
commences at the maximum moment location, whereas the cross-section of the 
remaining span may be completely within the elastic range.  

For design purposes, the design curves given by the code specifications (e.g. [73]), 
based on extensive numerical and experimental data are the more practical tools 
for examining the effects of nonlinearities.  

3.5.6 Effects of variable cross-section on lateral-torsional buckling 
(unpublished work) 

Most of the theoretical approaches available, including the basic approach 
expressed in Eq. (3.8), concern the critical load-capacity of beams of constant 
cross-section. However, in order to suit the bending moment distribution, the size 
of the cross-section (typically the size of the flanges) is often varied along the 
span. Trahair and Kitipornchai [13] discussed the critical moment solutions for a 
doubly-symmetric beam having symmetrically stepped flanges. A concentrated 
transversal load was applied at mid-span. For the stepped beam, the middle 
segment was of greater cross-sectional size. The equations were solved 
numerically. The results suggested that a reasonable approximation of the elastic 
critical load of such stepped beams can be determined by linear interpolation 
between the two critical load values, there calculated for two separate beams of 
constant cross-section as the side segments and the middle segment along the 
span. Trahair and Kitipornchai claimed this approximation to have the advantage 
of being simple and giving either accurate or conservative result. 

The author performed investigations concerning the lateral-torsional buckling of 
stepped beams having a variety of cross-sectional dimensions and span lengths. 
The results of numerical studies here are shown in Fig. (3.3)-(3.6). The depth of 
the beams was 1250	mm throughout the span, whereas the span-to-depth ratio 
varied as follows: / 3, 5,7,10, and	13. In the doubly symmetric cases, the 
flange width to beam depth ratio was approximately 0.25. The ratio of flange 
width to flange thickness varied between 16	and	20. It should be noted that the 
single beams studied were unbraced along the span between the end-supports.  

The vertical axis in the figures represent the normalized critical moment values of 
the stepped beams involved with respect to the critical value of a beam with a non-
variable cross-section as the middle segment along the span (i.e. section 1 for each 
case, as shown in the figures). The horizontal axis in the figures represents the 
middle segment length ratio with respect to the beam span. 

The critical moment value of a stepped girder with a given /  value in Figs. 
(3.3)-(3.6), according to the approximated method suggested by Trahair and 
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Kitipornchai, can be obtained by a linear interpolation between the critical 
moments corresponding to / 0 and to / 1.0 values. 

For the doubly-symmetric stepped-beams that were studied, the results presented 
in Figs. (3.3)-(3.4) show that a linear interpolation between the critical load values 
of the side and of the middle segments, all having uniform cross-sections provides 
either an accurate or a conservative value for the critical load. However, a linear 
interpolation between the critical load values yielded unsafe predictions of the 
critical load values of the monosymmetric stepped-beams that were studied; see 
Figs. (3.5)-(3.6). Thus, the results provided examples of cases of monosymmetric 
beams for which the approximation method suggested by Trahair and Kitipornchai 
[13] is incorrect. 

  

Figure 3.3 
Critical moment values of doubly symmetric I-girders of varying cross-sectional dimensions. The 
beams were subjected to a uniform load applied at the top flange level 0.5  and at the centroid 

0.0 ;  is the critical moment value of the stepped beam and ,  is the critical moment 
value of a beam of constant cross-section as in section 1. 

 

Figure 3.4 
Critical moment values of doubly symmetric I-girders of varying span length. The beams were 
subjected to a uniform load applied at the level of the top flange 0.5 . 
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Figure 3.5 
Critical moment values of mono symmetric I-girders of varying cross-sectional dimensions. The 
beams were subjected to a uniform load applied at the top flange level 0.5 . 

 

Figure 3.6 
Critical moment values of mono symmetric I-girders of varying the size of the compression flange. 
The beams were subjected to a uniform load applied at the top flange level 0.5 . 
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4 Fundamentals of beam bracing  

Bracings are the structural members normally needed to sustain the stability of 
load-bearing members in order to reach a desired load-carrying capacity  in 
addition to the function they have of resisting the horizontal loads. This takes 
place by means of their controlling the out-of-plane deformations of the main 
members. The bracings should be adequate in terms of both stiffness and strength. 
Since lateral-torsional buckling involves two types of deformation, i.e. lateral 
movement and twist, bracings are normally studied in terms of the two separate 
categories of bracing, lateral and torsional, that control mainly the lateral 
deformation of compression flanges and the relative displacement of the top and 
bottom flanges, respectively. However, lateral bracings can also prevent twisting 
of a beam cross-section if they are located at a distance from the shear center of 
the cross-section. Bracings of these two types can be placed either at discrete 
nodal points or continuously along the span involved. In beam analyses, lateral 
bracings are normally modeled as linear translational springs, and torsional 
bracings as rotational springs. The present chapter introduces the fundamentals of 
beam bracing and applications of it within the bridge sector. A brief discussion of 
“the columns having elastic supports” is also provided at the end of this chapter, 
since this model is currently used by design engineers (see Appendix III) for 
estimating the lateral-torsional buckling of the bottom flange of continuous 
composite girders braced by means of cross-bracings. 

4.1 Introduction 

Bracings are generally classified in terms of four separate categories based on their 
function they fulfil: 

- Discrete or nodal bracing, which controls the corresponding movements of 
the braced member at the attachment point; intermediate and support cross-
beams/-diaphragms/or -frames in bridge application are examples of nodal-
torsional bracings. 

- Continuous bracing, which resists lateral movement of the compression 
flange or twisting of a beam cross-section along the braced span; reinforced 
concrete decks are examples of the bracing of the continuous type. 
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- Relative bracing, which controls the relative movement of two braced 
points. Plan bracing is an example of the relative bracing type. 

- Lean-on bracing refers to cases in which one member is braced by leaning 
on the stiffness of an adjacent member. It can occur in twin- or multi-girder 
bridges if at least one of the girders is loaded less or has a larger load-
carrying capacity than the other. 

A given bracing type may fit into more than one category as described above. In 
strength assessments carried out in a design process, the effective buckling length 
of a compression flange can be determined being between two adjacent brace 
points if the bracings satisfy both stiffness and strength criteria [1]. The minimum 
stiffness value that is required for the bracings of a restrained member to buckle 
between restraining points in a discrete bracing system, or to reach a given load 
level on a perfectly straight beam in a continuous bracing system, is that the so-
called “ideal stiffness”, . Due to the presence of imperfections, however, a 
bracing stiffness greater than the ideal value needs to be provided in order to be 
able to rationalize the magnitude of the bracing forces and the deflections involved 
[15].  

As an example, one can consider here an imperfect column having a hinged 
support at the one end and a lateral brace at its top, at which the column is 
subjected to a compression point-load (see Fig. 4.1),  being the actual stiffness 
of the brace, ∆  the initial imperfection, ∆ the lateral deflection, and , /  
being obtained on the basis of Winter's model. At the buckling point, , , 
the equilibrium changes from a stable state to an unstable situation, in which one 
obtains the following: 

, ∆ ∆ ∆ → 1
∆
∆

																																																	 4.1 	

	 → ∆ /∆ 0 ⇒ ∆→ ∞
	 2 → ∆ /∆ 1 ⇒ ∆ ∆

	

 

Figure 4.1 
Rigid-bar model concerning the buckling of a column having a lateral brace at its top. 
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Providing the theoretical ideal stiffness value, , / , for the 
brace shown in Fig. (4.1), in order to reach a state of buckling between the hinged 
support and the lateral brace point, results in infinitively large deflections 
occurring at the brace point (see Eq. 4.1), infinite bracing forces thus developing. 
If instead twice the ideal stiffness is provided for the brace, the lateral deflection 
occurring at the brace point will be equal to the magnitude of the initial deflection 
at the brace point, and the brace force being less than one percent of the 
compression force in the case of a typical imperfection magnitude of ∆ /500. 
Note that the bracing force is a linear function of the lateral deflection that occurs 
at the bracing point, i.e.  that ∆. For the reasons mentioned, providing at 
least twice the ideal stiffness value is recommended [15] in order to appropriately 
restrain imperfect members in compression.  

Generally speaking, investigations of beam bracing are substantially more 
complicated than those of column bracing, since flexural-torsional stability 
assessments of restrained beams are computationally more difficult than those of 
the flexural buckling of restrained columns. Consequently, current knowledge of 
beam bracing is based primarily on numerical and experimental studies rather than 
on closed-form solutions. 

As explained earlier, the out-of-plane deformation of steel beams can be controlled 
by means of lateral bracings applied directly to the compression flange and/or by 
use of cross-bracings to resist twisting of the restrained beam. Some types of 
bracings, such as a plan bracing or a bracing provided by concrete slab, act both as 
lateral and as torsional restraints. Such bracings are more effective than bracing 
types in which only lateral or torsional restraints are provided [22]. In the sections 
that follow, certain information relevant to the lateral (Section 4.2) and the 
torsional (Section 4.3) bracing of beams will be provided. 

4.2 Lateral bracing of beams 

The stiffness and strength requirements of the lateral bracing provided depends 
upon its locations both across the depth of the cross-section and along the beam 
span, as well as upon the load height, the number of braces, and the moment 
gradient. The most effective position for lateral bracings across the depth of a 
cross-section is that of the flange farthest from the center of twist. Lateral bracings 
are also more effective when they are attached to the compression flanges (see Fig. 
4.2), except for cantilevers, in which bracings are most effective near the tension 
flange [74]. In the case of top flange loading of I-girders, the center of twist is 
located near the centroid, bracing placed near the centroid thus being ineffective.  
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Figure 4.2 
An illustration of load-height and bracing location effects on the critical moment values of laterally 
braced beams, ,  being the critical moment value of the beam having a lateral brace at mid-span 
in differenet configurations (1),…, (4), as shown, and ,  being the critical moment value of the 
unbraced beam having a point load at the centroid of the cross-section [4]. 

For a beam in a reverse-curvature-bending condition along its span, lateral 
bracings should be provided for both of the flanges at the inflection point, so as to 
prevent twisting of the cross-section at this point [74]. Under such particular 
circumstances, a lateral bracing of only the top flange would scarcely be effective. 

4.3 Torsional bracing of beams 

Torsional bracings are designed to resist the twisting of individual beams (i.e. a 
lateral movement relative to each other of the top and the bottom flanges) rather 
than to resist only lateral movements of a compression flange. When cross-
bracings are utilized in steel bridge application, this occurs through its limiting the 
relative displacements of the top and the bottom flanges of adjacent girders. The 
stiffness requirements of torsional bracings are less affected by the location of 
loading and bracing across the depth of the cross-section [4], i.e. torsional bracings 
of the top flange and of the bottom flange are about equally effective. However, 
cross-sectional distortion can strongly affect the effectiveness of torsional 
bracings. Accordingly, use of proper web-stiffeners at the site of each cross-
bracing is recommended.  

Fig. (4.3) illustrates the effects on the critical load value of the location of 
torsional bracings across the depth of a beam for different web-stiffener 
arrangements [74]. The most effective location of torsional bracings, such as 
cross-beams across the depth of a cross-section, in order for the distortion and the 
size of the web-stiffeners involved to be minimized, is that they be located near the 
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mid-height of the cross-section [3]. Reverse curvature has no significant effect on 
the torsional brace requirements here.  

 

Figure 4.3 
An illustration of the effects of cross-sectional distortion on the critical moment value of a 
torsionally braced beam,	 ,  being the critical moment value of a beam with a torsional brace at 
mid-span in differenet configurations (1),…, (3) as shown, and ,  being the critical moment value 
of the unbraced beam having a point load at the centroid of the cross-section [4]. 

The overall flexibility of a cross-brace (see 1/  in Fig. 4.4) is affected by the 
contributions of the following components [4]: i) the bending flexibility of the 
web-stiffeners and of the web of the main girders, 1/ ; ii) the relative in-plane 
bending flexibility of the adjacent girders, 1/ ; iii) the torsional flexibility of the 
cross-bracings, 1/ ; and iv) the rotational flexibility of the connections between 
the transversal beam and the web-stiffener, 1/ .  

1 1 1 1 1
																																																																																																 4.2 	

 

Figure 4.4 
A model representing the flexibility of a cross-bracing.  

The term 1/  in Eq. (4.2) accounts for a reduction in the overall stiffness of a 
cross-bracing occurring due to in-plane relative deflections in the adjacent 
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restrained girders at the location of the cross-bracing in question. The rotational 
flexibility of a brace connection can also have a detrimental effect on the overall 
flexibility of a bracing system. In practice for the most situations, however, the 
connections are assumed to be fairly moment-stiff. More information regarding the 
terms used in Eq. (4.2) are given later in Section (6.1). 

Substituting ̅ /  into Eq. (4.3), the critical moment value of a torsionally 
braced doubly symmetric beam can be calculated, where  is the number of cross-
bracings between the end supports. Eq. (4.3) was first derived by Taylor and 
Ojalvo [75] and was modified later by Yura [4] to account for cross-sectional 
distortions, flexibility of the main girders, and asymmetry of the cross-section. For 
beams with mono-symmetric sections,  should be replaced by , , as 
calculated by Eq. (4.4), where 	and	  are the distances of the tension and of the 
compression flange centroids from the neutral axis of the cross-section, and 
, 	and	 ,  are the lateral moment of inertia of the top and the bottom flanges, 

respectively. 

, , , , ,
,

̅
																																																														 4.3 	

, , ∙ , 																																																																																																			 4.4 	

In the case of laterally braced beams, as the stiffness of lateral bracings increases, 
progressive changes in the number of half-sine waves of buckling mode between 
the end-supports occur [1, 4, 15]. This commences with a global half-sine 
buckling mode occurring between the end-supports and it ends up with a buckling 
mode occurring between the brace points. Increasing the stiffness of the torsional 
bracings of a beam, however, leads to a half-sine buckling mode appearing 
between the end-supports, this dominating the buckling mode shapes of the 
compression flange until the stiffness is sufficient to force buckling to occur 
between the brace points. Yura [4] suggests that for design purposes, the buckling 
mode of torsionally braced beams can be assumed to occur in a half-sine shape 
until the bracing stiffness is adequate to force the beam to buckle between the 
bracing points. 

4.4 “Column-on-elastic-foundation model” for cross-
brace stiffness assessments in steel bridges 

In completed state of half-through bridges (see section 6.3), the instability of the 
compressive top flanges can be treated as buckling of a laterally restrained column 
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along its length. In addition, Eurocode 3 [76] permits design engineers to use a 
simplified method based on a column-on-elastic-foundation model to assess the 
effects of initial imperfections and of second-order deformations on the brace 
forces generated in the bracings. In the analysis of cross-bracings, this simplified 
method can only be used in order to model either the bottom flange of continuous 
bridges or the top flange of half-through girders. In both of the systems mentioned 
above, the other flange should be braced continuously by means of a concrete deck 
or proper plane bracings. Otherwise, for the following reasons, this simplified 
method would lead to inaccurate results: 

The method models cross-bracings in terms of lateral springs. However, cross-
bracings resist the twist of the cross-section at bracing points, whereas the 
translational springs in the model resist lateral displacements. Also, under “full” 
bracing conditions, the model predicts there to be “zero” displacement at bracing 
points, whereas in reality there are lateral movements at the brace points, since 
girders restrained by cross-bracings can deflect laterally. In addition, under full 
bracing conditions, the model assumes that the effective buckling length of the 
compression flange is equal to the distance between the bracing points. However, 
the results of the investigations reported in Paper IV showed this assumption to be 
incorrect for bridges braced only by means of cross-bracings, if the effects of 
imperfections are also included in the analysis. This will be explained briefly in 
Chapter 7. 

