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Abstract

Inthis paper, itis demonstrated that a single-receptor biosensor can be used to quantitatively determine each analyte in binary mixtures usir
multivariate data analysis tools based on the dynamic responses received from flow injection peaks. Mixtures with different concentrations
of two phenolic compounds, catechol and 4-chlorophenol, were measured with a graphite electrode modified with tyrosinase enzyme at a
applied potential of-50 mV versus Ag/AgCI. A correction algorithm based on measurements of references in-between samples was applied
to compensate for biosensor ageing as well as differences caused by deviations between biosensor preparations. After correction, the relat
prediction errors with partial least squares regression (PLS-R) for catechol and 4-chlorophenol were 7.4 and 5.5%, respectively, using a
analysis sequence measured on one biosensor. Additional validation mixtures of the two phenols were measured with a new biosensor, prepat
with the same procedure but with a different batch of tyrosinase enzyme. Using the mixture responses for the first sensor as a calibration s
in PLS-R, the relative prediction errors of the validation mixtures, after applying correction procedures, were 7.0% for catechol and 16.0%
for 4-chlorophenol. These preliminary results indicate that by applying correction algorithms it could be possible to use less stable biosensor
in continuous on-line measurements together with multivariate data analysis without time-consuming calibration procedures.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction substrate, i.e., cross-reactivity of these sensors is not desir-
able. In reality, many biological materials are only partially
Biosensors represent a potential screening method in en-selective in their nature (e.g., an electrode modified with per-
vironmental studies, for instance in the analysis of phenolic oxidase enzyme can be utilized for amperometric detection
compoundq1]. As an analytical detector, biosensors have of phenolic compoundf2,3]). However, signals from non-
advantageous properties such as high selectivity and sensitivspecific sensors can favourably be used for pattern recogni-
ity. The production costis also relatively low and the analysis tion, by applying chemometric (or multivariate data analyt-
time is short compared to conventional analytical methods. ical) tools as PCA4], PLS-R[5] or ANN [6] to an array
The traditional direction in the research of biosensors has of sensors where each sensor contains different selectivity
been to construct devices that are selective towards a single€or analytes in a sample matrfX]. The resulting multivari-
ate pattern can be interpreted for qualitative classification of
* Corresponding author. Tel.: +46 46 222 81 64; fax: +46 46 222 45 44, € Samples, usually without exact knowledge of the analyte
E-mail addresseva.dock@analykem.lu.se (E. Dock). composition, and/or for quantitative determination of specific
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analytes in the samples. In case of electrochemical detectionples and analyte samples are linear. Therefore, it is important

in liquid media, such systems are commonly referred to asthat the chosen reference sample and the analyte samples
electronic tonguef8—11]. The number of publications that have similar response patterns during the analysis sequence.
can be related to bioelectronic tongues are still relatively few The simple additive correction meth¢80] is independent

and among them articles can be found based on, e.g., amperef the signal level and has mainly been used to compensate

ometric enzyme-based systems to quantitatively determinefor baseline drift. However, this procedure is generally not

biogenic aminefl2] as well as phenold 3], enzyme inhibi- enough as the only correction method for biosensors since
tion for detection of pesticidg44,15], lectin-liposaccharide  there is high risk for reduction in sensitivity of the sensor
recognition for identification of microorganisnmis6,17], or with time. Multiplicative drift correctior{28], used in some
microbial sensors for determination of ethanol and glucose commercial electronic noses, is a method that makes it pos-
[18,19] sible to compensate for ageing of the sensor, i.e., decreased

