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A Note on Type II Convolutional Codes

Rolf Johannesson, Fellow, IEEE, Per Ståhl, Student Member, IEEE,
and Emma Wittenmark, Member, IEEE

Abstract—The result of a search for the world’s second Type II
(doubly-even and self-dual) convolutional code is reported. A rate

= 4 8, 16-state, time-invariant, convolutional code with free distance
= 8 was found to be Type II. The initial part of its weight spectrum

is better than that of the Golay convolutional code (GCC). Generator ma-
trices and path weight enumerators for some other Type II convolutional
codes are given. By the “wrap-around” technique tail-biting versions of
(32 16 8) Type II block codes are constructed.

Index Terms—Convolutional codes, Golay code, tail-biting, Type II
codes.

I. INTRODUCTION

Recently, the existence of a 16-state tail-biting trellis representation
for the (24; 12; 8) binary Golay code was shown by Calderbank,
Forney, and Vardy [1] confirming a conjecture by Forney [2]. By
“unwrapping” the tail-biting generator they obtained the world’s first
Type II, i.e., doubly-even and self-dual (DESD), binary convolutional
code, viz., the rateR = 1=2, time-varying, 16-state, Golay convolu-
tional code (GCC). Stimulated by these remarkable results, Forney
sent an e-mail (Aug. 14, 1997) with “Open questions and conjectures”
to some colleagues. Among the open questions was: “Open question
2. Find additional doubly-even self-dual binary convolutional codes.”

In this correspondence we report on a successful search for the
world’s second DESD; a rateR = 4=8, time-invariant, 16-state
convolutional code was found to be Type II.

Some preliminaries are given in Section II (see also [3]). We give
a brief description of the search procedure in Section III. In Section
IV a few Type II convolutional codes are presented and in Section V
we use a “wrap-around” technique to construct(32; 16; 8) Type II,
tail-biting block codes from our rateR = 4=8 convolutional codes. In
Section VI we give the initial part of the weight spectrum for a Type II,
rateR = 1=2, time-varying, 256-state convolutional code that Kötter
and Vardy constructed by “unwrapping” the(48; 24; 12) Type II, tail-
biting quadratic residue (QR) block code.

II. PRELIMINARIES

In a rateR = b=c binary, convolutional encoder the information
sequenceuuu = � � �uuu

�1uuu0uuu1uuu2 � � �, whereuuui = (u
(1)
i

u
(2)
i

� � � u
(b)
i

),
is encoded as the code sequencevvv = � � � vvv

�1vvv0vvv1vvv2 � � �, where
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vvvi = (v
(1)
i
v
(2)
i

� � � v
(c)
i
). The sequences must start at some finite time

(positive or negative) and may or may not end. We write

vvvt = uuutG0 + uuut�1G1 + � � �+ uuut�mGm (1)

where the parameterm is called the memory of the code andGi; 0 �
i � m; is a binaryb � c matrix.

Using (1) we can write the expression for the code sequence as

� � �vvv
�1vvv0vvv1vvv2 � � � = (� � �uuu

�1uuu0uuu1uuu2 � � �)GGG (2)

or, in shorter notation, as

vvv = uGuGuG (3)

where

GGG =

G0 G1 � � � Gm

G0 G1 � � � Gm

. . .
. . .

. . .

: (4)

It is often convenient to express the information and code sequences in
terms of the delay operatorD

uuu(D) = � � �+ uuu
�1D

�1 + uuu0 + uuu1D + uuu2D
2 + � � � (5)

vvv(D) = � � �+ vvv
�1D

�1 + vvv0 + vvv1D + vvv2D
2 + � � � : (6)

Then we have

vvv(D) = uuu(D)G(D) (7)

where the generator matrixG(D) is ab�c full-rank matrix with entries
in the field of realizable rational functions [3].

When an information sequence is encoded using a tail-biting trellis
we impose thetail-biting condition, i.e., the starting state of the en-
coder is equal to its terminating state. A tail-biting trellis is therefore
sometimes defined on a circular time axis. The generating matrixG
for a rateR = K=N tail-biting block code can be obtained from the
semi-infinite generator matrixGGG of memorym, given in (4), for a rate
R = b=c = K=N convolutional code as follows. First we truncateGGG
afterL = K=b rows (K is assumed to be a multiple ofb). Then we
“wrap-around” theith columns, whereL < i � L+m and obtain

GGGtb =

G0 G1 � � � Gm

G0 G1 � � � Gm

. . .
. . .

