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Abstract

Many problems concerning resource management in modern communic-
ation systems can be simplified to queueing models under Markovian
assumptions. The computation of the optimal policy is however often
hindered by the curse of dimensionality especially for models that sup-
port multiple traffic or job classes. The research focus naturally turns
to computationally efficient bounds and high performance heuristics. In
this thesis, we apply the indexability theory to the study of admission
control of a single server queue and to the buffer sharing problem for a
multi-class queueing system.

Our main contributions are the following: we derive the Marginal Pro-
ductivity Index (MPI) and give a sufficient indexability condition for the
admission control model by viewing the buffer as the resource; we con-
struct hierarchical Linear Programming (LP) relaxations for the buffer
sharing problem and propose an MPI based heuristic with its perform-
ance evaluated by discrete event simulation.

In our study, the admission control model is used as the building block
for the MPI heuristic deployed for the buffer sharing problem. Our
condition for indexability only requires that the reward function is con-
cavelike. We also give the explicit non-recursive expression for the MPI
calculation. We compare with the previous result of the indexability con-
dition and the MPI for the admission control model that penalizes the
rejection action. The study of hierarchical LP relaxations for the buffer
sharing problem is based on the exact but intractable LP formulation
of the continuous-time Markov Decision Process (MDP). The number
of hierarchy levels is equal to the number of job classes. The last one
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iv ABSTRACT

in the hierarchy is exact and corresponds to the exponentially sized LP
formulation of the MDP. The first order relaxation is obtained by relax-
ing the constraint that no buffer overflow may occur in any sample path
to the constraint that the average buffer utilization does not exceed the
available capacity. Based on the Lagrangian decomposition of the first
order relaxation, we propose a heuristic policy based on the concept of
MPI. Each one of the decomposed subproblems corresponds to the ad-
mission control model we described above. The link to the decomposed
sub-problems is the Lagrangian multiplier for the relaxed buffer size con-
straint in the first order relaxation. Our simulation study indicates the
near optimal performance of the heuristic in the (randomly generated)
instances investigated.
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CHAPTER 1

Introduction

Efficient utilization of the underlying servers, bandwidth, and buffers
is the key to the performance of modern systems such as Internet. As
queueing models have long been used in performance study of computer
and communication systems, resource allocation problems in queueing
settings are naturally of great theoretical and practical interest. A re-
source allocation policy is said to be dynamic if the control depends on
the current state of the system. This thesis addresses the problem of
dynamically allocating buffer resource for the related queueing models.

We assume that the reader of this thesis has knowledge of queueing
theory from e.g. [Kle75, Kle76], of Markov decision processes (MDP)
from e.g. [Ber05, Put94, HS84] and linear programming (LP) from
e.g. [PS82, Pad99].

The rest of this chapter is organized as follows. Section 1.1 gives an
overview of the dynamic resource allocation problems from the queueing
modeling perspective. Section 1.2 summarizes the previous work and
Section 1.3 summarizes the contribution of this thesis. The organization
of the reset of this thesis is given in Section 1.4.

1.1. Dynamic Resource Allocation

In this section, we first review a few concepts related to resource alloca-
tion for communication systems from a queueing theoretic perspective.
Three motivating dynamic resource allocation problems are discussed
and four related queueing models are defined. The concepts of indexab-
ility and index heuristics are introduced. Finally, we will summarize the
methodology adopted in this thesis.

1



2 1. INTRODUCTION

1.1.1. Key Concepts. Systems are usually studied from different
perspectives. Depending on one’s view, certain elements or properties
may play a vital role in one but become irrelevant in another. Traffic,
resource, demands, allocation policy, and performance metrics are par-
ticularly important concepts for system performance study.

In communication systems, traffic is the movement of information. It
can be calls in a circuit switched system or a stream of packets in a
packet switching system. Stripping out the information it carries, the
traffic is often modeled as a stochastic process when the randomness is
of interest or simply as a flow when the intensity is the only thing one
cares about. The (homogeneous) Poisson process in continuous time and
its counterpart in discrete time, the Bernoulli process, are the two most
well-known stochastic processes for modeling the traffic. The Poisson
process is characterized by its rate or intensity. Roughly speaking the
Poisson traffic implies that arrivals do not occur simultaneously and the
number of arrivals occurring in any bounded interval of time after time
t is independent of the number of arrivals occurring before time t. It is
also common to have different traffic classes for different types of inform-
ation. For example, a video call through a packet network demands more
bandwidth than a traditional voice connection. Individual call or packet
inside traffic streams is sometimes referred to as a “job”, a “request” or
a “customer” in the literature.

A resource is an abstraction for many different things, e.g. links, band-
width, a server or some buffer space. The common characteristic is that
the amount of available resources at any given time is limited. The
resource allocation problems concern questions like how links should be
allocated to calls, in which order packets should be sent, how much buffer
space is reserved for certain traffic types, etc.

Demands are the requirements that traffic puts on the resource. It can
be the amount of buffer space that a packet requires or the duration of a
call. In a circuit switched network, a call may put demands on multiple
links. In a packet switching network, a packet in a router needs certain
buffer space when it is waiting to be forwarded to the next hop and
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consumes some bandwidth when it is transmitted. Sometimes it is suffi-
cient to describe demand quantitatively as one deterministic parameter.
In other situations, it is modeled as a random variable. In continuous
time, exponentially distributed random variables are often used because
of the memoryless property. Moreover the exponential distribution often
provides a good balance between mathematical tractability and model-
ing accuracy.

An allocation policy is a rule that regulates how resource is allocated to
satisfy different demands. A policy that relies on the up-to-date state
information is said to be dynamic. Deciding if a request for a call should
be rejected based on the number of ongoing calls in a circuit switch sys-
tem is an example of dynamic allocation. Another example is selecting
which packet of a class should be transmitted next based on the number
of packets of each class in a router. Static allocation does not rely on the
system state information and thus one may expect inferior performance
compared to the dynamic approach. Sometimes static allocation may be
the only viable approach to address the problem because there is no way
to obtain the full and accurate state description or because the compu-
tational complexity to utilize the state information is high. Traffic flow
allocation and capacity design are well-known and well-studied problems
of static allocation [PM04]. When solving dynamic allocation problems,
commonly used mathematical machineries are dynamic programming
and MDP. For static problems, linear or convex programming is often
the tool of the trade.

Performance metrics are the quantitative assessment of the system per-
formance under a particular resource allocation policy. It can be a single
number, such as average throughput or average response time. It can
also be a vector, e.g. the throughputs of different traffic classes. In case
that the performance metrics are vectors, it is often required to con-
dense the numbers into one overall measure. One commonly adopted
approach is to assign weights to individual components and then add
them up. The weights are used to model preferences. For example, in
many models high throughput and low response time are two opposite
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requirements. To reduce the response time, it is often necessary to shape
the traffic at the cost of the throughput.

There are, of course, other important concepts such as network topology.
The discussion in this thesis, however, is limited to models with one single
resource.

1.1.2. Resource Allocation Problems. Our study is motivated
by the following three problems in communication systems: admission
control, buffer allocation, and dynamic scheduling.

Admission control is a procedure to determine if the resource like band-
width should be granted to a service request. In many systems, it is
the only way to achieve a Quality of Service guarantee [Sai94]. In ATM
networks, admission control is also known as Connection Admission Con-
trol. In 802.11 networks, it is referred to as Call Admission Control. In
the Public Switched Telephone Network (PSTN), it is called overload
control.

Buffer allocation/sharing is a procedure to determine how much re-
source such as memory space should be allocated to different streams.
How the buffer space should be partitioned for ATM switches and IP
routers with a shared buffer architecture is a subject of many recent pat-
ents. [EGK95, CH96, VD98, Mit99, RL02, JHPE03, AMO04,
AFT05, HKNR06]

Dynamic scheduling is a procedure to determine when resources should
be allocated to streams for some given requirements. Comparing to
static approaches such as FCFS and round robin, it relies on information
about the current resource usage, the characteristics of the traffic and the
demand. In e.g. the High-Speed Up link Packet Access technology, the
Node-B decides if a user equipment should be granted for transmission
based on the state of the transmission buffer and its available power
margin [HT06].

1.1.3. Queueing Control Models. This thesis addresses the fol-
lowing two queueing control models: the arrival control to an M/M/1/n
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queue and the control of arrivals to multiple M/M/1 queues with a
shared finite buffer. The description of these two models is given below
along with the other two closely related models: the service control of a
single server queue and the service control of multiple M/M/1/n queues
with a shared server. Note that the service control of a single server or
multiple queues has already been covered extensively in [NM06b] and
will not be the topic of the thesis.

We shall assume Poisson traffic and a finite queueing space throughout
the thesis. All performance measures are converted to monetary gain or
loss with help of scaling coefficients. Different measures are additively
combined to a monetary unit. The objective of the control is to maximize
the long run average net reward per time unit. Even though we focus on
average criteria, the approach is equally applicable to the models with
discounted criteria [CN05].

In situations like service level agreement modeling, we can encounter con-
straints on performance measures such as latency. Often with the help of
Lagrange multipliers, the constraints on these performance measures can
be replaced by items in the aggregated performance objective [Alt99] .

1.1.3.1. Arrival Control to an M/M/1/n Queue. The problems of
admission control can often be modeled as the arrival control for an
M/M/1/n queue with the arrival rate λ and the service rate µ. The
function of the controller is to decide if a request should be accepted
into the system or not. We are interested in the optimal policy under
two different types of reward structures.

(1) The reward ri is collected per time unit when the number of
jobs in the system (including the one being served) is i and the
cost to have i jobs in the system is νi. It shall be referred as
objective ri − νi with a slight abuse of notation.

(2) The reward is ri per time unit and the tax ν is paid for each
rejection. It shall be referred as the objective ri − νa.
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The classical queueing control objectives such as maximizing the through-
put minus the holding cost or minimizing the sum of rejection and hold-
ing cost are all special cases of the reward and cost structure described
above.

1.1.3.2. Arrival Control to Multiple M/M/1 Queues with a Shared
Buffer. The buffer sharing problem is modeled as follows. There are
K traffic classes. Each class is served by its individual server and all
classes share a finite queue buffer of size B. The arrival processes for
all traffic classes are Poisson and independent of each other. Denote by
λk as the arrival rate for class k traffic. The service requirements of
all traffic classes are exponentially distributed and independent of each
other. Denote by µk the service rate of a class k job. A job of class
k consumes an amount bk of buffer space after joining the queue and
before leaving the system. The reward rk

i is collected per time unit if
there are i jobs of class k in the queue (including the one being served).
The function of the controller is to decide if the arrival of a class k job
should be accepted or not when the job counts of different classes in the
queue are i1 . . . iK in order to maximize the long run average profit.

1.1.3.3. Service Control of an M/M/1/n Queue. The service schedul-
ing of a single job class can be treated as the service control for an
M/M/1/n queue with arrival rate λ and service rate µ. The reward is
state dependent and the cost to have a server running per time unit is ν.
The function of the controller is to decide when the server should start
or stop in order to maximize the long run average net profit.

1.1.3.4. Service Control of Multiple M/M/1/n Queues with a Shared
Server. The service scheduling of multi-class traffic is viewed as follows.
There are K traffic classes. All of them will be served by one server.
Different traffic classes are queued separately. The arrival process for
all traffic classes are Poisson and independent of each other. Denote by
λk as the arrival rate of the class k traffic. The service requirements of
all traffic classes are exponentially distributed and independent of each
other. Denote by µk the service rate of a class k job. The reward rk

i

is collected per time unit when there are i class k jobs in the queue
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(including the one being served). The function of the controller is to
decide which queue the server should serve in order to maximize the
long run average profit.

1.1.4. Indexability and Marginal Productivity Index. For
the arrival or the service control of an M/M/1/n queue, one may won-
der if the optimal policy has the following simple form: when there are i

jobs in the system, an index νi is calculated, the acceptance decision or
service decision is made based on a comparison of νi and ν. The para-
meter ν in the objective can be considered as the price of the resources,
buffer or server. An index policy can be seen as a generalization of the
threshold type rules.

Loosely speaking, the arrival or the service control problems that are
parameterized by ν are indexable if the set of states in the optimal policy
that admits a job or serves the queue is monotonically decreasing from
the whole state space to the empty set as ν varies from −∞ to ∞. If
the dynamic control problem is indexable, the optimal policy can be
determined via comparing the properly defined index νi and the ν. Two
interesting questions follow immediately:

(1) Under what condition are the arrival and the service control
models described earlier indexable?

(2) If the problem is indexable, how to calculate the indices?