An alternative to use arrays for quantification of mixtures sensitivity. The sample correction [@8] is based on mul-
by multivariate data analysis, as describe[d$19], is to use tiplication of factors derived from an algorithm calculated
the information that can be received from a whole dynamic from a curve fitting of references measured regularly during
flow injection peak respong20] detected with a single sen-  the analysis. The procedure allows correction within a single
sor. This has been demonstrated with a single amperometricneasurement sequence as well as between sequences from
microbial sensor in a couple of articl§g1-23] The vari- day-to-day. For the procedure to work in a proper way a high
ations in the flow injection signal from different substrates signal to noise ratio is requested to avoid errors due to an
at the microbial electrode depend on the oxygen consump-inexact curve fitting. An elegant alternative to the discussed
tion and are due to the multi-receptor behaviour of whole correction methods is to apply component correcfgh30]
cells. In this way, it was possible to simultaneously determine on the data. This correction is based on multivariate meth-
each component (<11% in relative error) in ternary mixtures ods (PCA and PLS-R) and the main idea is that the sensor
(acetatep-lactate and succinate) with the microbial sensor drift has a preferred direction in the multivariate space. The
using time dependent responses at flow injection signals to-correction is accomplished by subtracting the drift direction
gether with a non-linear multivariate calibration mofg]. component of the reference responses from the data. Sample
Further, flow injection peaks from amperometric electrodes responses with a low signal to noise ratio is not a problem
modified with a single enzyme (i.e., a single-receptor) have in component correction, but outliers can remarkably affect
clearly shown that different phenolic compounds give differ- the drift direction component and thereby result in a poorer
ent characteristic response shapes when using a horseradistorrection. The method has in some cases resulted in better
peroxidase-bas€@4] or a tyrosinase-based sen$2b]. In precision in the pattern recognition models compared to the
this case, the peak variation can be explained by different other mentioned correction methof#8,30] On the other
diffusion rates and reaction kinetics for different phenols. In hand it will not work well if the drift direction coincides with
this work, the dynamic peak responses from a single amper-significant structural information in the data.
ometric tyrosinase-based sensor are used with multivariate As far as we know, this is the first paper showing that it
data analysis for quantitative determination of catechol and is possible to simultaneously determine the components in
4-chlorophenol in mixtures. binary mixtures using multivariate calibration of whole dy-

Non-linearity of the response, baseline drift and loss of namic flow injection responses from a single-receptor-based
sensitivity with time are common problems with biosensors. biosensor. The paper also demonstrates how a correction pro-
After purification, tyrosinase itself is an unstable enzyme and cedure, multiplicative drift correction developed for gas sen-
its immobilization on an electrode surface is often accompa- sors[28], can be used on whole peak biosensor responses to
nied by addition of stabilizing polymeli26]. Opposite to compensate for drift arising from ageing of the sensor within
chemical or physical stabilization an alternative in the di- a measurement sequence. The method was also used for cor-
rection of creating more stable and reproducible tyrosinaserection between two sensors, prepared with exactly the same
sensors as well as other types of biosensors could be exprocedure, but from different batches of enzyme.
ploitation of mathematical signal correction procedures. One
example of how chemometric tools can be used to correct for
long-term drift has been demonstrated for glucose oxidase2. Experimental
modified carbon paste electrod@3].

Drift in sensors affects the precision of results from pat- 2.1. Chemicals
tern recognition. Several drift correction methods using refer-
ence samples have been developed to overcome this problem Mushroom tyrosinase, 3620 U m§ was purchased from
for electronic noses (i.e., gas sensor arrays), e.g., additive,Sigma (St. Louis, MO, USA). A poly(ester-sulfonic acid)
multiplicative and component correctig@8,29] Some of polymer, Eastman 55 AQ, was from Eastman Kodak
the mentioned procedures have appeared to be successful fafKingsport, Tennessee, USA). POy, NaH,POy and KCI
electronic tongues alsi80]. These correction methods are for preparing buffer solutions were obtained from Merck
based on the assumption that drift in between reference sam{Darmstadt, Germany). Stock solutions (0.1 M) of phe-
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nol (Merck), catechol (Sigma)p-cresol (Merck) and 4-  from phenol to phenol at the tyrosinase-based sensor. The
chlorophenol (Merck) were prepared in methanol. The phe- 36 samples were injected randomly into the flow injection
nolic working solutions were prepared daily by dilution in  system.
20 mM sodium phosphate buffer containing 0.1 M KCl buffer In the same concentration range, 18 new validation sample
at pH 7. Allaqueous solutions were prepared using water pu- mixtures, chosen by a reduced factorial design, were mea-
rified with a Milli-Q system (Millipore, Bedford, USA). sured another day with a new sensor, prepared exactly in the

same way as the first one, but from a new batch of tyrosinase
2.2. Biosensor preparation enzyme.

