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Abstract—We consider a window decoding scheme for Braided
Convolutional Codes (BCCs) based on the BCJR algorithm. We
describe the principle of this decoding scheme and show that BCCs
with window decoding exhibit excellent performance. The tradeoff
between performance and decoding latency is examined and, to
reduce decoding complexity, both uniform and nonuniform message
passing schedules within the decoding window are considered. Final-
ly, puncturing is employed to obtain rate-compatible code rates of
1/2 and 2/3 starting from a rate 1/3 example mother code. Simulation
results show that, with nonuniform message passing and puncturing,
near capacity performance can be maintained throughout the rate
range considered with reasonable decoding complexity and no visible
error floors.

I. INTRODUCTION

Braided block codes (BBCs) [1] can be regarded as a diago-
nalized version of product codes [2] or expander codes [3], [4].
A BBC is constructed by interconnecting two block component
codes: a horizontal component code and a vertical component
code. Information symbols are checked by the two component
encoders, and the parity symbols of one component encoder are
used as inputs to the other component encoder. Recently, BBCs
with Bose-chaudhuri-Hocqenghem (BCH) component codes [5]
and the closely related staircase codes [6] have been investigated
for high-speed optical communication and they have been found
to achieve excellent performance with iterative hard decision
decoding.

As a counterpart of BBCs, braided convolutional codes (BCC-
s) [7], a class of turbo-like codes, were first introduced in [8];
however, in contrast to BBCs, BCCs use short constraint length
convolutional codes as component codes. BBCs and BCCs are
similar in terms of the encoding process. The encoding of BCCs
can be described by a two-dimensional sliding array, where each
symbol is protected by two component convolutional codes. The
connections between the two component encoders are defined by
the positions where information symbols and parity symbols are
stored in the two-dimensional array. Analogous to BBCs, a tightly
braided convolutional (TBC) code results when a dense array is
used to store the information and parity symbols. Alternatively,
sparsely braided convolutional (SBC) codes have low density,
resulting in improved iterative decoding performance [7]. It was
also shown (numerically) in [7] that the minimum distance of SBC
codes grows linearly with the overall constraint length, leading
to the conjecture that SBC codes are asymptotically good. In [9]
and [10], the BP threshold of SBC codes was analyzed on the
binary erasure channel, and it was demonstrated that threshold
saturation occurs, i.e., SBC codes behave in a manner similar to
LDPC convolutional (spatially coupled) codes.

In this paper, we introduce a new decoding scheme for SBC
codes. Instead of the pipeline decoder used in [7] and [8], a
window decoder is proposed for SBC codes operating over the
binary-input additive white Gaussian noise (AWGN) channel.
Window decoding, which has been extensively studied for LDPC
convolutional codes [11],[12],[13], provides a simple and efficient
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Fig. 1. Encoder for a rate R = 1/3 blockwise SBC code.

way to trade off decoding performance for reduced latency. Unlike
window decoding of sparse LDPC convolutional codes, which
typically use an iterative message passing algorithm based on
belief propagation, window decoding of SBC codes is based on
the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm. In addition, the
tradeoff between performance and decoding latency is explored,
and we discuss how to choose the permutor size and the window
size to achieve the best performance when the decoding latency
is fixed. Moreover, in order to reduce the decoding complexity,
different massage passing schedules (both uniform and nonuni-
form) are investigated. Finally, we consider periodic puncturing
of SBC codes to achieve rate-compatible SBC codes and their
performance using window decoding is compared to that of LDPC
convolutional codes.

II. BRAIDED CONVOLUTIONAL CODES

Braided convolutional codes are constructed using an infinite
two-dimensional array consisting of one horizontal and one
vertical encoder. These two encoders are linked through parity
feedback. In this manner, the systematic and parity symbols are
“braided” together. There are two classes of SBC codes: bitwise
and blockwise. In this paper we limit ourselves to rate R = 1/3
blockwise SBC codes. In this case, the information sequence
enters the encoder in a block-by-block manner with a relatively
large block size. An example of a rate R = 1/3 blockwise SBC
encoder is illustrated in Fig. 1. It consists of two systematic
convolutional component encoders each of rate Rcc = 2/3. The
information sequence is divided into blocks of length T symbols,
i.e., u = (u0,u1, . . . ,ut, . . .), where ut = (ut,1, ut,2, . . . , ut,T ).
P(0), P(1), and P(2) are each block permutors of length T .

