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Abstract

This paper presents a study of extraordinary transmission (EoT) through
arrays of sub-wavelength apertures. Fundamental limitations for this phe-
nomenon are formulated as a sum rule, relating the transmission coefficient
over a bandwidth to the static polarizability. The sum rule is rigorously derived
for arbitrary periodic apertures in thin screens. By this sum rule we establish
a physical bound on the bandwidth of EoT which is verified numerically for
a number of aperture array designs. We utilize the sum rule to design and
optimize sub-wavelength frequency selective surfaces with a bandwidth close
to the physically attainable. Finally, we verify the sum rule and simulations
by measurements of an array of horseshoe-shaped slots milled in aluminum
foil.

1 Introduction
Periodic sub-wavelength perforations in a metal screen can make the screen trans-
parent to electromagnetic waves for certain frequency ranges, which depend on the
geometry and periodicity of the perforations [11, 23, 26]. This is expected from
the theory of diffraction for rather large perforations [5, 21], but it also holds true
for perforations covering only a small fraction of the screen’s area. For example,
a metal screen with 5 % of its surface removed by perforations can be designed to
have frequency bands with 80 − 100 % transmission level. Due to its nature, be-
ing both counter intuitive and contradictory to the classical theory of diffraction
at optical frequencies [5, 21], this phenomenon is called extraordinary transmission
(EoT). EoT was described two decades ago by Ebbesen et al. [11] for waves in the
optical frequency range. Experimental studies and theoretical proposals describing
the phenomenon have been presented e.g., in [23, 26]. The same phenomenon was
also observed and discussed for electromagnetic millimeter waves, see e.g., [3, 27],
and in acoustics [25].

From a theoretical perspective, EoT has been explained by surface plasmon
polaritons at optical frequencies [14, 23], and by spoof plasmons at radio frequen-
cies [32]. Alternative approaches to understanding this phenomenon include the
theory of scattering by obstacles inside closed waveguides [27], impedance matching
models [1], cavity resonances [9], and dynamical diffraction [36]. A simple interpre-
tation of the EoT phenomenon, which is the one adopted throughout this paper, is
that of a resonance of a periodic structure.

EoT applications include spatially tunable filters, near-field imaging and modu-
lators as well as negative refractive index metamaterials [13]. In frequency selective
surface (FSS) design the subwavelength apertures are commonly used [29]. A pro-
posed FSS application is in slotted infrared-protective metalized windows [17]. These
would be transparent for cell phone signals, to increase coverage inside of buildings,
while serving as a barrier for infrared waves. Also, EoT structures localize high
power flow within the apertures [4]. This effect can be additionally increased by
designing apertures with narrow slots. This can be used to create nonlinear devices
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with strong concentration of fields. A further application is the Bethe-hole direc-
tional coupler [5, 21], where a periodic sequence of apertures in a wall joining two
waveguides is designed to provide a coupling mechanism in the band of interest.

A limiting factor of EoT is that the frequency bands where the effect occurs are
rather narrow. Naturally, it is desirable to understand the limitations of this effect;
how much bandwidth is achievable and at what frequencies. The tuning of the EoT
bandwidth is an iterative trial-and-error procedure, usually assisted by heuristically
reasoned guidelines [29]. To facilitate this procedure, a physical bound in the form
of a sum rule is proposed.

In this paper, we present a derivation of the EoT sum rule, which shows that the
total EoT bandwidth is limited from above by the normalized static polarizability of
the structure. We validate the sum rule by comparison both with simulated periodic
structures, and also with measurements. We illustrate how the sum rule can be
utilized in the design and bandwidth optimization of FSS. The sum rule is derived
here for structures consisting of an infinitely thin perfect electric conductor (PEC)
screen. We show by simulations that the transmitted power and bandwidth of a
generic periodic design is not greatly affected by a finite thickness and conductivity
up to certain limits. This motivates the use of the sum rule in evaluation of real
structures as well as in a penalty function in optimization. A horseshoe slot aperture
was designed and optimized utilizing the sum rule to maximize the transmission
bandwidth in the lowest frequency peak. This design was manufactured in aluminum
foil and measured in the frequency range 10 to 20 GHz.