In order to correct for drift and decreased sensitivity of the
Solid graphite electrodes (SGL Carbon, Werke Rings- sensor, references of catechol (2@) and 4-chlorophenol

dorff, Bonn, Germany, type RW001, 3.05 mm diameter) were (60u.M) were injected in the beginning and at the end of
cut and polished on wet fine emery paper and washed withthe measurement sequences, and after every fourth sample
Milli-Q water. A stock solution of tyrosinase/Eastman AQ mixture.
was prepared by mixing tyrosinase powder directly into a 2%
Eastman AQ solution prepared in 20 mM phosphate buffer 2.5, Pre-processing of data
containing 0.1 M KCI at pH 7, giving a tyrosinase concen-
tration of 36,200 U mit?1. Eight microlitre of the tyrosinase- All peaks from each of the two measurement sequences
Eastman AQ mixture (290 units of tyrosinase) were then ap- were corrected for shift in baseline and aligned to the time of
plied on top of the electrodes and let to dry for 20h &C4  injection. For compensation of decreased sensor responses
before use. The dry sensors were washed with Milli-Q water within an analysis sequence, a multiplicative drift correction

and stored in 20 mM phosphate buffer at pH 7 a€4 method, similar to what was described28], was performed
_ on the binary peaks with help from the references. To sim-
2.3. Equipment plify the correction procedure, responses for 24 evenly dis-

tributed time variables (i.e., time points) from 0.1 to 2.4 min

The tyrosinase modified graphite electrode was fitted into were chosen from the original 260 time variables building
a PTFE holder and placed into a flow through wall jet- up every peak response. For the references of (i) catechol;

amperometric cell31]. The enzyme electrode was used as (ji) 4-chlorophenol; and (iii) additive reference responses of
the working electrode, an Ag/AgCl (0.1 M KCI) electrode catechol and 4-chlorophenol, the decrease in sensitivity was
as the reference electrode and a platinum wire as the countegvaluated by plotting the decay in response for each of the 24

electrode. The electrodes were connected to a three-electrodehosen time variables. All 24 time variables were included
potentiostat (&ta Elektronik, Lund, Sweden) and the cur- in the correction since the decrease in response with time for
rents were registered on a strip chart recorder (Kipp and Zo- biosensors generally is higher at peak maximum compared
nen, Netherlands) and on a computer running Gilson Uni- to variables chosen before and after peak maximum. Each
point software version 3.0 (Gilson, Villiers-le-Bel, France). variable showed nearly a linear dependence in the decay of
All measurements were performed at an applied potential response with time and thus linear equations were fitted to
of —50mV versus Ag/AgCI. A peristaltic pump (Gilson  the data points. The slope and intercept were calculated and
minipuls 3) transported the carrier, degassed 20 mM phos-ysed for correction of the same 24 time variables selected

phate buffer (pH 7) containing 0.1 M KCl, into the ampero- from the sample mixtures accordingBa|. (1)
metric wall jet-cell at a flow rate of 0.3 ml mit. The samples

were injected using a 50 injection loop by a fully auto- responsgyr = responsgg x
mated flow injection system, Gilson ASTED XL Autoinjec-

tor. In digitalised form, each recorded peak current has beenwhere responsg is the response of the corrected variable,
represented by 260 current values evenly distributed over theresponsgg the response of the original variab&eandb the

a
_ 1
a+ bt (1)

entire profile of the current peak signal. intercept and slope, respectively, of the linear equationtand
the elapsed analysis time.
2.4. Experimental design After the individual correction step within the two analy-
sis sequences, compensation was performed of the responses
Binary mixtures of catechol (0, 5, 10, 15, 20 andj28) from the second sensor to fit the sensitivity levels of the first

and 4-chlorophenol (0, 15, 30, 45, 60 andiM8) were usedin sensor. Each of the 24 chosen time variables from the 18 addi-
afull factorial design giving 6 6 = 36 mixtures totally. Each  tional validation mixtures was adjusted for sensitivity differ-
mixture component was chosen from the linear concentrationences to the time variables from the 36 calibration mixtures.
range of the calibration curve of the tyrosinase/Eastman AQ The correction was performed accordingdg. (2)whereac
sensor. The different concentration ranges covering linearity anday are the intercepts for the linearly fitted calibration and
for catechol and 4-chlorophenol is based on the fact that thevalidation reference samples, respectively, respansé¢he
maximum concentration of each phenol that is needed, be-response for the actual validation variable and respgpse
fore non-linearity in the current signal output occurs, differs the calculated validation response corrected against the first
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sensor

a
responSgyrc = responsgymy X —

- )

The pre-processing procedure was performed in Microsoft
Excel 2000.