At time instant t = 0, information block u0 and its permuted
version ũ0 = u0P(0) enter the first inputs of Encoder 1 and
Encoder 2, respectively. Meanwhile, blocks ṽ(2)

−1 and ṽ(1)
−1, con-

sisting of T zeros each, enter the second inputs of Encoder 1 and
Encoder 2, respectively. Encoders 1 and 2 then generate length T
parity blocks v̂(1)

0 and v̂(2)
0 , and blocks v(0)

0 = u0, v(1)
0 = v̂(1)

0 ,
and v(2)

0 = v̂(2)
0 are sent over the channel. At time instant t,

parity block v(1)
t is calculated by Encoder 1 as a function of ut



and ṽ(1)
t = v(2)

t−1P
(2). Similarly, parity block v(2)

t is calculated
by Encoder 2 as a function of ũt = utP(0) and ṽ(2)

t = v(1)
t−1P

(1).
The blocks v(0)

t = ut, v(1)
t = v̂(1)

t , and v(2)
t = v̂(2)

t are
multiplexed into the code sequence v = (v0,v1, . . . ,vt, . . .),
where

vt =
(
v(0)t,1 , v

(1)
t,1 , v

(2)
t,1 , v

(0)
t,2 , v

(1)
t,2 , v

(2)
t,2 , . . . , v

(0)
t,T , v

(1)
t,T , v

(2)
t,T

)
, (1)

and sent over the channel.
In this paper, we consider rate R = 2/3 unterminated convolu-

tional codes as component codes for blockwise SBC codes. At the
end of the information sequence, termination is used to protect
the final information blocks. In this case, after the information
blocks u[0,L−1] = (u0,u1, . . . ,uL−1) enter the blockwise SBC
encoder, Λ additional all-zero blocks uL, . . . ,uL+Λ−1 enter the
encoder. Note that these Λ blocks are not sent over the channel
but the resulting parity blocks are transmitted. The actual rate of
the SBC code, including the tail, is given by

R̃ =
1

3

L

L+ (2Λ/3)
. (2)

III. WINDOW DECODING

A parallel pipeline decoder was used for the BCCs in [7] in
order to achieve high throughput continuous decoding. However,
the decoding latency required for good performance in this case is
very large. Significantly reduced decoding latency can be obtained
with little or no loss in performance by using window decoding.
In this section, we introduce a window decoding scheme for SBC
codes.

A. Window Decoding
Assume that the rate R = 1/3 blockwise BCC encoder

described in Section II is used. The code sequence is v =
(v0,v1, . . . ,vt, . . .), where vt is given by (1). After transmis-
sion over an AWGN channel, the received sequence is r =
(r0, r1, . . . , rt, . . .), where

rt =
(
r(0)t,1 , r

(1)
t,1 , r

(2)
t,1 , r

(0)
t,2 , r

(1)
t,2 , r

(2)
t,2 , . . . , r

(0)
t,T , r

(1)
t,T , r

(2)
t,T

)
.

Let lc = (lc0, l
c
1, . . . , l

c
t , . . .) denote the channel log-likelihood

ratios (LLRs), where

lct =
(
lc,(0)t,1 , lc,(1)t,1 , lc,(2)t,1 , lc,(0)t,2 , lc,(1)t,2 , lc,(2)t,2 , . . . , lc,(0)t,T , lc,(1)t,T , lc,(2)t,T

)

=
(
lc,(0)t , lc,(1)t , lc,(2)t

)
,

and lc,(0)t , lc,(1)t , and lc,(2)t represent the channel LLRs of the
information symbols, the parity symbols from Encoder 1, and the
parity symbols from Encoder 2, respectively, at time instant t.

These LLRs are demultiplexed into two streams. For com-
ponent Encoder i, i ∈ {1, 2}, the channel LLRs correspond-
ing to the outputs v(i) =

(
v(i)
0 ,v(i)

1 , . . . ,v(i)
t , . . .

)
, where

v(i)
t =

(
v(0)t,1 , v

(i)
t,1, v

(0)
t,2 , v

(i)
t,2, . . . , v

(0)
t,T , v

(i)
t,T

)
, are given by lc,(i) =

(
lc,(i)0 , lc,(i)1 , . . . , lc,(i)t , . . .