For a planar beam-column which is restrained laterally by means of continuous 
elastic springs having the stiffness value per unit length of the column of , 
subjected to a compressive point load of  and an arbitrary transversal load of , 
a general differential equation can be derived studying the equilibrium of a 
deformed differential length  of the column [45]. If the beam-column has a 
prismatic cross-section and elastic material properties, so that , these yield 
to: 

																																																																																									 4.5 	

Timoshenko and Gere [59] obtained the following solution for the critical load of 
the system shown in Fig. (4.5):  

,

, ,
																																																																																													 4.6 	

Based on Eq. (4.6), the lower and the upper bounds of the critical loads and the 
stiffness values, these corresponding to a particular number of half-sine buckling 
waves, , occurring between the end-supports, can be obtained using Eqs. (4.7)-
(4.8).  
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1 ,

,
1 																																																																				 4.7 	

1 1 																																																																														 4.8 	

For a brace stiffness of / 1 , the maximum critical load value 
of , / , 1   which corresponds to a buckling mode for which 
there are  half-sine waves between the end-supports  can be achieved. After 
some algebra here, the maximum critical load value can be simplified to the 
expression in Eq. (4.9).  

, , 2 																																																																																																				 4.9 	

Ignoring the first term in Eq. (4.9) and replacing ,  there by	 / ,  gives 
the buckling length, , , of the system shown in Fig. (4.5) for the provided brace 
stiffness of : 

,
√2

∙
.

																																																																																																		 4.10 	

Figs. (4.5)-(4.6) also illustrate the results of Eqs. (4.7)-(4.10): 

 

Figure 4.5 
The compression-flange-on-elastic-foundation model used for compression flanges of bridge girders 
restrained by means of cross-bracings, where , / , and ,  are the critical loads 
corresponding to a buckling mode having  number of half-sine waves between the end-supports, 
when the stiffness of  is provided for the bracings [45]. 
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Figure 4.6 
Normalized values of critical loads versus the brace stiffness as obtained using Eqs. (4.6) and (4.9); 

,  is the critical load of the braced member shown in Fig. (4.5), and ,  is the critical load of the 
unbraced member [45]. 

Eq. (4.9) can be also used as an approximate solution for a discrete number of 
bracings. With only two braces for example (i.e. 2), Eq. (4.8) provides an 
equivalent brace stiffness value of 2 / 2 3 / . Substituting 
this value into Eq. (4.9) gives , /  which is the critical load 
corresponding to an effective buckling length equal to the distance between 
adjacent brace points. 
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5 Lateral-torsional instability 
concerns during construction of steel 
bridges 

The construction phase of composite bridges is a delicate operation [49], this stage 
often controlling the design of both the steel girders and the bracings. Lateral-
torsional buckling is a failure mode that can occur during lifting, launching of the 
girders, or casting of the concrete deck. Examples of some of the well-known 
failures that have occurred during construction are: i) the collapse of The Marcy 
Bridge in New York city in 2003, ii) the collapse of the Bridge Y1504 over the 
Gide River in Sweden in 2002, and iii) the collapse of the State Route 69 Bridge 
over the Tennessee River in 1996 (see section 2.2). In the last case, two of the 
three spans collapsed into the river once one of the cross-braces was removed to 
allow for repair of the brace connections. In this chapter, some of the common 
lateral-torsional instability concerns in the design of typical composite bridges 
during their construction stage are introduced.   

5.1 Bracings required during concreting of the deck 

During casting of the deck, the fresh concrete provides no stabilizing support for 
the main girders. Proper bracings may be required to control the out-of-plane 
deformation of the steel girders under the self-weight of the steel girders and the 
fresh concrete; see Fig. (5.1). Tragic events have occurred during concreting the 
deck of a number of bridges through the bracings either of the main girders or of 
their timber falseworks being inadequate. As mentioned earlier in Chapter 2, the 
failures of this type normally occur suddenly.   

The concreting sequence along the span, and a symmetric concreting across the 
bridge deck are also important concerns during the concreting of the deck. The 
sequence of placing of concrete deck can affect the bracing layout. The main 
objectives in assessment of the casting sequence are as following: i) minimizing 
the installation costs of the bracing system, and ii) reducing the tensile stresses in 
the already cast portions of the concrete deck, which can cause early-age cracking 
problems.  
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Asymmetric concreting across the width of a bridge cross-section creates torsional 
forces, which should be resisted by the cross-section and by the bracings. Such 
torques can results in large bracing forces, e.g. in the plane bracing bars. 

 

Figure 5.1 
Out-of-plane deformation of steel bridge girders. 

During concreting, vertical deflection and twisting of the bridge cross-section at 
mid-span should be monitored carefully for each concreting increment. A 
softening trend in the load-twist curve can be an indication that instability of the 
steel girders can occur for further loading. Possible eccentricity of the self-weight 
of the steel girders and/or of the fresh concrete generates torsion with respect to 
the shear-center of an initially deformed cross-section (see Fig. 5.2). For instance, 
assuming a half-sine wave geometric imperfection, the torque is largest at the end-
supports. Expanding Eq. (3.13) for the concreting condition gives [77]: 

0																														 5.1 	

 

Figure 5.2 
Torsional forces developed from the self-weight of the steel girder and from the fresh concrete 
during the construction phase, where . . is the shear center, . .	is the gravity center, 	and	  
are the self-weight of the concrete deck and of the steel girder; and 	and	  are the distance of the 
self-weight loads from the shear center. 
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Here  gives the percentage of the fresh concrete loading at which lateral-torsional 
buckling can occur. Applying the boundary conditions and solving Eq. (5.1) yields 
a value for , where the girder would presumably not fail during concreting 
process if 1. Note that the effect of initial twist is not taken into account in the 
method described above. In order to take into account the effects of an initial twist, 
"∅" in the last term of Eq. (5.1) can be replaced by ∅ ∅ .  

5.2 Bracings required for skewed bridges 

In skewed bridges, the longitudinal axis of the superstructure, at least at one 
intermediate cross-bracing or at one end support is not perpendicular to the major 
axis of the substructure; see Fig. (5.3). The vertical reactions at the skewed support 

	and	  are not identical, due to the fact that . For this reason, a 
torque will be generated at the skewed support, one that should be resisted by the 
support bracing. In bridges with skewed supports, the discrepancy between the 
vertical displacements, e.g. ∆  and ∆  in Fig. (5.3), of the main girders at a given 
cross-section can create considerable torsion in the cross-bracings. 

 

Figure 5.3 
A plan view of a twin-girder bridge with a skewed end-support, where  and  are reactions at 
skewed support points, ∆  and ∆  are the vertical deflections of girder 1 and girder 2 at their mid-
span, Ψ is the skew angle, and , and	  are the diagonal lengths as shown in the figure. 

Such torsional forces in the bracings are also generated by traffic load and can 
negatively affect the fatigue life of the brace connection. For the construction 
stage, the magnitude of the skewed brace forces can be reasonably predicted by a 
first-order analysis of the entire bridge, where these forces should be added to the 
stability-bracing forces generated by second-order effects and geometric 
imperfections. For such bridges, the stability bracing requirements given in the 
literature concerned with straight bridges with no skewed supports,  and , 
should be modified by a factor of Ψ and 1/ Ψ [35].  

Bracing connections having typical web-stiffeners can be problematic in the 
installation of skewed braces having a large skew angle. Quadrato et al. [78] 



44 

proposed the use of half-pipe profiles as web-stiffeners to ease the connection of a 
cross-bracing which is not perpendicular to the main girders; see Fig. (5.4). In case 
the proposed half-pipe/channel web-stiffeners are welded to the flanges, they can 
also enhance the critical load of the main girders by creating nodal warping 
restraints.     

 

Figure 5.4 
Half-pipe/channel profiles as web-stiffeners applicable at the location of skewed cross-bracings. 

5.3 Bracings required for in-plane curved bridges 

Providing the cross-bracings and the cross-section of main girders with an 
adequate torsional stiffness is more crucial for in-plane curved bridges than for 
straight bridges [79, 80]. In addition to the in-plane bending in such bridges, the 
girders are also subjected to relatively large torques due to the radial components 
of the normal stresses in both flanges, as shown in Fig. (5.5).  

The cross-bracings of in-plane curved bridges should be oriented radially. When 
the radius of curvature is less than a certain value, resisting the generated torques 
often controls the size of the bracings [3]. The second-order effects of such torques 
on the load-carrying capacity and on the bracing forces involved can be significant 
depending upon the geometry of the bridge; they are of particular importance 
during erection when the bracings are not yet all installed. Thus, calculations 
based on a first-order analysis of the entire bridge may lead to inaccurate 
prediction of the bracing forces generated by the in-plane curvature of the bridge 
(which should be added to the stability-bracing forces obtained from the design 
specifications for example). 
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Figure 5.5 
Torsions generated from the in-plane curvature of a beam, where  is the radius of curvature of the 
beam, and  is the axial force generated in the flanges by . 

5.4 Bracing required prior to the concreting stage  

A set of girders should be interconnected at several points along their span by 
means of a minimum number of bracings prior to the concrete deck being cast, i.e. 
under the self-weight of the steel components, when the bracings are not yet all set 
in place. This occurs e.g. during lifting, launching, and transportation. These few 
bracings are required in order to resist wind load, and to avoid lateral-torsional 
buckling of the steel girders. The accidents that occurred during erection of The 
State Route 69 Bridge in Tennessee in 1995, and of the 102nd Avenue bridge over 
Groat Road in Canada in 2015 (see section 2.2) are examples of lateral-torsional 
buckling under the self-weight of the steel portion of the bridge due to inadequate 
bracings. 
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Field monitoring of steel bridges has also shown [81] that a proper erecting 
sequence, erecting the girders in pairs, providing the steel girders with sufficient 
lateral bracings, and providing temporary shoring towers can greatly reduce the 
final overall deformations of steel girders which can otherwise lead to undesirable 
bracing forces and stresses in the main girders. 
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6 Bracing options in steel bridges  

Bracings are essential structural components in steel bridges, both during 
construction and service. Some bracings may also be designed to enable the 
transfer of loads (such as wind and eccentric live loads) between girders. Slight 
bracings can significantly increase the load-carrying capacity of steel girders by 
reducing their effective buckling length. Different types and arrangements of 
bracings in steel bridges are possible. Utilizing only cross-bracings may not 
completely prevent the steel girders from moving laterally. Plan bracings are often 
more efficient than cross-bracings since they resist lateral movements of the 
compression flanges directly. Yet, they generally conflict with formworks and/or 
reinforcing bars, which make the concreting process rather difficult. As a result, 
cross-bracings are often preferred in practice. 

6.1 Intermediate cross-bracings 

Fig. (6.1 a-c) shows the three most common types of the cross-bracings. The 
cross-beam type (see Fig. 6.1 a) is preferred for shallow bridge girders, whereas 
the cross-diaphragm type (see Fig. 6.1 b) is often used in bridges with trapezoidal 
cross-sections. The K cross-frame configuration (see Fig. 6.1 c) is utilized for 
relatively deep girders, and is preferred to the X or the Z cross-frame types in 
common practice. In cross-diaphragms, large holes of at least 450	mm wide and 
600	mm high [82] are needed for inspection and maintenance purposes. When the 
top flange is restrained by means of a concrete deck or a plan bracing, the major 
function of the cross-diaphragms is to prevent the distortion of a cross-section.  

The cross-beams can be constructed by channel profiles due to the ease of the 
attachments to the web-stiffeners. However, Mehri et al. [83] (i.e. Paper IV) 
recommended considering use of symmetric cross-sections (with respect to their 
weak axis) for cross-beams, since relatively large warping stresses can be 
generated then in the transversal beam as a result of the eccentricity of brace shear 
forces from the shear center of an asymmetric cross-section.  

The cross-bracings of a twin I-girder bridge, for example, stabilize the top flange 
of the main girders in the sagging regions and the bottom flange near the 
intermediate supports. These bracings reduce considerably the effective buckling 
length of the individual girders. Also, braced girders of suitable length can be 



48 

manufactured in pairs prior to transportation to the site, enabling the erection 
process to be carried out quicker and more safely. Depending upon the geometry 
of a bridge cross-section, cross-bracings are typically used at spacings of 4~8	m 
along the span to resist relative lateral movement of the top and bottom flanges of 
the individual girders. During service life, a few cross-bracings are required to 
transfer possible lateral loads (such as caused by wind or by collisions) between 
the main girders. Cross-bracings are also needed in order to control distortion of 
the composite cross-section so as to resist torsions generated by eccentric traffic 
loads, for example. In bridges of some types such as in-plane-curved bridges or 
skewed bridges, the cross-bracings are needed to resist torsions created by the 
geometry of the bridge. The maximally 7.5	m requirement for spacing of the cross-
bracings in straight bridges has been eliminated in AASHTO [82] so as to, if 
applicable, reduce the number of cross-bracings, which can lead to a reduction in 
the number of fatigue-prone attachments [3].  

 

Figure 6.1 
Typical cross-bracings in common use in steel bridges: a) cross-beams, b) cross-diaphragms, and c) 
cross-frames. 

If adequate cross-bracings are provided during construction, the two 
interconnected girders need to twist as a single unit to resist the destabilizing 
forces along the span. The resisting of such destabilizing forces at the site of each 
cross-brace creates uplifting and overturning shear forces in the girders. The brace 
shear forces increase locally the bending moment of the one girder and decrease 
the bending moment of the adjacent girder. As a result, during the construction of 
bridges with twin-I girders one of the girders may reach its critical load earlier 
than the other. 

In wide bridges, in which more than two main girders are used across the width of 
the bridge, cross-bracings may also function in the global action of distributing 
traffic loads between the main girders, the details of the brace connections thus 
being prone to matters of fatigue. Under such circumstances, cross-bracings are 
preferable for connecting the girders in pairs, this creating a number of twin-
girders across the width of the bridge. Lean-on bracings, consisting of parallel 
struts at the level of the top and bottom flanges and having hinged connections 
with the main girders, should also be used between the girder pairs. The struts are 
needed to transfer lateral loads, including the destabilizing forces involved, and to 
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control the transversal spacing between the pairs. These bars should be removed 
once the concrete deck has hardened.  

In the cross-frames of K , X, or Z types, the contribution of trusses to the torsional 
stiffness of the cross-bracing (see  in Eq. 4.2) can be obtained by performing an 
elastic first-order truss analysis employing horizontal unit forces or displacements 
that act at the level of the top chords [4]. However, the contribution of the 
transversal beam to the torsional stiffness of cross-beams depends on a situation of 
either a single-curvature or a reverse-curvature bending of the transversal beam 
(see Fig. 6.2), where  is the in-plane moment of inertia of the transversal beam 
and  is the moment of inertia of a vertical web-stiffener and of a part of the web. 
There is the possibility for twin-I girders having a relatively long transversal beam 
that the girders will twist in opposite directions, creating a single-curvature-
bending situation in the transversal beam.  

