
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Achieving predictable and low end-to-end latency for a network of smart services

Millnert, Victor; Eker, Johan; Bini, Enrico

Published in:
2018 IEEE Global Communications Conference (GLOBECOM)

DOI:
10.1109/GLOCOM.2018.8647332

2019

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Millnert, V., Eker, J., & Bini, E. (2019). Achieving predictable and low end-to-end latency for a network of smart
services. In 2018 IEEE Global Communications Conference (GLOBECOM)
https://doi.org/10.1109/GLOCOM.2018.8647332

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1109/GLOCOM.2018.8647332
https://portal.research.lu.se/en/publications/594f4613-8be7-4554-82d8-0e5e5de0dde4
https://doi.org/10.1109/GLOCOM.2018.8647332

Achieving predictable and low end-to-end latency for a network of smart services

Victor Millnert∗, Johan Eker∗†, Enrico Bini‡
∗Lund University, Sweden
†Ericsson Research, Sweden
‡University of Turin, Italy

Abstract—To remain competitive in the field of manufacturing
today, companies must constantly improve the automation
loops within their production plants. This can be done by
augmenting the automation applications with “smart services”
such as supervisory-control applications or machine-learning
inference algorithms. The downside is that these smart services
are often hosted in a cloud infrastructure and the automation
applications require a low and predictable end-to-end latency.
However, with the 5G technology it will become possible to
establish a low-latency connection to the cloud infrastructure
and with proper control of the capacity of the smart services,
it will become possible to achieve a low and predictable end-
to-end latency for the augmented automation applications.

In this work we address the challenge of controlling the
capacity of the smart services in a way that achieves a low
and predictable end-to-end latency. We do this by deriving
a mathematical framework that models a network of smart
services that is hosting several automation applications. We pro-
pose a generalized AutoSAC (automatic service- and admission
controller) that builds on previous work by the authors [1], [2].
In the previous work the system was only capable of handling
a single set of smart services, with a single application hosted
on top of it. With the contributions of this paper it becomes
possible to host multiple applications on top of a larger, more
general network of smart services.

1. Introduction
To remain competitive in the field of manufacturing

today, companies must continuously improve the automation
loops within their production plants. This is typically done by
augmenting the feedback-control loops with “smart services”.
Examples of such smart services could be supervisory-control
applications or machine-learning inference algorithms. The
downside is that these automation loops require a low and
predictable end-to-end latency, making it very difficult to use
smart services that reside in a cloud infrastructure, remote
or local.

With the new and promising technology that 5G brings,
it will become possible to establish a low-latency connec-
tion between the automation applications and the cloud-
infrastructure hosting the smart services. This concept is
illustrated in Figure 1, where a manufacturing plant is running
an augmented feedback-loop that uses the network of smart
services residing in the cloud. Evert smart service consists

1

3

4

7

8

5
6 9

2
10

Figure 1: A simple illustration of how automation applications
within a factory can make use of a network of smart services
executing in the cloud. The automation applications that use
these smart services require that the end-to-end deadline is
very low and predictable. Since the smart services is built by a
set of virtual resources, i.e., virtual machines, it is possible to
scale the capacity of them, allowing us to control the latency
required for passing through the network of smart services, and
in turn the end-to-end latency of the automation applications.

of a set of virtual resources, such as virtual machines (VMs)
or containers, making it possible to automatically scale the
capacity it. In the end, this enables us to control the end-to-
end latency of the network of smart services and in turn the
end-to-end latency of entire control-feedback loop.

In this work we address the challenge of controlling a
network of smart services in a way that achieves a predictable
and low end-to-end latency. This paper is a short version
of the technical report [3], where we propose a generalized
AutoSAC (automatic service- and admission control), that
builds on previous work [1], [2]. In the early works the
system was only capable of handling a single chain of cloud
functions or smart services, a single packet-flow, and a single
end-to-end deadline. The work presented in this paper is a
generalization necessary to handle the new network structure
and can be summed up by the following four parts:
a) Input prediction: A feedforward scheme between the

smart services to improve the prediction of traffic flow.
b) Service control: A small theorem simplifying the strategy

used when allocating resources to the smart services.
c) Selection of node deadlines: A new optimization problem

that assigns intermediary deadlines to the cloud functions.
d) Admission control: An admission controller that enforce

deadlines while having the highest possible throughput.

Related works
There has been a number of works written on the

topic of controlling resources in the cloud and the area
of network function virtualization. The majority of them
focus on orchestration, i.e. the problem of deciding where in
the physical world the virtual resources should be allocated.
A few works differ, however, in the way that they instead
consider the problem of controlling the NFV graphs with
respect to some end-to-end goals. For instance Lin et al. [4]
do a static one-time orchestration with the right amount of
resources to satisfy some end-to-end requests. Shen et al. [5]
develop a management framework, vConductor, for realizing
end-to-end virtual network services. However, they are not
considering timing-sensitive applications with deadlines for
the packets moving through the chain, which is done by Li
et al [6] where they present a design and implementation of
NFV-RT that aims at controlling NFVs with soft Real-Time
guarantees, allowing packets to have deadlines

Despite the dynamic nature of the traffic that the NFV
graphs will encounter there is only a few works that consider
it and aim at designing an elastic, dynamic resource controller
to counter the problem. In [7] Mao et al. develop a mecha-
nism for auto-scaling VNF resources to meet a user-specified
performance goal. Another work that addresses the problem
of meeting performance goals despite the dynamic traffic is
[8]. They achieve it by doing load-balancing with a SDN
controller between the VNFs. Another work also combining
flow scheduling and resource allocation is [9] where they
develop a neat mathematical model used as foundation for
their synthesis. Other works focusing on developing a model
of a VNF is [10], and [11].