We refer to the marginal gain as the reward difference between per-
forming and not performing the active action in a state; and refer to
the marginal resource usage as the resource difference between perform-
ing and not performing the active action in a state. Depending on the
context, an active action can be admitting an arrival or starting the
server. We define the marginal productivity rate as the ratio between
the marginal gain and the marginal resource usage of a state. More in-
tuitively, the marginal productivity rate for a state measures how much
we can gain if we perform an action in terms of per unit of resource con-
sumed. A sufficient condition for indexability of the underlying problem
with respect to a state ordering is that the marginal productivity rate
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is monotonically decreasing in that state ordering (see Chapter 2). In
other words, a sufficient condition is that the system satisfies the law of
diminishing marginal returns. When the condition is satisfied the mar-
ginal productivity rate is then referred to as the marginal productivity
index (MPI).

The complexity to obtain and to store the optimal solution increases
exponentially with the number of traffic classes for both the control of
arrivals to multiple queues with a shared buffer and the service control
of multiple queues with a shared server. Thus the research attention
is turned to constructing well grounded heuristics. In this thesis, we
consider the class of heuristics based on MPI. The intuition is that we
can approximately decompose the problems into control of several inde-
pendent queues. The controllers of each individual queue pay a tax for
the resources, buffer space or the server’s attention, to the “manager”
of the system. For the arrival control for a shared buffer, the heuristic
is then to admit an arrival when the index for the class of the arrival
is greater than the tax and if there is enough buffer space left. For the
service control of multiple queues, the heuristic is to serve the queue
with greatest index.

1.1.5. Methodology. The methodology of this thesis can be sum-
marized as follows.

We derive the MPI for the arrival control to an M/M/1/n queue under
different objectives and give a sufficient condition for indexability under
the average reward criteria.

For the control of arrivals to multiple M/M/1 queues with a shared finite
buffer, we study the hierarchical LP relaxations based on the LP formu-
lation of the corresponding MDP. We propose an MPI based heuristic
and examine the performance through simulations.

1.2. Related Work

The buffer allocation problem is a classic in the study of queueing sys-
tems. Early works from Foschini et al. [FGH81] and [FG83] identified
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the coordinate convexity property [Aei78] of the optimal policy for the
buffer sharing models with up to three job classes that maximizes the
throughput or the average buffer utilization. The conjecture that such
a structural property also holds for more than three job classes was re-
solved later for an average buffer utilization case by Jordan and Varaiya
[JV94]. A similar conjecture for a variant of the buffer sharing model
in which pushing out a job is allowed was also proposed and proved
in limited cases with two job classes or symmetric traffic by Cidon et
al. [CGGK95]. Arguably such a property of the optimal policy in
the general case is less interesting since even if the conjecture is true,
the complexity of finding the optimal coordinate convex policy remains
exponential in the number of classes as noted in [Ros95, p.126].

In the past decade, the interest in the buffer sharing problem has been
rising in engineering as well. Eng et al. discussed the structure of a
shared memory packet switch in [EGK95]. Varma and Daniel sketched
a shared memory fabric architecture with a memory module at each
crossing that supports per-virtual circuit queueing for ATM [VD98].
Ahlfors et al. invented a shared memory packet switch with a fast in-
ternal and a slow external shared memory organization in which low
priority traffic goes to the external memory when the internal memory
is full [AFT05]. Many more patents are concerned about the admission
control for the shared memory system. Choudhury and Hahne described
a scheme with dynamic threshold for each individual queue as a func-
tion of the unused buffering in the switch in [CH96]. Mitra outlined
an admission control algorithm for a shared memory packet switch with
support of service grades [Mit99]. The admission decision is based on
a combination of factors including effective memory requirements, por-
tions of buffer memory in use for intended output, and total amount
of available memory. Ren and Landry demonstrated a static memory
allocation scheme based on input port transmission rate and a dynamic
control scheme based on the current load of the queue [RL02]. Janoska
et al. proposed to partition the memory into a reserved portion and a
shared portion. Each job class is guaranteed its reserved portion and all
job classes compete for the shared portion [JHPE03]. Aweya et al. uses
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a biased coin to make the admission decision and the bias of the coin is
determined through the current level of the queues [AMO04]. Han et
al. described a buffer management policy based on the total cells stored,
changing rate and individual queue length [HKNR06].

The work of Crabill et al. [CGM77] gives a review of research on the
dynamic control of queues from later 60s to the later 70s. An overview
of research on dynamic queueing control up to the beginning of the 90s
is given by Stidham and Weber [SW93]. Both surveys provide a list
of references devoted to the analysis of specific queueing control models
such as optimal admission control, optimal server allocation, optimal
service rate control, optimal control of the number of servers and optimal
control of the service discipline. Both the book of Kitaev and Rykov
[KR95] and the book of Sennott [Sen99] studied the queue control
problems extensively from the MDP perspective.

The concept of indexability used in this thesis is based on Niño-Mora’s
work on Partial Conservation Laws (PCL) and F-extended polymatroids
[NM01, NM02, NM07b]. This line of work can be traced back to Ed-
monds work in the 70s [Edm70], in which it was observed that certain
combinatorial optimization problems are solved by greedy algorithms
if the underlying model structure is a polymatroid. Later Coffman and
Mitrani [CM80] established that the performance region of a multi-class
queue can be described by a polytope based on the residual work invari-
ance under any scheduling. Fedeergruen and Groenevelt [FG86] showed
that the achievable performance region for many multiclass queues is ac-
tually polymatroid. The work of Shanthikumar and Yao [SY92] showed
that if the so-called strong conservation laws (c.f. Kleinrock’s conser-
vation laws [Kle76]) are satisfied, the underlying performance region
is necessarily a polymatroid. The simple cµ scheduling rule, a type
of index policy, is the consequence of the polymatroid structure. For
the problem of the service scheduling for a multiclass non-preemptive
M/G/1 queue with Bernoulli feedback, Klimov established in the 70s
that the policy is of index type and that the index can be calculated
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via a greedy algorithm [Kli75]. Tsoucas then observed that the achiev-
able performance region in Klimov’s model possesses a similar structure
to that of a polymatroid and it was termed “extended-polymatroid”
[Tso91]. In [BNM96], Bertsimas and Niño-Mora’s then generalized
the work of [SY92] and [Tso91]. It was shown that if the performance
region of a stochastic and dynamic scheduling problem satisfied the gen-
eralized conservation laws, the feasible space of achievable performance
is an extended polymatroid. The implication is that the optimization
of a linear objective over the achievable performance polytope can be
solved by a Klimov like greedy algorithm that in turn leads to the index-
ability property. The branch bandit problem, which is a generalization
of the control of a multi-class queue with or without arrivals, was then
solved by a priority index policy that is computed through a one-pass
adaptive greedy algorithm. While working on the restless bandit model,
Niño-Mora developed the framework of the partial conservation laws
[NM01]. The framework establishes the optimality condition, called
partial indexability, of priority index policies for stochastic scheduling
with certain structure under linear performance objectives. In [NM02],
a PCL based index was derived for a class of arrival control to a single
server queue, and it was shown that when a PCL-index exists, it sat-
isfies the law of diminishing marginal returns. Later that index was
named Marginal Productivity Index (MPI) in [NM06a]. In [NM06c],
the theory of MPI was applied to the scheduling of a multiclass delay-
/loss-sensitive queue.

1.3. Contributions

The contributions of the thesis can be summarized as follows.

We give a simplified review of the F-indexability and the PCL(F)-
indexability theory for the average criteria. Our presentation does not
rely on the result for the discounted criteria case and the vanishing dis-
count argument.

We derive the MPI for the arrival control to an M/M/1/n queue with
the objective of form ri − νi under the average reward criteria setting.
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We also reproduce the previously known MPI result with the objective
of form ri − νa from [NM02]. Our intention is to illustrate how the
theory of indexability can be applied to models with different views of
resource usage: one treats the buffer as the resource and the other views
the rejection as the resource.

We present a hierarchy of increasingly stronger LP relaxations for the
buffer sharing problem under Markovian assumptions. The approach we
used is similar to the work of Bertsimas and Niño-Mora [BNM00] where
a similar LP relaxation hierarchy was derived for the restless bandit
model. The class of supported reward functions includes weighted sum
of throughput and delay as a special case. The number of hierarchy levels
equals the number of job classes. The last one in the hierarchy is exact
and corresponds to the exponentially sized LP formulation of the MDP.
The first order relaxation is obtained by relaxing the constraint that
no buffer overflow may occur in any sample path to the constraint that
the average buffer occupancy does not exceed the available buffer space.
The nature of this relaxation can also be viewed from the achievable
performance region perspective. In the original problem, the number
of variables and the number of constraints for describing the achievable
performance polytope are exponential in the number of classes. We then
construct a new polytope that contains the original polytope and has
fewer variables and constraints. The maximization over this enlarged
but simpler polytope gives an upper bound. A hierarchy of increasingly
stronger relaxations can then be identified from this perspective.

Based on the Lagrangian decomposition of the first order relaxation, we
propose a heuristic policy based on the concept of MPI. The computa-
tional complexity of the proposed heuristic is proportional to the product
of the buffer size and the number of classes.

We present some numerical examples for two and eight classes by varying
the model parameters such as buffer size, reward and cost rates, arrival
and service rates. The results are then compared to the optimal policies,
the upper bounds obtained through the 1st order relaxation, as well as
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the basic policies like complete sharing and equal partition. The numer-
ical results demonstrate the near optimal performance of the proposed
heuristic.

1.4. Thesis Organization

The rest of the thesis is organized as follows.

In Chapter 2, we begin with a review of the class of binary action
discrete-time MDP with the objective of maximizing the long run av-
erage reward. The concept of indexability and Marginal Productivity
Index (MPI) for this class of model is introduced. On the way to find a
sufficient condition for indexability, the concept of F-indexability based
on a given state ordering is discussed. We then outline the steps to obtain
a sufficient condition for the F-indexability called PCL (F)-indexability.
The sufficient conditions can be succinctly summarized as (1) strict pos-
itivity in marginal resource measure and (2) monotonic in the marginal
productivity rate. The proofs in this chapter are omitted since they
either can be found in references or are trivial.

In Chapter 3, the indexability theory is applied to the arrival control to
an M/M/1/n FCFS queue. Two variants of objectives are considered.
The rewards in both objectives are state dependent but the view of re-
sources is taken differently: one pays a tax that is linear in the queue
length and the other penalizes the rejection. For each case, we derive
the recursive expression for the marginal resource measure, the marginal
reward measure, and the marginal productivity rate. The marginal re-
source measures in both cases are strictly positive. We also give the
explicit (i.e. non-recursive) form of the marginal productivity rates for
those two cases. The main results of this chapter are the sufficient con-
ditions for the indexability for the two cases. In case that the tax is
based on the queue length, a sufficient condition is that the reward is
a concavelike function. When the penalty is based on the rejection,
we require that the reward is decreasing in the queue length with the
exception when the queue length is one and zero.
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In Chapter 4, we study the control of arrivals to multiple queues with a
shared buffer. The problem is formulated as a continuous-time MDP. We
explore the connection between the equivalent discrete-time formulation
and the corresponding linear programme from the achievable perform-
ance region perspective. Because of the computational complexity of the
original model, we develop a sequence of LP relaxations for studying the
performance upper bound. Then we study the Lagrangian decompos-
ition of the first order LP relaxation. The Lagrangian decomposition
turns the first order LP relaxation into a number of independent linear
programmes. Moreover, each decomposed linear programme is corres-
ponding to the arrival control to a single queue problem. Based on this
observation, we propose a MPI based heuristic for the original prob-
lem. We use discrete event simulation to evaluate the performance of
the heuristic.

Finally, in Chapter 5, we summarize the results obtained and discuss
potential future work.



CHAPTER 2

Indexability and MPI

Both the arrival and the service control of a single server queue can be
viewed as special cases of binary action MDP. In this chapter, we review
previous results [NM01, NM02, NM06c, NM06b] on the MPI for
this class of Markov decision models under the average criteria assump-
tion. We omit the proofs as they are either trivial or can be found in
the aforementioned references. In this thesis, we rely on the uniform-
ization technique to convert the underlying continuous-time MDP into
the discrete-time version and then apply the theory in this chapter. The
rest of this chapter is organized as follows. In Section 2.1, we intro-
duce the notations for the class of MDP we treated and the concept of
indexability. In Section 2.2, the concept of F−indexability is defined
with F corresponding to the class of threshold policies related to a par-
ticular state ordering. A sufficient condition for F-indexability named
PCL(F)-indexability is outlined in Section 2.3.

2.1. Discrete-time MDP

Consider a discrete-time MDP whose state Xt, t = 0, 1, . . ., evolves across
the finite state space

N , {1, . . . , n}.

We assume that both active at = 1 and passive at = 0 actions are avail-
able for all states. The development below needs only small modification
when only a certain action is allowed for some states. Actions are chosen
through adoption of a policy π belonging to the class Π of admissible
policies which are only required to be nonanticipative. The transition

15
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probability is given by

pa
ij , P [Xt+1 = j | Xt = i, at = a] .