The rest of the paper is organized as follows. Section 2 formulates the problem of
scattering against periodic screens, and Section 3 gives a derivation of the sum rule
for periodic structures. Numerical examples validating and illustrating the sum rule
are presented in Section 4 along with a demonstration of how the sum rule is used
in the design process. Section 5 investigates the applicability of the sum rule for
non-ideal structures. Section 6 provides the details of the manufacturing process and
the measurement setup, and presents the measured transmission coefficient, which
is also compared to the theoretical predictions. Finally, the results of this paper are
summarized and discussed in Section 7.

2 Scattering by periodic perforated screens
We consider the scattering of a linearly polarized electromagnetic plane wave by
a periodically perforated metal screen in free space, see Figure 1. The goal is to
quantify the amount of transmitted power that passes through the structure and
continues to propagate as a wave of the same frequency, polarization and direction
as the incident wave. To accomplish this, we extend the initial theoretical results
reported in [16], and use them to impose a bandwidth bound on the power trans-
mission of such structures. The theory is derived under the assumption that the
structure is an infinitely thin two-dimensional periodic PEC screen of infinite ex-
tent in the plane normal to the incident wave direction. In Sections 5 and 6, these
assumptions are validated to be reasonable approximations for power transmission
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through real structures.
The screen is placed in the xy-plane at z = 0, and the unit cell is defined by

the lattice vectors lxx̂ and lyŷ. The incoming wave with the associated electric
field E(i)(k, r) = E(i)eik·rê is propagating in the positive z-direction, where ê is the
polarization unit vector, k = ω/c is the wave number in free space with ω and c
being the angular frequency and the speed of light in vacuum, respectively, k = kẑ
is the wavevector, r is the field position vector, and the time convention e−iωt is used.
Interaction between the incident wave and the structure gives rise to the scattered
field. We denote the scattered field in z < 0 as the reflected field E(r)(k, r), and the
total field in z > 0 as the transmitted field E(t)(k, r). A spectral decomposition of
the transmitted field in Floquet modes is

E(t)(k, r) =
∞∑

m,n=−∞

E(t)
mn(k)eikmn·r, (2.1)

where kmn = kx,nx̂+ky,mŷ+kz,mnẑ are the modal wave vectors with kx,n = 2πn/lx,
ky,m = 2πm/ly, kz,mn =

√
k2 − k2

x,n − k2
y,m and E(t)

mn(k) are the expansion coeffi-
cients. The latter are related to the incident field through a linear mapping

E(t)
mn(k) = Tmn(k) ·E(i)(k, z = 0), (2.2)

where Tmn(k) are the transmission dyadic tensors. For frequencies below the first
grating lobe, f < c0/max{lx, ly} [29], only the fundamental mode is propagating.
We define the co-polarized transmission coefficient for the fundamental mode as
T (k) = ê ·T00(k) · ê.

Given a transmission threshold T0 we define the transmission bands as intervals
of k, where |T (k)| > T0. For the largest such interval (the main band) with endpoints
k1 and k2, the fractional bandwidth is

B = 2
k2 − k1

k1 + k2

. (2.3)

In this paper, we characterize how the fractional bandwidth depends on various
perforation shapes with respect to different metrics, such as aperture area, or size
of a minimal enclosing square, see Sp and a respectively, in Figure 2a. We strive
towards having the bandwidth of the lowest-frequency transmission peak to be as
large as possible.

3 Derivation of the sum rule
In this section, the derivation of the sum rule is presented. It is based on the passive
properties of the screen [37], with an associated system response that can be trans-
formed into a Herglotz function [2, 30], associated with the scattering system. An
integral identity is applied to this function to obtain the extraordinary-transmission
sum rule. The main theoretical result is the sum rule in (3.7), from which an upper
bound of (2.3) is obtained in (3.9).
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Figure 1: A periodic planar array with normally incident (i), reflected (r) and trans-
mitted (t) waves.
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Figure 2: (a) An example of the unit cell geometry, with perforated area Sp, con-
tained in a minimal enclosing square of size a, and the unit cell size l = lx = ly; (b)
Range of the transmission coefficient T (k) ∈ D in the complex plane.