The classic method to guarantee end-to-end deadlines of
transaction is by holistic analysis [12], in which schedulabil-
ity analysis at each node is iterated until the convergence of
the response times of each transaction is reached. Pellizzoni
and Lipari [13] improved the holystic analysis by using offset
rather than jitter of tasks. Lorente et al. [14] extended the
holysic analysis to the case with nodes running at a fraction
of computing capacity (abstracted by a bounded-delay time
partition with bandwidth and delay). Similarly, Ashjaei et
al. [15] proposed resource reservation over each node along
the path.

2. Model and problem formulation
The goal of this section is to derive a mathematical

framework for modeling the network of smart services,
cloud functions, or virtual network functions, as described
in Section 1.

Network and packet flows. To model the network
of cloud functions we start by describing the connectivity
among them as a directed graph G = {V, E}, where

• V is the set of n = |V| VNF nodes. For convenience,
we label the nodes with the integers from 1 to n,
that is V = {1, . . . , n};

• E ⊆ V × V is the set of edges between these nodes.
If (i, i′) ∈ E then an edge from node i ∈ V to node
i′ ∈ V exists.

Infrastructure

dd

ss

ss

dd2

1 3111

22

33
p2

<latexit sha1_base64="3whrvbpl36hbgTgCkPEMmyyZRo4=">AAAB/nicbVDLSgNBEOyNrxhfUY8eHAyCp7CbiwoeAnrwGNE1gWQJs5PZZMjszDIzK4QloB/gVT/Bk3j1V/wC8S+cPA4msaChqOqmuytMONPGdb+c3NLyyupafr2wsbm1vVPc3bvXMlWE+kRyqRoh1pQzQX3DDKeNRFEch5zWw/7lyK8/UKWZFHdmkNAgxl3BIkawsdJt0q60iyW37I6BFok3JaXq4c/FIwDU2sXvVkeSNKbCEI61bnpuYoIMK8MIp8NCK9U0waSPu7RpqcAx1UE2PnWIjq3SQZFUtoRBY/XvRIZjrQdxaDtjbHp63huJ/3nN1ERnQcZEkhoqyGRRlHJkJBr9jTpMUWL4wBJMFLO3ItLDChNj05nZwmPZoUoMCzYZbz6HReJXyudl78YrVa9ggjwcwBGcgAenUIVrqIEPBLrwDC/w6jw5b8678zFpzTnTmX2YgfP5CyvBmFY=</latexit>

p2
<latexit sha1_base64="3whrvbpl36hbgTgCkPEMmyyZRo4=">AAAB/nicbVDLSgNBEOyNrxhfUY8eHAyCp7CbiwoeAnrwGNE1gWQJs5PZZMjszDIzK4QloB/gVT/Bk3j1V/wC8S+cPA4msaChqOqmuytMONPGdb+c3NLyyupafr2wsbm1vVPc3bvXMlWE+kRyqRoh1pQzQX3DDKeNRFEch5zWw/7lyK8/UKWZFHdmkNAgxl3BIkawsdJt0q60iyW37I6BFok3JaXq4c/FIwDU2sXvVkeSNKbCEI61bnpuYoIMK8MIp8NCK9U0waSPu7RpqcAx1UE2PnWIjq3SQZFUtoRBY/XvRIZjrQdxaDtjbHp63huJ/3nN1ERnQcZEkhoqyGRRlHJkJBr9jTpMUWL4wBJMFLO3ItLDChNj05nZwmPZoUoMCzYZbz6HReJXyudl78YrVa9ggjwcwBGcgAenUIVrqIEPBLrwDC/w6jw5b8678zFpzTnTmX2YgfP5CyvBmFY=</latexit>

p1
<latexit sha1_base64="TDusEjjaAg77RHQUAdbv0c4ADEE=">AAAB/nicbVDLSgNBEOz1GeMr6tGDg0HwFHa9qOAhoAePEV0TSJYwOzubDJmdWWZmhbAE9AO86id4Eq/+il8g/oWTx8EkFjQUVd10d4UpZ9q47pezsLi0vLJaWCuub2xubZd2du+1zBShPpFcqkaINeVMUN8ww2kjVRQnIaf1sHc59OsPVGkmxZ3ppzRIcEewmBFsrHSbtr12qexW3BHQPPEmpFw9+Ll4BIBau/TdiiTJEioM4VjrpuemJsixMoxwOii2Mk1TTHq4Q5uWCpxQHeSjUwfoyCoRiqWyJQwaqX8ncpxo3U9C25lg09Wz3lD8z2tmJj4LcibSzFBBxovijCMj0fBvFDFFieF9SzBRzN6KSBcrTIxNZ2oLT2RElRgUbTLebA7zxD+pnFe8G69cvYIxCrAPh3AMHpxCFa6hBj4Q6MAzvMCr8+S8Oe/Ox7h1wZnM7MEUnM9fKimYVQ==</latexit>