)
, where

lc,(i)t =
(
lc,(0)t,1 , lc,(i)t,1 , lc,(0)t,2 , lc,(i)t,2 , . . . , lc,(0)t,T , lc,(i)t,T

)
.

The window decoding diagram is shown in Fig. 2. Before
describing the window decoding scheme, we give some notation.
For time instant t, t ∈ [0, L+ Λ− 1], lcInf (t), l

a
Inf (t), and leInf (t)

represent the channel LLRs, the a priori LLRs, and the extrinsic
LLRs of the information symbols of Decoder 1, respectively.
lcPin1 (t), laPin1 (t), and lePin1 (t) denote the channel LLRs, the
a priori LLRs, and the extrinsic LLRs of the input parity symbols
of Decoder 1, respectively. lcPout1 (t), laPout1 (t), and lePout1 (t)
denote the channel LLRs, the a priori LLRs, and the extrinsic
LLRs of the output parity symbols of Decoder 1, respectively.
Similarly, l̃cInf (t), l̃

a
Inf (t) and l̃eInf (t) are the channel LLRs, the

a priori LLRs, and the extrinsic LLRs of the information symbols
of Decoder 2, respectively, and the Decoder 2 LLRs lcPin2 (t),
laPin2 (t), l

e
Pin2 (t), l

c
Pout2 (t), l

a
Pout2 (t), and lePout2 (t) are defined

analogously to the corresponding LLRs of Decoder 1. Finally,
we assume that the window size is w, which means there are w
blocks in the decoding window at any particular time.

When the transmitted symbols are received, the first w blocks
of channel LLRs enter the window decoder. Among these blocks,
the first one to enter contains the target symbols, i.e., the first
block of symbols to be decoded. There are two types of informa-
tion exchange in the decoder. One is the information exchange
between two component decoders at the same time instant, which
operates on the information symbols in a given block iteratively.
Since the individual blocks are not terminated, the component
codes are decoded using the windowed BCJR algorithm [14].
The other is the information exchange between two component
decoders at different time instants, which operates on the parity
symbols associated with two successive blocks iteratively. For
simplicity, we call them the vertical exchange and the horizontal
exchange, respectively.

At time t, the decoding window covers w blocks at time indexes
s ∈ [t, t+ w − 1]. We initialize the window decoder as follows.
For Decoder 1, we have

lcInf (s) = lc,(0)s

lcPout1 (s) = lc,(1)s

lcPin1 (s) =

{
k1, s = 0

lc,(2)s−1 P
(2), s ∈ (0, w − 1],

(3)

and for Decoder 2, we have

l̃cInf (s)=lc,(0)s P(0)

lcPout2 (s) = lc,(2)s

lcPin2 (s) =

{
k2, s = 0

lc,(1)s−1 P
(1), s ∈ (0, w − 1],

(4)

where k1 and k2 are negative constants, because we assume that
the second inputs of Encoders 1 and 2 are all zeros at time instant
s = 0. Also, the a priori and the extrinsic LLRs are zeros at
initialization.

The window decoder starts with vertical decoding of the
first block in the window (time instant t in Fig. 2) with I1
iterations (termed intra-block iterations). This procedure is similar
to the decoding of turbo codes. The major difference is that the
a posteriori probability (APP) values for all the code symbols
are calculated, instead of only for the information symbols. After
I1 intra-block iterations, the extrinsic information is permuted
appropriately and passed to the adjacent decoders at time instant
t + 1. After receiving these a priori LLRs, the decoders at time
instant (t+1) perform I1 iterations of vertical decoding and pass
the extrinsic information to the decoders at time instant t + 2.
This forward (horizontal) process continues until the last block at
time instant (t+w−1) finishes vertical decoding. For the forward
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Fig. 2. Window decoder for a rate R = 1/3 SBC code.

exchange process, we have

laPin1 (s) = lePout2 (s− 1)P(2)

laPin2 (s) = lePout1 (s− 1)P(1),
(5)

where lePout2 (−1)= lePout1 (−1)= 0, for s = 0.
Following this, the decoders at time instant (t+w−1) transmit

the extrinsic information of their parity input symbols back to the
decoders at time instant (t+w−2). After receiving these a priori
LLRs, the decoders at time instant (t+w−2) perform I1 iterations
of vertical decoding and then pass the extrinsic information back
to the decoders at time instant (t + w − 3). This backward
(horizontal) process continues until extrinsic information is passed
back to the first block in the window. For the backward exchange
process, we have

laPout1 (s) = lePin2 (s+ 1)
[
P(1)

]T

laPout2 (s) = lePin1 (s+ 1)
[
P(2)

]T
,

(6)

where lePin2 (t+ w) = lePin1 (t+ w) = 0, for s = t+w−1. Then
a new round of horizontal decoding begins.