Passivity of the scattering configuration [18, 31, 37] allows an analytical extension
of T (k) for k ∈ C+, where C+ = {k ∈ C : Im k > 0} is the upper half plane. Apart
from analyticity, a few additional properties are required to construct a physical
bound in the form of a sum rule. The impinging wave generates electric currents
on the screen. From the assumption of negligible thickness of the screen it follows
that the scattered field is symmetric relative to the screen, i.e., E(t) − E(i) = E(r)

at z = 0. This can be rewritten as T (k) = 1 + R(k), where R(k) is the reflection
coefficient defined for E(r) similarly as T (k) is defined for E(t). This, combined
with conservation of power |T (k)|2 + |R(k)|2 ≤ 1, yields |T (k)− 1/2| ≤ 1/2. Thus,
the transmission coefficient is a holomorphic mapping from the upper complex half-
plane C+ to the closed disc D with center at 1/2 and radius 1/2 in the complex
plane, see the green disc in Figure 2b.

In order to obtain the sum rule, we transform the system response T (k) in such
a way that it becomes a Herglotz function, which is a mapping from the upper com-
plex half-plane to its closure. Details about Herglotz functions and the associated
integral identity used here are reviewed in Appendix A.
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Here, we consider a Möbius transform [10], m(ζ) = i(1 − ζ)/ζ, which maps the
disc D to the closed upper complex half-plane. We compose it with the transmission
coefficient to obtain a symmetric Herglotz function

g(k) = m(T (k)) = i
1− T (k)

T (k)
. (3.1)

A key element to derive the sum rule is the high and low frequency behavior
of the transmission coefficient T , see (A.2) in Appendix A. To determine the low-
frequency behavior we utilize Babinet’s principle, the field E(t) transmitted through
an aperture screen and the field E(t)

c transmitted through the complementary struc-
ture are related as E(t) +E

(t)
c = E(i) [6, 24], where E(i) is the incident field in both

cases, see also a single aperture case in [19]. Hence, the low-frequency expansion
(i.e., k→̂0) can be found by investigating the complementary structure. In the com-
plementary structure, the perforations are filled with perfect magnetic conductor
(PMC) in the xy-plane and the PEC is removed. The transmission coefficient of
the complementary structure is Tc(k) = 1− T (k) [19]. Its low-frequency expansion
is [18, 20, 22, 0]

Tc(k) ∼ 1 +
ikγ

2A
as k→̂0, (3.2)

where γ = (ê · γe · ê + (k̂ × ê) · γm · (k̂ × ê)), k̂ = ẑ is the wave propagation
direction, γe and γm are the electric and the magnetic polarizability tensors of the
complementary structure, respectively, and A = lxly is the area of the unit cell. This
gives us the expansion for the perforated PEC screen

T (k) ∼ − ikγ

2A
as k→̂0. (3.3)

Note that the polarizabilities used here are the polarizabilities for the complementary
structure. Furthermore, for a planar PMC array and the electric field direction ê
parallel to the array plane, the term ê · γe · ê vanishes, and thus we only need
to calculate the magnetic polarizability. The magnetic polarizability of a PMC
structure can be calculated as the electric polarizabilities of a PEC structure of the
same shape, see e.g., [18, 34].

To construct the desired sum rule, we apply a Herglotz function with specific
properties to g(k) in (3.1). The resulting function will be a Herglotz function, as
non-zero Herglotz functions satisfy the property that a composition of two Herglotz
functions is a Herglotz function [2]. To obtain an effective sum rule, we want to
characterize the total attainable bandwidth. To do this, we need to emphasize the
bands where the transmission is higher than a chosen threshold T0 and to disre-
gard the rest of the spectrum. The desired function h∆ should have the properties
Imh∆(g(k)) = 1 when |T | ≥ T0 and zero otherwise. The pulse Herglotz function [2]