p1
<latexit sha1_base64="TDusEjjaAg77RHQUAdbv0c4ADEE=">AAAB/nicbVDLSgNBEOz1GeMr6tGDg0HwFHa9qOAhoAePEV0TSJYwOzubDJmdWWZmhbAE9AO86id4Eq/+il8g/oWTx8EkFjQUVd10d4UpZ9q47pezsLi0vLJaWCuub2xubZd2du+1zBShPpFcqkaINeVMUN8ww2kjVRQnIaf1sHc59OsPVGkmxZ3ppzRIcEewmBFsrHSbtr12qexW3BHQPPEmpFw9+Ll4BIBau/TdiiTJEioM4VjrpuemJsixMoxwOii2Mk1TTHq4Q5uWCpxQHeSjUwfoyCoRiqWyJQwaqX8ncpxo3U9C25lg09Wz3lD8z2tmJj4LcibSzFBBxovijCMj0fBvFDFFieF9SzBRzN6KSBcrTIxNZ2oLT2RElRgUbTLebA7zxD+pnFe8G69cvYIxCrAPh3AMHpxCFa6hBj4Q6MAzvMCr8+S8Oe/Ox7h1wZnM7MEUnM9fKimYVQ==</latexit>

ss

p3
<latexit sha1_base64="v++6XigN8bSVfF5FuelfqkYwMjM=">AAAB/nicbVDLSgNBEOyNrxhfUY8eHAyCp7CrBxU8BPTgMaJrAskSZmdnkyEzs8vMrBBCQD/Aq36CJ/Hqr/gF4l84eRxMYkFDUdVNd1eYcqaN6345uYXFpeWV/GphbX1jc6u4vXOvk0wR6pOEJ6oeYk05k9Q3zHBaTxXFIuS0FnYvh37tgSrNEnlneikNBG5LFjOCjZVu09ZJq1hyy+4IaJ54E1Kq7P9cPAJAtVX8bkYJyQSVhnCsdcNzUxP0sTKMcDooNDNNU0y6uE0blkosqA76o1MH6NAqEYoTZUsaNFL/TvSx0LonQtspsOnoWW8o/uc1MhOfBX0m08xQScaL4owjk6Dh3yhiihLDe5Zgopi9FZEOVpgYm87UFi6SiCo5KNhkvNkc5ol/XD4vezdeqXIFY+RhDw7gCDw4hQpcQxV8INCGZ3iBV+fJeXPenY9xa86ZzOzCFJzPXy1ZmFc=</latexit>

p3
<latexit sha1_base64="v++6XigN8bSVfF5FuelfqkYwMjM=">AAAB/nicbVDLSgNBEOyNrxhfUY8eHAyCp7CrBxU8BPTgMaJrAskSZmdnkyEzs8vMrBBCQD/Aq36CJ/Hqr/gF4l84eRxMYkFDUdVNd1eYcqaN6345uYXFpeWV/GphbX1jc6u4vXOvk0wR6pOEJ6oeYk05k9Q3zHBaTxXFIuS0FnYvh37tgSrNEnlneikNBG5LFjOCjZVu09ZJq1hyy+4IaJ54E1Kq7P9cPAJAtVX8bkYJyQSVhnCsdcNzUxP0sTKMcDooNDNNU0y6uE0blkosqA76o1MH6NAqEYoTZUsaNFL/TvSx0LonQtspsOnoWW8o/uc1MhOfBX0m08xQScaL4owjk6Dh3yhiihLDe5Zgopi9FZEOVpgYm87UFi6SiCo5KNhkvNkc5ol/XD4vezdeqXIFY+RhDw7gCDw4hQpcQxV8INCGZ3iBV+fJeXPenY9xa86ZzOzCFJzPXy1ZmFc=</latexit>

dd

Figure 2: A simple network with three sources, three desti-
nations, three cloud functions, and three packet flows p1 =
{1, 2, 1, 3} (in red), p2 = {1, 3, 2} (in blue), and p3 = {1, 2, 3}
(in green). Each cloud function consists of a number of vir-
tual resources, e.g., virtual machines or containers, that are
deployed on some commodity hardware infrastructure.

The network graph G will see a set of f different flows
traversing the network. Each flow has an end-to-end deadline
associated with it, which for the j-th flow is given by Dj .
Moreover, the packets belonging to the j-th flow will traverse
the network and visit a specific set of nodes (where they
will be processed) in a specific order. This is modeled by
the sequence pj : {1, . . . , `j} → V , with `j ≥ 1 being the
length of the path, such that

∀k = 1, . . . , `j − 1, (pj(k), pj(k + 1)) ∈ E . (1)

The function pj is therefore a mapping from the integers
1, . . . , `j to the set of nodes given by V . Hence, pj(k)
is the k-th node of the j-th path. Naturally, equation (1)
enforce the existence of an edge between two consecutive
nodes in the path of a flow. One should note that this
model is general and allow for flows to traverse a node
more than once, thus allowing us to model the typical
scenario of automation applications and feedback-control
loops mentioned in Section 1. It is therefore useful to define
δj,i as the number of times that flow j pass through node i.

