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A Rate R = 5/20 Hypergraph-Based Woven
Convolutional Code with Free Distance 120

Florian Hug, Student Member, IEEE, Irina E. Bocharova,
Rolf Johannesson, Fellow, IEEE, and Boris D. Kudryashov

Abstract—A rate R = 5/20 hypergraph-based woven convo-
lutional code with overall constraint length 67 and constituent
convolutional codes is presented. It is based on a 3-partite, 3-
uniform, 4-regular hypergraph and contains rate Rc = 3/4
constituent convolutional codes with overall constraint length 5.
Although the code construction is based on low-complexity codes,
the free distance of this construction, computed with the BEAST
algorithm, is dfree = 120, which is remarkably large.

Index Terms—BEAST, convolutional codes, graphs, graph
codes, hypergraphs, tailbiting codes, woven codes.

I. INTRODUCTION

THE idea of constructing good long codes from short
ones is well developed in the theory of block codes (see

[1] and references therein). Product codes [2], concatenated
codes [3], and generalized concatenated codes [4] are con-
structions often referred to. It is also well-known that, for
example, among the generalized concatenated codes there exist
near-optimum codes since this class contains codes achieving
the Varshamov-Gilbert bound [5, Ch. 1].

The same idea applied to convolutional codes leads to so-
called turbo-codes (parallel concatenated convolutional codes),
serial concatenated convolutional codes [6], [7], and woven
convolutional codes (with inner or outer wraps [8]). Turbo
codes appear in practical applications due to their good bit
error rate (BER)/complexity tradeoff. However, not much is
known about the distances of these codes. Moreover, it is clear
that the free distance/delay tradeoff for these codes is far from
the asymptomatic lower bounds [9, Ch. 3].

Recently, several graph- and hypergraph-based asymptoti-
cally optimum code constructions were found [10], [11]. It is
shown in [12], [13] that woven hypergraph-based codes rep-
resent classes of asymptotically good block and convolutional
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codes satisfying the Varshamov-Gilbert and Costello bounds
on the minimum and free distances, respectively.

Woven block codes based on s-partite, s-uniform, c-regular
hypergraphs containing constituent block codes whose block
length is equal to lc, where l is an integer, were introduced
in [12]. In particular, when l tends to infinity, we obtain
hypergraph-based woven convolutional codes containing con-
volutional constituent codes.

In Section II, we describe a two-dimensional construction
of a hypergraph-based woven convolutional code that is a tail-
biting (TB) block code in one dimension and a convolutional
code in the other. The problem of finding its free distance is
considered in Section III. Section IV concludes the paper with
some final remarks.

II. CODE CONSTRUCTION

Hypergraph-based woven convolutional codes [12], [13]
are based on s-partite, s-uniform, c-regular hypergraphs and
contain constituent convolutional codes of rate Rc = b/c,
while their rate is given by R = 1 − s(1 − Rc). Moreover,
they can be described as two-dimensional (2-D) convolutional
codes which are tailbitten in one dimension.

The concrete code example which we study here is based
on the 3-partite, 3-uniform, 4-regular hypergraph as illustrated
in Fig. 1, with the incidence matrix given by (1).

Each edge in Fig. 1 corresponds to a column in (1),
whereas the vertices are represented by the rows. As each
edge in this hypergraph connects three different vertices (3-
uniform), there are exactly three ones in each column. These
three vertices, connected by the same edge, belong to three
different, nonintersecting sets, as the hypergraph is 3-partite.
The hypergraph is chosen such that, for each set of five rows of
its incidence matrix (1), the rows are quasi-cyclic shifts of each
other. These different sets are separated by dashed horizontal
lines in (1). Moreover, since each vertex is connected to four
edges, the graph is 4-regular.

Hereinafter we will consider (1) as a parity-check matrix of
the corresponding hypergraph-based code. The 20 edges of the
graph represent 20 code symbols and each vertex represents a
parity check. In the woven code construction, for each vertex
the 4-tuples corresponding to the hypergraph edges represent
the “branches” of the constituent convolutional codes.

0018-9448/$26.00 c©2010 IEEE
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Fig. 1. A 3-partite, 3-uniform, 4-regular hypergraph.