h∆(ζ) =
1

π
ln
ζ −∆
ζ +∆

∼
{

i as ζ → 0

−2∆
πζ

as ζ →∞, (3.4)

satisfies these criteria and has previously been used to construct sum rules for passive
metamaterials [15] and high-impedance surfaces [20]. For any real-valued argument
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x this function has the property Imh∆(x) = 1 for |x| < ∆ and Imh∆(x) = 0 for
|x| > ∆. We use this property later to relate the resulting integral identity with the
fractional bandwidth (2.3) for the lossless case. For the composed function h∆(g(k)),
the connection between the parameter ∆ and the threshold T0 is found from relating
∆ to a threshold value of g(k) (i.e. when |T (k)| = T0)

∆2 =
1− T 2

0

T 2
0

. (3.5)

Finally, we apply the integral identity (A.2) to the function h∆(g(k)). From (3.3)
we obtain that T (k) ∼ −ikγ/(2A) for k→̂0. Combining this result and the low-
frequency asymptote of (3.1), we get g(k) ∼ −2A/(γk) as k→̂0. Consequently, the
function h∆(g(k)) has the low-frequency expansion h∆(g(k)) ∼ kγ∆/(Aπ) for k→̂0.
Performing the same steps for the high frequency limit yields h∆(g(k)) ∼ o(k) as
k→̂∞. Thus, according to (A.2) we find the sum rule

∞∫
0

Imh∆(g(k))

k2
dk =

γ∆

2A
. (3.6)

After substituting λ = 2π/k and reusing g(λ) for (3.1) as a function of wavelength,
an alternative form of the sum rule is

∞∫
0

Imh∆(g(λ)) dλ =
γ∆π

A
. (3.7)

From this sum rule expression we deduce the upper bound of (2.3) convenient for
practical use. The sum rule shows that the total sum of transmission bands of
an aperture array is determined by the array’s polarizability per unit area. Note
that the right-hand side of (3.7) is always strictly positive and hence there must
exist intervals with non-zero transmission. Moreover, the transmission is perfect
(|T (λ0)| = 1) for some wavelength λ0 if the structure is resonant below the onset
of grating lobes and the cross polarization is negligible. This is a consequence of a
lossless scattering system (|T |2 + |R|2 = 1) for which T is located on the boundary
circle of D, in Figure 2b. This implies that Imh∆(g(λ)) = 1 for some wavelength
interval of nonzero length, i.e., there always exists a transmission band with an
arbitrarily high level of transmission.

Note that, although ohmic losses are eliminated for screens made of PEC material
the scattering system is in general lossy due to radiation in other modes than the co-
polarized fundamental mode in (2.2). Such radiation is perceived as losses from the
system point of view, and includes higher-order modes radiating above the grating
lobe frequency, as well as the cross-polarized mode below the first grating lobe. We
refrain here from considering lossy materials from a theoretical perspective, which
is given in [16], as the resulting lossy case bound is in general not tight. Instead, we
treat our lossless PEC model as an approximation of a highly conductive low-loss
screen. Further discussion on the validity of the model is provided in Sections 5-6.
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Figure 3: Cross potent: transmittance as a function of wavelength and the unit cell
geometry. Transmission bands with respect to the threshold level T 2

0 (dotted line)
are shown by the integrand function Imh∆(g(λ)) of (3.7).

For practical applications the integration over a finite interval of wavelengths
[λa, λb] is performed (e.g., see Figure 3 with [λa, λb] = [0.6l, 5.2l], where l is the unit
cell size)

λb∫
λa

Imh∆(g(λ)) dλ ≤ γπ∆

A
. (3.8)

Assume now that within the interval [λa, λb] there are a number of mutually disjoint
subintervals, where |T | ≥ T0. As an example, in Figure 3 we observe two intervals
for λ/l > 0.9 with transmission higher than T0 = 0.8, where the widest is located
around λ/l = 3. In this paper, we focus mainly on the bandwidth of the widest
transmission band. If we retain only the contribution of the largest transmission
band with endpoints λ1 and λ2, and normalize (3.8) with the central wavelength
λ0 = (λ1 + λ2)/2 of the corresponding band, we obtain a bound for the fractional
bandwidth