 

Figure 6.2 
Single-curvature bending (system i) and reverse-curvature bending (system ii) of a cross-beam 
placed near the bottom flanges of the main girders. 

The torsional stiffness of the two systems just described is calculated here (see 
Eqs. 6.1-6.2). For the single-curvature bending situation (system i):  
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For the double-curvature bending situation (system ii):  
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The solutions provided in Eqs. (6.1)-(6.2) are comparable to the general 
expression given earlier as Eq. (4.2). Note that  is 2 / 	for a cross-beam in a 
single-curvature bending situation, and is 6 / 	for a cross-beam in a reverse-
curvature bending situation. Also, as can be seen in Fig. (6.2), the brace shear 
forces are zero in system (i), there thus being no relative vertical deflections 
created in the two main girders. Accordingly, the second term in Eq. (4.2), i.e. 
1/ , makes no contribution to the overall flexibility of the cross-beams of which 
there is single-curvature bending in the transversal beam. For a situation involving 
double-curvature bending, however, such deflections are created by the brace 
shear forces at both ends of a cross-brace. This leads to a flexibility of 1/
1/ 12 / . Helwig et al. [26] showed that the effects of this contribution 
are significant for twin-I girders for which the solution given for 1/  above can 
be employed even when more than one cross-brace is used along the span. If 1/  
dominates in Eq. (4.2), system buckling of the entire bridge is a possibility [3]. 

However, the contribution of web-stiffeners of partial-depth combined with the 
contribution of a part of the web of the main girders, i.e. as expressed by the term 
1/  in Eq. (4.2), are rather complicated. The distortional flexibility of a cross-
section having a full-depth web-stiffening, , or a partial-depth web-stiffening, , 
can be approximated by use of the following equations [4]: 
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Where 	and	  are the width and the thickness, respectively, of the web-
stiffening,  is the web thickness of the main girders, and  is the contact length 
of the cross-bracing.  
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Eq. (6.5) gives the value of minimum transverse span corresponding to a point 
from which the buckling mode of a two-dimensional frame shown in Fig. (6.2) 
switches from system (ii) to system (i). The accuracy of the solution was verified 
by use of a numerical program. However, since the lateral deflection, ∆, is not 
constant along the bridge span, the expression is not applicable for determining the 
buckling mode of the cross-bracings in a three-dimensional configuration.   

1/ 1/ 	

→
4

																																																																																																																					 6.5 	

In steel-bridges braced by means of discrete cross-bracings (without this being 
combined with any lateral bracing), the buckling length of the compression 
flanges, , , will be either: 

- Equal to the distance between the intermediate cross-bracings as governed 
by Eq. (6.6) [59]. This can occur when a stiffness value greater than that 
required for “full/ideal bracing” (i.e. a minimum bracing stiffness value 
enabling a brace to function similar to an immovable support) is used for 
the cross-bracings. This means that the girders will have to buckle between 
the brace points if the cross-bracings are to provide sufficient lateral support 
for the compression flanges [1]. It should be noted that Eq. (6.6) is basically 
used for predicting the buckling capacity of a simply supported girder 
without any intermediate bracing, as explained in Section (3.4).  

-  Larger than the distance between the intermediate cross-bracings as 
governed by Eq. (6.7). This can occur when a lower stiffness value than that 
of the full bracing stiffness is provided for the cross-bracings [4, 61]. 

- Equal to the length of the span, due to system buckling of the entire 
structure as a single unit (see Fig. 6.3), which can be estimated by Eq. (6.8) 
[37]. This equation was derived on the basis of equation (6.6), 
substituting	2 , 2 , and 2 /4 2 /4 for , , and , 
respectively. The resulting expression is applicable to the twin-I girders that 
are interconnected by means of a number of cross-beams that are adequately 
stiff, and should not be used for laterally braced girders. System buckling 
can occur, for example, in bridges having a relatively large span-to-width 
ratio. This approximate solution can be also used for girders having 
trapezoidal cross-sections [37, 49]. 

, , , , , ∙ 																																				 6.6 	
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Neglecting the first term of Eq. (6.7) and substituting	 , , , , , , 

enables a minimum value for the brace stiffness, ̅ / , to be calculated, 
this providing a cross-brace function similar to that of an immovable support. An 
increase in the brace stiffness greater than the ideal stiffness value would not 
enhance the critical moment of girders subject to a system buckling problem. 
However, to account for the effects of imperfections, twice the ideal stiffness is to 
be recommended as explained in Section (4.1). 

 

Figure (6.3) 
System buckling of steel bridge girders; where  is the twist of the bridge cross-section at mid-span. 

Fig. (6.4) shows a ladder-deck bridge type consisting of two longitudinal main 
girders, and transversal cross-girders spaced along the length of the main girders. 
In such bridges, both the main girders and the cross-girders are provided with 
shear connectors to create a composite action together with the concrete deck. The 
connection between the cross-girder and the web stiffeners should be moment-
stiff. For relatively wide bridges, the cross-girder may also require bracings during 
the construction stage. In the sagging moment regions, the cross-girder normally 
has a constant depth along its span, the top flange restraints being produced by an 
inverted U-frame action of the cross-girder and the web stiffeners; see Fig. (6.4 i). 
Either near the internal supports or at the support points, three alternatives for 
restraining the bottom flanges are possible:  
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- Through an inverted U-frame action of cross-girders having a deeper 
section and of web stiffeners for relatively shallow bridges. This is more 
economical than other options are (see Fig. 6.4 ii),  

- Hunching the cross-girders near the main girders; see Fig. (6.4 iii), 

- Using knee-bracing near the main girder (see Fig. 6.4 iv).   

 

Figure 6.4 
Ladder bracing of steel bridges, using system (i) for sagging regions, and systems (ii)-(iv) for 
hogging regions or at support points. 

For long cantilevers, the cantilever girders having moment continuity with the 
cross-girder can be provided for supporting the slab. However, this adds 
significantly to the cost. In wide bridges, cross-girders having closer spacing along 
the bridge span, e.g. with a spacing of less than 3.5	m between the adjacent cross-
girders, would provide a possibility for using precast decks or corrugated metal 
sheets as stay-in-place formworks spanned between the cross-girders. 

6.2 Support bracings 

Support bracings are necessary to transfer lateral loads from the superstructure to 
the substructure. They are also needed to provide the desired boundary conditions 
for individual girders and for the bridge as a whole, during construction and while 
it is in service. The support bracings also resist and transmit loads at support 
points generated through lateral-torsional deformation of the main girders along 
the span, as well as loads created by possible eccentricities of the bearing 
reactions, possible tilts of the main girders at support points, and from skewed 
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supports. The non-composite stage is normally more critical for the support 
bracing than the completed situation is, since the concrete deck also contributes to 
resisting torsion at the support points once it has hardened. 

6.3 Bracing of half-through girders 

In half-through girders, a relatively stiff deck is placed near the bottom flanges, in 
which the deck consist of either a concrete slab, or a number of closely spaced 
transversal beams having plan bracings; see Fig. (6.5). In such systems, the 
compression top flanges can be restrained laterally by the U-frame action of the 
laterally stiff deck and the stiffened webs [84]. The connection between the 
concrete deck or transversal beams and the main girders should be moment stiff. A 
similar bracing system is present for the compression bottom flange in the hogging 
regions in the completed condition (i.e. when the concrete deck has hardened). In 
both cases that are described above, the lateral bending stiffness of the stiff deck 
should be adequate to resist possible lateral deflections of the tension flanges 
properly.  

In half-through girders having transversal beams and plan bracings, the cross-
beams are often tightened to the patch plates at each end  which are already 
welded to the web of the main girders  through use of ordinary preloaded bolts. 
In the completed state, the cross beams act compositely with the concrete slab, 
which may either be cast over the cross-beams, or encase the cross-beams (partly 
or entirely).  

Each U-frame is created by the main girders serving as the vertical components, 
and a cross-beam or a unit length of the concrete deck as the horizontal 
component. The flexibility of the U-frames can be calculated through applying 
unit lateral loads at the centroids of the top flanges. The bridges of this type are not 
common in highway applications due to the risk of collision. However, a number 
of railway bridges are built in the form of half-through girders. At the ultimate-
limit-state, the contribution of the deck to the resistance of the main girders is 
usually neglected [84], the main consideration in this design state being the 
stability of the top flanges. The buckling length of the top compression flanges can 
be predicted approximately by use of the column-on-elastic-foundation model as 
explained earlier in Section (4.4). This is illustrated in Fig. (6.5), where, the 
stiffness of each U-frame, , can be obtained by a process similar to that 
performed in the derivation of Eq. (6.1). 
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Figure 6.5 
A schematic illustration of the lateral-torsional buckling of half-through girders. 

6.4 Full-span plan bracings  

Forming a truss consisting of diagonals and struts, plan bracings reduce the 
effective buckling length of the compression flanges by controlling their relative 
lateral movements at the ends of each diagonal member; see Fig. (6.6).  

 

Figure 6.6 
Two examples of full-span plan bracings, ,  being the effective buckling length of the compression 
flanges of the girders G1-G4. 

The unbraced length of a compression flange can be assumed to be the distance 
between the struts when the plan bracing is adequately stiff [44]. Most lateral 
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bracings placed at the level of the compression flanges can also provide certain 
torsional restraint, the extent of which depending upon their distance from the 
shear center. However, this capacity is ignored in most design specifications. The 
lateral stiffness of plan-braced steel girders can be assessed through applying 
lateral unit loads at the locations of each brace in a two-dimensional structural 
model including also the compression flanges.  

The three most common types of plan bracings are shown in Fig. (6.7). If 
diagonals of a brace type are not designed for tension-only conditions, the 
diagonal compression bars should possess sufficient flexural stiffness in two 
perpendicular directions. The point of intersection in an X-type brace panel can be 
regarded as a brace point for the diagonal compression bar when the other 
diagonal bar acts in tension. Note that the unbraced length of these compression 
diagonals would be larger than half-length when both diagonals, as parts of the 
bridge cross-section, contribute to in-plane flexure. 

 

Figure 6.7 
The most common types of plan bracings (plan view). 

To assess the stability requirements of plane bracings on the basis of Winter's 
approach [1, 3], the compression flanges of the steel girders can be modeled as a 
column-on-elastic-supports; see Section (4.4). At each brace bar, these stability 
brace forces should be added algebraically to the forces created in the bars by the 
torque present there. The torque can be generated by the load eccentricities, the 
geometry of the curved bridges (see Section 6.7.1), the web slopes (see Section 
6.7.2), and the lateral loads present along the span. The bracing forces generated 
by these torsions are largest at the location of maximum torque (i.e. normally near 
the supports). Generally speaking, in contrast to straight bridges, the bracing 
forces generated by such torsions are dominant in in-plane curved bridges as 
compared with the stability bracing forces generated by second-order effects and 
geometric imperfections.  

Plan bracings are best attached directly to the flanges by bolted connections in 
order to reduce the risk of fatigue associated with the use of a gusset-plate 
connection to the web. The braces can lead to distortion-induced-fatigue-cracks if 
they are attached to the web by means of gusset plates. Plan bracings that are cast 
within the deck can conflict with the reinforcing bars of the concrete deck. 
However, neither maintenance nor buckling evaluation is required for such 
bracings. Plan bracings can be placed at the level of the bottom flanges in I-shaped 
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girders, creating a pseudo-box cross-section with either a concrete deck during the 
service period or top flange plan bracings during the construction stage. In 
trapezoidal girders, plan bracings placed at the level of the top flanges during 
construction also create a pseudo-box cross-section having considerably enhanced 
torsional stiffness.  

Plan bracings placed near the top flanges but below the formworks can contribute 
to resisting in-plane bending of the girders during construction. The contribution 
of the top flange bracings to the in-plane flexural stiffness of the main girders is 
normally neglected in design. Those bracings are subjected to forces due to strain 
compatibility in in-plane bending [38]. Under such circumstances, the risk of 
fatigue of the connections should be also considered, or the bracings should be 
removed once the concrete deck has hardened. The contributions of the top flange 
bracings to the in-plane flexural stiffness of the main girders depend upon the 
layout of the trusses, and they can be significant in X-type bracings in particular. 
The strut forces in X-type bracings developed from the in-plane flexure of the 
main girders can be relatively large, since both diagonals in the adjacent brace 
panels are in compression. In contrast, the strut forces of such bracings created by 
the torsion involved are relatively slight since one diagonal is in tension and the 
other is in compression. Clearly, a combination of the torque and the in-plane 
flexure increases the axial force generated in the one diagonal bar in an X-type 
panel and decreases the axial force in the other diagonal bar. 

6.5 Partial-span plan bracings (Papers I, and V) 

In the global lateral-torsional failure mode (see Fig. 6.3) the entire bridge rotates 
as a single unit about the shear center of the bridge cross-section between the end-
supports. This type of failure is less sensitive to the number and the size of the 
cross-bracings. In open-box girders and in closely spaced twin I-girders without 
plan bracings along the span, the St. Venant torsional stiffness is relatively low. 
Also, the low level of warping (bending of the flanges in the out-of-plane 
direction) stiffness of such cross-sections readily permits considerable twist, which 
can lead to an unacceptable degree of rotation at mid-span.  

As a solution, the load-carrying capacity of such bridges can be improved by end-
warping restraints being provided near the support points. Eq. (3.9) indicates that 
both an end-warping and end-twist restraint one which reduces the corresponding 
effective buckling length factor of  and , respectively can significantly 
increase the critical moment value of a beam. For instance, a half-pipe or channel 
web-stiffener (see Fig. 5.4) that is properly welded to both the top and the bottom 
flanges of a single I-shape girder, can provide warping restraints to the flanges to 
which they are attached. This decreases  in Eq. (3.9), resulting in an increase in 
the critical load. Similarly, in bridge girders potentially prone to system buckling, 
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plan bracings at support regions (and perhaps at mid-span to prevent further 
buckling modes) restrain the lateral rotation of the restrained flanges, this 
decreasing the value of  in Eq. (3.9). Such modifications increase the warping 
stiffness of the cross-section, creating a semi-fixed-end condition, resulting in an 
increase in the critical moment value. The corresponding critical moment under 
fixed-end conditions can be calculated through replacing  by 0.5 0.6  in Eq. 
(6.8). Investigations carried out in Paper I [49] concerning the failure of The 
Marcy Bridge showed that slight truss-bracings near the supports could prevent 
the collapse of the bridge. End-warping restraints of truss-bracings and corrugated 
metal sheets were studied experimentally, the results being described in detail in 
Paper V [85], which is appended to this thesis. 

6.6 Bracings required in open trapezoidal girders 

Trapezoidal girders require high fabrication costs due to inclination of the webs. In 
a completed state, bridges of this type have particular advantages when compared 
with an equivalent twin-I girder bridge, for the following reasons: 

i) the bridge possesses greater torsional stiffness, ii) a greater St. Venant stiffness 
minimizes the self-weight of the steel girder, and iii) the bridge has greater 
durability due to its having fewer edges and no external stiffeners that are exposed 
to dirt and to moisture.  