An example of a network that we can model now is
illustrated in Figure 2. Using our framework, it can be
modeled by a graph G = {V, E} with V = {1, 2, 3} and
E = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. The paths of
three flows are modeled by p1 = {1, 2, 1, 3}, p2 = {1, 3, 2},
and p3 = {1, 2, 3}, with end-to-end deadlines given by D1,
D2, and D3 respectively. It should be noted that δ1,1 = 2.

Traffic flow. At time t, the i-th node of the network
will see traffic arriving at a rate of ri(t) ∈ R+ packets per
second (pps). The arriving packets are either discarded, or
admitted into the queue of the node at an admission rate
of ai(t) ∈ [0, ri(t)] pps. At time t the node will have a
queue size of qi(t) packets. In order to process the packets
in the queue, a number of mi(t) ∈ N virtual machines will
provide the node with a maximum processing capacity of
scap
i (t) packets per second. Naturally, the node might not

always be able to process at this maximum capacity. For
instance, the queue might be empty. The actual rate by which
the node is processing packets with is therefore given by the
service rate si(t):

si(t) =

{
scap
i (t) if qi(t) > 0,

min(scap
i (t), ai(t)) else.

(2)

Machine model. In order to adapt the maximum
processing capacity of the node to changes of the traffic rate,
it is possible to control the number of virtual machines that
are running in the node. This is done with the control signal
mref
i (t) ∈ N. To model the time necessary to start/stop a

virtual machine, the number of VMs that are running is a
delayed version of this control signal:

mi(t) = mref
i (t−∆i), (3)

where ∆i ∈ R+ is the time-delay needed to start/stop a
virtual machine.

Every machine instance running in the i-th node has an
expected service capacity of s̄i packets per second. However,
the actual performance will often deviate from the expected
performance and can depend on where it is deployed as well
as on what other processes running on the physical server
that the VM is hosted on, as shown in [16]. To model this,
the maximum processing capacity of the node is given by:

scap
i (t) = mi(t) · (s̄i + ξ̂i(t)), (4)

where ξ̂i(t) is the average machine uncertainty. For increased
readability we will neglect this uncertainty for the remainder
of this section and Section 3. If interested, this uncertainty
is treated thoroughly in the technical report [3]. It should
be noted however, that when evaluating the performance in
Section 4, the uncertainty will indeed be treated.

Node latency. It is useful to measure the time it
takes a packet to pass through the i-th node. We denote this
as the node latency Li(t):

Li(t) = inf{τ ≥ 0 : Ai(t− τ) ≤ Si(t)}, (5)
where Ai(t) =

∫ t
0
ai(x)dx and Si(t) =

∫ t
0
si(x)dx.

Node deadline. For the scenario of augmented
automation loops outlined in Section 1 it is assumed that
there are many different packet flows going through the
different smart services of the network. In order to reduce
the complexity that this brings with it, we find it useful to
introduce an intermediary node deadline Di. This means that
a packet that arrives to the i-th node will only be admitted
into the node if it is possible to guarantee that the packet
will be processed and exit the function within Di seconds.
This must hold, regardless of which flow the packet belongs
to. In other words, every packet arriving to the i-th node will
have the same node deadline Di, even though they might
belong to different flows with different end-to-end deadlines.
Mathematically speaking, this means that when assigning
node deadline one will be constrained by∑

∀i∈pj

δj,i ·Di ≤ Dj j = 1, . . . , f, (6)

which states that the sum of all the node deadlines over a
path j must be less than the end-to-end deadline of that path.

2.1. Problem formulation
As mentioned in the introduction of this paper, the goal

is to derive ways of controlling the resources allocated to
the smart services, or the cloud functions, in order to have
predictable and low end-to-end latencies for the augmented
automation-applications using the network of smart services
Informally, this goal can be described as trying to ensure

that “the end-to-end deadlines of the different packet-flows
are met, while using as little resources and discarding as
few packets as possible”. As an aid when evaluating this
goal we propose three formal metrics, defined in (7):
a) availability U a(t) – is there a high throughput, or are

many packets being discarded?
b) efficiency U e(t) – are the nodes efficient, or are they

wasting resources?
c) utility U(t) – a combination of the availability and the

efficiency.
The intuition behind the choice of these metrics is that
it is typically easy to have either a high efficiency or a
high availability but not both at the same time. One can
for instance choose to overallocate resources in a node,
something typically seen today, resulting in a high availability
but a poor efficiency, or one can instead choose to have a
high efficiency, forcing the node to discard many packets.

U a(t) = 1
n

∑
i∈V

uai (x), U e(t) = 1
n

∑
i∈V

uei(x),

U(t) = 1
n

∑
i∈V

uai (x) · uei(t),
(7)

with uai (t) and uei(t) given by

uai (t) =

{
si(t)/ri(t) if Li(t) ≤ Di

0 if Li(t) > Di

uei(t) =
si(t)

scap
i (t)

(8)

3. AutoSAC for a network of cloud functions
The general idea behind AutoSAC (automatic service-

and admission controller) is to create an abstraction of
the parts included in a controller that can achieve the
goal introduced in Section 1, which is to have a low and
predictable end-to-end latency for a network of smart services.
From our perspective these parts are illustrated in Figure 3
and include: i) input prediction, ii) service control, iii)
selection of node deadlines, and iv) admission control.