2.6. Multivariate data analysis

Two common multivariate analysis methods have been

used to linearly decompose the data, principal component

analysis (PCA)4] and partial least squares regression (PLS-
R) [5]. The data to be analysed is collected inXamatrix,
which is made up ofi objects (the number of mixtures) and

p variables (the 24 currents values reflecting the shape of the

flow injection peak responses).
InPCA, theX-matrix is approximated to a product of score
vectors ) and loading vectorsR) containing a simplified

distribution pattern of the objects and the variables, respec-

tively. The main idea with PCA is that the most structural
information in theX-matrix can be found in the directions
where the data have the largest variances. The produkct of
andP build a new orthogonal coordinate system where the
axes are latent variables, i.e., principal components (PCs)
The first PC explains the largest variation in the dXja the

second PC the second largest variation etc. The highest pos

sible number of PCs that can be usedhis 1 (humber of
objects— 1) orp (humber of variables), depending on which

is the smaller, but usually only some few PCs are needed to

visualize hidden structural information and relations in the
data.

PLS-R describes with latent variables how two data ma-
trices X and Y are related to each other by regression. In

301

samples. A better but more time-consuming validation is to
perform a test set. The 18 additional responses detected with
the new sensor was used as a test set and the concentrations
of each component were predicted using the PLS-R calibra-
tion model based on calculations of the previous 36 mixtures
recorded with the first sensor. In this case, the precision of the
prediction is estimated, similar to RMSECYV, by root mean
square error of prediction (RMSEP).

For the multivariate data analysis, a computer running Un-
scrambler software 7.6 (CAMO A/S, Trondheim, Norway)
was used.

3. Results and discussion

Mushroom tyrosinase is a tetrametric protein containing
two active sites; each consists of two copper atoms coordi-
nated with histidine33]. Tyrosinase is a phenol oxidase that
catalyses the oxidation of monophenols ardiphenols into
their corresponding-quinones, at the expense of reducing
oxygen to water. At a tyrosinase modified electrode for am-
perometric measuremeni26,34] the enzymatic reactions
are followed by an electrochemical step at the electrode sur-
‘face where the enzymatically produaeduinone is reduced
to theo-diphenol at an applied potential 650 mV versus
Ag/AgCI. The enzymatic oxidation and the electrochemical
reduction form a reaction cycle that results in an amplification
of the signal response to phenolic compounds. The reaction
cycle for both the enzymatic and the electrochemical steps
are shown irfFig. 1

To be able to use multivariate analysis for quantitative de-
termination of different phenols in binary mixtures with the

case of the tyrosinase biosensor, the sensor responses to tﬁgrosmase biosensor, it is important that differences occur

mixtures build up theX-matrix whereas th&-matrix con-
tains the real concentrations of the analytes in the mixture.
There are several methods for validation of a calculated PL
R model. For the 36 mixtures detected with the first sensor,
cross-validation32] was used in which the mixtures that
build up the PLS-R model is reused for the validation step.
In full cross-validation, one of the objects is systematically
left out from the modelling. The excluded object is used for
testing. For the 36 objects (mixtures), each object is left out
one by one, 36 sub-models are then calculated where eac
model is made of 35 objects. The validation was evaluated
for each phenol in the mixture by an estimation of the linear
correlation coefficient between predicted concentration val-
ues versus reference concentration values and by calculatio
of the root mean square error of cross-validation (RMSECV)
(seeEq. (3)

n
Z (Ypred - yref)2
i=1

RMSECV = 3

n

where ypreq is the predicted concentration valuggss the
reference (real) concentration values anthe number of