When the system occupies state i and action a prevails, a finite reward
ra
i is accumulated and ha

i units of resources are consumed (ha
i is finite).

The price of the resource is ν per resource unit. Thus the net profit per
time step is ra

i − νha
i for the given state i and the prevailing action a.

We shall refere to this MDP model as ν-price MDP. We also assume a
finite state space to avoid lengthy technical discussions related to the
existence of the optimal policy.

When ha
i = a, the ν-price MDP above becomes a single project restless

bandit. In this section, we show that the concept of indexability can be
extended to any ν-price MDP problem.

The state-action frequency measure xa,π
j is the long run average fraction

of time that the chain spends in state (j, a) under policy π,

(2.1.1) xa,π
j , lim

T→∞

1
T

Eπ

[
T∑

t=0

1{Xt = j, at = a}

]

Lemma 2.1. For any admissible policy π ∈ Π and state i ∈ N :

(i) If π takes the active action at i-periods then x0,π
i = 0.

(ii) If π takes the passive action at i-periods then x1,π
i = 0.

Let xa,π =
(
xa,π

j

)
j∈N

, Pa =
(
pa

i,j

)
i,j∈N

and for S, S′ ⊆ N , Pa
SS′ =(

pa
i,j

)
i∈S,j∈S′

. The determination of row or column orientation is given
implicitly by context. Let I = (δij)i,j∈N , where δij is Kronecker’s delta,
be the identity matrix indexed by the project’s states and 1 be the vector
of length N with all elements being one.

Lemma 2.2. For any admissible policy π ∈ Π, the state-action frequency
measure is governed by the following system of linear equations.

x0,π
(
I−P0

)
+ x1,π

(
I−P1

)
= 0

x0,π1 + x1,π1 = 1
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To evaluate the value of the reward incurred under a policy π ∈ Π, we
define the reward measure

(2.1.2) fπ , lim
T→∞

1
T

Eπ

[
T∑

t=1

rat

Xt

]
,

where Eπ [·] denotes the corresponding expectation. Similarly define the
resource measure

(2.1.3) gπ , lim
T→∞

1
T

Eπ

[
T∑

t=0

hat

Xt

]
.

We will address the ν-price problem,

(2.1.4) max
π∈Π

fπ − νgπ,

which is to find an admissible policy maximizing the average net profit.
Finding the optimal policy numerically for any instance of the problem
above is well addressed by well-known algorithms such as value itera-
tion, policy iteration and linear programming. We shall look into the
structural properties of the optimal policy.

The following concept of indexability was introduced in [Whi88].

Definition 2.3. [Indexability] The class of ν-price MDP in (2.1.4) is
indexable if there exists an index ν∗i for i ∈ N such that the policy that
takes the active action whenever it lies in the following set is optimal:

S∗(ν) = {i ∈ N : ν∗i > ν} .

Indexability is a property that it is nice to have. However, two natural
questions will arise immediately: (1) Under what conditions is the ν-
price MDP indexable? (2) How to calculate the index ν∗i ?

2.2. F-Indexability

Consider the following family of threshold type policies relative to the
state ordering (1, . . . , n), so that they prescribe to be active in states
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above the threshold state and passive otherwise. We represent the policy
with threshold state i by its active-state set

(2.2.1) Si ,

{i + 1, . . . , n} if 0 ≤ i < n

∅ if i = n

and refer to it as the Si-active policy. The corresponding nested active
state set family is

(2.2.2) F , {S0, S1, . . . , Sn} .

We will henceforth refer to such policies as F-policies, writing e.g. fS ,
gS for S ∈ F . Denote Sc = N\S.

We shall assume that every policy in F is unichain, i.e. the Markov
chain of the states induced by a policy in F contains a single recurrent
class plus possibly empty set of transient states.

Corollary 2.4. For S ∈ F , j1 ∈ S, j2 ∈ Sc, it holds that

x
0,S\{j1}
j1

, x
1,S∪{j2}
j2

> 0.

We now introduce a narrower definition of indexability called F-indexability.
The definition is narrower because it is tied to the given state ordering
(1 . . . n) and thus the family of policies F (2.2.2).

Definition 2.5. [F-indexability and MPI] The ν-price MDP is F-indexable
if there exists an index ν∗i ∈ R for i ∈ N , termed the Marginal Productiv-
ity Index (MPI ), which is nondecreasing along the state ordering, i.e.

ν∗1 ≤ · · · ≤ ν∗n,

such that for 0 < i < n, the Si-active policy is optimal for problem
(2.1.4) iff ν ∈

[
ν∗i , ν∗i+1

]
.

It is clear that F-indexability above implies indexability in Definition
2.3.

When the MPI exists, the MPI gives an intuitively appealing method to
solve (2.1.4): it is optimal to be active in state i iff the MPI value of the
state lies at or above the prevailing price, ν∗i ≥ ν.
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Lemma 2.6. If the ν-price MDP is F-indexable, the S0-active policy is
optimal iff ν < ν∗1 and the Sn-active policy is optimal iff ν > ν∗n.

Denote ∆fSi = fSi − fSi−1 and ∆gSi = gSi − gSi−1 .

Assumption 2.7. For all S ∈ F , j1 ∈ S, j2 ∈ Sc,

gS\{j1} < gS < gS∪{j2}.

Clearly the assumption above implies that ∆gSi < 0 for all i ∈ N .

Theorem 2.8. If the ν-price MDP is F-indexable then:

(a) The optimal value of the ν-price problem can be represented as

v∗(ν) = sup
{
fSi − νgSi : i ∈ N

}
.

(b) The MPI of the ν-price MDP is given by

ν∗i =
∆fSi

∆gSi
,

for i ∈ N .

Draw on the economic theory of optimal resource allocation, the MPI ν∗

measures the marginal returns of the resource consumed in state i and
F-indexable MDPs are those that obey the law of diminishing marginal
returns.

2.3. A Sufficient Condition for F-Indexability

Now we establish a sufficient condition for the F-indexability and calcu-
late the MPI.

Denote by 〈a, S〉 the policy that takes action a initially, and adopts the
S-active policy thereafter. We define the (i, S) marginal reward measure
cS
i to be the difference between the total reward collected when taking

the policy 〈1, S〉 and the policy 〈0, S〉. Similarly we define the (i, S)
marginal resource measure wS

i . Let fS
i (or gS

i ) be the difference between
the total average reward (or cost) when the system is started at the state
i other than the state 1. Both fS

i and gS
i are finite and fS

1 = gS
1 = 0.
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Lemma 2.9. For every feasible active state set S ∈ F :

(a) gS + gS
i =

h1
i +

∑
j∈N p1

ijg
S
j if i ∈ S

h0
i +

∑
j∈N p0

ijg
S
j if i ∈ Sc

(b)fS + fS
i =

r1
i +

∑
j∈N p1

ijf
S
j if i ∈ S

r0
i +

∑
j∈N p0

ijf
S
j if i ∈ Sc

Hence we can write the marginal resource measure and the marginal
reward measure as follows

wS
i = h1

i − h0
i +

∑
j∈N

(
p1

ij − p0
ij

)
gS

j

cS
i = r1

i − r0
i +

∑
j∈N

(
p1

ij − p0
ij

)
fS

j .

Notice that with the given model parameters ha
i , ra

i and pa
ij , we can solve

fS , fS
i , gS and gS

i via the Gauss elimination method.

Denote wS
I =

(
wS

i

)
i∈I

, cS
I =

(
cS
i

)
i∈I

, gS =
(
gS

i

)
i∈N

, ha
I = (ha

i )i∈I and
ra

I = (ra
i )i∈I .

Lemma 2.10. For every feasible active state set S ∈ F :

(a) wS
S =

(
ISN −P0

SN

)
gS − h0

S and wS
Sc = h1

Sc +
(
P1

ScN − IScN

)
gS;

(b) cS
S =

(
ISN −P0

SN

)
fS − r0

S and cS
Sc = r1

Sc +
(
P1

ScN − IScN

)
fS .

Let WS,0,π =
∑

i∈S wS
i x0,π

i , WS,1,π =
∑

i∈Sc wS
i x1,π

i ;
CS,0,π =

∑
i∈S cS

i x0,π
i and CS,1,π =

∑
i∈Sc cS

i x1,π
i .

Theorem 2.11. Under any admissible policy π ∈ Π, the following holds

(a) resource consumption decomposition laws:

gπ + WS,0,π = gS + WS,1,π, S ∈ F ;

(b) reward decomposition laws:

fπ + CS,0,π = fS + CS,1,π, S ∈ F .

The next result justifies the denomination of wS
i , (i, S) marginal resource

measure and cS
i , (i, S) marginal reward measure.
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Corollary 2.12. For any feasible active set S ∈ F and states j1 ∈ S

and j2 ∈ Sc

(a) gS\{j1} + wS
j1

x
0,S\{j1}
j1

= gS = gS∪{j2} − wS
j2

x
1,S∪{j2}
j2

(b) fS\{j1} + cS
j1

x
0.S\{j1}
j1

= fS = fS∪{j2} − cS
j2

x
1,S∪{j2}
j2

.

Lemma 2.13. Assumption 2.7 holds iff positive marginal resource meas-
ure wS

i > 0 holds for S ∈ F and i ∈ N .

Definition 2.14. Under the Assumption 2.7, we define the (i, S) mar-
ginal productivity rate (or marginal productivity rate for short) by

νS
i , cS

i /wS
i ,

and denote ν∗i , νSi
i .

The alternative formula for marginal productivity rate ν∗i is given in the
following Lemma.

Lemma 2.15. For i ∈ N , we have ν∗i = ∆fSi/∆gSi .

The result below connects the marginal reward rate, the marginal cost
rate and the marginal productivity rate.

Lemma 2.16. When Assumption 2.7 holds, for every state j ∈ N

c
Sj

i − c
Sj−1
i = ν∗j

(
w

Sj−1
i − w

Sj

i

)
, i ∈ N

It is then clear that the marginal productivity rate ν∗j has yet another
form by substituting i = j into Lemma 2.16.

Lemma 2.17. For all j ∈ N , ν∗j = c
Sj

j /w
Sj

j = c
Sj−1
j /w

Sj−1
j .

Furthermore, the following equations hold for the marginal productivity
measure.

Lemma 2.18. For i, j ∈ N ,

(a) ν
Sj

i − ν∗j = w
Sj−1
i /w

Sj

i

(
ν

Sj−1
i − ν∗j

)
(b) ν∗j+1 = ν∗j + w

Sj−1
j+1 /w

Sj

j+1

(
ν

Sj−1
j+1 − ν∗j

)
.
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Denote ∆ν∗j = ν∗j −ν∗j−1. The marginal reward measure can be expressed
in terms of ∆ν∗j .

Lemma 2.19. For i ≤ j c
Si−1
j = ν∗i w

Si−1
j +

∑j
k=i+1 w

Sk−1
j ∆ν∗k ;

For j ≤ i, cSi
j = ν∗i wSi

j −
∑i−1

k=j wSk
j ∆ν∗k .

The result above can then be compressed as follows.

Lemma 2.20. (a) CSi−1,0,π = ν∗i WSi−1,0,π +
∑

k∈Si
WSk−1,0,π∆ν∗k ,

(b) CSi,1,π = ν∗i WSi,1,π −
∑

k∈Sc
i−1

WSk,1,π∆ν∗k+1.

With the help of the results above, we can decompose the objective of
a ν-price MDP in terms of vSi(ν), WSi,1,π and WSi,0,π with coefficients
expressed as a function of ν∗i .

Lemma 2.21. For any state i, such that 0 < i < n, the objective of the
ν-price MDP problem can be written in the following way,

vπ(ν) = vSi(ν)− (ν − ν∗i ) WSi,1,π −
(
ν∗i+1 − ν

)
WSi,0,π

−
∑

k∈Sc
i−1

WSk,1,π∆ν∗k+1 −
∑

k∈Si+1

WSk−1,0,π∆ν∗k

In order for Si to be the optimal policy, it is sufficient that (1) ∆ν∗i ≥ 0;
(2) ν∗i ≤ ν ≤ ν∗i+1 and (3) WSka,π > 0. While Assumption 2.7 ensures
that the positivity of WSk,a,π holds, we need the following assumption
to guarantee the other two.

Assumption 2.22. Index ν∗i is nondecreasing with respect to ordering
(1, . . . , n): ν∗1 ≤ · · · ≤ ν∗n.

The key result of this chapter is given below.

Theorem 2.23. Under Assumption 2.7 and Assumption 2.22, the ν-
price MDP is F indexable and ν∗i is its MPI.
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Notice that the previous development is based on the given state ordering
(1, . . . , n). An alternative approach is to start with a family of policies
F that satisfies certain properties and then induce the ordering. More
details are given below.