The horizontal decoding process (forward and backward) is
performed I2 times (termed inter-block iterations). Then hard
decisions are made on the target symbols (the first block in
the window). After that, the window shifts by one time instant.
At the same time, one new block enters the window. After the
initialization of the new block, the decoding process then starts
again in the new window.

B. Window Decoding Schedules
From above description, it is clear that the number of intra-

block iterations I1 and inter-block iterations I2 plays an important
role in the tradeoff between performance and computational
complexity. In this section, we present several window decoding
message passing schedules as a means to investigate this tradeoff.
Assume that the window size is w.

1) Cyclic Schedule: In this schedule, described in Section III
above, the component decoders in the window operate sequential-
ly, so that the middle decoders are updated more often than those
at the end. The pattern of the cyclic schedule is shown in Fig.
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(a) Cyclic schedule diagram
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(c) Nonuniform schedule diagram

Fig. 3. Different window decoding schedules.

3(a) for every time instant s ∈ [t, t+ w − 1], where a rectangle
represents a pair of component decoders and I1 is the number of
intra-block iterations. The total number of iterations in this case
is given by 2 (w − 1) I1I2.

2) Uniform Schedule: In this schedule, for every inter-block
iteration, each block in the window is updated with the same
number of iterations. The pattern of the uniform schedule is
shown in Fig. 3(b), and the total number of iterations in this
case is given by 2wI1I2.

3) Nonuniform Schedule: In this schedule, during the even
inter-block iterations, the decoding schedule is the same as the
uniform schedule. During the odd inter-block iterations, however,
the forward process stops at block (w′ − 1), 0 < w′ < w,
and the backward process starts at block (w′ − 1). The pattern
of this nonuniform schedule is shown in Fig. 3(c). The average
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Fig. 4. BER performance of rate R = 1/3 SBC codes with window decoding
and different permutor sizes T . The window size w is 5 in the case of T = 8000,
and w = 14 in the other cases. The intra-block iteration and inter-block iteration
numbers are I1 = 5 and I2 = 30, respectively.

total number of iterations in this case is given by I1I2 (w + w′).
The idea behind the nonuniform schedule is to devote a greater
fraction of the computational resources to updating the blocks
closest to the target symbols.

IV. NUMERICAL RESULTS

In this section, some examples are given to illustrate the
performance of BCCs with window decoding over the AWGN
channel with binary phase-shift keying (BPSK) signaling.

We consider a rate R = 1/3 blockwise SBC code with two
identical rate Rcc = 2/3, memory mcc = 2, low complexity
(4-state) RSC component encoders. The generator matrix of the
component encoders is given by

G (D) =

(
1 0 1

1+D+D2

0 1 1+D2

1+D+D2

)
. (7)

The unterminated version of the component encoder is employed.
The three block permutors P(0), P(1), and P(2) used in the
encoder were chosen randomly with the same size T . We assume
that a transmission consists of an information sequence of length
50T plus one zero termination block of length T .1

A. Performance of SBC Codes with Window Decoding
The bit error rate (BER) performance of the rate R = 1/3

blockwise SBC code with window decoding is shown in Fig. 4,
where the permutor size changes from T = 100 to 8000. We
see that the performance with window decoding improves as we
increase the size of the block permutors, as expected.

In addition to BER performance, the decoding latency intro-
duced by channel coding is a crucial factor in the design of a
practical communication system. For the rate R = 1/3 SBC code,
the decoding latency of the sliding window decoder is given by

τ = 3Tw (8)

symbols, where T and w are the permutor size and window size,
respectively.

The bit signal-to-noise ratio Eb/N0 required to achieve a
BER of 10−5 as a function of decoding latency is shown in
Fig. 5. We observe that the performance of the blockwise SBC
code with fixed permutor size improves as the window size w
increases; however, it does not improve much further beyond a
certain window size. Moreover, beyond a certain latency, using

1Note that the actual code rate is slightly less than the nominal rate R.
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code as a function of decoding latency.
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Fig. 6. BER performance of rate R = 1/3 SBC codes with window decoding
using different decoding schedules for the same number of inter-block and intra-
block iterations. The window size w is 3 and the block permutor size T is 8000.
For the nonuniform schedule, w′ = 1.

a larger permutor size T with a smaller window size w gives
better performance. Finally, we note that the performance of the
blockwise SBC code with window decoding is at least as good as
the curves published in [7], which used pipeline decoding with a
much higher decoding latency.