In this section we will propose possible solutions for
each of the four parts, but ultimately the goal is to stimulate
research resulting in better versions, which in the end can
replace what is proposed here. We will present a brief
overview of the proposed solutions, followed with a slightly
more detailed description in Sections 3.1–3.3. For a complete
picture we refer the reader to the technical report [3].
Before diving into this however, it should be noted that
the underlying timing-assumptions for this work, shown in
Table 1, is the same as it has been for the previous work [1]
and [2], on top of which this work builds.

Parameter timing assumption
long-term trend change of the input 1min – 1h

time-overhead ∆i 1s – 1min
end-to-end deadline Dj 1μs – 100 ms

TABLE 1: Timing assumptions for the end-to-end deadline, the
rate-of-change of the input traffic, and the time-overhead for
starting/stopping instances. One should note that the difficulty
of controlling this system stems from the fact that they are all
on different orders of magnitude.

queue
#5

STOP ++

Virtual	Machines

Input
Predictor

discarded	
packets

arriving	
traf9ic

outgoing	
traf9ic

Service	
Controller

Admission
Controller

predicted	input

machine	
			uncertainty

service
rate

admission	rate

admission
control
signal

service
control
		signal

Figure 3: An abstract overview of the parts included in the controller of the smart services. Together, the input predictor, service
controller, and admission controller can ensure that there is the right number of virtual machines running in the node, so that
the latency for passing through the node is as low as it has to be. The colored arrows in the figure illustrate how information
is passed between the controller-parts, i.e, from the input predictor to the service controller, and the black arrows indicate the
traffic flow.

As a brief overview, the idea is that the input predictor
is meant to predict the future arrival rate to the different
nodes in the network. It should do this using only local
information from the node, i.e., in a decentralized way. This
information is then used by the service controller to compute
the amount of allocated resources necessary to maximize the
utility function (7). To do this, it is necessary to consider the
variations of the performance, the machine uncertainty, of
the virtual machines. To ensure that the end-to-end latency
for the different flows in the network is low and predictable,
we set up an optimization problem in selection of node
deadlines. The goal is to split the end-to-end deadlines for the
different flows into intermediary node deadline, thus reducing
the complexity of the control problem. Finally, admission
controller use information from the service controller when
deciding how many packets that should be admitted into
the node. Its goal is the admit as many packets as possible,
while still ensuring that no packet violate the node deadline.

3.1. Input prediction
The importance of having a good prediction of arriving

traffic comes form the fact that it takes ∆i seconds for the
i-th node to start/stop a VM. Recall that the number of
VMs running is controlled through mref

i (t) and also that
mi(t) = mref

i (t −∆i). Hence it takes ∆i seconds for any
changes of mref

i (t) to take effect. This means that at time t
the node has to make a decision about how many VMs will
be needed at time t+ ∆i. For this decision to be good, to
yield the highest possible utility, a good prediction of the
arrival rate at time t+ ∆i is necessary.

The traffic that pass through a node originates from many
different sources. Some traffic has passed through many other
nodes within the network, while other traffic comes directly
from an outside source. For this reason, we find it useful
to introduce a distinction between these two scenarios. We
therefore introduce the notion of internal traffic rIi(t) and
external traffic rEi (t). By internal traffic we mean traffic that
arrives to the node directly from another node within the
network, and by external we mean traffic that arrive directly
to the node without passing through another node in the

network, i.e, directly from an outside source. Together, they
form the total arrival rate for the node:

ri(t) = rIi(t) + rEi (t). (9)
The distinction between internal and external traffic is

useful because it allows us to use different methods when
predicting their future arrival rates. We can thus denote the
predicted arrival rate to the node as r̂i(t):

r̂i(t) = r̂Ii(t) + r̂Ei (t), (10)
where r̂Ii(t) and r̂Ei (t) are the predictions of the internal
and the external traffic respectively. Next, the strategies for
predicting these two will be described in more detail.

Predicting external traffic. When predicting the
traffic arriving to the node directly from an external source,
the timing assumptions of Table 1 imply that it is sufficient
to use a linearization-method. The reason is that the rate-of-
change of the external traffic is assumed to be on a different
time-scale than the time-delay ∆i. Using linearization, the
prediction of the external traffic can be computed as

r̂Ei (t+ ∆i) = ri(t) + ∆i ·
dri(t+ ∆i)

dt
. (11)

It should be noted that this method is the same as has been
proposed in the previous works [1] and [2].

Prediction of internal traffic. Due to the network
structure of the nodes it is possible to achieve a very good
prediction of the internal traffic, i.e., the traffic flowing
between two nodes in the network. In fact, this can be
achieved by having every node that is sending traffic to the
i-th node to also send its future predictions. Let us denote
the prediction of traffic from node i′ to node i as r̂I(i′,i)(t).
The prediction of the total internal traffic arriving to node i
can then be written as

r̂Ii(t) =
∑

i′∈V

r̂I(i′,i)(t). (12)

The idea is therefore that it is the information about r̂I(i′,i)(t)
that the i′-th node will send to node i. Node i can then simply
sum these predictions up to form a good prediction about
the internal traffic that will arrive in the future. Predicting
r̂I(i′,i)(t) should be done within the i′-th node, using only
local information, and can be decomposed into:

1) predict the future service-rate ŝi′(t), and
2) predict the fraction of traffic routed to node i.