Definition 2.24. A set system(N,F) with F ⊆ 2N on the ground set N

is accessable and augmentable if it satisfies the following three conditions
(1) ∅, N ∈ F ;
(2) for ∅ 6= S ∈ F , ∂+

FS := {i ∈ N\S : S ∪ {i} ∈ F} 6= ∅;
(3) for N 6= S ∈ F , ∂−FS := {i ∈ S : S\{i} ∈ F} 6= ∅.

For an accessible and augmentable set system(N,F), F can be viewed
as a family of policies.

It is easy to see that (N,F) with F given in (2.2.1) and (2.2.2) are
accessable and augmentable. Moreover ∂+

FS has exactly one element.

With a given F we define the adaptive greedy index algorithm AGF

which takes νS
i for S ∈ F as input and gives output

{ik, ν∗ik
: k = 1 . . . n}

as follows. Note that Lemma 2.9 is also valid for any S ⊆ N and thus
νS

i can be determined accordingly.

Algorithm 2.25. The adaptive greedy index algorithm AGF

Input:
{
νS

i : S ∈ F
}

Output: {ik, ν∗ik
: k = 1 . . . n}

let S0 := ∅

for k := 1 to n do

pick ik ∈ arg max
{

ν
Sk−1
i : i ∈ ∂+

FSk−1

}
let ν∗ik

:= ν
Sk−1
ik

and Sk := Sk−1 ∪ {ik}

end

Each step inside the loop of the algorithm AGF for the calculation of
νSk

i involves two sets of linear equations (one for wSk
i and one for vSk

i ).
Each of which takes (2/3)n3 + O(n2) arithmetic operations via Gauss
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elimination when F = 2N . Hence the algorithm AGF performs (4/3)n4+
O(n3) arithmetic operations when it is implemented in a straightforward
way. A recent result shows that the arithmetic operation count can go
down to n3 + O(n2) via the Reduced-Pivoting Indexability algorithm
[NM07a]. In extreme cases, like control of a single server Markovian
queue, the operation count is O(n).

Definition 2.26. [PCL(F) indexability] The class of ν-price MDP(2.1.4)
is PCL(F) indexable if
(1) the marginal resource measure is strictly positive wS

i > 0 for i ∈ N

and S ∈ F ;
(2) The index values ν∗ik

produced by the algorithm AG(F) are nonin-
creasing in k.

The following result that PCL(F)-indexability implies indexability is
proved in e.g. [NM01].

Theorem 2.27. The class of PCL(F)-indexable ν-priced MDP is also
indexable and the algorithm AGF gives the MPI.



CHAPTER 3

Arrival Control to a Single Server Queue

In this chapter, we apply the indexability theory to the arrival control to
an M/M/1/n FCFS queue. Two variants of objectives are considered. In
both variants, the rewards are state dependent. In one variant one pays a
tax which is linear in the queue length and in the other variant rejections
are penalized. For each objective case, we derive the marginal resource
measure, the marginal reward measure and the marginal productivity
rate. The marginal resource measures in both cases are shown to be
strictly positive. We give sufficient conditions for indexability in the two
cases. In case that the tax is based on the queue length, the sufficient
condition is that reward is a concave-like function. When the penalty is
based on the rejection, the sufficient condition is that ∆ri ≤ 0 for i ≥ 2.

3.1. Tax Based on Queue Length

Consider arrival control to an M/M/1/n FCFS queue. Jobs arrive ac-
cording to a Poisson process with rate λ. The service time has exponen-
tial distribution with mean 1/µ. Let ρ , λ/µ. Rewards are accumulated
at rate ri per time unit and the tax is paid at rate νi per time unit when
there are i jobs in the system. Upon arrival of a job, if the queue is not
full, the controller of the queue has to make a decision whether the job
is accepted a = 1 or rejected a = 0. A policy is admissible if it is station-
ary, i.e. does not change with time, and deterministic, i.e. the mapping
between state and action is a deterministic function. The objective is to
find a policy π belonging in the class Π of admissible policies so that the
long run average net profit is maximized. The classical admission control

25
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problem in which the objective is to balance the throughput and the so-
journ time for an M/M/1/n is a special case by taking ri = Rµ1{i > 0}
where R is reward paid per departure. Let X(t) be the queue length at
time t. Denote the resource measure as

(3.1.1) gπ , lim
T→∞

1
T

Eπ

[∫ T

0

X(t)dt

]
and the reward measure as

(3.1.2) fπ , lim
T→∞

Eπ

[∫ T

0

rX(t)dt

]
.

The arrival control problem with tax rate ν for the queue length can be
succinctly written as

(3.1.3) max
π∈Π

fπ − νgπ.

Let N , {0, . . . , n} be the set of states. We classify the set of states into
two subsets: the set of controllable states N{0,1} , {0, . . . , n − 1} and
the set of uncontrollable states N{0} , {n}. The family of F-policies is
coincident with the definition of the threshold type policy. For a policy
Si = {0, . . . , i− 1} ∈ F , an arrival is accepted iff the queue length is less
than i. Let Λ , λ + µ be the uniformization rate.

Note that the uniformized MDP’s state transition probability matrix
Pa =

(
pa

ij

)
under action a ∈ {0, 1} is given by

(3.1.4) pa
ij ,



µ/Λ if 0 ≤ j = i− 1 ≤ n− 1

(Λ− µ− aλ)/Λ if 0 < j = i < n

(Λ− aλ)/Λ if j = i = 0

(Λ− µ)/Λ if j = i = n

aλ/Λ if 1 ≤ j = i + 1 ≤ n

0 otherwise.

Let fπ
i be the difference between the reward rates when the initial queue

length is i and 0. Similarly, let gπ
i be the difference between the buffer
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usage respectively when the initial queue length is i and 0. Note that fπ
i

and gπ
i are also valid without scaling for the continuous-time formulation.

For any threshold type policy S ∈ F , the average reward rate fS , the
average buffer usage gS and their relative value functions fS

i and gS
i

satisfy the following set of equations, with fS
0 = gS

0 = 0,

fS/Λ + fS
i =

ri/Λ +
∑

j p1
ijf

S
j if i ∈ S

ri/Λ +
∑

j p0
ijf

S
j if i /∈ S

(3.1.5)

gS/Λ + gS
i =

i/Λ +
∑

j p1
ijg

S
j if i ∈ S

i/Λ +
∑

j p0
ijg

S
j if i /∈ S.

(3.1.6)

Denote by 〈a, S〉 the policy that takes action a initially and adopts the
policy S thereafter. For a given policy S and the initial state i, define the
marginal reward measure cS

i as the scaled up (with uniformization rate
Λ) difference between the average total amount rewards when taking the
policies 〈1, S〉 and 〈0, S〉. Similarly define the marginal resource measure
wS

i . Both cS
i and wS

i are finite [NM02], and can be expressed in terms
of the differential reward fS

i and the differential buffer usage gS
i ,

cS
i /Λ = f

〈1,S〉
i − f

〈0,S〉
i =

∑
j

(
p1

ij − p0
ij

)
fS

j(3.1.7)

wS
i /Λ = g

〈1,S〉
i − g

〈0,S〉
i =

∑
j

(
p1

ij − p0
ij

)
gS

j .(3.1.8)

We shall demonstrate in the indexability framework that the optimal
control is of threshold type when the reward is concave-like in queue
length. More precisely, we will

(1) derive the expression to calculate the marginal resource meas-
ure w

Sj

i , 0 ≤ j ≤ n, 0 ≤ i ≤ n−1 recursively starting from wS0
0

and wS1
0 , and show that wS

i > 0, for i ∈ N{0,1} and S ∈ F ;
(2) derive the expression to recursively calculate the marginal re-

ward measure c
Sj+1
j and thus the marginal productivity rate

v∗j , 0 ≤ j ≤ n− 1;
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(3) show that when the reward function ri is concave-like in i, i.e.
∆r1 ≥ ∆r2 ≥ · · · ≥ ∆rn where ∆ri , ri − ri−1, the marginal
productivity rate ν∗i is non-increasing in i, i.e.

ν∗0 ≥ ν∗1 ≥ · · · ≥ ν∗n−1.

3.1.1. Marginal Resource Measure. The first step is to find a
set of linear equalities that govern the marginal resource measure wS

i .
Let λS

i , λ1 {i ∈ S} and µi , µ1 {i > 0}.

Lemma 3.1. The marginal resource measure wS
i , i ∈ N{0,1} and S ∈ F ,

satisfy the following set of linear equations, for 0 ≤ i ≤ n− 1,(
µi + λS

i

)
wS

i = λ + µiw
S
i−1 + λS

i+1w
S
i+1,(3.1.9)

with wS
−1 = wS

n = 0.

Proof. For convenience denote ∆gS
i , gS

i − gS
i−1, for 1 ≤ i ≤ n,

and let ∆gS
−1 = ∆gS

0 = ∆gS
n+1 , 0

By definition, for 0 ≤ i ≤ n− 1

Λg
〈1,S〉
i = i +

(
µig

S
i−1 + (Λ− λ− µi)gS

i + λgS
i+1

)
− ΛgS

Λg
〈0,S〉
i = i +

(
µig

S
i−1 + (Λ− µi)gS

i

)
− ΛgS

which gives us, for 0 ≤ i ≤ n− 1

wS
i = Λ

(
g
〈1,S〉
i − g

〈0,S〉
i

)
= λ∆gS

i+1.

Also by definition, for 0 ≤ i ≤ n,

gS
i + gS =

i

Λ
+

1
Λ
(
µ(i)gS

i−1 + (Λ− λS(i)− µ(i))gS
i + λS(i)gS

i+1

)
After multiplying both sides by Λ and rearranging terms, we have, for
0 ≤ i ≤ n

ΛgS = i− µi∆gS
i + λS

i ∆gS
i+1

After merging the i:th and the i− 1:th equations, we have for 1 ≤ i ≤ n(
µi + λS

i−1

)
∆gS

i = 1 + µi−1∆gS
i−1 + λS

i ∆gS
i+1.
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Substituting ∆gS
i+1 with wS

i /λ gives(
µi+1 + λS

i

)
wS

i = λ + µiw
S
i−1 + λS

i+1w
S
i+1, 0 ≤ i ≤ n− 1.

�

Now we are ready to find recursive relations for w
Sj

i , 0 ≤ j ≤ n and
0 ≤ i ≤ n− 1.

When j = 0,
wS0

i = (λ + µiw
S0
i−1)/µ

for 0 ≤ i ≤ n− 1.

When j = 1,
wS1

i = (λ + µiw
S0
i−1)/(λS1(i) + µ)

for 0 ≤ i ≤ n− 1. Clearly wS0
i > wS1

i , for 0 ≤ i ≤ n− 1.

When 2 ≤ j ≤ n − 1, notice that if we know w
Sj+1
j , by Lemma 3.1

we have the recursion,
(
α + µλ

Sj+1
i

)
w

Sj+1
i = λ + µw

Sj+1
i−1 for i ≥ j + 1.

Once we determined w
Sj+1
i for i ≥ j + 1, applying Lemma 3.1 again, we

will know w
Sj+1
i for 0 ≤ i ≤ j− 1. Thus knowing w

Sj+1
j is the key in the

recursion scheme. Next, we shall determine the relation between w
Sj+1
j

and w
Sj

j−1.

Denote wj = [wSj

0 , . . . , w
Sj

j−1]
′ , bj = λ

λ+µ [1, . . . , 1]′ (a vector of j- ele-
ments) and

Bj =
1

λ + µ



0 λ

µ 0 λ

. . . . . . . . .
µ 0 λ

µ 0


( a matrix j × j elements), and B1 = [0]. We can rewrite Lemma 3.1 in
matrix form, for 1 ≤ j ≤ n:

wj = bj + Bjwj .
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Similarly denote ŵj = [wSj+1
0 , . . . , w

Sj+1
j−1 ]

′ , b̂j = bj +
λw

Sj+1
j

λ+µ [0, . . . , 0, 1]′,
we have for 1 ≤ j ≤ n− 1,

ŵj = b̂j + Bjŵj .

Hence

ŵj −wj = (I−Bj)−1(b̂j − bj) =
λw

Sj+1
j

λ + µ
(I−Bj)−1ej .

where ej = [0, . . . , 0, 1]′. The element in position (j, j) (bottom-right)
of the matrix has the value 1 if j = 1 and det(I−Bj−1)/ det(I−Bj) if
j ≥ 2. Let

q(j) ,

1 j = 0
det(I−Bj+1)
det(I−Bj) 1 ≤ j ≤ n− 1

Note that from [NM06b, Lemma B.5], we have a recursive formula to
calculate q(j):

q (j) =

1 j = 0

1− ρ
(ρ+1)2q(j−1) 1 ≤ j ≤ n− 1,

and max
{

µ
λ+µ , λ

λ+µ

}
< q(j) < 1 , 1 ≤ j ≤ n− 1.