However, before the composite action occurs, the open cross-sections are weak 
torsionally, and can be susceptible to lateral-torsional buckling of the individual 
webs between the cross-bracings, or to system buckling of the entire bridge 
between the supports. Increasing the slope of the web and keeping the width of the 
bottom flange constant increases the lateral stiffness of a trapezoidal cross-section, 
while reducing the critical moment value [86]. The possibility of lateral-torsional 
buckling of the trapezoidal cross-sections when they are bent about their weak axis 
(i.e. in-plane bending) has been discussed by Attard [87]. The Marcy Bridge 
having a trapezoidal cross-section and a lateral-to-in-plane flexural stiffness ratio, 
/ , of 1.75, failed due to system buckling [49, 86].  

Comparatively large torsional stiffness values for trapezoidal girders can be 
achieved converting their cross-section to a pseudo-closed form by use of steel 
plates, plan bracings, or corrugated metal sheets attached properly to their top 
flanges. In the closed-section configuration, the torsional stiffness is dominated by 
the St. Venant component (where 4 /∑ /  whereas in an open cross-
section ∑ /3). Although in the closed-form the warping stiffness is 
negligible when compared to the St. Venant stiffness, large warping stresses can 
develop due to the cross-sectional distortion that can be present when the bridge 
lacks adequate cross-bracings along the span (see Section 6.6.3).  
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Note that, in the completed situation, longitudinal stiffeners are normally needed 
in the compressive zones of the inclined webs and of the bottom flange in order to 
avoid local buckling. 

6.6.1 The equivalent plate concept and forces generated in plan-
bracings by torsion 

Kollbrunner and Basler [2] derived expressions enabling typical truss bracings to 
be converted to an equivalent plate having a constant thickness of ; see 
Appendix IV. The equivalent plate is used to calculate the mechanical properties 
of such cross-sections in order to assure that the torsional stiffness and strength are 
sufficient to keep rotations and stresses within a magnitude of reasonable size. The 
equivalent plate concept is also used in calculating the cross-sectional properties of 
trapezoidal girders on the top of which corrugated metal sheets are attached (see 
Section 2.2.1). However, the stress concentration factor needs to be taken into 
account there, due to large changes that often occur in the thickness of the plates. 
Note that relatively little research has been done to assure the accuracy of the 
equivalent plate method in such applications. The St. Venant shear flow in the 
equivalent plate (see Eq. 6.9) creates axial forces in the brace bars (see Fig. 6.8). 

2
																																																																																																																													 6.9 	

Where  is the shear flow,  is the enclosed area as defined by the wall-midline 
in a thin-walled closed section, and the torque at the middle of each panel, , is 
generated by the geometry of curved bridges or by eccentric gravity load across 
the width of a bridge cross-section, for example. 

 

Figure 6.8 
Forces that develop in plan bracing bars, 	and	 , due to the torsion,  there,  being the shear 
flow and  being the enclosed area as defined by the wall-midline in a thin-walled closed section. 
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Wind can also produce significant torque in trapezoidal girders during 
construction, since the shear center is far below the bottom flange. In such cases, 
the brace forces are larger in the region of maximum torque. In X-type (if not 
designed for a tension-only case) and Warren-type plan bracings, one diagonal 
would be in tension and the other in compression. In plan bracings of a Pratt-type 
in an in-plane curved bridge, the diagonals should be oriented accordingly so that 
they are working in tension. The relative lateral displacement of the Pratt-type 
brace panels that accumulates, leads to greater lateral deflections occurring at mid-
span than those of Warren- and X-type brace panels. This reduces the lateral 
stiffness of such bridges having Pratt-type plan bracings and the efficiency of their 
bracings [36]. Also as discussed earlier in Section (6.4), the strut forces that the 
torsion results in are considerably greater in Pratt-type bracings than those of 
equivalent X- and Warren-types.   

6.6.2 Forces generated from distortion in the cross-bracings 

Fig. (6.9) presents an example of a trapezoidal cross-section subjected to an 
eccentric gravity load that creates both in-plane bending and torsion. The torque 
can lead to distortion in a closed cross-section, since shear stresses are not 
generated uniformly across the cross-section according to the St. Venant shear 
flow.  

 

Figure 6.9 
Elevation views illustrating the distortion of a closed cross-section caused by torsional forces during 
construction. 
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Proper cross-bracings with a reasonable spacing are required to resist distortion of 
the cross-section. The bracing forces in each cross-bracing can be calculated by 
studying an equivalent system that separates pure torsion from pure distortion in 
the cross-section [79]. Such cross-bracings should limit transversal bending 
stresses of distortion of box sections well below the in-plane bending stresses at 
the strength limit state [82]. 

Trapezoidal girders can possess a large degree of the St. Venant torsional stiffness 
when their top flanges are provided with proper plan bracings or metal sheets. The 
torsional stresses shown in Fig. (6.9) can be resisted by the St. Venant stiffness of 
the closed section. An appropriate set of cross-bracings is needed, however, to 
avoid additional stresses in the cross-section due to distortion. These additional 
stresses (see their distribution in Fig. 6.9) depend upon the magnitude of the 
torque and the size of cross-section. 

6.6.3 Forces in the plan bracings due to the web inclinations of 
trapezoidal girders 

A static equilibrium of each top flange of a trapezoidal girder shows that the self-
weight of fresh concrete, , develops a lateral force at each flange as a result of 
sloping the web of trapezoidal girders. Such a uniformly distributed force, 
0.5 , leads to lateral bending of the two top flanges in opposing directions, 
this generating tensile forces in the struts of the plan bracing employed; where	  is 
the web inclination as measured from the vertical axis. 

6.6.4 Forces generated in intermediate external cross-bracings from 
torsion 

External cross-bracings are used to control the relative twist of two adjacent 
trapezoidal girders near the mid-span. Such twist can result in an uneven thickness 
of the concrete deck involved; see ∆ in Fig. (6.10). The variation of this sort can be 
relatively large in curved bridges and in bridges having skewed supports. In 
curved bridges, the exterior girder is subjected to greater twist than the interior 
girder is, due to the differences in span length. Similarly, different twists of the 
adjacent girders having skewed supports lead to a relative rotation of them at mid-
span. A few external cross-bracings near the mid-span can effectively control such 
relative twists and vertical deflections of the adjacent girders [3]. Such a function 
is required mainly during concreting, thus, the external cross-bracings are often 
removed when the concrete deck has hardened. Removal of the external bracings 
eliminates the risk of fatigue due to possible contribution of those bracings to the 
transfer of traffic loads between the main girders.  
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Figure 6.10 
The functio of intermediate external bracing in eliminating the relative displacement, ∆, of the 
adjucent girders. 

The bracing forces and adequacy of the stiffness of such bracings can be obtained 
either by performing a three-dimensional numerical analysis or by assuming a 
reasonable value, e.g.	10	mm, for the relative deflection of the two girders so as to 
control constructability. Kim and Yoo [88] in considering two different casting 
sequences, performed numerical investigations of the performance of external 
bracings in twin-trapezoidal curved bridges having either single-span or three-span 
features. For the cases that were studied, it was found that the addition of external 
bracings having a certain stiffness value beyond one at mid-span had little impact 
in terms of controlling the relative displacement of the adjacent girders.  

6.6.5 Support cross-diaphragms 

Support diaphragms provide twist-restrained boundary conditions at the support 
points. In addition, during construction, they transfer lateral loads (such as wind 
load) ultimately to the ground. Since the function of the support diaphragms is 
governed mainly by their shear action, they need to possess sufficient shear 
stiffness /  and strength ( / ; see Fig. (6.11), where  is the 
vertical reaction of the support bearings;  and  are the depth and the thickness 
of the shear diaphragm;  and  are shear strain and shear stress present in the 
diaphragm; and  is the shear modulus.  

 

Figure 6.11 
The shear flexibility of the support cross-diaphragms; where  and  are the torsion of the two 
adjacent girders at a supprt point, and  is the vertical reaction of the support bearings.   
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The shear deformation of the support diaphragms results in a rotation of the entire 
bridge. Such flexibility, affecting  value in Eq. (3.9), reduces critical moment 
value of the bridge against system buckling and can lead to the thickness of the 
concrete deck being also uneven. Thus, this flexibility should be kept as slight as 
possible. Any reliance on post-buckling resistance of shear diaphragms (including 
internal, external, and support types) is not advisable [82]. 

6.7 Bracing potential of stay-in-place corrugated metal 
sheets (Paper V) 

Corrugated metal sheets have frequently been used in the U.S. in bridge 
applications having trapezoidal or multi-I girder cross-sections to support the 
concreting loads. Such members, the ribs of which are oriented perpendicular to 
the girders, mainly provide warping restraints for the top flanges rather than lateral 
or torsional restraints [3]. The performance of corrugated sheets serving as a 
stabilizing system is affected by the following: the shear stiffness and strength of 
the sheets, the tearing resistance of the sheets where the edge fasteners are located, 
the shear resistance of the edge fasteners (see Fig. 6.12), and the global buckling 
of the sheets. Note that second-order effects should be also considered in the 
strength calculations carried out. 

 

Figure 6.12 
The cross-section of a bridge girder having corrugated metal sheets, a common practice in the U.S.. 

In multi-I girder bridges (commonly used in the U.S.), the presence of cambers 
and having different thicknesses of the top flange of the adjacent girders are 
practical challenges in the installation of metal sheets. As a solution to achieving a 
uniform concrete deck across the bridges, corrugated metal sheets are commonly 
fastened to the angle profiles already welded to the main girders; see the edge 
angle profile in Fig. (6.12). The stabilizing performance of such systems is limited 
to a considerable extent by the flexibility of their connections [42]. Currently, the 
stabilizing potential of such systems should not considered in bridge design, 
according to the AASHTO code specifications [82]. However, research performed 



64 

at University of Texas on the stabilizing potential of metal sheets provided with 
improved connections [41, 43, 89] showed that if metal sheets are properly 
designed and connected to the main girders, this can enhance considerably the 
load-carrying capacity of the steel girders. 

In Sweden, the stay-in-place corrugated metal sheets 0.85 mm in thickness were 
designated to also act as a stabilizing system for the trapezoidal girder of Bridge 
Y1504, which collapsed in 2003. The sheets were attached directly to the top 
flanges by nail fasteners, so that in this case, no concerns arose regarding the 
flexibility of the edge angle profiles. However, the bracing performance of the 
metal sheets employed on Bridge Y1504 was questioned [9] due to the inadequacy 
of edge fasteners near the supports; see Section (2.2.1).  

In Norway, corrugated sheets with thicker plates 3~5	  welded to the top 
flanges of the trapezoidal girders have frequently been used as stay-in-place 
formworks during construction. Through this eliminating the slip of the 
attachments and reducing the warping of the panels having end-closed ribs, a 
considerably larger rotational stiffness can be achieved than with use of thinner 
sheets and nail or screw attachments.  

The bracing performance of metal sheets is strongly affected by the shear rigidity 
of the diaphragm, 	 kN/Rad , the value of which depends upon the effective 
shear modulus 	 kN/m/Rad  and the tributary width per each girder of the 
sheets [33]. For design purposes, the effective shear modulus of the sheets (which 
depends upon the flexibility of the attachments and of the corrugated sheet) can be 
calculated by use of a series of equations such as provided by for example [51] or 
[52]. As an alternative, the effective shear modulus can be determined by 
performing a laboratory test on a particular case; the effective shear stress value 
divided by the shear strain value then giving the effective shear modulus.  

Errera and Apparao [90] presented an energy-based solution for determining the 
critical moment value of a beam braced by means of shear diaphragms placed on 
the top flanges of beams that are subjected to a uniform bending moment. 
Lawason et al. (1985) presented the following solution for obtaining the buckling 
capacity of a shear-diaphragm-braced beam under transversal loading conditions:  

, , 																																																				 6.10 	

Where 	  is the shear rigidity of a given metal sheet, 	  is the effective 
shear modulus of the metal sheet,  is the tributary width per girder of the sheet, 
and  is the distance of the shear diaphragm from the shear center of the cross-
section. Errera and Apparao [90] also suggested a simplified approximation, as 
given in Eq. (6.11), that showed “excellent” agreement with the energy-based 
solution given in Eq. (6.10). The first term of Eq. (6.11) is the contribution of the 
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main girders, the last term being the contribution of the shear diaphragms to the 
buckling capacity of the braced system.  

, , , , 2 																																																																																														 6.11 	

For a monosymmetric cross-section having a span-to-depth ratio of 20, Helwig 
and Frank [33] compared the results of FEM with Eq. (6.11) for a variety of shear 
rigidities, their defining the value of  as being the distance of the shear diaphragm 
from the midheight of the girder's cross-section rather than being the distance of it 
from the shear center or from the centroid. By substituting  for 2  in Eq. (6.11) 
and applying the moment gradient factor, ∗, to the first term, Helwig and Frank 
[33] presented a conservative solution (see Eq. 6.12) for predicting the buckling 
capacity of a girder restrained by means of a shear diaphragm, under different 
loading conditions. The coefficient  in Eq. (6.12) represents the efficiency of the 
shear diaphragm as a continuous bracing. 

, ,
∗

, , 																																																																																								 6.12 	

As an alternative to Eq. (6.12), the critical moment value of a closed-trapezoidal 
cross-section can be calculated by converting the corrugated sheets to an 
equivalent plate. Eq. (6.13) gives the equivalent plate thickness value, , for a 
specific corrugated sheet type and its attachments. The equivalent thickness is 
obtained on the basis of the shear flexibility of a metal sheet,	 , ,  which  
takes account of the followings: slips at the fasteners, warping and shear 
deformations of the sheet  and the shear flexibility of an equivalent flat plate, 

. The latter can be calculated based on studying the shear deformation of a 
cantilever plate (see Eq. 6.14), where  is the depth of each plate, and  is the 
Poisson's ratio. 

∑ ,
																																																																																																			 6.13 	

2 1 /
/ ∙

																																																																																														 6.14 	

A bending moment gradient (such as one caused by a transversal load) rather than 
a uniform bending moment reduces the brace efficiency of the shear diaphragm. 
The shear diaphragm is less efficient for cases in which the distance between the 
plane of the diaphragm and the center of the twist is small. Note that the distance 
in question can vary along the span for most of the transversally loaded girders 
[33]. In the experimental work [41], very little displacement of the top flange at 
mid-span but significant lateral movement of the bottom flange was observed 
before inelastic deformation of the metal sheets occurred. For the cases studied 
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there, this shows clearly that the twist center of the braced cross-section was close 
to the top flange at midspan. As a result, in utilizing corrugated sheets, the bottom 
flanges may need to be stiffened by means of plan bracings, or their size should be 
increased. In the sub-sections that follow, the stiffness, the strength, and the 
connection requirements of corrugated sheets in bridge applications are presented 
briefly as the results of the research carried out at the University of Texas [31]. 