B = 2
λ1 − λ2

λ1 + λ2

≤ γπ∆

Aλ0

. (3.9)

4 Numerical examples and applications of the bound
We begin this section with illustrating the sum rule (3.7) by analyzing a given FSS
design. The numerical example in Figure 3 shows the transmittance |T |2 through
an array of cross-potent (sometimes referred to as Jerusalem cross) [28, 29] shaped
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apertures as a function of the normalized wavelength. The assumptions of the
idealized model are retained: the screen is infinitely thin and made of PEC material,
and the array of perforations is infinitely periodic. The unit cell geometry is given,
with lx = ly = l, slot width w = l/20, and parameters a = 0.9l and b = 0.4l.
The numerical analysis was performed in CST MW Studio using the frequency
domain solver and Floquet mode ports. The results show the main transmission
band (transmittance threshold level |T0|2 = 0.8) centered at λ = 2.9l, with the
fractional bandwidth B = 0.24. This accounts for 86% of the upper bound limit
in (3.9). For the wavelengths shorter than 0.9λ, we observe multiple narrower peaks.
Due to the resonance nature of the phenomenon, an infinite number of such peaks
is expected in the short wavelength limit. The contributions from these peaks,
along with the grating lobes, are also accounted for in the left hand side of the sum
rule (3.7).

In the above cross-potent example, the sum-rule is used to analyze a given FSS
design. Additionally, the sum rule is instrumental to design and optimize FSS, which
we discuss and illustrate in the remainder of this section. One of the most crucial
performance parameters of a periodically perforated screen is the frequency band-
width over which the screen is transparent. The bandwidth optimization of periodic
screens typically involves a considerable amount of full-wave numerical simulations
in order to tune the design. Thus, tools that guide the optimization process and
reduce the number of simulations are desired. The sum rule (3.9) is such a tool, as it
provides a quantitative estimate of the total attainable bandwidth. This can be used
in two ways. First, the total attainable bandwidth is bounded by the static polariz-
ability of a perforation element according to (3.9). Testing the static polarizability
for each design candidate can thus replace numerically costly wide-frequency-range
full-wave simulations in the search of preliminary structure. Second, the total at-
tainable bandwidth, obtained from the polarizability, can serve as a reference for
the fraction of the total bandwidth in the main frequency band. Using this refer-
ence, we can optimize the main frequency band to utilize most of the physically
attainable bandwidth. In this section we demonstrate an optimization procedure
by maximizing the frequency bandwidth of EoT through a perforated screen, while
keeping the area of perforations Sp low (1 − 5% of the total screen area). In gen-
eral, different metrics can be considered instead of Sp, for example, the size of the
smallest enclosing square.

The total achievable EoT bandwidth is determined by the polarizability of the
corresponding complementary structure according to (3.9), as discussed above. We
use this as a guideline to choose the preliminary perforation design. Figure 4 com-
pares the normalized polarizability γ/l3 of an array of square PEC patches of size
a × a and period lx = ly = l with periodic PEC arrays, tightly enclosed by the
square patch structure. Three shapes of enclosed unit cell designs are considered:
a cross potent, a horseshoe and a split ring resonator. According to the monotonic
growth of polarizabilities with volume, the polarizability of an enclosed object can-
not exceed the polarizability of an enclosing object [33]. Thus, the polarizability
of the square patches is the upper bound for the enclosed designs. We observe in
Figure 4 that the horseshoe and the split ring designs approach the upper bound,
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and thus make a good use of the unit cell geometry. The split-ring-resonator unit
cell outperforms the horseshoe-shaped design when they are compared with respect
to normalized distance (l − a)/l between the adjacent perforations.