Thus

w
Sj+1
j−1 − w

Sj

j−1 =
λ

q(j − 1)
w

Sj+1
j

λ + µ
.

By using the relation (µ + λ
Sj+1
j )wSj+1

j = λ + µw
Sj+1
j−1 , we can obtain

the following lemma which is the key for the whole recursion scheme to
work.

Lemma 3.2. The marginal resource measures w
Sj+1
j and w

Sj

j−1 satisfy the
following recursive relation,

(3.1.10) q(j)wSj+1
j =

ρ + w
Sj

j−1

ρ + 1
, 1 ≤ j ≤ n− 1.

The following lemma follows directly from the recursion above.
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Table 3.1.1. Marginal resource measure: direction of
calculation and non-negativity.

wS0
0 > wS1

0 > 0 < wS2
0 < . . . < wSn

0

↓ ↓ ↘ ↑ . . . ↑
wS0

1 > wS1
1 > wS2

1 > 0 < . . . < wSn
1

↓ ↓ ↓ ↘ ↑
...

...
...

. . .
...

↓ ↓ ↓ ↘ ↑
wS0

n−1 > wS1
n−1 > wS2

n−1 > . . . > wSn
n−1 > 0

Corollary 3.3. The marginal resource measures satisfy the following
inequalities
(a) w

Sj+1
j > 0, for 0 ≤ j ≤ n− 1;

(b) w
Sj+1
i > w

Sj

i , for 0 ≤ i ≤ j − 1;
(c) w

Sj

i > w
Sj+1
i , for j ≤ i ≤ n− 1.

To summarize we give the direction of calculation w
Sj

i and the relations
between the calculated values in Table 3.1.1.

3.1.2. Marginal Reward Measure and Marginal Productiv-
ity Rate. Our next task is to establish the recursion for the marginal
reward measure and the marginal productivity rate.

Lemma 3.4. The marginal reward measures cS
i , i ∈ N{0,1} and S ∈ F ,

satisfy the following set of linear equations, for 0 ≤ i ≤ n− 1,

(µ + λS
i )cS

i = λ∆ri+1 + µic
S
i−1 + λS

i+1c
S
i+1,(3.1.11)

with cS
−1 = cS

n , 0.

Proof. For convenience, denote ∆fS
i , fS

i − fS
i−1, for 1 ≤ i ≤ n,

and let ∆fS
−1 = ∆fS

0 = ∆fS
n+1 , 0
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From the definition, we have for 0 ≤ i ≤ n− 1,

Λf
〈1,S〉
i = ri +

(
µif

S
i−1 + (Λ− λ− µi)fS

i + λfS
i+1

)
− ΛfS

Λf
〈0,S〉
i = ri +

(
µif

S
i−1 + (Λ− µi)fS

i

)
− ΛfS .

Thus

cS
i = Λ

(
f
〈1,S〉
i − f

〈0,S〉
i

)
= λ∆fS

i+1.

It follows from (3.1.5) that

fS + ΛfS
i = ri +

(
µif

S
i−1 + (Λ− λS

i − µi)fS
i + λS

i fS
i+1

)
,

we have for 0 ≤ i ≤ n

fS = ri − µi∆fS
i + λS

i ∆fS
i+1.

After merging the i− 1:th equality and the i:th equality above, we have,

(µ + λS
i−1)∆fS

i = ∆ri + µi−1∆fS
i−1 + λS

i ∆fS
i+1,

for 1 ≤ i ≤ n. Thus for 0 ≤ i ≤ n− 1

(µ + λS
i )cS

i = λ∆ri+1 + µic
S
i−1 + λS

i+1c
S
i+1.

�

Similar to the relation between w
Sj+1
j and w

Sj

j−1 in Lemma 3.2, we have
the following lemma.

Lemma 3.5. The marginal reward measures c
Sj+1
j and c

Sj

j−1 satisfy the
following recursive relation

(3.1.12) q(j)cSj+1
j =

µc
Sj

j−1 + λ∆rj+1

λ + µ

for 1 ≤ j ≤ n− 1, with cS1
0 = λ∆r1

λ+µ .

Proof. The start of of recursion cS1
0 = λ∆r1

λ+µ follows directly from
Lemma 3.4.
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For 1 ≤ j ≤ n, let cj , [cSj

0 , . . . , c
Sj

j−1]
′ and hj , λ

λ+µ [∆r1, . . . ,∆rj ]′,

ĉj , [cSj+1
0 , . . . , c

Sj+1
j−1 ]′ and ĥj = hj +

λc
Sj+1
j

λ+µ ej . Parts of Lemma 3.4 can
be rewritten in matrix form

cj = hj + Bjcj , 1 ≤ j ≤ n

ĉj = ĥj + Bj ĉj , 1 ≤ j ≤ n− 1.

It follows that

(ĉj − cj) = (I−Bj)−1(ĥj − hj)

=
λc

Sj+1
j

µ + λ
(I−Bj)−1ej .

Hence

c
Sj+1
j−1 − c

Sj

j−1 =
λ

q(j − 1)
c
Sj+1
j

µ + λ
.

After obtaining c
Sj+1
j−1 in terms of c

Sj+1
j from the relation below (from

Lemma 3.4 )
(λ + µ)cSj+1

j = λ∆rj+1 + µc
Sj+1
j−1 ,

it will be clear that, for 1 ≤ j ≤ n− 1,

q(j)cSj+1
j =

c
Sj

j−1 + ρ∆rj+1

ρ + 1
.

�

Now we have recursions for marginal resource usage w
Si+1
i and marginal

reward c
Si+1
i . The recursion for the marginal productivity rate follows

immediately.

Theorem 3.6. The (i, Si) marginal productivity rate can be calculated
recursively through the following relations,

ν∗0 = ∆r1

ν∗i = ν∗i−1 − ρ
ν∗i−1 −∆ri+1

ρ + wSi
i−1

, 1 ≤ i ≤ n− 1

Proof. By Lemma 2.17(taking into account the different state or-
dering), we have ν∗i = c

Si+1
i /w

Si+1
i for 0 ≤ i < n.
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For i = 0,

ν∗0 =
cS1
0

wS1
0

=
λ∆r1/(λ + µ)

λ/(λ + µ)
= ∆r1.

For 1 ≤ i ≤ n− 1,

ν∗i =
c
Si+1
i

w
Si+1
i

=
λ∆ri+1 + µcSi

i−1

λ + µwSi
i−1

=
λ∆ri+1 + µν∗i−1w

Si
i−1

λ + µwSi
i−1

=
λ∆ri+1 + (λ + µwSi

i−1)ν
∗
i−1 − λν∗i−1

λ + µwSi
i−1

= ν∗i−1 − λ
ν∗i−1 −∆ri+1

λ + µwSi
i−1

.

�

By induction, we can have the following non-recursive form for ν∗i , when
ρ 6= 1,

(3.1.13) ν∗i =

∑i+1
j=1 ∆rj(ρj − 1)∑i+1

j=1(ρj − 1)
.

which is easier to remember when the denominator is left untouched.
When ρ = 1, we have

(3.1.14) ν∗i =
2

(1 + i)(2 + i)

i+1∑
j=1

j∆rj .

3.1.3. A Sufficient Condition for Indexability. We know that
the marginal resource usage is strictly positive, e.g. from Corollary 3.3.
Thus the indexability solely depends on whether the marginal productiv-
ity rate ν∗i is non-increasing in i. In turn, the non-increasingness of the
index function gives an implicit characterization of parameters λ, µ and
ri, 0 ≤ i ≤ n, such that the system is indexable. Note that such a
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characterization on parameters only gives a sufficient condition for in-
dexability.

Assumption 3.7. The reward ri is concave-like in queue length, i.e

∆r1 ≥ ∆r2 ≥ · · · ≥ ∆rn.

Lemma 3.8. Under Assumption 3.7, the marginal productivity rate ν∗i is
non-increasing in i, for 0 ≤ i ≤ n− 1,

ν∗i ≥ ν∗i+1.

Proof. We will show by induction that when the reward is concave-
like, ν∗i −∆ri+2 ≥ 0 for 0 ≤ i ≤ n− 2.

When i = 0, ∆r2 ≤ ∆r1 = ν∗0 . Assume ν∗i −∆ri+2 ≥ 0 for some i such
that 0 ≤ i ≤ n− 2. We have

ν∗i+1 −∆ri+3 = ν∗i −∆ri+3 − λ
ν∗i −∆ri+2

λ + µw
Si+1
i

≥ (ν∗i −∆ri+2)

(
µw

Si+1
i

λ + µw
Si+1
i

)
≥ 0.

�

Theorem 3.9. Under Assumption 3.7, the arrival control with ν tax on
queue length (3.1.3) is PCL(F) indexable and the marginal productivity
rate ν∗i becomes the MPI.

Proof. It follows from Lemma 3.8, Corollary 3.3 and Theorem 2.23.
�

Remark 3.10. To see that the concavity of reward is not a necessary
condition for indexability, consider the case with n = 3, ∆r1 = r > 0,
∆r2 = 0 and ∆r3 = µ

λ+2µr. We have ν∗0 = r, ν∗1 = r µ
λ+2µ and ν∗2 = ν∗1 .

Example 3.11. Now consider two special cases in which the reward
functions are both concave-like:

(1) ∆r1 = r > 0 and ∆ri = 0 for 1 ≤ i ≤ n;
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(2) ∆ri = r for 0 ≤ i ≤ n.

In the first case, the index function can be evaluated as, when ρ 6= 1,

(3.1.15) ν∗i =
r(1− ρ)2

1 + i− 2ρ− iρ + ρ2+i
.

In the second case, index is constant ν∗i = r for 0 ≤ i ≤ n − 1. The
optimal policy is trivial: If r ≥ ν then accept all arrivals as along as
the queue is not full otherwise when r < ν reject all. This is hardly
surprising considering that the payoff per time unit is (r − ν)i when
queue length is i.

3.2. Penalty Based on Rejection

Consider controlling an M/M/1/n FCFS queue similar to the model in
Section 3.1. Instead of paying out tax based on the queue length, we
now assume that a penalty ν is paid for each rejection. The resource
measure is defined as

(3.2.1) gπ , lim
T→∞

1
T

Eπ

[∫ T

0

λa(t)dt

]
where a(t) = 1 if the rejection decision is made for subsequent arrivals
or a(t) = 0 if the admission decision is made otherwise. The definition
of reward measure remains unchanged.

(3.2.2) fπ , lim
T→∞

1
T

Eπ

[∫ T

0

rX(t)dt

]
where X(t) is the queue length at time t. The arrival control problem
with the rejection penalty can also be succinctly written as

(3.2.3) max
π∈Π

fπ − νgπ.

Let N = {0 . . . n} be the set of states. Denote by N{0,1} = {0 . . . n− 1}
the set of controllable states and N{1} = {n} the set of uncontrollable
states. The family of F-policies is coincident with the definition of the
threshold type policy. For a policy Si = {i, . . . , n} ∈ F , an arrival
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is rejected iff the queue length is greater than or equal to i. Special
policies: S0 = {0 . . . n} i.e. reject all and Sn = {n} i.e. accept all when
buffer is not full. The uniformized MDP’s state transition probability
matrix Pa =

(
pa

ij

)
is similar to (3.1.4) but with a replaced by 1− a.

Let fπ
i and gπ

i be the difference between reward and amount of rejection
when the initial queue length is i instead of 0. Along with the long run
average reward, the long run average rejection rate, for S ∈ F , the fS ,
gS , fS

i and gS
i satisfy the following set of equations, with fS

0 = gS
0 = 0,

fS/Λ + fS
i =

ri/Λ +
∑

j p1
ijf

S
j if i ∈ S

ri/Λ +
∑

j p0
ijf

S
j if i /∈ S

(3.2.4)

gS/Λ + gS
i =

1/Λ +
∑

j p1
ijg

S
j if i ∈ S∑

j p0
ijg

S
j if i /∈ S.