6.7.1. Stiffness requirements of the metal sheets  

The ideal stiffness of corrugated metal sheets in the case of perfect beams can be 
calculated using Eq. (6.12). However, in the study mentioned above [31] it was 
recommended that one should provide an effective shear stiffness four times the 
ideal value so as to minimize shear deformations of the sheets and the forces in the 
fasteners. Taking account of	 / , this yields the following: 

′
4 , ,

∗
, , 																																																																																	 6.15  

Note that the shear strains along the edges of a brace panel are consistent with the 
lateral deformation of the top flanges of the main girders, which are not evenly 
distributed along the bridge span. The shear diaphragms attached to the top flanges 
are only effective in the positive moment regions. In the negative regions, since 
the top flange is in tension and is warped to only a relatively small degree, the 
shear diaphragm is ineffective. Under such circumstances, a plan bracing at the 
level of the bottom flange can be provided so as to limit the warping of them. 

6.7.2. Strength requirements of the metal sheets 

A shear diaphragm with ribs oriented perpendicular to the longitudinal axis of the 
main girders can be modeled rather well as a plan bracing; see Fig. (6.13). This 
enables the stability forces that develop to be analyzed.  

 

Figure (6.13) 
The performance of corrugated metal sheets attached to the girders top flanges (top view). 
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The bracing forces there depend upon the magnitude of the initial imperfections 
(larger forces being created in the case of larger initial imperfections), the actual 
brace stiffness (smaller forces being created by stiffer sheets), the web flexibility, 
and the loading conditions. The magnitude of the bracing moment per unit length 
of the bridge span (see 	 . /  in Fig. 6.14) generated in a shear 
diaphragm attached to the top flanges follows the lateral slope of the flanges; 
where	 / ; /2; 	and	  are the geometries of each 
brace panel as shown in Fig. (6.14); and  is the shear force that each panel is 
exposed to at its edges. For a simply supported beam under uniform bending 
moment conditions, the maximum bracing moment occurs near the supports and 
gradually decreases along the span. Whereas under a uniformly distributed load or 
a pointed load at midspan, both of them applied at the level of the neutral axis, the 
maximum force occurs at a quarter to a third span of the beam [32]. Clearly, the 
top flange loading increases the bracing moment and the magnitude of the 
maximum twist as compared to loading at the level of the neutral axis.  

Assuming a stiffness value of 4  being provided for the corrugated 
sheets, Helwig and Yura [31] recommended use of the following bracing moment 
value for design purposes: 

0.001
																																																																																																					 6.16  

Note that Eq. (6.16) should be modified when loading other than a uniformly 
distributed load being applied at the level of the top flanges is present, and if the 
shear stiffness of less than 4  is provided.  

The center of twist for a braced I-girder with a top flange loading is near to the top 
flanges, much of the cross-sectional twist occurring due to the lateral deformation 
of the bottom flange. The recommendations above are given for I-girders with no 
cross-bracings between the supports. A combination of corrugated sheets with 
cross-bracings along the span can make the metal sheets more effective. Utilizing 
cross-bracing generally reduces the bracing forces and the required stiffness of the 
shear diaphragms [32].  

6.7.3. Connection requirements 

The shear forces created in the fasteners,  and	 , caused by the brace shear 
forces, , can be determined by studying the equilibrium of a given brace panel 
[31]. For the case shown in Fig. (6.14), for example, in which there exist five edge 
fasteners for each corrugated sheet, the resultant shear force created in the most 
loaded fastener is: 
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5 1.25

																																																									 6.17  

 

Figure 6.14 
Shear forces of the edge fasteners of metal sheets acting as a brace on the top flanges of steel girders 

Note that a thicker sheet results in low level of ductility in the panel, and thus, in 
lower fastener forces.   

6.7.4. Use of corrugated metal sheets in Twin-I girder bridges 

The stabilizing potential of corrugated metal sheets can be of benefit in multi-
girder bridges having closely spaced longitudinal girders, or in case of single 
trapezoidal girder bridges. In contrast to the multi-I girders commonly used in the 
U.S., the twin-I girders having a wider transverse span, , are the most common 
bridge type in Sweden. In such systems, the large transversal distance between the 
main girders requires deeper sheets of sufficient in-plane bending stiffness as 
compared with the bridge systems mentioned above. The deeper sheets increase 
the thickness of the concrete deck, and thus make the use of metal sheets in Twin-I 
girders less attractive in design. 

6.8 Scaffolding bracing of steel girders (Paper III) 

The recent accidents in the Scandinavian countries of bridges with timber-
falsework showed the methods currently used here to provide support to fresh 
concrete suffer from certain shortcomings. A literature study of a large number of 
failures of bridges around the world with timber-falseworks revealed a lack of 
lateral stiffness and of sufficient bracing to be the major cause of such events; see 
section (2.3). Although the problem of instability in the conventional timber 
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falseworks could be easily overcome, relatively elementary methods are being 
widely used at this stage of bridge construction. Since a considerable portion of 
the time and the budget involved in bridge construction is now allocated to the 
installation of such timber falseworks, an alternative for them is of interest. In 
Section (6.8.1), the common design practice for providing stability to steel girders 
during the construction stage is described, with emphases being placed on the 
shortcomings involved. In Section (6.8.2), a typical scaffolding system, the so-
called “Cup-lock scaffolding”, widely used in Sweden is described. In contrast to 
timber-falseworks, these scaffoldings are much less vulnerable to problems of 
instability. Also, with some minor improvements, these scaffoldings can be 
considered to represent a reliable bracing source for bare steel girders, thanks to 
their high degree of torsional stiffness. The basic theory involved is dealt with in 
Section (6.8.3) and in Paper (III). Additional investigations were also carried out 
during the author's Ph.D. study concerning the “lateral” stabilizing potential of the 
scaffolding ledgers, the results of which need to be extended; see Sections (6.8.4)-
(6.8.5). 

6.8.1 The common practice in design aimed at providing stability for 
the steel girders during construction stage 

To an extent depending upon the lateral-torsional slenderness ratio of the steel 
bridge, , out-of-plane deformations reduce the load-carrying capacity of the 
system; see region “C” in Fig. (6.15). During the construction of composite 
bridges, under the self-weight of fresh concrete or while different boundary 
conditions are present during launching, for example, proper bracings are normally 
required so as to limit out-of-plane deformations of the girders. Since slight 
bracings can effectively control the out-of-plane deformations, they can 
significantly decrease the lateral-torsional slenderness ratio, this resulting in a 
considerable increase in the load-carrying capacity. Cross-bracings are the most 
common bracing options in steel bridges. Such bracings are conventionally used in 
the form of cross-frames/-beams/-diaphragms, normally spaced every 4~8	  
along the bridge span. Cross-bracings are relatively expensive in terms of 
fabrication, erection (fitting problems), and maintenance. Also, cross-bracings are 
more efficient when they are placed at the locations of maximum twist and 
maximum bending moment. In practice, however, these bracings tend to be spaced 
uniformly along the bridge span.  

In addition, such permanent bracings can lead to fatigue-sensitive details. 
Therefore, reducing the number of cross-bracings, if applicable, and instead 
utilizing alternative temporary bracing is of interest. Most bracings are mainly 
required during the construction period, and they are normally less important when 
the concrete deck has hardened. 
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On the other hand, the location of a critical brace may vary in different 
construction stages. Cross-bracings can only resist the twist of an individual girder 
at the bracing points, and should be combined with proper plan bracings so as to 
control lateral movements both of individual girders and of the entire bridge. 
Provisions regarding lateral stiffness are only required during the construction 
stages, the concrete deck being able to provide substantial lateral stiffness once it 
has hardened. In a completed state, when the concrete deck has hardened, the plan 
bracings that are not cast within the concrete deck can attract various forces from 
traffic loads. Most plan bracings are relatively soft and could buckle under the 
compression forces involved, through the contribution these make to the in-plane 
bending of the bridge. Because of the mentioned shortcomings above, and due to 
possible conflicts of the lateral bracings with reinforcements, constructors usually 
prefer to avoid the use of plan bracings. 

In Sweden, a common solution in efforts to enhance the lateral stability of steel 
girders during erection is to increase the width of the flanges. This often requires 
that the thickness of these flanges also be increased so as to avoid possible local 
buckling problems. In composite bridges, however, the top flanges are basically 
needed so as to provide sufficient space for the shear-studs once the concrete deck 
has hardened. Fig. (6.15) shows in schematic terms a typical design curve, one in 
current use by design engineers for sizing the steel girders employed during the 
construction phase. Increasing the size of the flanges decreases the lateral-torsional 
slenderness of the main girders. Most bridges, in Sweden, are designed with use of 
rather stocky girders having a relatively small lateral-torsional slenderness ratio; 
see region “D” in Fig. (6.15). Modern fabrication techniques have enabled the use 
of high-strength steel from which girders that are more slender  having larger  
values and less consumption of steel  can be designed for the composite stage. 
However, the current strategy to enhance the lateral stiffness of a bridge by means 
of increasing the size of compression flanges is independent of the steel type 
involved.  

 

Figure (6.15) 
A schematic illustration of a typical design curve for lateral-torsional buckling,  being a reduction 
factor and  being the lateral-torsional slenderness ratio. 
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6.8.2 Shortcomings of the common bridge timber-falseworks 

Cup-lock scaffoldings (see Fig. 6.16) and timber-frame falseworks (see Fig. 6.17) 
are the most common approaches taken in Sweden for supporting the weight of the 
fresh concrete during concreting of the deck in composite bridge. For relatively 
shallow girders, the efficiency of steel-truss scaffoldings located between adjacent 
girders is reduced since the inclination of the diagonal member is less. In such 
circumstances, spacing of timber-frame falseworks every 0.9~1.2	m along the 
bridge span are normally preferred. Otherwise, when the depth of bridge is 
sufficient, steel -truss scaffoldings (a so-called Cup-lock system) can be an 
alternative, a spacing of them at every 1.2~1.3	  along the bridge span being 
employed. As shown in Fig. (6.16), the top timber chord can be sloped so as to suit 
the road transverse profile. Timber planks, 45 45	mm  in size, for example, are 
normally spanned between the timber chords in both formwork systems. In cases 
in which the transversal span between the two adjacent girders is relatively large, a 
single longitudinal beam is often placed between the timber frames near the 
middle of them so as to avoid possible lateral slide of the bottom chords of the 
frames.   

 

Figure 6.16 
Steel-truss scaffoldings, a so-called Cup-lock system. 

 

Figure 6.17 
A timber-frame falseworks used in a bridge application. 
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Bending moments from construction loads that develop at the cantilevers on both 
sides need to be transferred to the main girders. This occurs by means of tension 
bars anchored to the web of the main girders near the top flanges plus of inclined 
compression bars that are placed on the bottom flanges of the main girder; see Fig. 
(6.18). The deeper the girders are, the smaller the compression forces are that 
develop in the diagonal bars of the cantilevers. Accordingly, both the distance 
between the cantilevers and the length of cantilevers can be increased in the case 
of deeper bridge girders. In practice, certain tension rods are also used between the 
main girders, located every 2	m for example, along the bridge span so as to 
prevent twisting of the individual girders brought up by the bending apart of the 
girders at each cantilever; see Fig (6.17). Some bridges have experienced local 
web buckling at the anchoring points of the tension bars, however.  

The timber-frame falseworks between the main girders transfer the construction 
loads, in the direction of gravity to the bottom flanges. In stability analyses of steel 
bridges, the construction loads may be assumed to be uniformly distributed on the 
top flanges of the main girders. This assumption can be inconsistent, however, 
with the actual conditions in which loads are transferred by the scaffoldings and 
the falseworks as explained above.   

 

Figure 6.18 
The cantilever scaffoldings. 

6.8.3. The concept of scaffolding bracing of steel bridges 

As an alternative to the current strategies in providing the steel girders with 
stability, the utilization of Cup-lock scaffoldings as reliable stabilizing systems (on 
the basis of their considerable stiffness and strength) during the construction stage 
could be of interest. In view of the fact that such arrangements are already used in 
steel bridges during the concreting of the deck, the alternative would not impose 
any appreciable additional costs on the overall costs of bridge construction. As 
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shown in Fig. (6.15), this possibility enables design engineers to avoid increasing 
the size of the cross-section simply for dealing satisfactorily with the temporary 
conditions. The scaffoldings can safely control out-of-plane deformations of the 
steel girders before the concrete deck has hardened, so as to be able to provide the 
lateral stiffness that is required. 

Fig. (6.19) illustrates the torque transferring mechanism that the cup-lock 
scaffoldings provide. The scaffoldings normally possess a relatively large degree 
of stiffness and strength. By utilizing this potential properly, the steel portion of 
the bridge has to deform as a single unit, a matter made possible here by relative 
lateral movements of the top and the bottom flanges of adjacent girders being 
prevented from occurring, a matter that leads to significant increase in the load-
carrying capacity of the bridge. Currently, cup-lock scaffoldings are not normally 
attached to the main girders  such as with the help of mechanical connections, for 
example. Since, the scaffolding bars are not designed to transfer tensile forces, the 
cup-lock scaffoldings are not able to prevent twisting of the main girders. 
However, with some minor improvements, they could be attached to the girders, 
even before either launching of the bridge or transportation of components of it to 
the construction site. In this way, the stabilizing potential of the improved 
scaffoldings could be of benefit not only during concreting of the deck but also 
during the launching and lifting stages. This benefit is particularly advantageous 
for in-plane-curved bridges and open-trapezoidal girders that are subjected to 
considerable torsional stress because of their geometries. This potential can also 
reduce the number of cross-bracings needed during the construction stage, and 
possibly the size of the main girders.  

 

Figure (6.19) 
The torque  generated by destabiling forces, , that develop in the compression flanges  
transfering mechanism of the Cuplock scaffoldings, , and	  being the brace shear forces, and  
being the reaction forces of the cantilevers. 

The potential of the scaffoldings for use as a bracing system was first pointed out 
by the author. Results presented in an article in the Journal of Bridge Engineering 
[11] confirmed the scaffoldings that were studied possessing a substantial bracing 
capacity. The research reported on comprised both experimental investigations 
concerned with a full-scale test-setup bridge, and numerical studies on several 
bridges having differing lateral-torsional slenderness ratios, including the case of a 
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real bridge in Sweden. Fig. (6.20) depicts the test data, both for the conventional 
situation in which a cross-beam is placed every 7.5 m (i.e. test TN1), and for a 
situation involving attached scaffoldings (i.e. test TN11). When the scaffoldings in 
test TN11 were utilized, the load-carrying capacity of the bridge was enhanced by 
a factor of 3.7 as compared with the load-carrying capacity achieved in test TN1; 
see Fig. (6.20). In addition, the bridge braced by means of the scaffoldings (test 
TN11) was able to tolerate considerably larger out-of-plane deformations than the 
test TN1 bridge, this generally being regarded as having the advantage of its being 
possible to warn the workers involved, of a possible structural collapse. In bridge 
collapses due to problems of instability that were reported (see Chapter 2), sudden 
failures have often occurred during the construction stage. When the bracing 
potential of such scaffoldings is utilized, the enhanced ductility can enable the 
bridge to tolerate relatively large out-of-plane deformations. Taking advantage of 
the bracing potential of the scaffoldings involved can thus be important in order to 
reduce fatalities, this leading to a “safer failure” in the case of a possible collapse.  