S-

in the shape of the flow injection peaks. Preliminary studies
clearly show that such differences in current-time response-
curves could easily be noticed, as showRiig. 2. Especially,
catechol and 4-chlorophenol show large peak shape differ-
ences and were thus chosen for a first attempt to perform a
separation by pattern recognition. The stability of the sensor
was relatively poor; after 10 h of measurements the sensitivity
for catechol was reduced by 50%. Instead of putting efforts
into producing a more stable sensor, the approach in this work
pvas to find mathematical correction procedures that compen-

Quinone - E

H,O € L

n H i E
'Z:-'Z- C

FYR| Catechol T

G R

(0]

0 D

Phenol ¢

Fig. 1. Schematic representation of the mechanism for phenol at a tyrosinase
(TYR)-modified graphite electrode at an applied potential-60 mV vs.
Ag/AgCl.



302 E. Dock et al. / Talanta 65 (2005) 298-305

400
< Catechol 800 -
E 300 E Elapsed
k= £ 600 A i
8 p-Cresol 5 analysis
B =
3 200 4 3 i
3 Phenol $ 4001 i
5 :
2 100 A 4-Chlorophenol g
& & 200
0 0
1 5 4 . . . .
0 3 S 0,0 0,5 1,0 15 2,0 25
Time / min (a) Time variable / min
Fig. 2. Flow injection peak shapes for four different phenolic compounds 600

(251.M concentrations) obtained with a tyrosinase/Eastman AQ modified
electrode at-50 mV vs. Ag/AgCl using a flow rate of 0.3 ml min.
400 4

sate for the decay of sensor sensitivity. The reason for this is
that even if a biosensor has shown good and robust properties
in a couple of laboratory experiments, this does not guaran-
tee that it will be the same in other situations, e.g., if the

enzyme originates from different batches or if changes occur
in the environmental conditions (change in pH, temperature, . . .
analysis matrix, etc.). Thus, mathematical correction proce- 0.0 0.5 1.0 15 20 25

200 -

Response current / nA

; : ; b Ti iable / mi
dures are important factors in the development of commercial ®) ime variable fmin
biosensor devices. , , ‘ ,
400t * o075 1
. i X Lo * 0160 4-chlorophenol
3.1. Multivariate analysis of responses within an . conc.
. 575
analysis sequence . * ous
200' 5/60 . i
. . . * 5/45
The 24 time variables, from each of the 36 mixtures of . "mﬁ . .
catechol and 4-chlorophenol detected with the first sensor, g, 1978 w?zz:)g%g *151‘5’"‘: orts
H ~ * 166- oy *nn
were used to evaluate the effect of correction due to de- & 0 st “rors0 75 .
creased sensitivity. The responses for the samples and the? asias "0
. . e *,
corresponding PCA score plot before correction for sensitiv- vaus T
ity are shown irFig. 3. The down-going response of the addi- ~ -200} w0 20818 1
tive time variables (current values) obtained for catechol and +25/30 O e
4-chlorophenol references, shownFiy. 3a, clearly reflect 200 catechol conc.
the sensor instability. The responses from the 36 mixturesin -400t__. , s s s E
Fio. B df ltivariat vsis. The PCA -600  -300 0 300 600 900
ig. 3o were used for multivariate analysis. The score () PC 1 (78%)

plotin Fig. 3c shows that almost all of the structural informa-

tion can be explained by two PCs describing 78 and 21% of Fig. 3. Current peak-responses (not sensitivity corrected) for 36 different
the variation in data. The points ig. 3c represent the con- mixtures of catechol/4-chlorophenol, each represented by 24 time variables
centration imM of catechol/4-ch|oropheno| and the arrows (points) obtained by flow injection measurements of phenolic solutions.