(3.2.5)

Let the marginal reward measure cS
i be the scaled up (with uniformiza-

tion rate Λ) difference between the average total amount reward collected
when taking the policy 〈1, S〉 and 〈0, S〉 when starting at state i. Sim-
ilarly define the marginal resource measure wS

i . We can express cS
i and

wS
i in terms of the differential reward fS

i and the differential rejection
rate gS

i ,

cS
i /Λ = f

〈1,S〉
i − f

〈0,S〉
i =

∑
j

(
p1

ij − p0
ij

)
fS

j(3.2.6)

wS
i /Λ = g

〈1,S〉
i − g

〈0,S〉
i =

∑
j

(
p1

ij − p0
ij

)
gS

j + 1/Λ.(3.2.7)

In the rest of this section we will

(1) derive the expression to calculate the marginal resource meas-
ure w

Sj

i for 0 ≤ j ≤ n and 0 ≤ i ≤ n − 1 recursively starting
from wS0

0 and wS1
0 , and show that wS

i > 0 for i ∈ N{0,1} and
S ∈ F ;
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(2) derive the expression to recursively calculate the marginal re-
ward measure c

Sj+1
j and thus the marginal productivity rate

v∗j , 0 ≤ j ≤ n− 1;
(3) show that when the reward function ri satisfies ∆ri ≤ 0 for i =

2 . . . n− 1, the marginal productivity rate ν∗i is non-decreasing
in i, i.e

ν∗0 ≤ ν∗1 · · · ≤ ν∗n−1.

3.2.1. Marginal Resource Measure. Due to the similar approach
taken in Section 3.1.2, we skip the proofs for the results below.

Lemma 3.12. The marginal resource measure wS
i satisfies the following

set of linear equations, for 0 ≤ i ≤ n− 1,

(3.2.8) (µ + λSc

i )wS
i = (∆µi+1) λ + µiw

S
i−1 + λSc

i+1w
S
i+1.

Lemma 3.13. The marginal resource measures w
Sj+1
j and w

Sj

j−1 satisfy
the following recursive relation

(3.2.9) q(j)wSj+1
j =

w
Sj

j−1

(1 + ρ)

with wS1
0 = λ

1+ρ .

The following properties of the marginal resource measure follows from
the recursion above.

Corollary 3.14. The marginal reward measures satisfy the following
inequalities
(a) w

Sj+1
j > 0 for j = 0 . . . n− 1;

(b) w
Sj+1
i > w

Sj

i for i = 0 . . . j − 1;
(c) w

Sj

j − w
Sj+1
j for i = j . . . n− 1.

To summarize, we give the direction of calculation w
Sj

i and their relations
in Table 3.2.1.

3.2.2. Marginal Reward Measure and Marginal Productiv-
ity Rate. We now continue to derive the recursion for the marginal
reward measure and the marginal productivity rate.
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Table 3.2.1. Marginal resource measure: direction of
calculation and non-negativity.

wS0
0 > wS1

0 > 0 < wS2
0 < . . . < wSn

0

↓ ↓ ↘ ↑ . . . ↑
wS0

1 > wS1
1 > wS2

1 > 0 < . . . < wSn
1

↓ ↓ ↓ ↘ ↑
...

...
...

. . .
...

↓ ↓ ↓ ↘ ↑
wS0

n−1 > wS1
n−1 > wS2

n−1 > . . . > wSn
n−1 > 0

Lemma 3.15. The marginal reward measures cS
i , i ∈ N{0,1}, S ∈ F ,

satisfy the following set of linear equations, for i = 0 . . . n− 1

(3.2.10) (α + µ + λSc

i )cS
i = −λ∆ri+1 + µic

S
i−1 + λSc

i cS
i+1.

By a similar argument as in Lemma 3.13, we obtain the recursion for
the marginal reward measure.

Lemma 3.16. The marginal reward measures c
Sj+1
j and c

Sj

j−1 satisfies the
following recursive relation, for i = 1 . . . n− 1

(3.2.11) q(j)cSj+1
j =

c
Sj

j−1 − ρ∆rj+1

1 + ρ

and cS1
0 = −ρ∆r1

1+ρ .

Note that the difference in sign before the item λ∆rj+1 as in Lemma 3.5
is due to the fact that we have inverted the interpretation of active and
passive action.

Now we are ready to derive the marginal productivity rate.
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Theorem 3.17. The marginal productivity rate can be calculated recurs-
ively through the following relations

ν∗0 = −∆r1/µ

ν∗i = ν∗i−1 − ρ
∆ri+1

wSi
i−1

, 1 ≤ i ≤ n− 1

The recursion for w
Si+1
i and ν∗i can be reformulated as below

w
Si+1
i = λ/

(
1 + · · ·+ ρi+1

)
(3.2.12)

ν∗i = − 1
µ

j+1∑
i=1

∆ri

(
1 + · · ·+ ρi−1

)
.(3.2.13)

Note that the results above can also be found in [NM02, (7.2)] by taking
∆hi = −∆ri.

3.2.3. A Sufficient Condition for Indexability. Since from Co-
rollary 3.14, we know that the marginal resource measure is strictly pos-
itive, the indexability solely depends on whether ∆ri ≤ 0 for i ≥ 2.

Assumption 3.18. The reward ri satisfies ri+1 ≤ ri for i ≥ 1.

Note that this condition is slightly weaker than stating that ri is nonin-
creasing in i (c.f. [NM02, Remark 7.3]) as the assumption above allows
∆r1 ≥ 0.

Lemma 3.19. Under Assumption 3.18, the marginal productivity rate ν∗i
is nondecreasing in i.

Theorem 3.20. Under Assumption 3.18, the arrival control with ν pen-
alty on rejection (3.2.3) is PCL(F) indexable and the marginal productiv-
ity rate ν∗i becomes the MPI.

Example 3.21. If we are rewarded r′ for each departure which cor-
responds to receive r = r′µ continuously when a job is served. Hence
∆r1 = r and ∆ri = 0 i = 2 . . . n, the MPI is evaluated as ν∗i = −r′. The
optimal policy is to reject all arrivals when −r > ν or, when −r ≤ ν, to
accept all arrivals as long as the queue is not full.
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Example 3.22. If the cost for keeping a job in the system is c, c > 0,
per time unit, we have ri = −ci, ∆ri = −c < 0 for i = 1 . . . n. The MPI
can be calculated as follows when ρ 6= 1,

(3.2.14) ν∗i =
c

µ

1 + i− 2ρ− iρ + ρ2+j

(1 + ρ2)
,

which is the same equation as in [NM02, (7.3)].

Example 3.23. If it costs c for each job in the system per time unit and
we earn r′ for each departure, we have

ri = −ci + r′µ1{i > 0}

thus ∆r1 = −c + r′µ and ∆ri = −c for i = 2 . . . n. The MPI can be
evaluated as, when ρ 6= 1,

ν∗i =
c

µ

1 + i− 2ρ− iρ + ρ2+j

(1 + ρ2)
− r′.

Example 3.24. When ri = r′i − ν′i, we have the marginal productivity
rate,

ν∗i = − 1
µ

j+1∑
i=1

(∆r
′

i − ν′)
(
1 + · · ·+ ρi−1

)
.

With fixed ν = 0, the optimal policy is to accept a job when ν∗i ≤ 0, i.e.
when ∑i+1

j=1 ∆r
′

j

(
ρj − 1

)∑i+1
j=1 (ρj − 1)

≥ ν′.

One may recognize that the LHS above is the same as (3.1.15). To show
that the LHS is nonincreasing in i under the condition

∆r′1 ≥ ∆r′2 ≥ · · · ≥ ∆r′n,

we can start with the following inequality,∑i+1
j=1 ∆r

′

j

(
ρj − 1

)∑i+1
j=1 (ρj − 1)

≥ ∆r
′

i+1.

Hencei+1∑
j=1

∆r
′

j

(
ρj − 1

)(ρi+2 − 1
)
≥

i+1∑
j=1

(
ρj − 1

)(∆r
′

i+1

(
ρi+2 − 1

))
.
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After adding
(∑i+1

j=1 ∆r
′

j

(
ρj − 1

))(∑i+1
j=1

(
ρj − 1

))
to both sides and

rearranging the items, we have∑i+1
j=1 ∆r

′

j

(
ρj − 1

)∑i+1
j=1 (ρj − 1)

≥
∑i+2

j=1 ∆r
′

j

(
ρj − 1

)∑i+2
j=1 (ρj − 1)

.



CHAPTER 4

The Buffer Sharing Problem

In this chapter, we study the arrival control of multiple queues with a
shared buffer. In Section 4.1, we formulate the problem as a continuous-
time MDP and give an equivalent discrete-time formulation. We develop
a sequence of LP relaxations for studying the performance upper bound
of the original maximization problem in Section 4.2. The approach is
based on the connection between the discrete-time formulation and the
corresponding linear programme from the achievable performance region
perspective. The number of relaxations in the sequence equals the num-
ber of job classes. The sequence of LP relaxations gives increasingly
tight bounds at the cost of exponentially increasing computational com-
plexity. In Section 4.3, we first study the Lagrangian relaxation of the
first order LP relaxation. The Lagrangian relaxation formulation can
further be decomposed into a number of independent linear programmes
with the number equals the number of job classes. Moreover, each de-
composed linear programme is corresponding to the arrival control of a
single queue problem we studied in Section 3.1. Based on this observa-
tion, we propose a MPI based heuristic for the original problem. The
proposed heuristic works as follows. Based on the first order LP relax-
ation, we derive an estimate of the market price of buffer space based
on the dual variable of the buffer space constraint. For each job class,
we calculate the MPI that is the estimate of profit gain with respect
to the buffer space consumed at each state if we admit a job in that
state. The admission decision is then based on whether we have enough
buffer space left to accommodate the arrival and the current MPI of the
arrival’s job class is greater than the product of buffer space price and
buffer space requirement of the arrival. Finally in Section 4.4, we give
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some simulation results to demonstrate the near optimal performance of
the MPI heuristic.

4.1. Continuous-time MDP and LP Formulation

In the section, we formulate the buffer sharing problem as a continuous-
time MDP and give the equivalent LP formulation.

4.1.1. Continuous-time MDP Model. Let K be the set of job
classes with K = |K|. The buffer size is B. The class k jobs arrive
according to a Poisson process with rate λk. The service time for class
k jobs is exponentially distributed with mean 1/µk and their buffer size
requirement bk is deterministic. The jobs of the same class are served
in FCFS fashion. The independence between classes is also assumed.
Because of the Markovian nature of the arrival and the departure, the
system state is determined by the vector i = (ik)k∈K ∈ ZK

+ where ik is
the number of jobs of class k. Finite buffer size implies a finite state
space N .

The reward received per time unit for a class k job is rk
i when there are

i class k jobs in the buffer. The total reward received per unit of time
is therefore ri =

∑
k∈K rk

ik
. Note that this definition of reward function

is fairly general and covers many practical cases. For the throughput
maximization, we can take rk

i = r′kµk1{i > 0} where r′k is a positive
number; for the holding cost minimization we can have rk

i = r′′k i where
r′′k is negative. To model the tradeoffs between throughput and delay,
let rk

i have the following form,

(4.1.1) rk
i = r′kµk1 {i > 0}+ r′′k i.

The admission control action is a vector a = (ak)k∈K with ak = 0 if jobs
of class k should be rejected and is 1 otherwise. We are interested in the
class of admissible policies whose action selection only depends on the
current state and not on the current time. Denote the set of possible
actions when the system is in state i as

A(i) =
{
(ak)k∈K : ak ∈ {0, 1} if i + ek ∈ N otherwise ak = 0

}
.
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To reduce the number of double sums, we introduce the set of state-
action pairs

C = {(i,a) : i ∈ N , a ∈ A(i)} .

The rate of state transition when the system is in state i and taking
action a is Λi,a. The state transition probability qa

i,j is λkak/Λi,a when
j = i + ek and µk/Λi,a when j = i− ek.

Thus the buffer sharing problem under our consideration is a continuous-
time MDP with state space N , the action set A(i), i ∈ N , the rate of
state transition Λi,a, i ∈ N , the state transition probability qa

i,j, i, j ∈
N ,a ∈ A(i), and the reward function ri, i ∈ N .

After applying the uniformization [Ber05, Chapter 5], the continuous-
time model is transformed into discrete-time with the uniformization
rate Λ =

∑
k∈K(λk + µk). The state transition probability pa

i,j, i, j ∈ N ,
a ∈ A(i) is given as follows

pa
i,j =



λkak/Λ if j = i + ek

µk/Λ if j = i− ek∑
k∈K (λk(1− ak) + µk1 {ik = 0}) /Λ if j = i

0 otherwise.

4.1.2. LP Formulation. The uniformized discrete-time MDP can
be formulated as the LP below

Z∗ = max
∑

(i,a)∈C rix
a
i(4.1.2)

s.t
∑

a∈A(j) xa
j =

∑
(i,a)∈C xa

i p
a
i,j, j ∈ N∑

(i,a)∈C xa
i = 1

x = (xa
i )(i,a)∈C ∈ R|C|

+

The decision variable xa
i has the interpretation of the average fraction of

time that action a is taken in state i. The optimal policy for the MDP
can be mapped from the optimal solution for the LP above.
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4.2. Hierarchical LP Relaxations

That the size of the LP formulation (4.1.2) grows exponentially in the
number of job classes motivates us to develop upper bounds for the
performance objective to assess the suboptimality gap of the heuristic
policies. The general idea is to construct a polytope Q with simpler
structure such that Q ⊇ P, where P is the polytope defined by the
constraints in (4.1.2), and perform optimization over Q. In this section,
we show that a decreasing sequence of polytopes

Q(1) ⊇ Q(2) ⊇, . . . ,⊇ Q(K)

with increasing number of constraints can be constructed. The com-
putational complexity of the first order relaxation Q(1) is linear in the
number of classes and gives the worst upper bound in the relaxation
hierarchy. The last relaxation in the hierarchy is actually exact in the
sense that Q(K) = P.