. . .

G0 G1 � � � Gm

Gm G0 G1 � � � Gm�1

Gm�1 Gm

. . .
. . .

...
...

. . .
. . . G1

G1 G2 � � � Gm G0

(8)

which is anL�L generator matrix for the tail-biting representation of
a block code [3].

0018–9448/00$10.00 © 2000 IEEE
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The dual codeC? to a block or convolutional codeC is the set of
all codewords orc-tuples of sequencesvvv? such that the inner product
(vvv; vvv?)

def
= vvv(vvv?)T is zero, i.e.,vvv andvvv? are orthogonal, for all finite

vvv in C. The dual codeC? to a rateR = b=c code is a rateR = (c�b)=c
code. It may be generated by any generator matrixGGG? such that

GGG GGG?
T

= 0: (9)

A linear code is said to beself-orthogonalif it is contained in its
dual, andself-dualif it is equal to its dual. A linear code is said to be
evenif all codeword weights are even, anddoubly-evenif all codeword
weights are multiples of four. Doubly-even self-dual codes are called
Type II [4].

III. SEARCH STRATEGY

Our search for Type II, rateR = 4=8, 16-state convolutional codes
goes as follows:

First we obtain by computer search a (huge) set of rateR = 1=8
doubly-even, two-state convolutional codes. Their generators serve as
building blocks that are pairwise combined to rateR = 2=8, four-state
convolutional codes that are tested for doubly-evenness. The (huge) set
of doubly-even, rateR = 2=8, four-state convolutional codes contains
the final building blocks that are again pairwise combined. Thus we
obtain rateR = 4=8, 16-state convolutional codes that are in turn tested
for doubly-evenness. Finally, we exploit [1, Lemma 3], i.e., a block or
convolutional binary, linear code is doubly-even if and only if it is self-
orthogonal and has a set of noncatastrophic doubly-even generators.
Hence, our doubly-evenR = 4=8 convolutional codes, if any, are also
self-orthogonal, or equivalently, self-dual.

IV. DOUBLY-EVEN SELF-DUAL CONVOLUTIONAL CODES

Using the search strategy described in Section III we found the
world’s second Type II, i.e., doubly-even and self-dual, convolutional
code. It is a rateR = 4=8, time-invariant, unit-memory (16-state),
binary convolutional code encoded by generator matrix as shown in
(10) at the bottom of this page. It has free distancedfree = 8 and its
path weight enumerator is

T2(W ) = W 8 33� 6W 4 + 8W 8
� 138W 12 + 260W 16

�226W 20 + 112W 24
� 32W 28 + 4W 32 =

1� 30W 4
�W 8 + 20W 12 + 32W 16

�74W 20 + 56W 24
� 22W 28 + 4W 32

= 33W 8 + 984W 12 + 29561W16 + 887016W20 + � � �

(11)

which is better than that of the GCC when considered as a rateR =
4=8, time-invariant convolutional code, viz.

TGCC(W )=49W 8+1352W12+38521W16+1096224W20+� � � :

(12)

When we consider the GCC as a time-varying rateR = 1=2 convo-
lutional code it is reasonable to average the spectra for the four different
phases. With this convention we have

TGCC(W )=12:25W 8+338W 12+9455:25W16+264376W20+� � � :

(13)

If we multiply the valuesn8 andn12 in (13) by four, then we obtain
the numbers given by (12) but

4n16 = 4 � 9455:25 = 37821 (14)

which is 700 less than the corresponding number for the rateR = 4=8
GCC. This discrepancy is explained in [1].

The extended path enumerator, which counts the paths not only ac-
cording to their weights but also according to the number of1’s in the
information sequences, for the generator matrixG2(D) is

T2(W; I) = (4I + 6I2 + 8I3 + 4I4 + 5I5 + 4I6 + I7 + I9)W 8

+ (15I2 + 43I3 + 94I4 + 120I5 + 145I6 + 143I7

+ 136I8 + 108I9 + 73I10 + 52I11 + 35I12

+ 10I13 + 7I14 + 3I15)W 12 + � � � : (15)

For the rateR = 4=8 GCC with the generator matrix, as shown in (16)
at the bottom of this page, we have

TGCC(W; I) = (4I + 9I2 + 12I3 + 9I4 + 8I5 + 6I6 + I8)W 8

+ (7I2 + 40I3 + 113I4 + 188I5 + 233I6 + 260I7

+ 212I8 + 148I9 + 91I10 + 40I11 + 15I12

+ 4I13 + I14)W 12 + � � � (17)

We also found rateR = 4=8, time-invariant, unit-memory (16-
state), binary convolutional codes encoded by the generator matrices
shown in (18)–(20) (see the top of the following page), respectively.