For a complete derivation how the internal traffic is predicted
we refer to the technical report [3].

3.2. Service control
With good prediction of the arrival rate at time t+ ∆i,

it becomes possible to make a good decision about how
much resources will be needed at that time, which in the
end makes it possible to make a good decision about what
mref
i (t) should be at time t. The service controller we use

was derived in the earlier works [1] and [2]. However, we
will here present a simplification of the control-law when
a large number of virtual machines is used. The service
controller developed in the previous works is given by:

mref
i (t) =

bκi(t)c, if bκi(t)cdκi(t)e ≥ κ2i (t)

dκi(t)e, else
(13)

where κi(t) = r̂i(t + ∆i)/s̄i. The intuition behind this
control-law comes from trying to maximize the utility
function (7). Since the exact number of VMs required to
match the incoming traffic is given by κi(t) it becomes
necessary to either select mref

i (t) = bκi(t)c leading to
slightly too little processing capacity (implying that packets
will be discarded) or to instead select mref

i (t) = dκi(t)e
leading to slightly too much processing capacity (implying
that resources will be wasted). The statement deciding which
case to chose is meant to optimize the utility function, (7).
For a complete derivation of (13) we refer to the earlier works.
It should also be noted that hidden within this equation is
a feedback-control law compensating for the variations of
the performance of the virtual machines, i.e. the machine
uncertainty.

As mentioned earlier, the addition made in this work is
a small theorem showing that if one should have a large
number of virtual machines, the control-law of (13) can be
simplified into mref

i (t) = bκi(t)e as shown in Theorem 3.2
below.

Theorem 3.1. When the node is having a large number
of virtual machines running, mref

i (t) can be computed as
mref
i (t) = bκi(t)e.

Proof: A complete proof is shown in the technical
report [3], but the idea is that one can rewrite κi(t) as
κi(t) = bκi(t)c + ρ, with ρ ∈ [0, 1). This allows us to
rewrite the control-law as

mref
i (t) =

{
bκi(t)c , if ρ ≤ 1

2 −
ρ2

2bκi(t)c
dκi(t)e else

which for a large κi(t), and thus a large bκi(t)c, becomes
mref
i (t) = bκi(t)e .

3.3. Selection of node deadlines
To be able to ensure that the end-to-end latency for the

different flows of the network are low and predictable there
will be an end-to-end deadline associated with the each flow.
The end-to-end deadline for the j-th flow is Dj . Due to the

variations of the performance of the virtual machines, as
well as variations in the traffic load, it becomes necessary to
sometimes discard packets. Doing this on a global scale, for
each flow, becomes very complex so the proposition in this
work is to instead split the end-to-end deadlines into smaller
intermediary node deadlines. This means one deadline for
every node in the network. In other words, every packet
entering a node i will have a node deadline of Di, regardless
of which flow it belongs to. It will then be the task of the
admission controller (presented in Section 3.4) to ensure
that these node deadlines are met.

The ratio of ∆i/Di. How should one go about to
split these end-to-end deadlines into smaller node deadlines
then? To be able to address this, one must know how different
choices of node deadlines affect the utility of the system. To
gain some understanding of this, a thorough analysis was
made in the technical report [3]. The intuition gained from it
was that the ratio of ∆i/Di is a good metric to optimize for
when selecting the node deadlines. This ratio gives insight
in how difficult it is to control a node. A small ratio means
that it is easy to quickly react to changes of the arrival
rate, or to performance changes of the virtual machines.
In fact, a ratio smaller than 1 implies that there is always
time to react to such changes. As the ratio grows larger,
it becomes impossible to react to such changes. Instead, it
becomes necessary to have a proactive approach—to predict
the future arrival rates. The larger the ratio, the longer into
the future one must predict, hence the harder it becomes to
control the node.

The optimization problem. We use the insights
about ∆i/Di to set up an optimization problem that assigns
node deadlines Di to every node in a way so that no end-
to-end deadline Dj is violated. The optimization problem is
given as:

minimize
∑
∀i∈V

∆i/Di

subject to
∑
∀i∈pj

δj,i ·Di ≤ Dj j = 1, . . . , f

Di ≥ 0 ∀i ∈ V

(14)

where δj,i indicates how many times path j goes through
node i and ∆i indicates the time-overhead necessary to
change the number of VMs in the i-th node. As shown
in [3], this optimization problem can either be solved using
disciplined cone programming or by standard methods such
as Lagrange multipliers.