4.2.1. The First Order LP Relaxation. The first order LP re-
laxation can be viewed like this: for each class we allocate a buffer of
size B with the constraint that on average the aggregated buffer usage
from all job classes must not exceed B .

When considering the class k alone, we use Nk to denote the state space,
Ak(i) for action set, Ck the set of state-action pairs. Introduce the uni-
formization for the k:th job class only: Λk = λk+µk; and the uniformized
transition probability pk,a

i,j , i, j ∈ Sk, a ∈ Ak(i), k ∈ K as follows,

(4.2.1) pk,a
i,j =



λka/Λk if j = i + 1

µk/Λk if j = i− 1

(λk(1− a) + µk1 {i = 0}) /Λk if j = i

0 otherwise.

Introduce new variables xk,a
i , (i, a) ∈ Ck, k ∈ K. Geometrically speaking,

we draw a new set of axes xk,a
i in the space containing the achievable
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performance region P with existing axes xa
i . We relate the new axes to

the old ones by the following linear transformation.

xk,a
i =

∑
(i,a)∈Ck

i,a

xa
i , ∀(i, a) ∈ Ck, k ∈ K,

where
Ck

j,a =
{
(i,a) ∈ C : i ∈ N k

j ,a ∈ Ak
a(i)

}
and

N k
i = {i ∈ N : ik = i} ,

Ak
a(i) = {a ∈ A(i) : ak = a} .

Lemma 4.1. The performance objective in (4.1.1) can be represented by
the newly introduced variables:∑

(i,a)∈C

rix
a
i =

∑
k∈K

∑
(i,a)∈Ck

rk
i xk,ak

i .

Similarly we can substitute xk,a
i into the constraints that describe the

polytope P. The resulting polytope contains the original polytope P.

Lemma 4.2. The variables xk,a
i satisfy the following constraints ,∑

a∈Ak(j)

xk,a
j =

∑
(i,a)∈Ck

xk,a
i pa

i,j , ∀k ∈ K, j ∈ Nk

∑
k∈K

∑
(i,a)∈Ck

i bkxk,a
i ≤ B,

∑
(j,a)∈Ck

xk,a
j = 1. ∀k ∈ K.

Let the polytope Q(1) be the one constructed from Lemma 4.2 with axes
xk,a

i and consider the following LP

(4.2.2) Z(1) = max
x(1)∈Q(1)

∑
k∈K

∑
(i,a)∈Ck

rk
i xk,a

i

Proposition 4.3. The optimal objective to (4.2.2) gives an upper bound
to the optimal objective of (4.1.1)

Z∗ ≤ Z(1).
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Proof. It follows from Lemma 4.1 and Lemma 4.2:

Z∗ = max
x∈P

∑
(i,a)∈C

rix
a
i

= max
x∈P,x(1)∈Q(1)

∑
k∈K

∑
(i,a)∈Ck

rk
i xk,a

i

≤ max
x(1)∈Q(1)

∑
k∈K

∑
(i,a)∈Ck

rk
i xk,a

i = Z(1).

�

4.2.2. The Second Order LP Relaxation. The second order
relaxation is demonstrated as follows. Consider the case when only the
job classes k1 and k2 are allowed in the system. Let Nk1,k2 be the state
space, Ak1,k2 (ik1 , ik2) the action set, Ck1,k2 the feasible set of action-
state pairs of the isolated system. Denote by νk1,k2 the uniformization
rate,

νk1,k2 = λk1 + λk2 + µk1 + µk2

and p
k1,k2,ak1 ,ak2
ik1 ,ik2 ,jk1 ,jk2

the transition probability .

For all (k1, k2) ∈ K2 and k1 < k2, introduce new variables x
k1,k2,ak1 ,ak2
ik1 ,ik2

,
for all (ik1 , ik2 , ak1 , ak2) ∈ C

k1,k2
ik1 ,ik2 ,ak1 ,ak2

where

Ck1,k2
ik1 ,ik2 ,ak1 ,ak2

= Ck1
ik1 ,ak1

∩ Ck2
ik2 ,ak2

.

The newly introduced variables are related to xa
i by the following rela-

tion,
x

k1,k2,ak1 ,ak2
ik1 ,ik2

=
∑

(i,a)∈Ck1,k2
ik1

,ik2
,ak1

,ak2

xa
i .

The relation between the new variables x
k1,k2,ak1 ,ak2
ik1 ,ik2

and the variables
xk,ak

ik
introduced in the first order relaxation can easily be verified.
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Lemma 4.4. For all (k1, k2) ∈ K2 and k1 < k2,(ik1 , ak1) ∈ Ck1 and
(ik2 , ak2) ∈ Ck2

x
k1,ak1
ik1

=
∑

(ik1 ,ik2ak1 ,ak2)∈Ck1,k2

x
k1,k2,ak1 ,ak2
ik1 ,ik2

x
k2,ak2
ik2

=
∑

(ik1 ,ik2ak1 ,ak2)∈Ck1,k2

x
k1,k2,ak1 ,ak2
ik1 ,ik2

As in the case of first order relaxation, we can project polytope P onto
the introduced axes.

Lemma 4.5. The variables x
k1,k2,ak1 ,ak2
ik1 ,ik2

satisfy the following constraints:
for all (k1, k2) ∈ K2 and k1 < k2,(jk1 , jk2) ∈ Nk1k2

X
“

ak1
,ak2

”
∈Ak1,k2

“
jk1

,jk2

” x
k1,k2,ak1

,ak2
jk1

,jk2
=

X
“

ik1
,ik2

,ak1
ak2

”
∈Ck1,k2

x
k1,k2,ak1

,ak2
ik1

,ik2
p

k1,k2,ak1
,ak2

ik1
,ik2

,jk1
,jk2

X
(k1,k2)∈K2,k1<k2

X
(ik1

,ik2
ak1

,ak2
)∈Ck1,k2

“
ik1 bk1 + ik2 bk2

”
x

k1,k2,ak1
,ak2

ik1
,ik2

≤ (|K| − 1) B.

Collect the newly introduced variables in the first and the second order
relaxations and define

x(2) ,

(xk,ak

ik

)
(ik,ak)∈Ck,k∈K

,
(
x

k1,k2,ak1 ,ak2
ik1 ,ik2

)
(ik1 ik2 ,ak1ak2 )∈Ck1,k2

k1,k2∈K,k1<k2

 .

From Lemma 4.4 and Lemma 4.5 and along with Q(1), we can construct
the polytope Q(2) with the variables x(2). Consider the following LP,

(4.2.3) Z(2) = max
x(2)∈Q(2)

∑
k∈K

∑
(i,a)∈Ck

rk
i xk,a

i .

Proposition 4.6. The optimal objective to (4.2.3) gives an upper bound
to the optimal objective of (4.1.1) and gives an lower bound to the optimal
objective of (4.2.2)

Z∗ ≤ Z(2) ≤ Z(1).



50 4. THE BUFFER SHARING PROBLEM

4.2.3. Higher Order LP Relaxations. In general, the n:th order
LP relaxation

(4.2.4) Z(n) = max
x(n)∈Q(n)

∑
k∈K

∑
(i,a)∈Ck

Rk
i xk,a

i

is obtained in two steps.

Step 1: Introduce new variables x
k1···kn,ak1 ,··· ,akn

ik1 ,··· ,ikn
for all possible com-

binations of k1, · · · , kn and possible state-action pairs

(ik1 , · · · , ikn
, ak1 , · · · akn

).

Along with the variable introduced in the first order relaxation, denote
by x(n) the vector that includes x

k1···kn,ak1 ,··· ,akn

ik1 ,··· ,ikn
and xk,ak

ik
.

Step 2: As in Lemma 4.5 construct the polytope Q(n) by rewriting the
|N |+1 constraints of the polytope P with the variables x

k1···kn,ak1 ,··· ,akn

ik1 ,··· ,ikn

and as in Lemma 4.4 introduce the following constraints for all unique
combinations of (k1, · · · , kn) ∈ Kn

x
k1ak1
ik1

=
∑

(ik2 ···ikn ,ak2 ···akn)∈Ck2···kn

x
k1···knak1 ···akn

ik1 ···ikn
,

...
...

...

x
knakn
ikn

=
∑

(ik1 ···ikn−1 ,ak1 ···akn−1)∈Ck1···kn−1

x
k1···knak1 ···akn

ik1 ···ikn

and as in Lemma 4.5 relaxed buffer space the constraint

∑
(k1,··· ,kn)∈Kn

k1<···<kn

∑
(ik1 ···ikn ,ak1 ···akn)∈Ck1···kn

(
n∑

l=1

ikl
bkl

)
x

k1···knak1 ···akn

ik1 ···ikn

≤
(
|K| − 1
n− 1

)
B.
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We conclude this section by the following result which follows directly
from our construction of the polytopes

Q(1) ⊇, . . . ,⊇ Q(K) = P.

Proposition 4.7. The optimal objectives of (4.2.4) is a decreasing se-
quence in n and the K:th order relaxation is exact,

Z(1) ≥ Z(2) ≥ . . . ≥ Z(K) = Z∗.

4.3. Lagrangian Decomposition and an MPI Heuristic

In this section, we show the Lagrangian decomposition based on the first
order LP relaxation. The Lagrangian decomposition, which by itself is
again a relaxation over the first order LP relaxation, gives K independent
instances of admission control for an M/M/1/n queue. After giving the
MPI for the decomposed problems, we describe the MPI heuristic for
our buffer sharing problem.

4.3.1. Lagrangian Decomposition. After assigning a nonnegat-
ive real number η as Lagrangian multiplier for the average buffer space
usage constraint in Lemma 4.2, we have the following Lagrangian relax-
ation,

Z ′(η) = max
∑

k∈K
∑

(i,a)∈Ck

(
rk
i − ηibk

)
xk,a

i + ηB(4.3.1)

subject to
∑

a∈Ak(j) xk,a
j =

∑
(i,a)∈Ck xk,a

i pa
i,j ∀j ∈ Nk, k ∈ K,∑

(j,a)∈Ck xk,a
j = 1 ∀k ∈ K

xk,a
i ≥ 0 ∀(i, a) ∈ Ck, k ∈ K

When the Lagrangian multiplier η is pitched at just the right level, the
average buffer occupancy will be below the buffer size limit B. From the
duality theory for LP, there exists an optimal multiplier η∗, such that
Z(1) = Z

′
(η∗) ≤ Z

′
(η) for all η ≥ 0.
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The Lagrangian relaxation above can be decomposed into K sub-problems.
For each k ∈ K, we have the following LP to solve,

Z
′

k(η) = max
∑

(i,a)∈Ck

(
rk
i − ηibk

)
xk,a

i(4.3.2)

subject to
∑

a∈Ak(j) xk,a
j =

∑
(i,a)∈Ck xk,a

i pa
i,j ∀j ∈ Nk,∑

(j,a)∈Ck xk,a
j = 1 ∀k ∈ K,

xk,a
i ≥ 0, ∀(i, a) ∈ Ck.

Each of the sub-problems corresponds to admission control for an M/M/1/n
queue with reward rate rk

i − ηbki when the queue length is i. Note that
with an arbitrary rk

i the optimal policy for the k:th admission control
problem (4.3.2) is not necessarily of the threshold type.

The optimal policy for the Lagrangian decomposed model provides us
with a solid base to construct a high performance heuristic policy. For
the restless bandits problems, Niño-Mora demonstrated a near optimal
heuristic policy based on the Lagrangian relaxation [NM06b, NM06a,
NM01]. The relaxation made for restless bandits allows the utilization
of buffer space more than the available limit B while keeping the average
buffer occupancy at or below B.

4.3.2. An MPI Heuristic. For the buffer sharing problem, we
assume that each of the queueing admission control problems after Lag-
rangian decomposition (4.3.2) is indexable. For example, it is the case
when rk

i is parameterized by two parameters r′k and r
′′

k as in (4.1.1).
Those two parameters let us adjust the preference of the job class toward
throughput and delay. Let η∗ be the dual of the buffer size constraint
in the first order LP relaxation (4.2.2). The LP solvers like CPLEX and
lpsolve can easily retrieve the numerical value of η∗ after finding the
optimal solution to (4.2.2). Alternatively, we can exploit the fact that
Z ′(η) is piecewise linear in η and attains minimum at η∗.