As an alternative evaluation of performance we can investigate how the shapes
perform with respect to the perforation area. Figure 5 shows the normalized static
polarizability γ/l3 as a function of the percentage of perforation area in the total
area of the screen α = Sp/A, where l = lx = ly is the size of a unit cell, see Figure 2a.
Here, solid, ◦-dashed, �-dashed and ?-dashed lines correspond to square hole, cross
potent, horseshoe and split ring resonator designs, respectively. All the designs
were contained within the square of size a, and the slot width for the cross potent,
horseshoe and split ring was fixed at w = a/17, see e.g., Figures 3 and 6, while the
unit cell size l was varied in the range [1.03a, 11.15a], [1.04a, 4.67a], [1.03a, 4.12a] and
[1.38a, 6.17a] for the corresponding design, respectively. The evaluation of static po-
larizabilities was performed via a variational approach [0] in COMSOL Multiphysics
electrostatic solver.

We observe among all considered shapes that the horseshoe utilizes the perfo-
ration area better than the other shapes, in the sense of the upper bound γ/l3 of
the total attainable bandwidth. The square hole perforations are given as a ref-
erence, and all the suggested designs outperform it. The same total bandwidth,
as achieved by cutting out 15% of the screen with square-shaped perforations, can
be attained by cutting out only 2.5% of the screen with the horseshoe-shaped per-
forations. Additionally, the horseshoe-shaped perforations have better mechanical
stability compared to the other considered designs, which finalizes the choice of the
preliminary structure.

Having chosen a horseshoe design as a preliminary structure, we perform op-
timization of its geometrical parameters with respect to its transmission band-
width. Consider the following optimization problem. For a given upper limit α0

of α = Sp/A, make the fractional bandwidth B as close as possible to its upper
bound given by the right hand side of (3.9). We denote the ratio between the band-
width and its upper bound as η(Ω, ∆) = B/(γπ∆/Aλ0). The optimization problem
is formulated as follows for a given ∆

maximize
Ω

η(Ω, ∆)

subject to α(Ω) ≤ α0,
(4.1)

where optimization is performed over the parametrized geometry Ω of the aperture.
We use a genetic algorithm optimization for geometric parameters of a horseshoe
shaped aperture (the shape choice is motivated by Figure 5).

Figure 6 shows the results of optimization of the horseshoe perforation geometry
with α0 = 5%. We start with non-optimized design given by the size a, and l =
1.69a, w1 = w2 = 0.049a. Optimization (4.1) yields the design given by l = 1.43a,
w1 = 0.049a, and w2 = 0.0047a. We observe that the bandwidth is improved
approximately twice, and the main peak contains 96% of the attainable bandwidth,
according to (3.9).
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Figure 6: Horseshoe transmittance, optimized(black curve) and non-optimized(dash-
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5 Implementation of real structures
In Sections 2-4, the theoretical and numerical evaluation of the screen were per-
formed under certain assumptions. Here, we investigate the validity of these re-
sults when the assumptions are relaxed. One of the key assumptions was that the
screen is infinitely thin. Figure 7 illustrates how the screen thickness d affects the
screen’s transmission characteristics. We consider transmission through a screen
with horseshoe-shaped apertures, with slot width w1 = w2 = w, see Figure 6 for
the unit cell geometry. The transmission through an infinitely thin screen is com-
pared with three screens width-to-thickness ratios w/d = {1, 5, 10}. For w/d = 1,
we observe a noticeable bandwidth reduction in comparison with the infinitely thin
case. However, when w/d = 10, the difference between the transmittance of the
infinitely thin screen and the screen of thickness d is negligible, resulting in a band-
width reduction of about 2% (with the threshold (|T0|2 = 0.8) . Figure 7 shows that
transmission bandwidth is reduced with decreasing w/d ratio. This implies that the
inequality in (3.9) is still valid for cases with a finite thickness. However, when the
slot width becomes comparable to the slot thickness, the bound is not tight.

The second crucial assumption made in the derivation of the sum rule was the
PEC material of the screen. Therefore, candidates for screen material should be
highly conductive low-loss metals. To reconcile this requirement with limitations
put on thickness and mechanical stability, aluminum foil was chosen. Alternative
options were metalized dielectric substrate, copper sheet and silver foil. However,
these options impose issues which are hard to resolve in the sum rule or fabrication.
Figure 8 shows the simulated transmittance for a perforated screen made of PEC
or aluminum. The geometrical parameters of the screen are the same as of the
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manufactured sample, to be discussed in the next section. The aluminum screen
has slightly lower amplitude (about 5%) in the transmission peak in comparison
with the PEC screen. However, the bandwidth reduction is negligible. Thus, the
sum rule is applicable to aluminum screens and it is relatively tight.