 

Figure (6.20) 
Test results for the load-carrying capacity of the bridge when braced by scaffoldings (test TN11), and 
when braced by conventional cross-beams (test TN1 was performed with a cross-brace stiffness 30 
times greater than required for a full bracing condition),  standing for scaffolding and  for 
cross-bracing. 

Only slight forces were developed in the scaffolding bars, the load-carrying 
capacity of the bridge being increased by some 370% (see / 0.02 at the 
ultimate load level in Fig. 6.21).  

Another important advantage of the system described is that a bridge restrained by 
means of a number of scaffoldings can be considered to represent a robust system. 
Also, the scaffoldings stabilize simultaneously both the top and the bottom flanges 
in both the sagging and the hogging regions, which for most bracing options is 
normally not the case. 
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Figure (6.21) 
Test results for the bracing forces generated in the scaffolding bars in test TN11, the system reaching 
the ultimate load-carrying capacity there at 0.005	 ,  being the bracing moment 
of the scaffoldings at location  along the bridge span. 

6.8.4. Effects of the ledgers on the load-carrying capacity of the test 
bridge 

In practice, through certain horizontal bars, “ledgers” as they are called, the 
inclined members of a typical Cup-lock scaffolding are interconnected both in-
plane and out-of-plane of the scaffolding trusses; see Fig. (2.22). The ledgers are 
used to reduce the buckling length of the inclined scaffolding bars and to provide 
the scaffolding trusses lateral stability. The process of assembling the ledgers on 
the inclined bars can be carried out quickly in practice through use of the Cup-lock 
joints placed at distance of approximately 0.5	m from each other along the length 
of the inclined bars.  

 

Figure (6.22) 
A schematic illustration of Cup-lock joints and of the ledgers. 
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The Cup-lock joint is fixed by rotating the upper cup around the longitudinal axis 
of the inclined bar when a ledger has already been placed in the fixed bottom cup. 
In common practice, the ledgers of the two constant lengths of 1200	mm and 
1300	mm are available, their cross-sectional size being identical to that of the 
inclined bars of the scaffolding. The joint at both ends of a ledger can be 
considered as being fairly moment stiff. 

In the case of the test-setup bridge, seven brace configurations listed below were 
studied numerically:  

- System (i), the twin-I girders had an unbraced length of 15	m between the 
end-supports. 

- System (ii), only one cross-beam was added to System (i) at mid-span. 

- System (iii), the typical Cup-lock scaffoldings were installed in System (i) 
at spacing of 2500	mm along the bridge span. This represents a situation in 
which every second scaffolding is fastened to the main girders, the spacing 
of the cross-bracings increasing from 7.5 m to 15.0 m. 

- System (iv), one cross-beam was added to System (iii) at mid-span. 

- System (v), the typical Cup-lock scaffoldings were installed in System (i) at 
spacing of 1250	mm along the bridge span. This represents a situation in 
which all of the scaffoldings are attached to the main girders and the 
spacing of the cross-bracings increasing from 7.5 m to 15.0 m. 

- System (vi), one cross-beam was added to System (v) at mid-span. 

- System (vii), the ledgers were placed in the middle of the inclined bars 1, 4, 
5, and 8 (see Fig. 6.19), spanned between the scaffolding trusses, there thus 
being only four ledgers between any two adjacent trusses.  

Figs. (6.23) and (6.24) show the strength ratios versus the twist values at mid-
span, and the strength ratios versus the normalized values of the lateral movements 
of the top flange at the mid-span of the test bridge, respectively. An initial twist 
imperfection value of /500 	was introduced in the main girders at mid-span, i.e. 
similar shape to the first buckling mode of the unbraced girders. Obviously, both 
the cross-bracings that are conventionally employed and the proposed scaffoldings 
resist mainly the twist of each girder. Except for System (vii), Fig. (6.24) shows 
that the bridge to still be suffering from a considerable amount of lateral 
movement at mid-span in Systems (i)-(vi). However, with use of the typical 
dimensions of the scaffolding bars there, the load-carrying capacity of the test 
bridge improved by a factor of approximately 4.0, i.e. when comparing Systems 
(v)-(vi) with System (ii). In addition, the results show that a combination of the 
scaffolding trusses and the cross-bracings commonly employed, i.e. System (vi), 
increased the load-carrying capacity of the steel girder slightly as compared with 
System (v).  
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Figure (6.23) 
The normalized load-carrying capacities versus the twist values at mid-span for systems (i-vii). 

 

Figure (6.24)  
The normalized load carrying capacities versus the normalized lateral deflection of the compression 
flanges at mid-span for systems (i-vii). 

A combination of the ledgers and scaffolding trusses controlled to a great extent 
both the lateral deflection and the twist of the girders. Obviously, the scaffolding 
trusses acted as torsional bracings thanks to their high degree of torsional stiffness. 
One matter connected with this that was studied here was the effects that the 
ledgers have on the bracing forces created in the scaffolding and ledger bars, a 
matter taken up in the next section. However, the lateral bracing capacity of the 
ledgers needs to be more thoroughly investigated.  
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6.8.5 The effects of the ledgers on the bracing forces 

Numerical studies were performed to investigate the axial forces that developed in 
the scaffolding bars and in the ledgers when uniformly distributed loads were 
applied to the top chord of the scaffolding trusses, these loads representing the 
construction loads generally encountered in practice. The forces that developed 
represented the vector sum of the stabilizing forces and the forces created to 
support the self-weight of the fresh concrete. Fig. (6.25) shows the normalized 
magnitude of the forces created in the inclined bars along the bridge span; see 
members 1-8 in Fig. (6.19). An imperfection shape similar to the first eigenmode 
of the unbraced girders, its having a maximum twist of /500  at mid-span, was 
introduced in the girders. The results obtained for both systems (v) and (vi) 
showed that among the bras 1-8, the inclined bars 4 and 5 (see Fig. 6.19) provided 
the major contribution to stabilization of the girders whereas the other bars (1, 2, 3, 
6, 7, and 8) contributed mainly to carrying the construction loads. The inclined 
bars 4 and 5 were found to act in tension and compression, respectively; see Fig. 
(6.25).  

  

Figure (6.25) 
A comparison of the bracing forces induced in scaffolding bars 1- 8 of Systems (v) and (vi). 

Fig. (6.26) depicts the normalized values of the axial forces created in the inclined 
members 4 and 5 along the bridge span when different values for the initial 
imperfections were introduced in System (v). Clearly, higher values for the initial 
twist led to higher levels of the stabilizing forces in the scaffolding bars. 
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Figure (6.26) 
The bracing forces, , , generated in scaffolding bars 4 and 5 of System (v) when initial 
imperfections of differing magnitude were introduced. 

The effects of the ledgers on the magnitude of the bracing forces in the scaffolding 
bars were also investigated. A maximum initial twist value of /500  for the 
girders was introduced. Fig. (6.27) depicts the normalized axial force values that 
developed in the scaffolding bars of System (vii). Uniform loading of the upper 
chords of the scaffoldings involved loads representing the construction loads 
employed in practice. It was found that in utilizing the ledgers, the resultant forces 
in the inclined bars were all in compression in system (vii), the magnitude of the 
forces being almost constant. This occurred because of the fact that the ledgers 
increased the lateral stiffness of the system, so that lesser stabilizing forces were 
generated in the inclined bars than the forces generated by the self-weight of the 
fresh concrete (compared the results obtained here with the data shown in Fig. 
6.25). 

  

Figure (6.27) 
Bracing forces, , , generated in the inclined bars (1-8) of System (vii), the ledgers being placed at 
the mid-length of scaffolding bars 1, 4, 5, and 8 between the adjacent trusses. 
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Fig. (6.28) depicts distribution of the axial forces that developed in the ledgers of 
System (vii). The ledgers acted mainly in tension and in compression. The 
distribution of the forces along the span shows the ledgers to be generating a 
bending stiffness with respect to the z-z axis, as shown in Figs. (6.27)-(6.28).  

 

Figure (6.28) 
The bracing forces, , generated in the ledgers of system (vii), the location of the ledgers being 
marked as C1, C2, C3, and C4. 

Thus, the ledgers, firmly connected to the scaffolding trusses, can be regarded as a 
sort of “Vierendeel beams” that having long lever arm, take the loads that acting in 
the horizontal plane, see Fig. (6.29). 

 

Figure (6.29) 
The scaffolding's Vierendeel effects on forces generated in ledgers C1-C4. 

It should be noted that the length of each ledger is relatively short (either  
1200	mm or 1300	mm in line with current practice), and that the bracing forces 
that are generated in the ledgers tend to be relatively small. Accordingly, the 
second-order effects of the axial bracing forces on the ledgers were negligible. The 
load-carrying capacities presented earlier for systems (vi) and (vii) represented 
two extreme cases for the connection rigidity of the Cup-lock joints (i.e. pure 
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hinges in system (vi) and infinitely moment-stiff in system (vii)). In reality, the 
level of performance is between these two extremes, as is the case for all of 
connection types. 

Although the ledgers strongly enhanced the lateral stiffness of the test bridge, they 
may well not represent suitable lateral bracings for controlling the lateral 
deformations of real steel bridges by creating Vierendeel beams. The 
investigations discussed in this section did confirm, however, that a combination 
of the bracing potential of the scaffolding trusses with an appropriate lateral 
bracing system could well be more beneficial. Such lateral bracings can be 
achieved by modifying the placement of the ledgers so as to achieve, for example, 
a Pratt-truss form along the bridge span. It should be noted, however, that even 
without the ledgers the scaffoldings can still increase considerably the load-
carrying capacity of steel bridges, a capacity level that may well be sufficient for 
most of the situations encountered in practice. 

6.9 Bracing potential of precast concrete slabs 

The research group at the University of Texas under the supervision of Dr. Todd 
Helwig is currently investigating the bracing potential of precast concrete slabs for 
in-plane-curved bridges. Fig. (6.30) shows a photo taken by the author during his 
visit to Ferguson Laboratory of Structural Engineering at the University of Texas.  

 

Figure (6.30) 
An experimental study of the stabilizing potential of precast decks presently being performed in the 
Ferguson Laboratory of Structural Engineering at the University of Texas.  

As shown in Fig. (6.31), in the situation currently encountered  in practice, the 
precast slabs employed have no mechanical connections with the shear studs 
placed on the main girders or on the cross-girders. Clearly, both the cross-girders 
and the main girders can be assumed to be restrained continuously at the top 
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flange level when the joints are grouted during construction. Developing a 
practical mechanical connection between the concrete slabs and the main girders is 
an important challenge in connection with such bracing alternatives. In a manner 
similar to what applies to corrugated metal sheets, such systems have limited 
efficiency in sagging regions and have no stabilizing effects on the compression 
flanges in hogging regions of I-girder bridges. 

 

Figure (6.31) 
The most common approach to installing the precast concrete decks of steel bridges. 
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7 The effects of initial imperfections 
on the performance of bracings 
(Papers III, IV, & V) 

Deciding during the computational analyses of different possible imperfection 
shapes, which of these would provide the maximum level of bracing forces can be 
difficult. The bracing forces are affected to a significant extent by a number of 
factors including in particular the magnitude, the shape, and the distribution of the 
initial imperfections along the span, and the load gradient at the brace point [39]. 
Various code specifications, such as AASHTO [82] and AISC [67], recommend 
that a relative initial crookedness value of /500 be considered for the 
compression member located between the brace points,  being the distance 
between the adjacent bracings. Eurocode, in contrast, suggests the use in stability 
analyses of a half-sine-shape initial imperfection of /500,  being the bridge 
span. Regardless of the obvious differences between these recommendations, a 
literature study revealed that relatively few investigations have been carried out on 
the effects of imperfections on bracing forces that are present particularly in steel 
bridge applications.  

In building applications, such as in simply supported truss roofs, the imperfections 
that are present can be approximated in two ways:  

- i) by an equivalent lateral force, e.g. 8 ∆ ∆ / , applied 
uniformly to the compression flange,  where ∆ is the lateral deflection of the 
restrained flange under  plus external lateral loads, ∆  is the magnitude of 
the geometric imperfections,  is the beam span, /  is the axial force 
present in the compression flange under a uniform in-plane bending of , 
and  is the distance between the centroids of the top and the bottom flanges 
[73]; see also Appendix (AIII.2); 

- ii) by performing a second-order large-displacement analysis of the initially 
deformed compression chords [68].  

In the former method, the second-order effects should be also included in the 
calculation of ∆. If the brace is sufficiently stiff to act in a manner similar to an 
immovable support, the bracing forces will be of reasonable magnitude.  
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As an example, if one assumes, for a simply supported beam with a sufficiently 
stiff lateral brace placed at mid-span at the level of the compression flange that 
∆ ∆ /500, the bracing force then would be approximately: 0.04 	
1.25 8 2 /500 / .  

7.1 Effects of the magnitude and the shape of the initial 
geometric imperfections on the load-carrying capacity of 
steel girders 

Fig. (7.1) shows the normalized load-carrying capacity versus the twist at mid-
span of the test setup having the bracing configuration of system (v) as described 
earlier in Section (6.8.4), different initial twists of /500 , /1000 , and /
2000 		  being introduced to the model. The stiffness of the system was 
found to decrease dramatically when the magnitude of the initial twist was 
increased. The initial twist value of /500  considered here is on the basis of the 
Eurocode 3 recommendation [76] for initial imperfection of steel bridge girders.  

  

Figure 7.1 
Effects of imperfections on the load-carrying capacity of System (v) as described in Section (6.8.4), 
scaffoldings being present every 1250 mm and there being no cross-beam at mid-span. 

Despite the clear effects that could be noted, there is relatively little information 
available regarding the effects of the shape of the initial imperfections on the 
performance of typical bracings in steel bridges [39]. Mehri et al. [83] showed that 
the shape of the initial imperfections can strongly affect both the load-carrying 
capacity of the girders and the bracing forces. Depending upon the initial shape 
and the magnitude of the geometric imperfections involved, the girders of a twin I-
girder bridge braced by means of cross-beams can sway either in the same 
direction or in the opposite direction, this creating either single- or double-
curvature-bending of the cross-beam [83]. 
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It is common practice among design engineers to assume that the compression 
flange of steel girders would buckle between the cross-bracings when the bracings 
are provided with sufficient stiffness	 . . , , ; see Fig. (7.2 i). The 
load-carrying capacity of the system there can be calculated then on the basis of 
the buckling capacity of each girder spanned between the bracing points. The 
effects of the load gradient and of the shape of the initial imperfections that are 
present are ignored, however, in this statement of the matter. For instance, an 
initial imperfection of the compression flanges in the shape of a half-sine-wave 
between the end-supports may result in a buckling mode of the compression flange 
in the manner shown in Fig. (7.2 ii) rather than buckling between the brace points 
in the manner shown in Fig. (7.2 i). The critical load corresponding to the buckling 
mode (ii) can be much greater than that corresponding to the buckling mode (i); 
see the appended Papers (IV and V) [83, 85].  