3.4. Admission control
The goal of the admission controller is to allow as many

packets as possible to pass through the node, without any
of them to missing the node deadline. This is achieved
by controlling the admission rate ai(t) according to the
admission policy presented in Theorem 3.2. In the theorem
we show that the policy is optimal and that it is capable of
computing the admission rate in constant time. Furthermore,
an overview of the admission controller is shown in the form
of a block diagram in Figure 5. It highlights the fact that
the computation required for this admission policy can be

AutoSAC DAS DOA DAS
AC

DOA
AC

0.5

0.6

0.7

0.8

0.9

1

U
ti
li
ty

mean(U) mean(U e) mean(Ua)

AutoSAC DAS DOA DAS
AC

DOA
AC

0

5

10

15

20

25

p
er
ce
n
t
(%

)

discarded overallocation

Figure 4: Through a large number of simulations of the network depicted in Figure 2 the performance of the automatic service-
and admission controller (AutoSAC) developed in this paper was compared with what is currently being used in industry. The
methods AutoSAC was compared against was dynamic auto-scaling (DAS) and dynamic overallocation (DOA). Neither DAS nor
DOA has admission controller so they were augmented with the one developed in this paper. In the left figure one can see the
result of the average utility, efficiency, and availability for each of the five methods, and in the right figure the fraction of the
incoming packets that are discarded and the average amount of overallocation of resources.

computed instantly and in a continuously, something that is
useful when implementing it in real-life. Moreover, it enables
the user to continuously adapt the policy to changes of the
node deadline. In other words, the admission policy derived
in Theorem 3.2 allow one to dynamically change the node
deadline Li over time. This is not something that will be
used in this paper, but investigated in future work.

Theorem 3.2. The admission policy

ai(t)=

{
ri(t) if Ai(t) < Si(t+Di)

min(ri(t), si(t+Di)) else.

will admit as many packets as possible while still ensuring
that the admitted packets meet the node deadline of Li.

Proof: For a complete proof, and one that includes
the machine uncertainty, please see the technical report [3].
The intuition is that incoming packets are guaranteed to meet
their deadlines as long as Li(t) < Di(t). From (5) it follows
that this is equivalent to Si(t+Di) > Ai(t). Hence, as long
as this inequality holds, any incoming packet is guaranteed to
meet its deadline. Should instead Li(t) = Di(t), the largest
possible admission rate becomes ai(t) ≤ si(t+Di).

= 0

switch

upper: = 0
lower: > 0

min

ri(t)
ai(t)

∫
−1

Ai(t)∑∫ Si(t + Di)
Di − ∆i

time delay

×
si(t + ∆i) si(t + Di)

mref
i (t)

s̄i

Figure 5: Block-diagram of the proposed admission controller.
It uses feedback from the queue-size (computed using feedback
from mref

i (t) and ai(t)) in order to compute whether the incom-
ing packets can be admitted or not. As shown in Theorem 3.2
the feedback-law (or admission policy) derived here is able to
admit as many packets as possible, while still guaranteeing
that all the admitted packets will meet the node deadline Di.

4. Evaluation
To evaluate the performance of the new AutoSAC

(automatic service- and admission controller) presented in
Section 3, a large Monte Carlo simulation was performed.
A complete description of the simulation method can be
found in the technical report [3], but the basic idea was
to randomly generate a network of smart services, similar
to the one shown in Figure 2. For every simulation, the
properties of the network such as the time-delay ∆i for
the different nodes, nominal service-rates of the VMs s̄i(t),
end-to-end deadlines Lj of the flows, etc., was randomly
generated. To ensure that the traffic flowing through the
network was realistic we used a real traffic-trace from the
Swedish university network (SUNET). In Figure 6 we show
an example of the traffic rate for three different flows in one
of the simulations. One can see that it fluctuates quite a bit.

With this set-up, the generalized AutoSAC was compared
against two common industry-methods: dynamic auto scaling
(DAS) and dynamic overallocation (DOA). Since neither
of these two methods use an admission controller, we
augment both of them with the the one developed in this
paper, resulting in two additional methods: (DAS+AC) and
(DOA+AC). Each of these five methods was evaluated using
a 1,000 MC simulations.

Dynamic auto-scaling (DAS). This is the auto-
scaling method offered to customers of Amazon Web Ser-
vices, [17]. It is a purely reactive method and is based by

0 1 2 3 4 5
0

5 000 000

10 000 000

time (hours)

in
p
u
t
ra
te

(p
p
s)

p1 p2 p3

Figure 6: Input traffic for three packet flows, i.e., applications,
for one of the many simulations.

having the users monitoring a specific metric (e.g., CPU
utilization) of their VMs using CloudWatch. The user then
specifies two thresholds on which the auto-scaling is based
upon. For this evaluation the efficiency metric uei(t) was used
as the auto-scaling metric with the following thresholds:{

add a VM if uei(t) > 0.9,
remove a VM if uei(t) < 0.8.

Dynamic overallocation (DOA). A downside with
DAS is that it only uses feedback to control the number
of instances it needs. With a large ratio between the time-
overhead and the local node deadline it becomes very difficult
to control solely based on feedback. An alternative approach
commonly used in industry is to instead use dynamic
overallocation where one measures the input to each function
and allocates virtual resources such that there is an expected
overallocation of 10%.

Results. The result of the Monte Carlo simulation
is shown in Figure 4. The left part show the comparison
of the average utility, efficiency, and availability. The right
part illustrate the same result, but by instead showing the
fraction of packets that are discarded as well as how much
overallocation each method cause.