In the sum rule we also considered an infinite periodicity of the screen. Ref. [8]
reports that 30 periods in both dimensions of the screen is sufficient to ensure a
negligible difference in transmission between finite and infinite structures. The edge
effects can be compensated by time-gating.

12 13 14 15
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0.4

0.6

0.8

1

f , GHz

|T |2 w/d = 1

w/d = 5

w/d = 10
d → 0

Figure 7: Simulated transmittance through an array of horseshoe apertures for
different ratios of the slot width to the screen thickness.

6 Measurements
The final manufactured sample had the unit cell geometry given by the inset in
Figure 6 with l = 6.57 mm, a = 3.43 mm, w1 = 0.3 mm, and w2 = 0.06 mm. The
aperture array was laser milled by a ProtoLaser U3 machine in a sheet of aluminum
foil of thickness d = 0.018 mm. The array consisted of 34 × 45 = 1530 apertures,
and α = 5%. See Figure 9 for the manufactured sample.

The measurement setup is shown in Figure 10. The sample was fixed in a poly-
methyl methacrylate (PMMA) frame fastened by two plastic stands equidistant to
the transmitting and receiving antennas. Standard gain horn Satimo SGH1240 an-
tennas were used, with the nominal frequency range 12.4− 18.0 GHz. The antennas
were installed at the distance 1m from each other. The reference transmission mea-
surements were performed with the empty PMMA frame instead of the sample and
multipath reflections from the surrounding objects and surfaces were filtered out in
the time domain by using time-gating [7, 12] utilizing a tapered cosine window.
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Figure 8: Simulated transmittance of the horseshoe design for manufactured sample,
PEC and Al comparison.

The transmission through the manufactured sample was measured in the fre-
quency range 10− 20 GHz to capture the first transmission peak and to filter mul-
tipath components in an efficient manner. In Figure 11, the red and black solid
curves correspond to the raw data of the measured transmittance and the processed
data obtained by filtering out multipath propagation components using time gating,
respectively, and the dashed curve corresponds to the simulated transmittance of
the infinitely-periodic model of the sample. We observe a fine agreement between
the measured and simulated transmittances in the whole frequency range. The
magnitude and the frequency of the resonance perfectly coincide for simulation and
measurements.

The optimized PEC-bandwidth of the lowest-frequency peak, as shown in Sec-
tion 4, reaches 96% of the available physical bandwidth, based on the sum rule
utilizing the polarizability of the perforation (3.9). As we saw in Section 5, a finite
thickness, but small in comparison with the perforation size, together with a finite
but high conductivity made small perturbations to the transmission peak.

By comparing the measured result with the PEC-simulated results at the 80%
transmittance threshold level, we find that the time-gated measured transmission
peak has 98% of the available bandwidth of a PEC-based structure. The measured
transmission peak is centered at the frequency of 13.52 GHz with the fractional
bandwidth of 5.83%.

The remarkable similarity between measured and PEC-simulated results validate
the use of the PEC-based sum rule as a tool to predict the physically maximally
available bandwidth in thin and highly conductive EoT-screens. We further notice
that the PEC-based upper bound solely utilizes the observation that the screen is a
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Figure 9: Sample manufactured in aluminium foil: the entire sample of the size
238mm×320mm and a close up of the manufactured horseshoe design.

Figure 10: Measurement setup mounted on an optical table. Two blue standard
gain, horn Satimo SGH1240 antennas were used as both receiver and transmitter.
The horns were aligned using two Bosch Quigo Cross line lasers, seen here mounted
on the right antenna. The sample was mounted on a custom made polymethyl
methacrylate frame and held up by two plastic stands.
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Figure 11: Horseshoe slot array: comparison between measured raw data (red),
processed data (black solid) and simulated (blue dashed) transmittance.

passive system.