B. Window Decoding Schedules
For a fixed number of iterations, the performance of the SBC

code with window decoding and different decoding schedules
is compared in Fig. 6. The cyclic, uniform, and nonuniform
schedules are examined with I1 = 1 and I2 = 20, where the
total number of iterations for window size w = 3 is 80, 120, and
100, respectively.2 As we see in Fig. 6, the performance of the
window decoder with the nonuniform schedule is close to that
of the uniform schedule, but this performance is achieved with
fewer iterations using the nonuniform schedule. We also see that
the performance of both the uniform and nonuniform schedules is
better than the cyclic schedule, since, with the cyclic schedule, the
target symbols are updated less often during a round of horizontal
decoding than with the uniform and nonuniform schedules.

C. Puncturing
We now investigate the performance of rate-compatible block-

wise SBC codes with window decoding. Using the rate R = 1/3
blockwise SBC code as the mother code, we obtain blockwise

2Experimentally, the window decoder displayed good performance with w =
3, I1 = 1, and I2 = 20. Further analysis of various schedules and decoder
parameters, along with a complexity comparison, is included in [16].
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Fig. 7. BER performance of rate-compatible SBC codes with window decoding
obtained by periodic puncturing. The window size w is 3 and the block permutor
size T is 8000.
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Fig. 8. BER performance of the blockwise SBC code and an LDPC convolutional
code with the same decoding latency. For the SBC code, the window size w
and the block permutor size T are 3 and 8000, respectively. For the LDPC
convolutional code, the window size, the protograph lifting factor, and the coupling
length are 6, 4000, and 50, respectively.

SBC codes with code rates of 1/2 and 2/3 by periodic puncturing.
The BER performance of the blockwise SBC codes with code
rates of 1/3, 1/2, and 2/3 with window decoding is shown in Fig.
7. At a BER of 10−5, the blockwise SBC codes with code rates
of 1/3, 1/2, and 2/3 perform about 0.56 dB, 0.58 dB, and 0.62
dB away from the Shannon limit and they show no visible sign
of an error-floor down to a BER of 10−8.

Next, the performance of the rate R = 1/2 blockwise SBC
code is compared to a rate R = 1/2 LDPC convolutional
(spatially coupled) code with the same decoding latency in Fig.
8.3 The LDPC convolutional code is based on the (3, 6)-regular
protograph with base matrix B = [3, 3], where the component
base matrices are B0 = [2, 1] and B1 = [1, 2] (see [15] for details
of the protograph construction). The thresholds of these two codes
are also given [9]. We observe that, for the same decoding latency
τ = 48, 000 symbols and the same code rate R = 1/2, the
blockwise SBC code outperforms the LDPC convolutional code
by about 0.3 dB at a BER of 10−6.

V. CONCLUSION

In this paper, we introduced a low latency window decoding
scheme for blockwise SBC codes. We also proposed both uni-
form and nonuniform decoding schedules for the window and
compared their BER performance. Periodic puncturing was then

3A more detailed performance comparison, including both turbo codes and
LDPC convolutional codes, is presented in [16].

used to achieve rate-compatible blockwise SBC codes, with the
rate R = 1/3, R = 1/2 and R = 2/3 blockwise SBC codes
performing about 0.56 dB, 0.58 dB, and 0.62 dB away from the
Shannon limit at a BER of 10−5. Moreover, these codes show no
visible sign of an error-floor down to a BER of 10−8. Finally, a
comparison of a blockwise SBC code and an LDPC convolutional
code, both with code rate R = 1/2, showed that blockwise SBC
codes can outperform LDPC convolutional codes with window
decoding under an equal decoding latency condition.

Based on their excellent performance in both the waterfall
and error-floor regions, the robustness of this performance to
puncturing, and the ability to employ a low-complexity soft
decision decoding algorithm at high code rates, blockwise SBC
codes appear to be worthy competitors to the product-like codes
that have recently been proposed for high-speed optical commu-
nication.
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