G2(D) =

0 0 1 D 1 +D 1 +D 1 D

D 0 0 1 1 1 +D 1 +D 1

1 +D D 1 +D D D 0 1 0

1 +D 1 +D 0 0 D 1 D 1

(10)

GGCC =

1+D 0 1 0 1 +D 1 1 1

0 1 +D 1 1 D 1 +D 1 0

D D 1 +D 0 0 D 1 +D 1

0 D 0 1 +D D D D 1 +D

(16)
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G3(D) =

1 +D D 1 +D 1 1 0 0 1

0 1 +D 1 D 1 +D 0 1 1

D D 0 1 +D 1 D 1 +D 0

D 0 0 D D 1 +D 1 1 +D

(18)

G4(D) =

1 +D 1 +D D 1 0 1 1 0

D 1 1 +D 1 +D 0 D D 0

D 0 D 1 +D 1 +D 1 0 1

0 D D 0 D 1 1 +D 1 +D

(19)

and

G5(D) =

1 +D 1 +D 1 0 1 0 1 1

D 0 1 +D 1 +D 1 1 1 0

0 D D 0 1 1 1 +D 1 +D

D D D D D D 1 1

(20)

They are all Type II. The generator matricesG3(D) andG4(D) have
the same path weight enumerator asG2(D) but they are not equivalent,
and the path weight enumerator ofG5(D) is given by

T5(W ) =W
8 49� 20W 4 � 168W 8 + 434W 12 � 560W 16

+448W 20 � 224W 24 + 64W 28 � 8W 32

1� 28W 4 � 21W 8 + 118W 12 � 160W 16 + 80W 20

+52W 24 � 112W 28 + 80W 32 � 28W 36 + 4W 40

= 49W 8 + 1352W 12 + 38717W 16 + 1107120W20 + � � � :

(21)

Furthermore, the generator matrices obtained by permuting the
columns ofGGCC(D),G2(D),G3(D),G4(D), andG5(D) are also
nonequivalent.

The extended path enumerators ofG3(D),G4(D), andG5(D) are

T3(W; I) = 4I + 6I2 + 8I3 + 8I4 + 4I5 + I
6 + 2I8 W

8

+ 13I2 + 40I3 + 87I4 + 146I5 + 180I6 + 178I7

+ 121I8 + 94I9 + 60I10 + 30I11 + 25I12

+8I13 + I
14 + I

16
W

12 + � � � (22)

T4(W; I) = 4I + 6I2 + 8I3 + 7I4 + 4I5 + 2I6 + I
7 + I

8
W

8

+ 13I2 + 42I3 + 90I4 + 143I5 + 174I6 + 165I7

+ 137I8 + 100I9 + 57I10 + 35I11 + 18I12

+5I13 + 2I14 + 2I15 + I
16

W
12 + � � � (23)

and

T5(W; I) = 4I + 9I2 + 13I3 + 12I4 + 8I5 + I
6 + 2I7 W

8

+ 7I2 + 38I3 + 108I4 + 200I5 + 278I6 + 268I7

+211I8 + 130I9 + 68I10 + 27I11 + 14I12

+ I
13 + 2I14)W 12 + � � � (24)

respectively.

V. TAILBITING REPRESENTATIONS OFWRAP-AROUND

BLOCK CODES

By the wrap-around technique described in [1] we obtain from the
generator matrixG3(D) given in (18) a tail-biting representation of
the (24; 12; 8) binary Golay code. Applying the same technique to
the generator matricesG2(D) andG4(D) results in(24; 12; 4) block
codes. If we “wrap-around”G5(D) we obtain a tail-biting representa-
tion of the Golay code which is a cyclic rotation of the columns of the
representation of the Golay code given by Kötter and Vardy [5], [6].
Different column permutations of the Golay block code correspond to
convolutional codes with different path weight enumerators. A permu-
tation of the columns of the generator matrix for a block code does not
always correspond to a permutation of columns of the (“unwrapped”)
generator matrix for the corresponding convolutional code. However,
a permutation of the columns of a generator matrix for a convolutional
code always corresponds to a permutation of columns of the corre-
sponding “wrap-around” generator matrix for the block code.