By row permutations we obtain the parity-check matrix (2),
which is equal to the binary representation of the parity-check

matrix of the rate R = 1/4 convolutional code (3) terminated
by tailbiting (TB) to obtain a (20, 7) linear block code. [See
(2) at the bottom of the next page.] [Notice that the rows of
(2) are linearly dependent which yields the block code rate
R = 7/20 > 1/4.]

H(Z) =

 1 1 1 1
1 0 0 0
1 0 0 0

+

 0 0 0 0
0 1 0 0
0 0 1 0

Z

+

 0 0 0 0
0 0 1 0
0 0 0 1

Z2 +

 0 0 0 0
0 0 0 1
0 1 0 0

Z3

=

 1 1 1 1
1 Z Z2 Z3

1 Z3 Z Z2

 . (3)

In order to obtain a 2-D rate R = 5/20 convolutional code,
up to three rate Rc = 3/4 constituent convolutional codes are
specified by their parity-check matrices (since this construction
is based on a 3-partite hypergraph; we use three convolutional
codes per hyperedge):

H(D) =
(
h1(D) h2(D) h3(D) h4(D)

)
(4)

T (D) =
(
t1(D) t2(D) t3(D) t4(D)

)
(5)

Q(D) =
(
q1(D) q2(D) q3(D) q4(D)

)
. (6)

Such a 2-D convolutional code can be specified by its parity-
check matrix

H(D,Z) = {hij(D,Z)}, i = 1, 2, . . . , c− b, j = 1, 2, . . . , c

where hij(D,Z) are polynomials over the formal variables
D and Z. Combining the parent hypergraph-based code with
parity-check matrix (3) and the constituent convolutional
codes with parity-check matrices (4)-(6), we obtain a rate

Hhg =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
6 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
7 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
8 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
9 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
10 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0
11 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
12 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
13 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
14 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0





(1)
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R = 1/4 2-D hypergraph-based woven convolutional code
with parity-check matrix

H(D,Z) =

 h1(D) h2(D) h3(D) h4(D)
t1(D) t2(D)Z t3(D)Z2 t4(D)Z3

q1(D) q2(D)Z3 q3(D)Z q4(D)Z2


= H3(D) +H2(D)Z +H1(D)Z2 +H0(D)Z3 (7)

where

H3(D) =

 h1(D) h2(D) h3(D) h4(D)
t1(D) 0 0 0
q1(D) 0 0 0


H2(D) =

 0 0 0 0
0 t2(D) 0 0
0 0 q3(D) 0


H1(D) =

 0 0 0 0
0 0 t3(D) 0
0 0 0 q4(D)


H0(D) =

 0 0 0 0
0 0 0 t4(D)
0 q2(D) 0 0

 .

In our example, T (D) and Q(D) are column permutations of
H(D), namely,

T (D) =
(
h1(D) h3(D) h4(D) h2(D)

)
(8)

Q(D) =
(
h3(D) h4(D) h1(D) h2(D)

)
(9)

where

h1(D) = 1 +D +D2 +D4

h2(D) = 1 +D +D2 +D3 +D4

h3(D) = 1 +D +D3 +D5

h4(D) = 1 +D2 +D5.

Remark. The parity-check matrix (7), written in reciprocal
form, is equal to the generator matrix G⊥(D,Z) of the dual
code [9, Ch. 2].

The free distances of the two codes with parity-check
matrices (3) and (4) are equal to 8 and 5, respectively. In
the sequel we will show that, although both the parent and
the constituent convolutional codes have rather small free
distances, our construction yields a convolutional code with
remarkably large free distance.

A straightforward use of a 2-D convolutional code de-
termined by (7) requires that the information sequence is
organized in the form of a 2-D array, semi-infinite in both
dimensions. We choose, however, to tailbite the 2-D convolu-
tional code in the Z-dimension and obtain the following parity-
check matrix Hwg(D) for our rate R = 5/20 hypergraph-
based woven convolutional code,

Hwg(D) =


H3(D) H2(D) H1(D) H0(D) 0

0 H3(D) H2(D) H1(D) H0(D)
H0(D) 0 H3(D) H2(D) H1(D)
H1(D) H0(D) 0 H3(D) H2(D)
H2(D) H1(D) H0(D) 0 H3(D)


where 0 denotes the all-zero matrix of size 3× 4.