] . s ! The responses are corrected for shift in baseline and aligned to the time
show the direction of samples with increased concentration of .~ =" "
of injection: (a) additive responses for catechol §20) and 4-chlorophenol

each phenol. The more or |es_5 orthogonal placement of the(gg ,m) references; (b) responses for the 36 mixtures; and (c) PCA score plot
two arrows point to that the signal responses from the two derived from the 36 mixture responses where PC1 and PC2 describe 78 and

phenols can be separated by PCA. However, at ideal circum-21% of the variation in data, respectively. Points represent concentrations
stances the scores would have formed a uniform distribution catechol/4-chlorophenol iaM.

of points inFig. 3due to the chosen evenly distributed phenol

concentrations. This is not the case here. Asitwillbe demon-  Fig. 4 shows the responses and the related PCA score
strated below, the non-even distribution of points can partly plot after sensitivity correction according Em. (1) An ob-

be explained by the continuously decreasing sensor activity.vious improvement of the precision for the additive pheno-
The PCA score plot of all 260 time variables resulted in the lic references is obtained-ig. 4a). The slow peak decay-
same pattern (not shown) as compared to using only 24 timeing process originally observe#ify. 3b) for the mixture re-
variables. Thus, no information is lost after reduction of the sponses is made fastdfig. 4b) after the correction proce-
number of variables. dure. Regarding the PCA score plétd. 4c), a more uni-
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using individual responses for catechol or 4-chlorophenol.
The result is listed iMable 1 It can clearly be seen that any
mode of correction improves the prediction of concentrations
for both catechol and 4-chlorophenol. The improvement is
shown by a lower RMSECYV value and thereby a lower rel-
ative error, and a higher correlation valué)( Better pre-
dictions are obtained for 4-chlorophenol than for catechol,
before correction as well as after a correction procedure was
applied. The best mode of correction seems to be either using
only catechol references (relative error is 6.8% for catechol
and 5.8% for 4-chlorophenol) or use the correction factors
derived from additive current responses of catechol and 4-
1000 chlorophenol references (relative error is 7.4% for catechol
and 5.5% for 4-chlorophenol). For further analysis the lat-
ter method was chosen since it reflects sensitivity changes in
both catechol and 4-chlorophenol responses. One can specu-
late that the results could have been even better if reference
measurements were performed more often, i.e., between ev-
ery sample, and/or the reference correction due to decay in
sensitivity by time was made by a non-linear algorithm. How-
ever, no clear non-linearity dependence could be observed
when studying the corrected responses for the chosen ranges

0.0 05 10 15 20 25 of phenol concentrations, not even at high mixture concentra-
(b) Time variable / min tions of both phenols. Thus, for simplicity reasons the linear
algorithm for correction (sekq. (1) of the sensitivity loss
was chosen.

800 A

600 -

400 -

Response current / nA

0,0 0,5 1,0 1,5 2,0 2,5
(a) Time variable / min

800 A

57

)
¢

600 -

;o

400 -

Response current / nA

200 A

*o/75
4-chlorophenol
conc.

*5/75 o
400 [ 0/60

*10/75 *5/60

3.2. Validation of responses detected with one biosensor
using a multivariate calibration model from another
biosensor

*201/71 + *5/45 '
5
200+ 10/6Q

weqHfl 5/45]10/45
+25/75%25/60

+5/30 Variation between biosensors must also be taken into ac-

0TS

vaoms | s count if systematic analysis with pattern recognition meth-
R ) 010 ods should give reliable results. Hence, 18 catechol/4-
-200p +2s130 s ] chlorophenol validation mixtures, measured on a new ty-
rosinase/Eastman AQ sensor, were predicted with the PLS-R
calibration model calculated for the 36 mixture responses
catechol conc. at the first electrode. A new batch of tyrosinase enzyme
1000 was used for this second biosensor. Each analysis sequence
was individually aligned to the time of injection and cor-
rected for shift in baseline. Additive reference peaks of cat-
Fig. 4. Sensitivity corrected current peak responses for 36 different mix- €Chol and 4-chlorophenol were thereafter used to compen-
tures of catechol/4-chlorophenol, each represented by 24 time variablessate for the decreasing sensitivity accordindgetp (1) Eq.
(points) obtained by flow injection measurements of phenolic solutions. (2) was used to correct the 18 validation mixture responses
The responses are corrected for shift in baseline and aligned to the timeagainst responses measured with the first serf§gr.5a