By applying the wrap-around technique toG2(D) we also obtain
a tail-biting representation of the(32;16; 8) Type II block code with
generator matrix

G2 =

00101110 00011101 00000000 00000000

00011111 10000110 00000000 00000000

10100010 11111000 00000000 00000000

11000101 11001010 00000000 00000000

00000000 00101110 00011101 00000000

00000000 00011111 10000110 00000000

00000000 10100010 11111000 00000000

00000000 11000101 11001010 00000000

00000000 00000000 00101110 00011101

00000000 00000000 00011111 10000110

00000000 00000000 10100010 11111000

00000000 00000000 11000101 11001010

00011101 00000000 00000000 00101110

10000110 00000000 00000000 00011111

11111000 00000000 00000000 10100010

11001010 00000000 00000000 11000101

: (25)

For the block codeB2 with generator matrixG2 the state complexity
profile [7], [8] within an8-tuple block isf16; 32; 64; 128; 256; 128;
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64; 32; 16g, which is as bad as it could be. By permuting coordinates
within 8-tuples and adding rows we obtain

G0

2 =

10101101 11100000 00000000 00000000

01111010 00001110 00000000 00000000

00011011 01111000 00000000 00000000

00000111 10110101 00000000 00000000

00000000 10101101 11100000 00000000

00000000 01111010 00001110 00000000

00000000 00011011 01111000 00000000

00000000 00000111 10110101 00000000

00000000 00000000 10101101 11100000

00000000 00000000 01111010 00001110

00000000 00000000 00011011 01111000

00000000 00000000 00000111 10110101

11100000 00000000 00000000 10101101

00001110 00000000 00000000 01111010

01111000 00000000 00000000 00011011

10110101 00000000 00000000 00000111

(26)

which has the state complexity profile

f16; 32; 64; 32; 64; 32; 64; 32; 16g:

By the “wrap-around” technique we obtain rateR = 16=32, Type
II, tail-biting block codes with generator matricesG3, G4, andG5

from the generator matricesG3(D),G4(D), andG5(D), respectively.
The generatorsG3 andG4 have the same state complexity profile
as G0

2 while the state complexity profile forG5, f16; 32; 16; 32;
16; 32; 16; 32; 16g, is the same as that of the Golay code.

Let Ai denote the number of codewords of weighti in the block
codeB. Then the block codesBj with generator matricesGj , where

j = GCC; 2; 3; 4; 5, all haveA0 = A32 = 1, A8 = A24 = 620,
A12 = A20 = 13888, andA16 = 36518. Sloane [9] identified the
block codeB2 as numberC83 in the list of self-dual codes [4], [10]. Its
name isg2+16 and its group order10321920 = 215 �32 �5�7. (Sloane had
earlier identified the(32; 16; 8) code obtained by the “wrap-around”
of the Golay convolutional code asC85, that is,f16+2 with group order
23040 = 29 � 32 � 5 [1], [4].)

VI. CONVOLUTIONAL CODES FROMUNWRAPPEDBLOCK CODES

Kötter and Vardy constructed the following generator matrix for the
(48; 24; 12) Type II, tail-biting QR code [5], [6] as shown in (27) at
the bottom of this page. It has a period 16 tail-biting trellis with 256
states and its state complexity profile within a16-tuple block is

f256; 512; 256; 512; 256; 128; 256; 512; 256;

512; 256; 512; 256; 512; 256; 512; 256g:

By first swapping rows 7 and 8, 15 and 16, and 23 and 24, and then
unwrappingGKV, Kötter and Vardy obtained a Type II, rateR = 1=2,
time-varying, period16, convolutional code having 256 states. This
Kötter–Vardy convolutional code is quite remarkable. It is time-varying
and is encoded by eight different generators. The outputs at phases
4; 12; and20 and at phases8; 16; and24 are obtained via the time
slices

(11; 10; 11; 01; 11; 11; 01; 10; 00; 11)T

and

(11; 01; 01; 01; 11; 00; 00; 10; 00; 11)T

respectively. These time slices involve 10 information symbols
ut; ut�1; � � � ; ut�9, but the outputs at all other phases are obtained