 

Figure 7.2 
Effects of imperfections on the performance of cross-bracings 

The effects of different imperfection shapes on the critical load value can be 
explained easier in terms of some particular examples of column bracing. For 
instance, assuming	 , /  and 0.0 conditions to apply, 
Eq.(4.5) in Section (4.4) yields the results given in Eqs.(7.1)-(7.2) for the total 
end-slope values at the support points when the geometric imperfection shapes of 

, sin /  and , sin 2 / , respectively, are initially 
introduced for a simply supported column [45]. 

, 0 / , ,
,

1
,

																																																	 7.1 	

, 0 2 / , ,
,

1 4 ,

																																														 7.2 	
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In practice, although a column having a full-sine-shaped imperfection, i.e. 
, sin 2 / , might never reach a critical load value of 4 ,  

corresponding to an S-shape buckling mode, the column might not buckle at a 
,  load level either. Depending on the magnitude of an imperfection, snapping 

through from an initial S-shape to a bow shape deformation, and in general a 
substantial change in the out-of-plane deformation profile, might require much 
additional strain energy to be consumed. Under such circumstances, a column may 
reach a load-carrying capacity in excess of the minimum critical load value 
corresponding to its lowest eigenmode. Of the infinite number of imperfection 
shapes that are possible, only one can be the same as that of the first eigenmode of 
a braced system. Although this worst scenario might be relevant in some cases and 
might possibly occur in practice, its occurrence is very unlikely in most practical 
situations. For instance in a twin-I girder bridge having a number of intermediate 
cross-bracings, a sine-wave imperfection shape (a shape similar to the first 
buckling mode shape) having inflections at the locations of the cross-bracings is 
very unlikely to occur. 

7.2 Effects of the shape and the magnitude of initial 
geometric imperfections on brace forces 

The magnitude of the initial imperfections affects the bracing strength 
requirements directly. Eq. (7.3) presents a general expression for the relationship 
between the initial imperfections, ∆ , and the bracing forces, , [1].  

∆ ∆0
/

1 /
																																																															 7.3 	

Where ∆ is the deformation of the compression member at the brace point, and 
 and  are the actual (provided value) and the ideal (minimum required 

value to act similar to immovable support) stiffness values of the bracing in 
question.  

The bracing force obtained on the basis of Eq. (7.3) can be adjusted by a 
modification factor of 1 /∆  if any slipping, , also occurs in bracing 
connections in cases of oversized holes [3]. 

Investigations reported in Paper (IV) showed initial imperfections to also have a 
strong effect on the magnitude of bracing forces that develop in the cross-bracings, 
and often on the load-carrying capacity of slender girders as well. Both tests and 
FE investigations that were conducted showed the shape of geometric 
imperfections to have a dominant effect on the distortion of the cross-section of a 
bridge resulting in either a single-curvature or a reverse-curvature bending of the 
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cross-beam members, regardless of the location of the cross-beam member across 
the depth of main girders. In investigations of brace forces in the cross-beams of 
steel bridges, in addition to the half-sine shape between the end-supports currently 
recommended by Eurocode 3, the study recommends that a similar imperfection 
shape, but one having an eccentric distribution with its maximum magnitude at a 
quarter of the bridge span, for example, also be considered in the bracing analyses.  
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8 Laboratory tests  

8.1 Background 

Bracing forces obtained in experimental investigations are highly sensitive to 
friction at the support points, as well as between the loading apparatus and the 
main girders. Creating “roughly” ideal boundary conditions is crucial in 
performing various tests carried out in stability investigations. In order to 
minimize lateral restraints, Helwig et al. [41] used a truss-form gravity load 
simulator such as that shown in Fig. (8.1), one anchored to the reinforced concrete 
floor. Two loading simulators were positioned at the one-third points along the 
bridge span. Tensile axial forces generated by 900 kN capacity hydraulic actuators 
were used to apply compression forces at the level of the top flanges of both 
girders. In order to eliminate the tipping restraint of the loading beam, knife-edges 
were welded to the ends of each loading beam. The objective was to study the 
stabilizing potential of corrugated metal sheets when they are attached to the top 
flanges of twin I-shape steel girders.  

 

Figure (8.1) 
The gravity load simulator used at the University of Texas for studying the stabilizing performance 
of corrugated metal sheets on twin I-girder bridges.  
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8.2 Tests performed by the author 

An alternative loading apparatus to the system shown in Fig. (8.1) was designed 
by the author for performing the laboratory tests (see Fig. 8.2), this being done for 
following reasons: i) building two truss-simulators would increase the expenses 
and require considerable time, ii) some friction at the hinged points of the loading 
apparatus was found to still exist in the system shown in Fig. (8.1); and iii) it was 
desired that each girder be able to deform independently of the other in the lateral 
direction. The system shown in Fig. (8.1) needed to be modified for this purpose.  

 

Figure (8.2) 
The following details of the test setup are shown: a) the loading apparatus, b) the boundary 
conditions for the top flanges, c) the knife-edge boundary conditions of the bottom flanges at the one 
end, d) the slide free boundary conditions of the bottom flanges at the one end, e) the four roller 
bearings cut by means of CNC to be placed between the top flanges and the loading apparatus but 
replaced with the shaf-beraings, f) the four shaft-bearings used between the top flanges and the 
loading apparatus. 
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Fig. (8.2) shows the employed loading apparatus, the boundary conditions, and the 
bearings placed between the loading apparatus and the main girders. Fig. (8.2 e) 
shows the original plan (roller bearings cut by CNC) for the bearings designed so 
as to minimize the friction between the loading apparatus and the main girders. A 
preliminary test revealed, however, that there was considerable friction at those 
points that resisted the lateral movement of the main girders. Alternatively, four 
high quality SY510M	∅50	mm shaft-bearings having a load capacity of 100kN 
were utilized at the points shown in Fig. (8.2 f). Pre-test investigations that were 
carried out verified the shaft-bearings being sufficient for the purpose of the study. 

Due to a limited budget, the test girders and their connections needed to be used 
again and again in eleven planned tests involving different bracing configurations; 
see TN1-TN11 in Fig. (8.3). In order to avoid inelasticity, the maximum stresses 
needed to be kept well below the yielding stress of the steel girders (e.g. at less 
than 50% of the yielding stress of them) in accounting for the combined effects of 
residual and of nominal stresses.  

 

Figure (8.3) 
Full-scale tests performed by the author, TN1-3 reported in Paper IV, TN4-10 reported in Paper V, 
and TN11 reported in Paper III. 

Before the test setup was ordered, a number of numerical and analytical analyses 
were carried out to ensure that elastic buckling would occur well below the 
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yielding point, before the last test TN11, which involved loading in the inelastic 
region. The measured initial out-of-straightness values of the flanges prior to each 
of the tests that were carried out confirmed the permanent deformations being 
negligible. 

Fig. (8.4) shows the location of the potentiometers, the LVDTs, and the strain 
gauges used during tests TN1-TN11. LVDTs were used instead of potentiometers 
at points where the deformations were expected to be very small, e.g. at S/N-1/2 or 
at S/N-9/10 points during the tests TN4-TN10.  

 

Figure (8.4) 
The location of potentiometers, LVDTs, and strain gauges for the setups of the tests TN1-TN11 
performed by the author. 
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The potentiometers and the LVDTs employed were	"Celesco	Stingpot	300	mm
0.2	mm", "Novotechnik	TR	100mm, TR	50	mm 0.05	mm", and "Tex	0200  
0.05	mm". Strain gauges were attached to the cross-beams at mid-span (8 gauges: 
SG/NG1-4), to the truss-bracings (20 gauges: F1-F10), and to the scaffolding bars 
(32 gauges: FR1, FR3, FR5, FR7) all being the single-direction "Kyowa	15	mm" 
type. The loading piston and its maximum capacity was "Enerpac	600kN". The 
loading piston was placed at the center of the H-shape loading apparatus, which 
was built-up using European standard I beam profiles. The longitudinal beam of 
the loading apparatus was a 5000mm long IPB330 standard profile type 
reinforced by 15mm thick steel plates welded onto the topmost surface of the top 
flange and onto the bottommost surface of the bottom flange. The transversal 
beams were IPE330. Web stiffeners were welded at the loading point and the 
shear reaction points.  

Further details concerning the test setup are provided in Appendix I. 
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9 Numerical simulations 

Performing full-scale experimental investigations can be very expensive. Efforts to 
create semi-ideal boundary conditions and care in eliminating undesired friction 
are essential to ensure the usefulness of the structural responses such as in the case 
of the bracing forces. At the same time, analytical solutions are only possible for 
relatively simple and limited cases for which a number of assumptions may be 
required to simplify the problem. The derivation of closed-form solutions in 
bracing assessments of bridges taking into account various conditions such as 
those of load-height, asymmetry, cross-sectional variations, imperfections, and the 
like are very difficult if not impossible to carry out. The simplified methods that 
are available such as the Grillage analogy for the analysis of bridges require 
considerable simplifications, and must be repeated for a number of possible 
buckling mode cases. Human errors can also occur in arriving at assumptions and 
in the superposition of principals. Simplified methods using the analogy of line-
beams on springs can also be valuable and are often suited to particularly common 
situations. The line-beam models, however, do not consider directly possible 
transversal effects such as generated by skewed supports, or by radial flange forces 
in curved bridges. Also, the effects of load-height, and of bracing location across 
the depth of girders, are difficult to deal with by use of line-beam models. 
Although initial imperfections can have a substantial effect on the magnitude of 
bracing forces, the stability analysis of bridges is highly complex when the initial 
imperfections are included in the analyses. At times, therefore, there is a need of 
advanced numerical tools for carrying out sophisticated analyses. 

Numerical programs are widely available and are relatively easy to use. However, 
they have the following potential disadvantages: 

- The chance of errors is higher, 

- It may take longer to set up the model and extract the results, 

- The results can only be relied on with greater confidence if the program is 
used with sufficient practice and with adequate understanding of the 
modelling assumptions.  

- Outputs are highly dependent upon the accuracy of the input data and the 
mechanical properties that are defined such as the element type and the 
meshing size,    

- More checking is needed. 
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Numerical programs are more vulnerable to human errors if one lacks sufficient 
practice and understanding. It should be noted, however, that human errors are 
inevitable regardless of the method employed if personnel involved lack 
competences. Despite the inherent disadvantages noted above, numerical programs 
are highly valuable tools when used to initiate ideas or to perform parametric 
investigations or sensitivity analyses after the model is verified against simplified 
approaches, experimental data, and analytical solutions. Without doubt, valuable 
knowledge can be obtained in research with greater confidence in the results by 
utilizing a combination of the various tools available, including analytical 
approaches, numerical programs, and laboratory tests. 

The commercial software Abaqus [91] was used here mainly for the numerical 
investigations. Shell elements S4R, were used for modeling webs, flanges, web-
stiffeners, and cross-beams since the major portion of the strain energy involved is 
due to in-plane deformation of the elements. In the case of shell elements, 
sufficient mesh densities with the aspect ratios close to unity were employed in 
three directions. The effects of material nonlinearities and large deformations were 
also taken into account in third-order incremental analyses. Multi-linear material 
properties were used for steel grade S355 having stress values of 355, 360, 539, 
and 571 MPa, corresponding to strain values of 0.2, 1.3, 5.5, and 11.3%, and for 
the S460 steel type with stress values of 460, 466, 561, and 605 MPa, 
corresponding to strain values of 0.2, 1.2, 4.0, and 11.2%. Top flange uniformly 
distributed loading was considered in the analyses where applicable, since this is 
the most common loading condition in practice. However, four-point-flexure 
loading was considered for modeling when a calibration against test data was 
being carried out.  

Two methods for conducting buckling analyses are available in numerical 
programs: eigenvalue analysis and incremental analysis. An eigenvalue analysis 
requires considerably less computational effort since in an incremental analysis the 
global stiffness matrix becomes updated at each increment. Three different 
methods for introducing initial geometric imperfections are available: i) 
performing a linear superposition of buckling mode shapes, ii) using the 
displacements that take place in a static analysis, and iii) applying displacements 
to nodes directly. Defining the precise shape of imperfections was not the aim of 
the study. Imperfections consisting of multiple superimposed buckling-mode 
shapes regarded as perturbation of the geometry involved were considered in the 
nonlinear analyses. In use of this approach, two analyses were performed on the 
same model: a linear buckling analysis of a perfect form of the bridge to determine 
the buckling modes, and an incremental third-order nonlinear analysis. In the latter 
analysis, the scaled initial imperfections obtained from the former analysis, were 
added to the perfect geometry to create a perturbed mesh. Abaqus imports 
imperfection data in terms of node geometries. Although during the two separate 
analyses that were performed no compatibility check of the two models carries out 
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by Abaqus, the original model and the subsequent one should be consistent in 
terms of the assembly, and the node and element numberings, and the like.   

To extract nodal information concerning the buckling mode shapes, the following 
text was added to the input file of the first analysis, the “last mod” being the 
desired number of eigenmodes to be extracted.  

--------------------------------------------------- 

*Output, field, variable=PRESELECT 

*NODE FILE, Global=yes, last mod=1 

U 

----------------------------------------------------- 

To introduce the geometric perturbation to the incremental analyses, a linear 
superposition of scaled buckling mode shapes was defined. A modification using 
the text that follows was carried out in the input file of the subsequent analyses. 
The second and third lines of that text (see below) consist of two values, the first 
one being the eigenmode number, and the second one the scale factor.  

---------------------------------------------------- 

*Imperfection, File=first job file name, Step=1 

1, 15 

2,-10 

----------------------------------------------------- 
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10 Conclusions and future research 

10.1 Conclusions from the appended papers 

Paper I: 

Paper I evaluated the collapse of The Marcy Bridge that collapsed in New York 
City in 2002. It was found that the load height effects need to be considered in the 
design of both the braced and the unbraced trapezoidal girders. For trapezoidal 
girders that are sufficiently braced by cross-bracings, the load-height modification 
factor has a constant value. However, the value decreases when the web-slope of 
the unbraced girder is increased with respect to the vertical axis. Although the 
stiffness of the cross-bracing employed in The Marcy Bridge was several times 
greater than that required for a full bracing condition, the bridge failed, 
nevertheless, due to system buckling. The results of the study showed that the 
load-carrying capacity of The Marcy Bridge could have been improved by adding 
top flange bracing at 10-20% of the span length near the end-supports. Providing 
X-type plan bracing with relatively small cross-sectional area, as little as 8	mm  
for each bar, could have enhanced the load-carrying capacity of the bridge, 
according to Eurocode 3, by a factor of 1.28 which would have been sufficient to 
prevent the failure of the bridge during casting of the deck. 

Paper II: 

In Paper II, a simplified model for determining the critical moment value of 
laterally braced steel girders placed at the level of their compression flange was 
introduced. This is often difficult or cumbersome to deal with, without the use of 
Finite Element programs. The simplified solution that the model provides can be 
of considerable help to design engineers, either in preliminary decisions 
concerning the size of different bridge girders and their bracings, or in checking 
the numerical results. The model relates the buckling length of the compression 
flange of a steel girder to its lateral-torsional critical moment. Both an exact 
solution and a simplified expression were derived to take account of the rotational 
restraining effects of unequally spaced lateral bracings on the effective buckling 
length of the compression flange in question. This is a matter that has been 
neglected in practice, its tending to be assumed there that the buckling length of a 
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compression member is equal to the largest distance between the bracing points. 
The paper showed that this assumption can give inaccurately unsafe results for 
very low bracing stiffness values and can at the same time lead to significant 
overestimation problems for relatively high bracing stiffness values. Typical 
design curves are presented that can help design engineers considerably in 
choosing appropriate brace locations and stiffness values without the need of using 
commercial finite element software for this purpose. The approach can also help 
one better understand both column and beam bracing and theories concerning 
them.  