of injection: (a) additive responses for catechol (2@) and 4-chlorophenol . . . .
(60M) references; (b) responses for the 36 mixtures; and (c) PCA score plot shows the 24 time variables for the 18 validation samples

derived from the 36 mixture responses where PC1 and PC2 describe 77 and’€fore any sensitivity correction has been made. The re-
22% of the variation in data, respectively. Points represent concentrations sponses differ very much from the uncorrected responses

catechol/4-chlorophenol igM. that were obtained with the 36 mixtures measured on the
first sensor, seEig. 3. Responses for the mixtures detected
form systematic pattern of the two phenol concentrations is at the second sensdFif. 5a) are generally higher in sen-
received. sitivity and have a slower peak decaying process. Repeated
PLS-R with full cross-validation was used on the 36 mix- analysis with other newly prepared biosensors resulted in
ture responses to evaluate the effect that each reference hasimilar response patterns using this new batch of tyrosi-
on the correction procedure. Besides using the additive ref-nase enzyme. However, after all correction steps, the vali-
erences (sekigs. 3a and dacorrections were calculated by dation sample responses fiig. 5o looks similar to the 36

PC 2 (22%)
o
3

*20/15] *15/15

_400 - *15/0

*25/15 #20/0

+*10/0

*25/0

1000 7500 0 500
(c) PC 1 (77%)
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Table 1
PLS-R prediction results made with full cross-validation on 24 time variables corrected for decreased sensitivity with different modes te datecimah
and 4-chlorophenol in 36 binary mixtures

Mode of correction Catechol prediction 4-Chlorophenol prediction

RMSECV M) Relative error (%6 Correlation (2) RMSECV M) Relative error (%6 Correlation (2)

No correction 2.77 11 0.90 6.79 9.1 0.94
Catechol 1.70 (] 0.96 4.37 5.8 0.97
4-Chlorophenol 2.45 8 0.92 4.14 5.5 0.98
Catechol/4-chlorophenol 1.85 g 0.96 413 55 0.98

a Relative error is denoted as RMSECYV divided by the maximum concentratiqayi26r catechol and 75.M for 4-chlorophenol.

responses at the first sensor received after sensitivity correcthis can be that not full curves (just 24 points) have been

tion in Fig. 4b. used for correction of continuously decreasing sensitivity of
Predicted versus reference concentrations were plotted forthe sensors. No deviation from proportionality between pre-

catechol Fig. 6a) and 4-chlorophenolF{g. éb). For cate- dicted versus reference concentration was seen if the calibra-

chol, the model works fine with RMSEP of 1.8/ (rela- tion and test set model (corrected accordingtp (1) were

tive error, 7.0%) using three PLS components. These resultsanalysed separately with PLS-R and cross-validation. Thus,

agree well with the ones received within the first sensor (rel- the observed overestimations for predicted 4-chlorophenol

ative error, 7.4%), sed&able 1 Regarding 4-chlorophenol concentrations seem to depend on the correction step that
concentrations, a relative error of 16.0% was obtained with was made between the two biosensors accordirentq2)

two PLS components. Frofig. &b, it can clearly be seen  The main question here is, of course, to understand how

that overestimations of predicted 4-chlorophenol concentra- much the sensors can differ, that after procedures of cor-

tions in the validation mixtures are obtained. One reason for
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Fig. 5. Responses for 24 time variables obtained from flow injection re- Fig. 6. Predicted vs. reference concentration of (a) catechol and (b) 4-
sponses in the second analysis sequence containing 18 validation mixtureshlorophenol for 18 validation mixtures of these two phenols. Predictions
of catechol/4-chlorophenol detected on a new sensor modified with a dif- are based on PLS-R models with (a) 3 PLS components and (b) 2 PLS com-
ferent batch of tyrosinase enzyme. The responses are corrected for shift inponents, using the 36 mixture samples measured on the first sensor for cali-
baseline and aligned to the time of injection: (a) non-sensitivity corrected bration, and 24 time variables from the flow injection responses (the peaks
peaks and (b) sensitivity corrected peaks adjusted against the first analysisvere aligned to the time of injection and corrected for baseline, sensitivity
sequence based on the 36 mixture responses using additive references.  and adjusted against the first analysis sequence using additive references).
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