7 Conclusions
In this paper we have revisited the sum rule for periodic structures and applied it
to an extraordinary transmission problem. We show numerically, that a periodic
PEC-like infinitely thin screen with 5% of its total area cut out as horseshoe shaped
perforations can have up to 96% of its physically attainable bandwidth in its largest
transmission window. The transmittance threshold of this study was set to 80%.
Our numerical investigations illustrate that small perturbations of the PEC-screen
accounting for a finite thickness and a finite but high conductivity marginally per-
turbed the EoT-transmission result. This indicates the validity of the sum rule for
real applications, even though it was derived for an ideal model.

We experimentally validate our results by showing that the transmission char-
acteristics of the first transmission window of a horseshoe design, optimized with
the use of the sum rule, fabricated in a 0.018mm thick highly conducting aluminum
foil with horseshoe perforations, accurately matches the corresponding simulations.
The mutual agreement between the theoretical limitations, numerical and experi-
mental validation is high. The choice of frequency band was selected to fully utilize
the range of the experimental equipment. We conclude that the sum rule can be
used to predict the results of EoT-experiments with highly conductive metal films
in the GHz range, and may be of use in understanding the phenomena at other
frequencies. We also observe that the perforation shape needed to maximize the
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performance of this phenomenon can be rather simple and still gather a high degree
of transmission in one transmission window.

The theoretical sum rule result (3.7) shows that a transmission band at long (in
comparison to the periodicity of the structure) wavelengths exists for any type of
perforations, even infinitely small ones (α → 0). However, the bandwidth of the
transmission peak is proportional to the polarizability, closely related to the shape
and size of the perforations. As a result, it is shown that the static polarizability,
and hence, the transmission bandwidth of an array of square apertures can be at-
tained by periodic perforations of much smaller relative area α, see Figures 4 and 5.
This provides a theoretical ideal model perspective on the earlier works [11, 26], in-
vestigating the ratio of transmission level to perforation area T/α of a transmission
peak by experiment or real-material model. The sum rule (3.7) implicates that in
the ideal setting the ratio T/α can be infinitely large.

The good agreement between the measured transmission peak and the corre-
sponding PEC simulations was enabled by a careful choice of material. By utilizing
aluminum foil we stayed relatively close to the idealized PEC case. There was no
dielectric material supporting the metal, and the foil had high conductivity, which
ensured a high value of in the transmission peak. The foil was also thinner than the
smallest slot in the design. This meant that there was no waveguide-like phenomenon
occurring in the slots. Such an effect has a tendency to shift the spectral localiza-
tion of resonances. This can be compared to the initial investigation performed at
optical frequencies [11, 23, 26], where the aperture sizes are small compared to the
thickness of the materials they are etched in. This explains why these studies exhibit
deviations from ideal models.

Appendix A Herglotz functions
A Herglotz function is a holomorphic function h(ζ) such that Imh(ζ) ≥ 0 whenever
Im ζ > 0, i.e., it is a mapping from the upper complex half plane to its closure.
Functions of this class can have a family of integral identities [2], also known as sum
rules.

Consider a Herglotz-function such that

h(ζ) =

{
a−1ζ

−1 + a1ζ + o(ζ) as ζ→̂0,

b1ζ + o(ζ−1) as ζ→̂∞, (A.1)

where the coefficients a−1, a1 and b1 are real-valued. Here ζ = x+iy. A sum rule [2,
30] for the Herglotz function h with the above expansion is:

2

π

∞∫
0+

Imh(x)

x2
dx

def
= lim

ε→0+
lim
y→0+

2

π

1/ε∫
ε

Imh(x+ iy)

x2
dx = a1 − b1. (A.2)

Above, →̂ denotes the limit in a cone α ≤ arg(ζ) ≤ (π − α) for some α > 0.
Throughout this paper, we utilize the symmetry h(ζ) = −h∗(−ζ∗), which follows
from the real-valuedness of the function in the time domain.
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