By Gaussian elimination we obtain the corresponding gen-
erator matrix of this convolutional code. The overall con-
straint length of this generator matrix is equal to 75 but it
is catastrophic and, thus, nonminimal. We apply the Smith
form decomposition in order to obtain an equivalent basic
encoding matrix, which can be reduced to its minimal-basic
form (Algorithm MB [9, Ch. 2]) with an overall constraint
length of 67 and it is given by

Gwg(D) =


G0(D) G1(D) G2(D) G3(D) G4(D)
G4(D) G0(D) G1(D) G2(D) G3(D)
G3(D) G4(D) G0(D) G1(D) G2(D)
G2(D) G3(D) G4(D) G0(D) G1(D)
G5(D) G5(D) G5(D) G5(D) G5(D)


where (in our octal notation 64 corresponds to 1+D+D3 [9])

G0 =
(

1473 40453 16256 62224
)

G1 =
(
44364 50324 36077 30173

)
G2 =

(
53717 4266 30434 32352

)
G3 =

(
37464 14262 6517 71254

)

Hhg =

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
10 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
11 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
2 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
7 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
12 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
8 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
13 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
9 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
14 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0





(2)
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Fig. 2. Implementation of an R=5/20 hypergraph-based woven convolutional encoder.

G4 =
(
47726 14624 31724 5234

)
G5 =

(
4463 7413 6523 6153

)
.

An implementation of this encoder is illustrated in Fig.
2. The input 5-tuple u

(1)
i , u

(2)
i , . . . , u

(5)
i , i = 0, 1, 2, . . .,

enters the encoder every fifth clock pulse. The output con-
nections with modulo-2 adders of each of the registers 1-
4 (counted from left to right) are time-varying and deter-
mined by the matrices G0, G1, . . . , G4. The connections of
register 5 are time-invariant and are determined by the ma-
trix G5. During each round of five clock pulses we begin
with four circular shifts and obtain the four output 4-tuples
v
(1+4l)
i , v

(2+4l)
i , . . . , v

(4+4l)
i , l = 0, 1, 2, 3, by adding the 4-

tuples of the outputs from the registers 1-4 to the 4-tuples of
outputs from register 5. After these four circular shifts, u(1)i is
back at register 1 and the 4-tuple v(1+4l)

i , v
(2+4l)
i , . . . , v

(4+4l)
i

is generated for l = 4. The corresponding time-varying
connections are described by Table I.

All registers can be considered as enlarged delay elements
of the encoder of a TB code. After one clock cycle of five clock
pulses a 20-tuple, v(1)i , v

(2)
i , . . . , v

(20)
i , of the rate R = 5/20

convolutional code is generated. Then we shift a new input
5-tuple into the five registers without a circular shift and the
next 20-tuple of output symbols is generated similarly.

III. FREE DISTANCE

To evaluate the free distance we used the BEAST algorithm
[14], which is, to the best of our knowledge, the most powerful
existing tool for computing distance spectra of convolutional
codes. However, even for this algorithm the overall constraint

Register

clock pulse 1 2 3 4

1 G0 G2 G3 G4

2 G0 G1 G3 G4

3 G0 G1 G2 G4

4 G0 G1 G2 G3

5 G4 G1 G2 G3

TABLE I
TIME-VARYING CONNECTIONS.

length 67 seemed to be too large. Therefore the task was a
challenge.

We started by finding different upper bounds on the free
distance. According to the Griesmer bound for convolutional
codes, the free distance for any binary, rate R = b/c convo-
lutional code encoded by a minimal-basic encoding matrix of
memory m satisfies [9, Ch. 3]

bi−1∑
j=0

⌈
dfree
2j

⌉
≤ (m+ i)c (10)

for i = 1, 2, . . .. Applying (10) to any rate R = 5/20,
memory m = 14 convolutional code, we obtain dfree ≤ 154.
For particular convolutional codes we can strengthen the
bound (10) as follows. Consider our convolutional code with
encoding matrix

Gwg(D) = Gwg,0 +Gwg,1D + · · ·+Gwg,mD
m
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or, written as a semi-infinite binary matrix,

Gwg =

 Gwg,0 Gwg,1 . . . Gwg,m

Gwg,0 Gwg,1 . . . Gwg,m

. . . . . . . . .