GKV =

11110001 11110010 11000000 00000000 00000000 00000000

00111111 10000100 11110000 00000000 00000000 00000000

00000110 11110000 11100111 00000000 00000000 00000000

00000011 10111111 01101000 00000000 00000000 00000000

00000000 11101101 01010110 11000000 00000000 00000000

00000000 00111001 11001101 10110000 00000000 00000000

00000000 00000011 10101011 11011100 00000000 00000000

00000000 00001101 11010011 00010111 00000000 00000000

00000000 00000000 11110001 11110010 11000000 00000000

00000000 00000000 00111111 10000100 11110000 00000000

00000000 00000000 00000110 11110000 11100111 00000000

00000000 00000000 00000011 10111111 01101000 00000000

00000000 00000000 00000000 11101101 01010110 11000000

00000000 00000000 00000000 00111001 11001101 10110000

00000000 00000000 00000000 00000011 10101011 11011100

00000000 00000000 00000000 00001101 11010011 00010111

11000000 00000000 00000000 00000000 11110001 11110010

11110000 00000000 00000000 00000000 00111111 10000100

11100111 00000000 00000000 00000000 00000110 11110000

01101000 00000000 00000000 00000000 00000011 10111111

01010110 11000000 00000000 00000000 00000000 11101101

11001101 10110000 00000000 00000000 00000000 00111001

10101011 11011100 00000000 00000000 00000000 00000011

11010011 00010111 00000000 00000000 00000000 00001101

(27)
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via time slices which involve only nine information symbols, viz.
ut; ut�1; � � � ; ut�8. From the time slices for the phases that are
multiples of 4 it follows that information symbolut�8 does not
contribute to the corresponding output. This information symbol does
not contribute to the outputs in the following time instants either;
hence, we do not have to store it! Thus the Kötter–Vardy convolutional
encoder can be realized by only eight memory elements [11], although
not in controller canonical form. (When we use time-varying convo-
lutional codes to prove ensemble properties we consider realizations
in controller canonical form with feedforward shift registers and
time-varying connections [3]. For example, the Golay convolutional
code can be encoded by a rateR = 1=2 time-varying encoder with
four delay elements in controller canonical form.)

We showed that the Kötter–Vardy convolutional code hasdfree = 12
and its first spectral components are

phase n12 n16 n20 n24

1 34 1194 38966 1311243

2 23 678 22724 763371

3 30 834 28438 952966

4 12 381 12882 431568

5 54 1700 56924 1908782

6 22 712 23692 792423

7 21 570 19682 656667

8 13 328 11434 382063

8

i=1

nd 209 6397 214742 7199083

1

8

8

i=1

nd 26:125 799:625 26842:75 899885:375

: (28)

Apart from the Golay convolutional code, the Kötter–Vardy convo-
lutional code is the only Type II, rateR = 1=2, convolutional code
known to us. Calderbank, Forney, and Vardy proved that a Type II, bi-
nary,time-invariantconvolutional code of rateR = 1=2 does not exist
([1, Lemma 4]).

The best rateR = 1=2, time-invariant convolutional code of
memorym = 8 has [12]

T (W ) = 10W 12+9W 13+30W 14+51W 15+156W 16+ � � � (29)

which is better thanTKV(W ) for high signal-to-noise ratios but
worse for low signal-to-noise ratios, sincen13 = n14 = n15 = 0 in
TKV(W ).
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Linear Tail-Biting Trellises, the Square-Root Bound, and
Applications for Reed–Muller Codes

Yaron Shany and Yair Be’ery, Senior Member, IEEE

Abstract—Linear tail-biting trellises for block codes are considered. By
introducing the notions of subtrellis, merging interval, and sub-tail-biting
trellis, some structural properties of linear tail-biting trellises are proved.
It is shown that a linear tail-biting trellis always has a certain simple struc-
ture, the parallel-merged-cosets structure. A necessary condition required
from a linear code in order to have a linear tail-biting trellis representation
that achieves the square-root bound is presented. Finally, the above condi-
tion is used to show that for 2 and 4 1 or 4 and

+ 3 (4 + 5) 3

the Reed–Muller code RM( ) under any bit order cannot be repre-
sented by a linear tail-biting trellis whose state complexity is half of that of
the minimal (conventional) trellis for the code under the standard bit order.

Index Terms—Linear tail-biting trellis, Reed–Muller codes, square-root
bound.

I. INTRODUCTION

Following the success of the turbo decoding algorithm, the subject of
decoding a code using aTanner graph[16] became very popular (see
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