Paper III: 

Paper III, presents the results of the original study  no previous investigation of 
which appears to have been carried out  of the stabilizing potential of one type of 
scaffolding, so-called “Cup-lock scaffolding”, widely used in the construction of 
composite bridges in Sweden. Currently, scaffoldings are not considered for use as 
stabilizing systems in the design of composite bridges, despite the relatively high 
degree of torsional stiffness they possess. The paper presents the results of full-
scale experimental and numerical investigations concerning the torsional bracing 
performance of such scaffoldings. Minor structural improvements in the 
scaffoldings were first needed, as discussed in the paper. There was found to be 
significant bracing potential in the structurally improved scaffoldings when they 
were installed on bridges of differing dimensions and lateral-torsional slenderness 
ratios in the numerical investigations. The bracing moments generated in the bars 
of such scaffoldings were measured. Indications of the bracing forces involved, 
expressed as a percentage of the maximum in-plane bending moment measured in 
the main girders, were also provided for design purposes. Since utilizing the 
bracing potential of such scaffoldings does not substantially increase construction 
costs, the bridge industry can benefit considerably from taking advantage of the 
bracing potential of such scaffoldings so as to enhance both the load-carrying 
capacity and the ductility of bridges during construction. 

Paper IV: 

Paper IV presents the results of experimental and numerical investigations of the 
effects of the shape of imperfections on the bracing performance of the typical 
cross-beams in steel bridges. Three large-scale experimental studies of a twin I-
girder bridge were carried out in which the location of the cross-beam across the 
depth of the main girders was varied at mid-span. In numerical investigations, 
three bridge structures of differing lateral-torsional slenderness ratio were studied 
for determining the effects of several different relevant imperfection shapes on the 
bracing performance of the cross-beams in straight steel bridges. The results 
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obtained showed that the design recommendations currently used can yield unsafe 
and incorrect predictions of the bracing forces involved. In addition, it was found 
that slender bridge girders can reach a load-carrying capacity significantly greater 
than what is predicted theoretically for the critical load value of the braced girders, 
the extent of this difference depending upon the shape of geometric imperfections 
present initially in the main girders. Both tests that were carried out and the FE 
investigations showed the shape of imperfections to also have significant effects 
on the distortion of the cross-section of the braced bridges, its resulting in either a 
single-curvature or a reverse-curvature bending of the cross-beams involved 
regardless of the location of the transversal beam across the depth of the main 
girders. It was also found that both lateral bending and torsional moment could 
develop in the cross-beams, their magnitudes being affected in a great extent by 
the shape of initial imperfections. Since significant warping stresses can develop 
in the cross-beams of asymmetric cross-section, avoiding such beam profiles in 
cross-beams is suggested. 

Paper V: 

Paper V presents the results of seven full-scale laboratory tests of the restraining 
effects on end-warping of plan bracings and corrugated metal sheets when they 
were installed near the supports of a twin I-girder bridge. Four tests were 
performed when single-panel Z-type or double-panel Warren-type bracings were 
attached on the top flanges near each support. In addition, three tests were 
performed when typical metal sheets were attached by use of nail fasteners of 
different arrangements to the top flanges. The bracing forces generated in the truss 
bars were also measured using a pair of strain gauges attached on each bar.  The 
load-carrying capacity of the bridge was found to be enhanced by a factor of 
2.0~3.0 when the girders were provided with such warping restraints of both 
types. The metal sheets employed there, however, showed significantly larger 
lateral deflections than the utilized plan bracings did. Relatively small forces were 
generated in the truss bars in order to achieve these marked improvements in the 
load-carrying capacity. The brace forces in the employed truss bars were 
compared with the ones obtained through an approximate method being used 
frequently by the design engineers for the analysis of such bracings. The results 
obtained by the approximate method  which is suggested also by Eurocode 3  
agreed fairly well with some of the brace forces that measured during the tests 
whereas, the predication gave unsafe results with very large discrepancy for few of 
bars.  

The study showed that such inexpensive modifications could be of valuable 
benefit to narrow bridges that are prone to system buckling.   
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10.2 Future research 

Despite the fact that bracings are generally highly effective in controlling the 
lateral-torsional deformation of steel bridges, relatively few guidelines and design 
recommendations are available in the code specifications regarding this matter. 
The use of proper bracings is often crucial for avoiding certain possible failure 
modes during construction. The size, layout, and type of bracings employed can 
directly affect the initial stresses that develop in steel girders due to out-of-plane 
deformations during construction, especially in the case of in-plane curved 
bridges. There is much yet to learn regarding the effects of bracings during 
construction. Also, effects of the concreting sequence and of the shape of the 
initial imperfections have been little investigated. The effects of load height, 
imperfections, variations in cross-sections, asymmetries, eccentricities, and the 
like make the predication of bracing requirements rather complicated. Further 
investigations are needed to obtain a better understanding of how design engineers 
can size bracings as satisfactory as possible.  

Scaffoldings can serve as a reliable stabilizing source during construction of 
bridges. They can also serve as a temporary bracing system during the widening of 
existing bridges or the repairing the bracings (the repair of which led to the 
collapse of the three-span Tennessee bridge in the U.S.; see Section 2.2). The 
present Ph.D. work has shown that such scaffoldings can serve to substantially 
enhance both the ductility and the robustness of steel bridges during construction. 
This should be studied in greater detail for more practical purposes. Such 
scaffoldings can also further the industrialization of bridge construction and the 
shortening of construction time. Attaching scaffoldings to the main girders can 
enable the development and also the use of “smart” scaffoldings in the future, 
together with the automatic monitoring of deformations and stresses during 
construction on the basis of brace forces generated in the scaffolding bars. The 
data collected can considerably benefit understanding of the behavior of typical 
steel bridges during different stages of construction. 
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Appendix I 

Details regarding the test setup 

 

Figure (AI.1) 
details regarding the end-supports. 

 

Figure (AI.2) 
End-support components. 
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Figure (AI.3) 
End-support components. 

 

Figure (AI.4) 
The dimensions of the cross-beam and of its web-stiffeners at mid-span used in tests TN1-TN11. 
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Figure (AI.5)  
Elevation views of the two identical main girders, and plan views of their flanges. 

 

Figure (AI.6) 
A plan view of the loading apparatus. 
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Figure (AI.7) 
Details of tests TN4, TN5, TN6, and TN7; TN4: a Z-type single panel brace with a cross-beam at 
mid-span, TN5: a Warren-type brace with a cross-beam at mid-span, TN6: a Z-type single panel 
brace without a cross-beam at mid-span, TN7: a Warren-type brace without a cross-beam at mid-
span. 

 

Figure (AI.8) 
Details of tests TN8, TN9, and TN10; where corrugated metal sheets were attached to the top flanges 
near the supports, nail fasteners being located either at every second valley (in TN8) at each valley 
(in TN9) or at each valley provided with stiffening angle profiles at its free edges (in TN10). 
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Figure (AI.9) 
Details of test TN11: the scaffoldings were attached to the main girders here at each 1200mm or 
1300mm along the bridge span. 
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Appendix II 

Test data not reported directly in the appended articles 

 

Figure (AII.1) 
Bracing forces measured in the truss bars during test TN6. 
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Figure (AII.2) 
Bracing forces measured in the truss bars during test TN7. 
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Appendix III 

AIII.1 Bracing analysis; AASHTO recommendations 
[82] 

Summary of the recommendations regarding the use of cross-bracings  

The need for cross-bracings shall be investigated both for all stages of the 
construction procedures and the final conditions that are present, this including but 
not limiting to the following: 

 i) the transfer of wind loads between the girders and to the bearings, ii) the 
stability of the bottom flange in compression, iii) the stability of the top flange in 
compression prior to the concreting of the deck, and iv) the distribution of the 
vertical and the live loads that are applied to the bridge. 

The cross-bracings for rolled beams and for built-up girders should be as deep as 
practicable, for rolled beams their being at least half of the beam depth and for 
built-up girders their being at least 0.75 of the girder depth. Cross-diaphragms 
having a span-to-depth ratio of greater than 4.0 should be designed as beams. For 
bridge sections consisting of two or more boxes, external cross-bracings shall be 
used at end supports. For such systems, the external cross-bracing at the interior 
supports can only be eliminated if an analysis indicates that the individual boxes 
are torsionally stable. At the location of external cross-bracings, internal cross-
bracings should be also provided.   

The cross-bracings should be placed normal to the main girders if the supports are 
not skewed. They can be placed parallel to the skewed support lines if these are 
not skewed from normal more than 20 degrees. In such situations, the web-
stiffeners should be oriented within the plane of the skewed cross-bracings. When 
the support lines are skewed from the normal by more than 20 degrees, 
intermediate cross-bracings shall be placed normal to the girders. The effects of 
the tangential components of the force transmitted by the skewed end-cross-
bracings shall be taken into account when the cross-bracing is skewed. The 
removal of highly stressed cross-bracings in the vicinity of interior supports that 
are shewed by more than 20 degrees from the normal, for example, may be 
beneficial as long as out-of-plane deformation of the girder is not excessive. 
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Where end-supports are skewed by more than 20 degrees from the normal, the first 
intermediate cross-bracing adjacent to a skewed end-support should be offset by a 
minimum of 0.4  or 1.5 ,  being the cross-brace spacing and  the girder web 
depth, this reducing the presence of a stiff-load-path that can attract and transfer 
large transverse forces to the skewed support. 

Cross-bracings shall be spaced along the bridge span in nearly uniform fashion so 
as to promote constructability and to allow the use of simplified methods of 
analysis for calculating flange-lateral bending stresses. The requirements for cross-
bracings spaced at less than 7.5 m from one another given in previous versions of 
the AASHTO specifications are replaced here by requirements based on a rational 
analysis aimed at reducing the presence of fatigue-prone attachment details. The 
spacing of the intermediate cross-bracings, , in an in-plane curved I-girder 
bridge shall not exceed /10 ,  being the girder radius and  the limiting 
unbraced length, which can be determined from / , where  is the 
effective radius of gyration for lateral torsional buckling and  the compression-
flange stress within the cross-section at the onset of nominal yielding. At a cross-
brace spacing greater than , significant lateral flange bending is likely to occur. 
Intermediate cross-bracings should be placed at or near the in-plane maximum 
moment in the main girders and near to both sides of the field splices that are 
present. The need for additional temporary or permanent cross-bracings should be 
also taken into account in connection with the transportation and the erection of 
each shipping piece at the lifting points involved. 

Summary of the recommendations regarding the use of lateral bracings  

Corrugated metal sheets should not be assumed to provide the top flange in 
compression with adequate stability during concreting of the deck.  

Lateral bracings that are not required for the completed state should not be 
considered as being primary members of the girders in question, and can thus be 
removed after construction of the bridge is completed. Lateral bracings, if 
required, should be placed either in or near to the flange that is being restrained. In 
I-girder bridges having lateral bracings at the level of the bottom flange, a pseudo-
closed section can be created together with the hardened concrete deck, this 
increasing the forces in the cross-beams as they serve to restrain the shape of the 
closed cross-section.  

To reduce the occurrence of large relative lateral movements during construction 
in the case of I-girder bridges having spans greater than 60	m, either temporary or 
permanent lateral bracings in one or two panels close to the end-supports  and 
near the internal supports when continuous bridges are involved  can be 
considered in the design stage. Although such bracings, when placed at the level of 
the bottom flanges are about equally effective as compared with those placed at 
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the level of top flanges, top lateral bracing tends to be more preferred, since in the 
completed state these are subjected to live-load forces to a lesser degree. For 
horizontally curved bridges having a relatively sharp curvature, it may be more 
beneficial to provide both top and bottom flanges with lateral bracing of this type. 

The shear center of an open trapezoidal section is located below the bottom flange. 
The use of top lateral bracing raises the shear center to a position closer to the 
center of the pseudo-closed section, this increasing appreciably the torsional 
stiffness of the cross-section. If such bracings are attached to the webs, the cross-
sectional area of the bridge should be reduced in calculating the shear flow 
involved, and a means for the transfer of forces from the lateral bracings to the top 
flanges should be provided. For straight trapezoidal girders having spans greater 
than 45	m in length, full-span lateral bracings should be provided. The cross-
sectional area of diagonal members of top lateral bracings in both straight and 
horizontally curved trapezoidal girders should be greater than 0.03	 ,  being the 
center-to-center distance between the top flanges. This criterion is recommended 
so as to ensure that the warping stresses of the top flanges will be less than ten 
percent of their in-plane bending stresses.  

AIII.2 Bracing analysis; Eurocode recommendations 
[76] 

Effects of imperfections in analyzing a bracing system 

The effects of imperfections can be included in the analysis of a bracing system 
through specifying an equivalent geometric imperfection in the form of a bow-
shape having a maximum magnitude of ∆ : 

∆ 0.5 1
1

∙
500

																																																																																						 . 1 	

The effects of an initial bow-shape imperfection can be replaced by an equivalent 
uniform destabilizing force of  when a bracing system is needed in order to 
stabilize the compression flange of a beam of constant depth:  

8
∆ ∆

																																																																																												 . 2 	

Where / , and ∆ is the in-plane deflection of the bracing system due to 
both  and any external loads. 
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Lateral-torsional buckling of structural components 

As a simplified approach in analyzing stability of the bottom flanges of continuous 
girders located between supports, the second-order effects and the effects of 
geometric imperfections on supporting springs can be taken into account by 
specifying an additional lateral force  at the connection to the spring: 

100
																																															 	 , 1.2 	

, 80
	

1
1 / ,

																				 	 , 1.2 																																							 . 3 	

Where , / , , and  is the distance between the adjacent bracings. 

If the compression force  of the flange of a multi-span bridge (in a completed 
state after the concrete deck has hardened) is constant over the span as a whole, 
the critical load capacity of the bottom flanges ,  can be calculated as follows: 

,
2

, 																																																																																								 . 4 	

The lateral supports having a stiffness value of , can be assumed to be rigid if 
4 , / . A safety verification can be carried out using 

̅ ∙ / , , where , /3; and ,  is the area of the 
compression zone of the web.   
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Appendix IV 

Equivalent plate thickness of typical plan-bracings [2]  

- For Warren-type bracing: 

/ ∙ / 2 2 1.5
/ /3 ∙ 2/ 	

- For K-type bracing: 

/ ∙ / 2 2 0.25 2 1.5
/ / 4 /12 ∙ 2/ 	

- For X-type bracing: 

/ ∙ / 2 2 1.5
/ 2 /12 ∙ 2/ 	

- For Pratt-type bracing: 

/ ∙ / 2 2 1.5
/ / /12 ∙ 2/ 	
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