Once the indexability condition is satisfied and MPI νk
i for each job class

in the decomposition has been calculated from (3.1.13), the admission
control decision for newly arrived class k job is based on answers to the
following two questions when the buffer state is (i1, . . . , iK)
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(1) if there is enough space to accommodate the new arrival, i.e.∑
`∈K i`b` + bk ≤ B;

(2) if νk
ik
≥ η∗bk.

The intuition of the heuristic is based on that η∗ approximately measures
the “market” price of one unit buffer space. Each of the queueing control
problem in the decomposition has the objective to maximize fS

k − η∗gS
k

over S ∈ F where fS
k is the long run average reward and gS

k is the buffer
space consumed for class k. With small changes in feasibility in order
keep the buffer usage below B all the time, we hope that the revised
policy is close to the optimal for the original problem. We will give some
numerical examples in the next section to assess the performance of the
MPI heuristic.

4.4. Numerical Examples

In this section we provide some numerical examples with two and eight
job classes when the reward function takes the form (4.1.1).

For the two-class case, we benchmark the performance of the MPI heur-
istic against the optimal policy, the complete sharing (CS) policy and
the equal partition (EP) policy through varying different model para-
meters such as reward coefficients, the arrival and the departure rates.
The CS policy accepts an arrival as long as the buffer space allows. The
EP policy partitions the buffer into slices and each job class has an equal
share of the space. The performance measures are obtained by solving
the underlying equilibrium distributions.

For the eight-class case, we estimate the performance of the MPI heur-
istic, the CS and the EP policy via discrete event simulation, and we use
the first order relaxation to gauge the MPI heuristics. In both the two
and the eight-class cases, the numerical results are visualized through
the histograms of the relative gaps between different performance meas-
ures. We also evaluate the quality of the first order and the second order
relaxations. Note that for the two-class case, the second order relaxation
is in fact exact.
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Table 4.4.1. Baseline configuration for the two-job-
class case

classi 1 2
bi 1 3
λi 0.5 0.5
µi 3.0 1.0
r′i 1.0 5.0
r′′i -5.0 -1.0
B 15

4.4.1. Two-class Case. Let Z∗ be the performance of the optimal
policy, ZMPI the performance of the MPI heuristic, ZCS the perform-
ance of the complete sharing policy and ZEP the performance of the
equal partition policy. Let Z(1) be the objective of the first order LP
relaxation in (4.2.2).

The relative sub-optimality gap between the MPI heuristic and the op-
timal policy is defined as (when Z∗ 6= 0)

ΦMPI , 100
Z∗ − ZMPI

Z∗ .

The relative gain (with respect to Z∗) between the MPI heuristic and
the CS policy is defined as

ΓCS , 100
ZMPI − ZCS

Z∗ .

Similarly, we define ΓEP. Note that the use of Z∗ in the denominator is
on purpose since ZCS and ZEP may be negative sometimes.

We define the relative gap of the first order relaxation (with respect to
Z∗) as follows,

Ψ , 100
Z(1) − Z∗

Z∗ .

We consider the baseline configuration in Table 4.4.1 on page 54 where
we try to mimic the situation that one delay sensitive traffic and one loss
sensitive traffic are competing for the buffer.
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Figure 4.4.1 on page 56 shows how Z(1), Z∗, ZMPI, ZCS and ZEP

change as the buffer size varies between 10 and 30 with a step size of
2. The MPI heuristic performs almost as good as the optimal policy
throughout.

For each baseline configuration, we generated 2500 problem instances
with r′1 and r′2 uniformly distributed from [0, 2] × [4, 6] while keeping
the rest of the configuration unchanged. For each of 2500 instances
we evaluate the benchmarks Z(1), Z∗, ZMPI, ZCS and ZEP. The
histograms of ΦMPI, ΓCS, ΓEP, and Ψ are shown in Figure 4.4.2 on
page 57 and Figure 4.4.3 on page 58. The bin sizes are calculated with
Freedman-Diaconis’ choice [FD81]. The average of suboptimality gaps
ΦMPI is 3.02. The average of performance gains ΓCS is 33.36. The
average of performance gains ΓEP is 32.24. The average of the relaxation
gap Ψ is 84.77.

Similar histograms of 2500 instances when r′′1 and r′′2 are uniformly dis-
tributed over [−6,−4]× [−2, 0] are given in Figure 4.4.4 on page 59 and
Figure 4.4.5 on page 60. The average of suboptimality gaps ΦMPI is
3.8706. The average of performance gains ΓCS is 36.25. The average of
performance gains ΓEP is 32.32. The average of the relaxation gap Ψ is
91.52.

When λ1 and λ2 are uniformly distributed over [0, 1] × [0, 1], the histo-
grams of 2500 instances are given in Figure 4.4.6 on page 61 and Figure
4.4.7 on page 62. The average of suboptimality gaps ΦMPI is 4.16. The
average of performance gains ΓCS is 104.18. The average of performance
gains ΓEP is 98.79. The average of the relaxation gap Ψ is 140.53.

When µ1 and µ2 are uniformly distributed over [2, 4]× [1, 2], the histo-
grams of 2500 instances are given in Figure 4.4.8 on page 63 and Figure
4.4.9 on page 64 . The average of suboptimality gaps ΦMPI is 0.26. The
average of performance gains ΓCS is 28.92. The average of performance
gains ΓEP is 32.18. The average of the relaxation gap Ψ is 53.24.
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Figure 4.4.1. The benchmarks for the MPI heuristic
as buffer size changes.

It is interesting to note that while the distribution of the relative sub-
optimality gap for the MPI heuristic remains the same in all four scen-
arios above, the gain of the MPI heuristic over the CS policy and the EP
policy are most visible when the arrival rate varies. Moreover, regardless
of large relaxation gaps, the MPI heuristic policy performs well.

4.4.2. Eight-class Case. Let Z(1) be the objective of the first or-
der relaxation in (4.2.2), Z(2) the objective of the second order relaxation
in (4.2.3), ẐMPI

τ the sample mean of reward gained during the first τ

seconds where the system is initially empty. Similarly define ẐCS
τ and

ẐEP
τ . From the ergodic theorem, the random variables ẐMPI

τ , ẐCS
τ ,

and ẐEP
τ converge to ZMPI, ZCS, and ZEP respectively as τ goes to

infinity almost surely. In the example below, we always assume that
τ = 1000 and shall drop the subscript τ .
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Figure 4.4.2. The histograms of ΦMPI and ΓCS for
2500 instances when r′1 and r′2 are uniformly sampled
over [0, 2]× [4, 6].
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Figure 4.4.3. The histograms of ΓEP and Ψ for 2500
instances when r′1 and r′2 are uniformly sampled over
[0, 2]× [4, 6].
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Figure 4.4.4. The histograms of ΦMPI and ΓCS for
2500 instances when r′′1 and r′′2 are uniformly sampled
over [−6,−4]× [−2, 0].
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Figure 4.4.5. The histograms of ΓEP and Ψ for 2500
instances when r′′1 and r′′2 are uniformly sampled over
[−6,−4]× [−2, 0].
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Figure 4.4.6. The histograms of ΦMPI and ΓCS for
2500 instances when λ1 and λ2 are uniformly sampled
over [0, 1]× [0, 1].
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Figure 4.4.7. The histograms of ΓEP and Ψ for 2500
instances when λ1 and λ2 are uniformly sampled over
[0, 1]× [0, 1].
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Figure 4.4.8. The histograms of ΦMPI and ΓCS for
2500 instances when µ1 and µ2 are uniformly sampled
over [2, 4]× [1, 2].
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Figure 4.4.9. The histograms of ΓEP and Ψ for 2500
instances when µ1 and µ2 are uniformly sampled over
[2, 4]× [1, 2].
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Define the gap between the first order relaxation and the MPI heuristic
as follows, when Z(1) 6= 0.

Φ̂MPI , 100
Z(1) − ẐMPI

Z(1)

and the relative sample gain (with respect to Z(1)) of the MPI heuristic
over the CS policy,

Γ̂CS , 100
ẐMPI − ẐCS

Z(1)
.

Similarly we define Γ̂EP.

We define the relative gap of the first order relaxation (with respect to
Z(2)) as follows,

Ψ , 100
Z(1) − Z(2)

Z(2)
.

We generated 10000 problem instances with bk randomly sampled from
integers between 2 and 8 for all k; λk, µk uniformly sampled between
[0.01, 5.0], r′k and r′′k uniformly sampled between [0, 10],[−10, 0] respect-
ively. All parameters for all job classes are sampled independently. For
each instance we simulate τ = 1000 seconds of the running system and
obtain Φ̂MPI, Γ̂CS, Γ̂EP and Ψ. The histograms of Φ̂MPI, Γ̂CS, Γ̂EP

and Ψ are shown in Figure 4.4.10 on page 67 and Figure 4.4.11 on page
68.

The averages of Φ̂MPI, Γ̂CS, Γ̂EP and Ψ over all 10000 simulated in-
stances are 5.1, 84.8, 439.1, and 0.0383. In all problem instances, the
MPI heuristic always performs better than the CS policy. The EP policy
outperforms the MPI heuristic on 69 occasions, the worst of which has
Γ̂EP = −12.7 and Φ̂MPI = 17.5. As the histogram of Ψ shows that
its values are often close to 0. It suggests that the first and the second
order relaxations are almost equally strong for the eight-class case. The
maximum of Ψ over all 10000 instances is only 2.47.
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The eight-class examples not only demonstrate the near-optimal per-
formance of the MPI heuristic but also the tightness of the first order
relaxation.
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Figure 4.4.10. The histograms of Φ̂MPI and Γ̂CS for
10000 randomly generated problem instances with τ =
1000.
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Figure 4.4.11. The histograms of Γ̂EP and Ψ for
10000 randomly generated problem instances with τ =
1000.



CHAPTER 5

Conclusions

In this thesis, we have applied the MPI theory to the admission control
to an M/M/1/n queue with the view that the buffer is the resource.
We compared with the previously known results that treat the rejection
action as the resource. Even though the two views are related, the suf-
ficient condition for indexability is different. We also studied the buffer
sharing problem under the Markovian assumptions. It is formulated as
a continuous-time MDP. Our response to the computational infeasibil-
ity takes two steps. First, we utilized the LP formulation of the MDP
to construct hierarchical relaxations. The higher order relaxations are
embedded in the lower ones. Second, we construct a heuristic based
on the MPI for admission control to an M/M/1/n queue. The mo-
tivation is that the optimal policy for each of the sub-problems in the
Lagrangian decomposed first order relaxation can be constructed from
the MPI developed early. We then used discrete simulation to examine
the performance of the MPI heuristic under various conditions.

While we managed to address the buffer sharing model with both the
performance bounds and the simple MPI heuristic, we feel that our work
is only a small step toward leveraging the full potential of the MPI theory
for the resource allocation problems in queueing systems motivated by
practical applications. Future work will doubtlessly benefit from recent
progress in, e.g., the multiple action extension of MPI theory [Web07]
and will lead to the further development of the theory itself. In hope
of conveying the message, we suggest the following natural extension of
our work: joint buffer allocation and scheduling.
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The problem of joint buffer allocation and scheduling is similar to the
buffer sharing model we discussed in Chapter 4 except that all K job
classes also share one or more servers. We can relax both the constraints
of deterministic buffer size and deterministic number of servers. For
the single server case, after applying the Lagrangian decomposition, we
will have K-independent joint admission control and server scheduling
problems to play with. In order to deploy a MPI-like heuristic here,
we need to extend the MPI theory to the following class multi-action,
two-resource MDP model. In this model, at each time epoch, the action
is a pair (a, b) with both a, b ∈ {0, 1} to indicate if each resource of the
respective type shall be used/activated. When the system is in state i

with the action (a, b) taken, the amount of resources consumed for each
type is za

i and qb
i respectively along with the reward ra

i received. If fπ is
the long run average reward, and gπ and hπ are the amount of resources
consumed for the aforementioned two types of resources, the (ν, η)-price
MDP problem is to find the optimal policy that maximizes the long run
average net reward:

max
π∈Π

fπ − νgπ − ηhπ.

The concept of indexability in Definition 2.3 can be extended to this class
of models as following: The class of (ν, η)-price MDP is indexable if there
exists indices (ν∗i , η∗i ) such that it is optimal to take active action a = 1
or b = 1, whenever ν∗i > ν or η∗i > η on the respective resources. When
each of the decomposed problems is indexable by this new definition, the
MPI-like heuristic will arise naturally. Unfortunately, so far no results
similar to PCL(F)-indexability that provide a sufficient for indexability
condition are known for the (ν, η)-price MDP. We hope the work in this
thesis will help some courageous readers in their exploration of similar
problems.
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