where Gwg,i, i = 0, 1, . . . ,m, are 5×20 binary matrices. Then
represent our woven hypergraph-based convolutional code in
minimal span form [15], obtained by applying linear row
operations to the encoding matrix given in minimal-basic form.
Each row of this encoding matrix is reduced in such a way
that it starts and ends at different positions than all other
rows. This allows us to obtain a bound tighter than (10) since
this matrix has the shortest possible span, that is, the shortest
possible length of the nontrivial part of a row. Let N denote
the minimum span (support) of dimension K subcodes, where
K = 1, 2, . . .. Then we have the following upper bound on the
free distance

dfree ≤ min
K≥1
{d(N,K)}

where d(N,K) denotes the Griesmer bound [5, Ch. 17] on
the minimum distance of an (N,K) linear block code, and
N is the number of columns of the K × N submatrix of
the minimal-span form of Gwg. For our woven hypergraph-
based convolutional code, we obtain the minimum value 150
for K = 6 and span = N = 298; for these values of K and
N the Griesmer bound is achievable [5, Ch.17. Th. 25]. Thus,
by using this approach we conclude that dfree ≤ 150.

Another approach is based on the row distances of con-
volutional encoders. It is well-known that the row distances
obtained for convolutional encoders are upper bounds on the
free distances and that they can be used very efficiently to
reduce the set of promising candidates when we are searching
for convolutional encoders [9, Ch. 8]. For our encoder we
obtain dr0 = dr1 = dr2 = 130 and dr3 = . . . = dr6 = 120, thus,
we have dfree ≤ 120. The row-distance approach yields a much
stronger upper-bound at the cost of rather heavy computer
computations.

Finally, the BEAST algorithm is used for the code anal-
ysis. Finding the free distance for such a code would take
prohibitively long time without using parallel computations on
many processors. Using about 100 processors in parallel yields
the free distance, dfree = 120, of this woven hypergraph-
based convolutional code, where the individual forward and
backward sets of the BEAST algorithms are sorted and merged
by individual processors. We thereby obtain that there exists
only one codeword of weight 120 with corresponding length
(1+3+11)20 = 300. Based on our experience obtained from
studying less complex woven hypergraph-based convolutional
codes, we conjecture that the next nonzero spectral component
occurs at weight 130 (cf. the sequence of row distances shown
above).

Costello’s asymptotic lower bound on the free distance
establishes the existence of a rate R = b/c, memory m
convolutional code in the ensemble of binary, periodically
time-varying (period T >> m) convolutional codes having
a free distance satisfying

dfree
mc
≥ R

− log2(2
1−R − 1)

+O

(
log2m

m

)
.

For rate R = 5/20, the main term in Costello’s asymptotic
bound is 0.452 but for our convolutional code we have
dfree/mc = 0.429. However, from the derivation of Costello’s
lower bound in [9, Ch. 3] we borrow the following:

dfree >
−mb

log2(2
1−R − 1)

− log2(2
R − 1) + log2(m

−2 − 2(h(
1
m )+R−1)m2c)

log2(2
1−R − 1)

which for the parameters R = 5/20 and memory m = 14 of
our woven hypergraph-based convolutional code yields dfree ≥
109.

IV. CONCLUSIONS

In this paper we have described a construction of a rate
R = 5/20 hypergraph-based woven convolutional code. It
has memory m = 14 and its free distance is dfree = 120.
We specified a minimal-basic encoding matrix with an overall
constraint length ν = 67.

Constructing such a powerful convolutional code is inter-
esting per se. Notice, that the best known convolutional code
with rate R = 1/4 has overall constraint length ν = 15 and
free distance dfree = 40 [14]. Clearly, convolutional codes
with large distances can be constructed as the product of short
codes, but the corresponding rate of such a construction is the
product of the rates of the constituent codes. In contrary to
this, the rate of our woven construction is determined by the
rate of the underlying graph (hypergraph). However, whether
we can decode such a convolutional code (suboptimally) with
reasonable complexity is still an open question.

For verifying such a huge free distance, it was crucial to
have an extremely powerful algorithm. We used the BEAST
algorithm where the sorting and merging of the individual
forward and backward sets were distributed among several
processors, but we would also like to mention that by running
the BEAST algorithm on a single laptop we could, in a few
minutes, obtain that the free distance was at least 80. Tho
verify dfree = 120 was a task worthy (a) BEAST.
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