One can see that AutoSAC is close to optimal in the
average utility, availability, and efficiency. As expected, DAS
has an efficiency in the range of 0.8–0.9, since those are the
thresholds by which it bases its auto-scaling on. It should
be noted that increasing this band of thresholds did not
improve the efficiency (the current range yielded the best
performance). DOA achieves an efficiency of around 0.85
which is also expected. The reason for the poor average
utility for these two methods, however, is due to the lack of
a admission controller. Without one a queue will build up
every time there is a lack of processing capacity. This in turn
increases the latency, causing packets to miss their deadlines
resulting in a low availability. By augmenting DAS and DOA
with the admission controller developed in Section 3.4 the
availability is significantly increased by allowing it to drop
some of the packets in a strategic way. By looking at the
right part of Figure 4 one realize that it is only a very small
fraction of the packets that are actually discarded, so it is a
sacrifice well worth making.

5. Summary
In this paper we derive a general mathematical model

for network of smart services that can be used by a set of
automation applications requiring a very low and predictable
end-to-end latency. The model is used to derive control-
laws for controlling the resources allocated of the smart
services in a way that achieves the required end-to-end
latency. The proposed control-strategies are evaluated and
compared against other methods, commonly used in the cloud
industry today. The evaluation, based on a large Monte Carlo
simulation, shows that the automatic service- and admission
controller (AutoSAC) proposed in this work performs very
well. The evaluation also shows that the optimal admission
controller proposed in this work can significantly increase
the performance of existing industry methods.

Source code Traffic data and code for simulations:
https://github.com/vmillnert/GLOBECOM18simulation.

References
[1] V. Millnert, J. Eker, and E. Bini, “AutoSAC: automatic scaling and ad-

mission control of forwarding graphs,” Annals of Telecommunications,
vol. 16, no. 3, pp. 15–12, Aug. 2017.

[2] ——, “Dynamic control of NFV forwarding graphs with end-to-
end deadline constraints,” in ICC 2017 - 2017 IEEE International
Conference on Communications. IEEE, 2017, pp. 1–7.

[3] ——, “Achieving predictable and low end-to-end latency for
a cloud-robotics network,” 4 2018. [Online]. Available: http:
//lup.lub.lu.se/record/fe4a3a04-ee6d-49e2-b634-7f9917340641

[4] T. Lin, Z. Zhou, M. Tornatore, and B. Mukherjee, “Optimal Network
Function Virtualization Realizing End-to-End Requests,” in GLOBE-
COM 2015 - 2015 IEEE Global Communications Conference. IEEE,
2014, pp. 1–6.

[5] W. Shen, M. Yoshida, T. Kawabata, K. Minato, and W. Imajuku,
“vConductor: An NFV management solution for realizing end-to-
end virtual network services,” in 2014 16th Asia-Pacific Network
Operations and Management Symposium (APNOMS). IEEE, 2014,
pp. 1–6.

[6] Y. Li, L. T. X. Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in IEEE INFOCOM 2016 - IEEE
Conference on Computer Communications. IEEE, 2016, pp. 1–9.

[7] M. Mao, J. Li, and M. Humphrey, “Cloud auto-scaling with deadline
and budget constraints,” in 2010 11th IEEE/ACM International
Conference on Grid Computing (GRID). IEEE, 2010, pp. 41–48.

[8] A. Leivadeas, M. Falkner, I. Lambadaris, and G. Kesidis, “Resource
Management and Orchestration for a Dynamic Service Chain Steering
Model,” in GLOBECOM 2016 - 2016 IEEE Global Communications
Conference. IEEE, 2016, pp. 1–6.

[9] H. Feng, J. Llorca, A. M. Tulino, and A. F. Molisch, “Dynamic
network service optimization in distributed cloud networks,” in IEEE
INFOCOM 2016 - IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2016, pp. 300–305.

[10] G. Faraci, A. Lombardo, and G. Schembra, “A building block to
model an SDN/NFV network,” in ICC 2017 - 2017 IEEE International
Conference on Communications. IEEE, 2017, pp. 1–7.

[11] Y. Ren, T. Phung-Duc, J.-C. Chen, and Z.-W. Yu, “Dynamic Auto
Scaling Algorithm (DASA) for 5G Mobile Networks,” in GLOBECOM
2016 - 2016 IEEE Global Communications Conference. IEEE, 2016,
pp. 1–6.

[12] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed
hard real-time systems,” Microprocessing and Microprogramming,
vol. 50, pp. 117–134, Apr. 1994.

[13] R. Pellizzoni and G. Lipari, “Feasibility analysis of real-time periodic
tasks with offsets,” Real-Time Systems, vol. 30, no. 1–2, pp. 105–128,
2005.

[14] J. L. Lorente, G. Lipari, and E. Bini, “A hierarchical scheduling model
for component-based real-time systems,” in Proceedings of the 20-th
International Parallel and Distributed Processing Symposium, Rhodes
Island, Greece, Apr. 2006.

[15] M. Ashjaei, S. Mubeen, M. Behnam, L. Almeida, and T. Nolte, “End-
to-end resource reservations in distributed embedded systems,” in
22nd IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), Aug. 2016, pp. 1–11.

[16] P. Leitner and J. Cito, “Patterns in the Chaos—A Study of Performance
Variation and Predictability in Public IaaS Clouds,” ACM Transactions
on Internet Technology, vol. 16, no. 3, pp. 1–23, Aug. 2016.

[17] (2016, 10). [Online]. Available: https://aws.amazon.com/
documentation/autoscaling/

